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ABSTRACT

In this paper, we consider the inventory management (IM) problem where we
need to make replenishment decisions for a large number of stock keeping units
(SKUs) to balance their supply and demand. In our setting, the constraint on
the shared resources (such as the inventory capacity) couples the otherwise in-
dependent control for each SKU. We formulate the problem with this structure
as Shared-Resource Stochastic Game (SRSG) and propose an efficient algorithm
called Context-aware Decentralized PPO (CD-PPO). Through extensive experi-
ments, we demonstrate that CD-PPO can accelerate the learning procedure and
achieve better performance compared with standard MARL algorithms.

1 INTRODUCTION

The inventory management (IM) problem has long been one of the most important application sce-
narios in the supply-chain industry (Nahmias & Smith, 1993). Its main purpose is to maintain a
balance between the supply and demand of stock keeping units (SKUs) in a supply chain by op-
timizing the replenishment decisions for each SKU. An efficient inventory management strategy
cannot only increase the profit and reduce the operational cost but also give rise to better services
to help maintain customer satisfaction (Eckert, 2007). Nevertheless, this task is quite challenging in
practice due to the fact that the replenishment decisions for different SKUs compete for shared re-
sources (e.g., the inventory capacity or the procurement budget) as well as cooperate with each other
to achieve a high total profit. This becomes more challenging when the number of SKUs involved
in the supply-chain becomes larger. Such co-existence of cooperation and competition renders IM a
complicated and challenging problem.

Traditional methods usually reduce the IM problem to dynamic programming (DP). However, these
approaches often rely on unrealistic assumptions such as iid customer demands and deterministic
leading time (Kaplan, 1970; Ehrhardt, 1984). Moreover, when the state space grows rapidly along
with the scaling-up of some key factors such as the leading time and the number of SKUs, the
problem becomes intractable by DP due to the curse of dimension (Gijsbrechts et al., 2019). Due
to these limitations, many approaches based on approximate dynamic programming are proposed to
solve IM problems in different settings (Halman et al., 2009; Fang et al., 2013; Chen & Yang, 2019).
While these approaches perform well in certain scenarios, they rely heavily on problem-specific
expertise or assumptions, e.g., the zero or one period leading time assumption in (Halman et al.,
2009), and thus can hardly generalize to other settings. In contrast, reinforcement learning (RL)
based methods, with short inference time, can be generalized into various scenarios in a data-driven
manner. However, it is hard to train a global policy that makes decisions for all SKUs due to
the large global state and action space (Jiang & Agarwal, 2018). To further address the training
efficiency issue, it is natural to adopt the multi-agent reinforcement learning (MARL) paradigm,
where each SKU is controlled by an individual agent whose state and action spaces are localized
and only contain information relevant to itself.

There are currently two popular paradigms to train MARL in the literature: independent learning
(Tan, 1993) and joint action learning (Lowe et al., 2017). Despite of their success in many scenarios,
these two MARL paradigms also exhibit certain weaknesses that restrain their effectiveness in solv-
ing the IM problem. For independent learning, the policy training of one agent treats all other agents
as a part of the stochastic environment. It may largely increase the hardness of training convergence
due to the non-stationarity of the environment. For joint action learning, a centralized critic is usu-
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ally trained to predict the value based on the global state (of all SKUs) and the joint action, which
can easily become intractable with a growing number of SKUs. Furthermore, it is time-consuming
to sample data from a joint simulator for a large number of SKUs due to the high computational cost
to calculate the internal variables that model the complex agent interactions.

To address these challenges, we leverage the structure in the IM problem to design a more effective
MARL paradigm. Particularly, each agent in system interacts with the others only through the
competence of shared resources such as the inventory capacity. We introduce an auxiliary variable
called context to represent the shared resources (e.g., the available inventory level for all SKUs).
From the MARL perspective, the dynamics of the context actually reflect the collective behaviors
of all the agents. Conditioned on the context dynamics, we assume the transition dynamics and the
reward function of the agents are independent. In this way, leveraging the context as an additional
input for the policy or the value network of each agent enables us to not only prevent the non-
stationarity in independent learning but also feed global information to the critic without leading to
an intractable global critic.

Based on the context, we propose Shared-Resource Stochastic Game (SRSG) to model the IM prob-
lem. Since the context and the policies of each agent depend on each other, it is hard to solve for them
simultaneously. Accordingly, we make two assumptions to circumvent this issue: 1) rearranging the
sampling process by first sampling the contexts and then sampling local the state/action/reward for
each agent; 2) using context dynamics sampled by previous policies. With these assumptions, we
can design an efficient algorithm called Context-aware Decentralized PPO (CD-PPO) that consists
of two iterative learning procedures: 1) obtaining the context samples from a joint simulator, and 2)
updating the policy for each agent by the data sampled from its corresponding local simulator condi-
tioned on the collective context dynamics. By decoupling each agent from the others with a separate
local simulation, our method can greatly reduce the model complexity and accelerate the learning
procedure. At last, we conduct extensive experiments and the results validate the effectiveness of
our method. Besides, not limited to the IM problem considered in this paper, our method may be
applied to other applications with shared resources such as portfolio management (Ye et al., 2020)
where different stocks share the same capital pool and smart grid scheduling (Remani et al., 2019)
where different nodes share a total budget.

Our contributions are summarized as follows:

• We propose Shared-Resource Stochastic Game to capture the problem structure in the IM
problem where agents interact with each other through competing for shared resources.

• We propose a novel algorithm called Context-aware Decentralized PPO that leverages the
shared-resource structure to solve the IM problem efficiently.

• We conduct extensive experiments to demonstrate that our method can achieve the perfor-
mance on par with state-of-the-art MARL algorithms while being more computationally
and sample efficient.

2 BACKGROUND

2.1 STOCHASTIC GAMES

We build our work on the formulation of the stochastic game (SG) (Shapley, 1953) (also known as
Markov game). A stochastic game is defined as a tuple (N ,S,A, T , R, γ) where N = [n] denotes
the set of n > 1 agents, S is the state space,A := A1×· · ·×An is the action space composed of the
action spaces of individual agents, T : S ×A → ∆(S) is the transition dynamics, R =

∑n
i=1 R

i is
the total reward which is the summation of individual rewards Ri : S ×Ai ×S → R and γ ∈ [0, 1)
is the discount factor. For the i-th agent, we denote its policy as πi : S → ∆

(
Ai
)

and the joint
policy of the other agents as π−i =

∏
j∈[n]\i π

j . Each agent optimizes its policy conditioned on the
policies of the others, i.e.,

max
πi

ηi(πi, π−i) = E

[ ∞∑
t=0

γtrit

∣∣∣πi, π−i

]
, (1)
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where rit is the individual reward obtained by following the joint policy composed of πi and π−i. We
will later propose Shared-Resource Stochastic Game (SRSG) which is a special case of stochastic
game.

2.2 INVENTORY MANAGEMENT WITH SHARED RESOURCE

In this paper, we consider a simplified setting with one store and multiple SKUs to better focus on
the shared-resource structure of the problem. We further assume that there is an upstream warehouse
that can fulfill all the requirements from the store. Our objective is to train a high-quality replen-
ishing policy for each SKU in the store, particularly when there are a large number of SKUs. It is
worthwhile to mention the following two points: First, this setting is more challenging than manag-
ing the SKUs in warehouses due to the direct impact of the changing customer demands. Second,
due to the flexibility of RL algorithms, our method can also be applied to more complex settings,
e.g., with multi-echelon structure or fluctuate supply.

Similar to previous work, we follow the multi-agent RL (MARL) framework with decentralized
agents, each of which manages the inventory of one SKU in the store. We assume that the store has
n SKUs in sell, all of which share a common inventory capacity that can store up to Imax units at
the same time.

Replenishing decisions of each SKU are made on discretized time steps (which are days in this
paper). For the t-th time step and the i-th SKU, we denote the in-stock quantity by İit ∈ Z. This
quantity is constrained by the limit of the inventory capacity (i.e., the shared resources). Accord-
ingly, the following constraint holds:

∀t ≥ 0,

n∑
i=1

İit ≤ Imax. (2)

The dynamics of the system is as follows: For the t-th time step and the i-th SKU, the correspond-
ing agent can place a replenishment order to request Oi

t ∈ Z units of products from its upstream
warehouse. It takes several time steps (referred to as the leading time Li

t) before these products are
delivered to the store. We denote the total units in transit at the t-th time step by T i

t ∈ Z and the
total units arrived at the t-th time step by Ai

t ∈ Z. Meanwhile, the customer demand is Di
t and leads

to an actual sale of Si
t ∈ Z units. Due to the possibility of out-of-stock, Si

t may be smaller than Di
t.

We consider the setting where the leading time Li
t and the demand Di

t are stochastic.

Since all the SKUs share a common inventory space, the storage may overflow when the previously
ordered products arrive. In this paper, we assume that the excess SKUs will be discarded proportion-
ally according to a coefficient ρ which is the overflowing ratio if we accept all the arriving products.
To calculate ρ, we introduce an extra variable Îit which is the afterstate of İit . Intuitively, it denotes
how many units of the i-th SKU in stock at the end of the t-th time step if we omit the capacity
constraint. Note that, although other ways to deal with overflow (e.g., prioritizing some SKUs) are
possible, our algorithm will also apply to these settings and currently we only consider this naive
way. Undoubtedly, overflow will lead to extra operational cost which should be avoided as much as
possible in the replenishing strategy.

For clearness, we summarize the dynamics these variables as follows:

Si
t = min

(
Di

t, İ
i
t

)
Ai

t =
∑

τ :τ+Li
τ=t

Oi
τ

T i
t+1 = T i

t −Ai
t+1 +Oi

t+1 Îit = İit − Si
t +Ai

t+1

ρt = max

[
n∑

i=1

Îit − Imax, 0

]/[ n∑
i=1

Îit

]
(3)

İit+1 = İit − Si
t + ⌊(1− ρt)A

i
t+1⌋ (4)

The immediate profit of the i-th SKU is calculated according to the following equation:

F i
t = piS

i
t − qiO

i
t − oI

[
Oi

t > 0
]
− hİit (5)
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where pi and qi are the unit sale price and the unit procurement price for the i-th SKU respectively,
o and h are the order cost and the unit holding cost respectively, and I[·] is an indicator function
which equals to one when the condition is true and zero otherwise. The order cost reflects the fixed
transportation cost or the order processing cost, and yields whenever the order quantity is non-zero.
See the further description for the problem setting in Appendix A.

3 METHODOLOGY

In this section, we will first introduce the Shared-Resource Stochastic Game (SRSG) formulation
which decouples the control of individual agents in the multi-agent problem with shared resources
by introducing context. Next, we introduce the dynamics of the context and how to build an efficient
local simulator that receives the context trajectories as the input for the IM problem considered in
our paper. To accelerate the sampling process in estimating and optimizing the objective function,
we further introduce two approximations which leads to a practical algorithm called Context-aware
Decentralized PPO (CD-PPO).

3.1 SHARED-RESOURCE STOCHASTIC GAME

In this section, we formulate the multi-agent problem with shared resources as Shared-
Resource Stochastic Game (SRSG) where each agent is influenced by the others only
through a shared resource limit. We define the shared-resource stochastic game as a tuple(
N ,
{
Si
}
i∈N , C,A, T , R, γ

)
where the definitions of N , A and γ follow the definitions in the

stochastic game introduced in Section 2.1. We use Si to denote the local state space of the i-th
agent, and C to denote the context space observed by all agents. For example, the context can be
used to represent the occupied capacity of shared resources (e.g., the inventory space). Denote
S := S1×· · ·×Sn andA := A1×· · ·×An. The transition dynamics T : S ×C×A → ∆(S ×C)
can be decomposed as the context transition dynamics ct+1 ∼ Pc(· | ct, st, at) and the local state
transition dynamics sit+1 ∼ P i

s(· | sit, ait, ct+1) where ct ∈ C, sit ∈ Si, st ∈ S, ait ∈ Ai, and
at ∈ A. The reward function rt =

∑n
i=1 r

i
t is additive and rit ∼ Ri(sit, ct, a

i
t). The objective for the

i-th agent is to learn a policy πi : Si × C → ∆(Ai) to maximize the objective function that shares
the same form as that defined in equation 1.

Given the above definition, an IM problem can be formulated as SRSG by letting rit = F i
t , ait =

Oi
t, and ct =

∑n
i=1 İ

i
t for all i ∈ [n] and time step t. Moreover, the state of the i-th SKU is

a concatenation of information such as the in-transit quantity T i
t , the sale price pi, its historical

actions and the customer demands (see details in Appendix C).

3.2 CONTEXT DYNAMICS AND LOCAL SIMULATOR.

We use ċit to represent the amount of resources occupied by the i-th agent at the t-th time step and
ċt to represent the total amount of occupied resources. We further use ċ−i

t to denote the amount
of resource occupied by all agents except i. Assuming that the resources are additive, we have the
following equations:

ċt =

n∑
i=1

ċit, ċt = ċit + ċ−i
t . (6)

Similarly, we denote the afterstate of ċit as ĉit, i.e., the amount of occupied resources at the end of
the t-th time step. From the perspective of the i-th agent, the context ċ−i

t can be regarded as a part
of the environment. Hence, P (ĉit | sit, ait, ċit) represents how the replenishment decision influences
ĉit. Similarly, we have ĉt = ĉit + ĉ−i

t . Then, by applying a resource overflow resolution procedure
defined in equation 3 and equation 4, we can obtain ċit+1 (the resources in the next step).

We use the notation ct to represent (ĉt−1, ċt). We refer (si, ci) as the state for the i-th agent, and
c−i as the context. For each agent and given the context trajectory {c−i

τ }τ≥0, the sampling process
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Figure 1: Our algorithm consists of two iterative learning procedures: 1) Collect the context trajec-
tory {c−i

t }Tt=0 from the joint simulator with previous policies πi
old, π−i

old for each i ∈ [n]. 2) Train
each policy πi with samples collected from the local simulator conditioned on context trajectory
{c−i

t }Tt=0.

(denoted as T i) is as follows:

cit+1 ∼ P i
c(· | sit, ait, cit, c−i

t ),

sit+1 ∼ P i
s(· | sit, ait, cit+1, c

−i
t+1),

rit ∼ Ri(sit, a
i
t, c

i
t+1, c

−i
t+1).

(7)

Accordingly, we can build a local simulator for each agent according to the above equations. Note
that the local simulator is computationally more efficient than the joint simulator that simulates the
process of all SKUs simultaneously. To simplify the presentation, we only consider one kind of
shared resource (i.e., the inventory space) in the above formulation. However, it can be extended to
support multiple resources as long as these resources are additive.

For the tractability and the computational efficiency of the sampling process for evaluating the ob-
jective function defined in equation 1, we make two approximations to the sampling process.

First, we assume that each agent has infinitesimal influence on the context c−i. This is reasonable
for the shared-resource setting where the resource consumption of one agent does not significantly
influence that of the others. Second, we assume the policy changes slowly during the learning pro-
cess. Therefore, instead of repeatedly using the current policies to collect the context trajectories,
we allow to use the context trajectories collected by the policies in the previous iterations. Accord-
ingly, we can run the joint simulator with the current policies infrequently to collect trajectories
{c−i

τ }τ≥0 for different agents indexed by i. Then, we can evaluate the local rewards with the local
simulator under different possible local policies for each agent. In this way, we can greatly reduce
the frequency to simulate using the joint simulator which is time-consuming.

3.3 ALGORITHM

In the subsection, we will present details of our proposed algorithm called Context-aware Decen-
tralized PPO (CD-PPO). We call it context-aware because we feed the context c−i

t as the input of
the policy and the value function of each agent. Such a context-aware approach can avoid the non-
stationary problem in independent learning methods (which do not consider the policy change of the
other agents during training) since the context reflects the collective behaviors of the other agents
which can in turn impact the dynamics of each individual agent. In the meanwhile, our method can
mitigate the centralized critic (i.e., the critic that receives (st, at, ct) as the input) in many centralized
training and decentralized execution (CTDE) methods which becomes intractable when the number
of agents increases and the joint state and action space explodes.

We show our algorithm in Algorithm 1 and Figure 1, which consists of two iterative learning proce-
dures: 1) obtaining the context trajectories by running all agents in the joint environment; 2) updating
the policy of each agent using the data sampled from its local simulator conditioned on the context
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Algorithm 1 Context-aware Decentralized PPO

Given the joint simulator Envjoint

Given the local simulators {Envi
local}ni=1 for each agent

Initialize the policy πi and the value function V i for each agent i = 1, . . . , n
for m = 1, 2, · · · ,M epochs do

// Collect context trajectories from joint simulation
{c−1

t }Tt=0, . . . , {c−n
t }Tt=0 ← GetContextDynamics(Envjoint, {πi}ni=1)

for k = 1, 2 . . . ,K do
for all i = 1, 2, · · · , n agents do

// Set the context trajectory
Envilocal.set context trajectory({c−i

t }Tt=0)
// Train policy by simulating in the corresponding local environment
πi, V i ← DecentralizedPPO(Envilocal, π

i, V i)
end for

end for
end for

Figure 2: Training curves of different algo-
rithms in the setting with 5 SKUs. “IR” indi-
cates that we train the agents using only in-
dividual rewards and “w/o context” indicates
that we do not feed the global information
related to the shared resources to the agent.
The x-axis takes the samples from all local
simulators into account for CD-PPO2.

Figure 3: The average number of samples
needed by different algorithms to reach the
median performance across all baselines in
the setting with 100 SKUs. The lower the
value, the higher the sample-efficiency for
the algorithm. “N” and “C” denote the num-
ber of SKUs and the maximum capacity of
shared resource respectively.

trajectories. Moreover, our algorithm follows a decentralized training paradigm with infrequent
communication through the context trajectories. Due to space limit, we refer readers to Appendix B
for a detailed description of the algorithm (including the description of the two subroutines).

It is worth noting that a naive approach is to optimize policies based on the samples collected from
the joint simulator. Nonetheless, we find that it takes more computational costs to simulate for
one step in the joint simulator than simulating for one step in each of the n local simulators due
to the complex agent interaction. Such phenomena become more significant when there are more
types of shared resources or more complex constraints to consider (e.g., when we consider a smarter
discarding strategy to deal the overflow instead of discarding excess units for each SKU according to
ρt). In our experiments, the simulator we are using is developed for the general purpose. It contains
extra details such as replenishing orders fulfillment scheduling and transportation management, and
thus requires large computational costs to simulate the IM problem with more SKUs. Our method,
with the advantage of leveraging local simulators to accelerate simulation, is more computationally
efficient.
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4 EXPERIMENTS

We evaluate the performance of CD-PPO in several inventory management problem instances with
different scales (i.e., with 5, 50, 100, and 1000 SKUs) and different resources limits (by changing
the limit of the inventory space). We demonstrate that, our algorithm can achieve better results and
is significantly more sample-efficient than the previous SOTA baselines.

Setups. Our experiment is conducted on a simulator that can simulate the replenishment procedure
for multiple SKUs in one store. Instead of sampling demands from some hypothetical distributions,
we replay the demand series from two authentic datasets: a dataset from Kaggle (Makridakis et al.,
2020) that contains the sales history of five years (2011-2016) with 155 randomly selected SKUs
and a dataset from a retail partner that contains the sales history of two years (2018-2019) with 1000
SKUs. The former dataset is used to support the experiment settings with 5, 50, and 100 SKUs and
the latter dataset is used for the setting with 1000 SKUs. We use the sales of the last one year (the
last 100 days) as the testing set for the former dataset (for the latter dataset) and the remaining data
as the training set. For other necessary information (such as the prices, the costs, and the leading
time) to instantiate our simulator but not included in the dataset, we first select a reasonable range
for each of the parameters and then sample from the range. We use the total profit in dollars as
the evaluation metric. We run all the algorithms with four different random seeds and present the
average performance with standard deviations.

Baselines. The baseline algorithms used in our experiment is based on the EPyMARL (Papoudakis
et al., 2021) framework where commonly used MARL algorithms are implemented. In our prelim-
inary experiments, we find that two model-free on-policy MARL algorithms IPPO (de Witt et al.,
2020) and MAPPO (Yu et al., 2021) outperform the other algorithms including COMA (Foerster
et al., 2018), QMIX (Rashid et al., 2018), etc. MAPPO learns a centralized critic and therefore
becomes intractable due to the large state-action space when the number of SKUs is greater or equal
to 50. Due to the bad performance of the other algorithms (i.e., mostly resulting in negative profits),
we only show the experiment results of different variants of IPPO (and MAPPO only for the setting
with 5 SKUs). We also compare with two operation research (OR) methods: the base-stock policy
(Kaplan, 1970) and the (s, S)-policy (Ehrhardt, 1984) which are two well-known OR strategies and
are widely adopted in practice (see e.g., Kapuscinski & Tayur, 1999; Hubbs et al., 2020). Previous
studies make great efforts to determine the parameters in these strategies. We will present their
performance with the optimal parameters for each SKU obtained based on the future information,
which can be regarded as the skyline. (See details in Appendix D.)

Implementation. We share the parameters of the policy network and the value network across dif-
ferent agents/SKUs. The policy/value network consists of a two-layer MLP with 64 neurons on each
hidden layer. In our experiment, the policy network maps the local state to a categorical distribution
over a discrete action space {0, 1

3 ,
2
3 , 1,

4
3 ,

5
3 , 2,

5
2 , 3, 4, 5, 6, 7, 9, 12} where the real replenishment

quantity is obtained by multiplying these numbers with the average daily sales of the SKU over the
past two weeks. By default, the RL algorithms use the individual reward rather than the team reward
(e.g., the summation of the individual rewards from all the agents) as the objective of each agent. We
also feed global information related to the shared resources to the agents. In CD-PPO, to encourage
the policy to adapt for stochastic context dynamics in practice, we adopt the following techniques
in the training phase to augment the collected context trajectories: 1) adding noise to randomly cho-
sen items from context trajectories, or 2) replacing randomly chosen items with predicted values
generated by a context generating model. (See details on the implementation in Appendix C.)

Results. For the scenario with 5 SKUs, we show the training curves in Figure 2. We can observe
that while CD-PPO converges to the same performance level as the other algorithms in this simple
setting, it is more sample-efficient due to its efficient learning with local simulators.

To evaluate our algorithm on larger scenarios, we run CD-PPO and IPPO on the settings with 50,
100, and 1000 SKUs. To evaluate sample efficiency, we also record the number of samples when
different algorithms reach the median performance level across all baselines. We summarize the
results in Table 1 and Figure 3. The experiment results indicate that CD-PPO outperforms other

2Specifically, for one interaction in the global environment with N agents, we consider it as N samples.
For one interaction in the local simulator (based on context trajectories) with one agent, we consider it as 1 data
sample. We empirically observe that the running time is roughly proportional to this statistics.
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Table 1: Comparison of the profits from different algorithms on the settings with different number
of SKUs (indicated by “N”) and different limits of the inventory space (indicated by “C”). “IR”
indicates training with individual reward and “NC” indicates feeding the global information related
to the shared resources to the agent. Base-stock and (s, S)-policy are the skylines.

N50C500 N50C2k N100C1k N100C4k N1000C30k N1000C200k
IPPO-IR-NC 235±61 689±49 -2107±315 -2223±2536 88±87 571±102
IPPO-IR 250±58 546±460 -1126±410 148±1017 120±71 366±213
IPPO-NC 164±143 -1373±870 -1768±1064 -6501±6234 -1966±1871 -2495±3874
IPPO 367±90 -1103±1116 -670±1396 -6019±9056 -186±222 -7±99
CD-PPO 311±76 695±174 660±150 1298±125 233±197 741±157
Base-stock 688 919 1189 1887 73 322
(s,S)-policy 704 941 1227 1981 621 1210

RL baselines on 5 out of the 6 settings and even beats the performance of the base-stock policy
skyline. (Recall that we search the best parameters for each SKU using the future information in
these skylines.) The superior performance of CD-PPO may due to the avoidance of non-stationarity
by introducing the context. In contrast, traditional MARL methods with the CTDE (centralized
training and decentralized execution) paradigm cannot scale up to the environment with even 50-
100 SKUs due to the fact that the inputs of the centralized critic is too large to be loaded in to
the memory. IPPO, on the other hand, can run successfully but underperforms CD-PPO. More
importantly, we observe that CD-PPO is more sample efficient than IPPO. Notice that, since there
is no need for the agents to be synchronized before the next time running the joint simulation, the
training for individual agents can be parallelized to further reduce the wall time. The full results and
more ablation studies on how the capacity of shared resource affects the performance of CD-PPO
and the influence of the context augmentation technique can be found in Appendix E.

5 RELATED WORK

In this section, we will introduce the related work on the inventory management problem and the
training paradigms in MARL.

Inventory management. The inventory management problem has a long history and the classi-
cal methods for single-echelon systems include the economic order quantity (EOQ) model (Harris,
1913; Wilson, 1934), the (R,Q)-policy (Chen, 2000), the base-stock policy (Clark & Scarf, 1960;
Kaplan, 1970), the (s, S)-policy (Ehrhardt, 1984), and other continuous/periodic review methods
(cf. Axsäter, 2015). The base-stock policy is a special case of the (s, S)-policy and we provide a
detailed introduction for these two methods in Appendix D. The (s, S)-policy and the (R,Q)-policy
are proved to be optimal under different assumptions (see Chen, 2000). However, these assumptions
do not hold in many practical scenarios and researchers start to solve the inventory management
problem using the approximate form (Halman et al., 2009; Fang et al., 2013; Chen & Yang, 2019) of
dynamic programming (DP) instead of the exact form (Huh et al., 2009; Goldberg et al., 2016). Us-
ing the DP solution based on posterior information as the label to train an end-to-end model achieves
superior performance in real industrial scenarios (Qi et al., 2020).

To better exploit the patterns behind big data, reinforcement learning becomes a popular choice
for solving the inventory management problem in a data-driven manner (see e.g., Giannoccaro &
Pontrandolfo, 2002; Jiang & Sheng, 2009; Kara & Dogan, 2018; Barat et al., 2019; Gijsbrechts
et al., 2019; Oroojlooyjadid et al., 2017; 2020). However, as their main focus is to deal with chal-
lenges such as volatile customer demands and bullwhip effects in IM, they are restricted to sim-
plified scenarios with only a single SKU. While these approaches are able to outperform classical
methods in these scenarios, they overlook the system constraints and the coordination between the
SKUs constrained by shared resources. Exceptions are two recent papers (Barat et al., 2019; Sultana
et al., 2020) where more realistic scenarios containing multiple SKUs are considered. In Barat et al.
(2019), the main contribution is to propose a framework to support efficient deployment of RL algo-
rithms in real systems. As an example, the authors introduce a centralized algorithm for solving the
IM problem. In contrast, a decentralized algorithm is proposed in Sultana et al. (2020) to solve the
IM problem with multiple SKUs in a multi-echelon setting. These two papers use the off-the-shelf
RL algorithm (i.e., A2C Wu et al., 2018) to solve for the policy.
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Training paradigms in MARL. From the perspective of the training paradigms in MARL, the
algorithms can be divided into three categories: centralized training methods, centralized training
and decentralized execution (CTDE) methods, and independent learning methods. The centralized
training methods adopt single agent RL algorithms directly to the multi-agent setting (see e.g., Gupta
et al., 2017). However, these methods can only learn a centralized policy which is not suitable
for scenarios that call for policies to be executed in a decentralized way. Accordingly, the CTDE
methods are more preferable and they can be further divided into 1) value-based CTDE methods (aka
value decomposition methods) that centrally learn a value function that can be reasonably decoupled
into decentralized ones such as VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2018), Weighted
QMIX (Rashid et al., 2020), and QTRAN (Son et al., 2019); and 2) policy-based CTDE methods
that also relies on a centralized critic such as COMA (Foerster et al., 2018), MADDPG (Lowe et al.,
2017), and MAPPO (Yu et al., 2021). However, for the inventory management problem considered
in our paper, there are a large number of agents in the system in which the centralized critic becomes
intractable due to the large joint state space. Therefore, only independent learning methods are
applicable to our setting. A representative independent learning MARL algorithm is IPPO (de Witt
et al., 2020) where each agent learns a critic and a policy (with parameters shared with others) based
on the local observations to predict values and make individual decisions respectively. However,
these methods easily suffer from the non-stationarity problem since each agent has to learn in an
environment that changes across the training process without the information on how the policies
of the others change. In this paper, we propose Context-aware Decentralized PPO (CD-PPO) which
follows the independent learning paradigm (i.e., without the need to resort to the joint state/action
space) but avoids the non-stationarity problem by feeding a context variable to the agent.

Weakly-coupled MDP is first proposed by (Meuleau et al., 1998) to model the scenario where the
constraints of the shared global or local resources couple the otherwise independent sub-processes.
However, their solution is closely related to the air campaign planning problem and can hardly
generalize to other applications. Our setting is similar to weakly-coupled MDP with shared local
resources where the instant (instead of the cumulative) inventory level cannot exceed a certain limit,
but they still differ since the shared local resources directly result in a feasible action set in their
setting which is easier to solve. The subsequent work on weakly-coupled MDP solves the problem
with classical optimization methods such as approximate linear program or Lagrangian relaxation
(see e.g., Adelman & Mersereau, 2008; Ye et al., 2017; Brown & Zhang, 2022), whereas our algo-
rithm is a practical deep reinforcement learning based method for the multi-agent setting with limits
on shared resources. Mean-field MARL (Yang et al., 2018; Carmona et al., 2019; Chen et al., 2021)
is derived from the seminal work on mean-field games (Lasry & Lions, 2007; Guéant et al., 2011)
to model the scenario where there exists a large number of interchangeable/indistinguishable agents
and the effect of each agent on the system is infinitesimal. This setting is different from ours where
the optimal policy for each agent is different and each agent learns based on a local context variable
c−i
t instead of a global mean-field variable.

6 CONCLUSION

In this paper, we consider the inventory management problem for a single store with a large number
of SKUs. In our setting, the control for different SKUs interact indirectly with each other through a
constraint on the limit of the shared resources. We first modeled the problem as Shared-Resources
Stochastic Game (SRSG) to leverage the shared-resource structure of the problem. Starting from
SRSG, we proposed Context-aware Decentralized PPO (CD-PPO) where each agent can be trained
independently in a local simulator conditioned on the context trajectories that screen the interac-
tions from other agents. Our experiment results indicated that CD-PPO outperforms state-of-the-art
MARL algorithms while being more computationally sample efficient. It is worth mentioning that
our method is not only limited to the inventory management problem but also has the potential to
apply to other real-world multi-agent applications with a similar shared-resource structure.

In real-world applications, we usually need to deal with thousands of agents, which poses a challenge
for existing MARL algorithms. To address the challenge, we need to develop efficient algorithms
that enables effective (e.g., being stable during the training) and efficient (e.g., with a distributed
training paradigm) training. In this paper, we took our first step towards developing efficient and
practical MARL algorithms for real-world applications with the shared-resource structure, and we
will continue to address the challenges arisen in real-world applications in our future work.
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A DETAILS FOR THE INVENTORY MANAGEMENT PROBLEM

In this appendix, we summarize the notations introduced in Section 2.2 in Table 2. We also give an
example with two SKUs in Figure 4 to further illustrate the dynamics of the inventory management
problem.

B DETAILS FOR THE ALGORITHM

In this section, we will introduce the details of the designs in CD-PPO including the details for
the subroutines in Algorithm 1. Additionally, to augment the context trajectories collected by the
joint simulator, we design a context augmentation technique which leads to a variant of CD-PPO
with context augmentation (cf. Algorithm 4). We will provide experiment results on this variant in
Appendix E.

B.1 GET CONTEXT DYNAMICS

Our algorithm follows MAPPO (Yu et al., 2021) and maintains two separate networks for πθ and
Vϕ.

In the first stage of our algorithm, we run the policies in the origin joint environment to get context
trajectories, i.e., {c−i

t }Tt=0. This process is similar to other popular MARL methods. Note that
we can also save the transitions of each agent for learning the policy and the value network. We
provide the the pseudocode of this joint sampling process in Algorithm 2 where we record the
context trajectories for the training in the next state.

Additionally, we design a context augmentation technique in this stage to augment the collected
context trajectories. After collecting the context trajectories, we use an LSTM model fc to train
a surrogate predictor as an extra augmentation for the collected context trajectories in next stage.
In details, we split the collected context trajectories into several sub-sequences of length 8 and the
training objective is to minimize the mean-squared error of the L+1 day’s capacity predicted given
the dynamics of previous L days.

min(fc(ct−L, . . . , ct;ω)− ct+1)
2 (8)

This results in CD-PPO with context augmentation which is presented in Algorithm 4.

B.2 DECENTRALIZED PPO

With the collected context dynamics of the shared resource, it is easy to run the second stage: sam-
pling on the local simulators for each agent and then training the policy and critic with data. It is
worth noting that the main difference between our training paradigm and traditional MARL meth-
ods under CTDE structure is that we directly sampling local observations in the extra simulators in

Table 2: Notations for the inventory management problem.

Notation Explanation
İit Units in stock of SKU i at the end of the t-th time step
Îit Units in stock of SKU i at the t-th time step before discarding the excess
Li
t Lead time for the order placed at the t-th time step

Oi
t Order quantity of the i-th SKU at the t-th time step

Ai
t Arrived quantity of the i-th SKU at the t-th time step

Di
t Demand of the i-th SKU at the t-th time step

Si
t Sale quantity of the i-th SKU at the t-th time step

T i
t Units in transit of the i-th SKU at the t-th time step

F i
t Profit generated on the i-th SKU at the t-th time step

pi Unit sales price of i-th SKU
qi Unit procurement cost of i-th SKU
o Unit order cost
h Unit overnight holding cost
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which only one agent existed rather than the joint simulator in which all agents interacting with each
other. In other words, in the new local simulator, there is only one SKU in the entire store, and the
trend of available capacity is completely simulated according to the given context dynamics.

In practice, we parallelly initialize new instances of the original inventory environment with the new
configure settings which only contains a specific SKU i and a fixed trajectory of context. As for the
fixed context trajectory, we use the subtraction results {c−i}Tt=0 with some augmentations: 1) add
some noise in some items with a predefined probability;2) replace some items with predicted values
comes from the trained context model also by the predefined probability. Then we run the policy to
interact with the local simulators to conduct episodes under the embedded context dynamics and put
them into a shared replay buffer since all transitions are homogeneous and we shared the parameters
over all policies. And decentralized training will be started by utilizing the shared replay buffer of
transitions collected from local simulators.

We consider a variant of the advantage function based on decentralized learning, where each agent
learns a agent-specific state based critic Vϕ(s

i
t) parameterized by ϕ using Generalized Advantage

Estimation (GAE, (Schulman et al., 2016)) with discount factor γ = 0.99 and λ = 0.95. We also
add an entropy regularization term to the final policy loss (Mnih et al., 2016). For each agent i, we
have its advantage estimation as follows:

Ai
t =

h∑
l=0

(γλ)lδit+l (9)

where δiti = rt
(
sit, a

i
t

)
+ γVϕ

(
zit+1

)
− Vϕ

(
sit
)

is the TD error at time step t and h is marked as
steps num. And we use individual reward provided from local simulator rit(s

i
t, a

i
t). So that the final

policy loss for each agent i becomes:

Li(θ) = Esit,a
i
t∼Tlocal(c

−i
t )

[
min

(
πθ

(
ait | sit

)
πθold

(
ait | sit

)Ai
t,

clip

(
πθ

(
ait | sit

)
πθold

(
ait | sit

) , 1− ϵ, 1 + ϵ

)
Ai

t

)] (10)

As for training value function, in addition to clipping the policy updates, our method also use value
clipping to restrict the update of critic function for each agent i to be smaller than ϵ as proposed by
GAE using:

Li(ϕ) = Esit∼Tlocal(c
−i
t )

[
min

{(
Vϕ

(
sit
)
− V̂ i

t

)2
,(

Vϕold

(
sit
)
+ clip

(
Vϕ

(
sit
)
− Vϕold

(
sit
)
,−ϵ,+ϵ

)
− V̂ i

t

)2}] (11)

where ϕold are old parameters before the update and V̂ i
t = Ai

t + Vϕ

(
sit
)
. The update equation

restricts the update of the value function to within the trust region, and therefore helps us to avoid

Figure 4: A diagram to illustrate an inventory dynamics in two time steps.
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overfitting to the most recent batch of data. For each agent, the overall learning loss becomes:

L(θ, ϕ) =
N∑
i=1

Li(θ) + λcriticLi(ϕ) + λentropyH
(
πi
)

(12)

It is obvious that all networks are trained in the decentralized way since their inputs are all local
variables which stem from the light-cost local simulators. As mentioned before, at this learning
stage, there are no interactions between any two agents. Although it seems like the way of indepen-
dent learning, we need to point that we use the global context simulated from the joint environment,
which is essentially different from independent learning methods since they will not consider this
style global information which is simulated from joint simulator but be fixed in the local simulators.
Our decentralized training have several advantages: firstly, the local simulator is running efficient
because of its simple only-one-agent transition function; secondly, this paradigm avoid the issue for
non-stationary occurred in the traditional MARL methods since there are no interaction amongst
agents so that it is no need to consider influences of other agents; thirdly, we can use more diverse
context trajectories to make agents face various situations of the available levels of the store, which
leads to improve the generalization of the networks to be trained; fourthly, it is easy for this training
paradigm to be extended to large-scale distributed training by running parallel simulation whose
communication cost is also acceptable for modern distributed training frameworks.

If the critic and actor networks are RNNs, then the loss functions additionally sum over time, and
the networks are trained via Backpropagation Through Time (BPTT). Pseudocode for local sampling
with recurrent version of policy networks is shown in Algorithm 3.

Algorithm 2 GetContextDynamic

INPUT policies {πi
θi
}ni=1 and the joint simulator Envjoint

(Optional) Initialize ω, the parameters for context model fc
set data buffer D = {}
for bs = 1 to batch size do
τ = [] empty list
initialize h1

0,π, · · ·hn
0,π actor RNN states

for t = 1 to T do
for all agents i do

pit, h
i
t,π = πi(sit, ct, h

i
t−1,π; θi)

ait ∼ pit
end for
Execute actions at, observe rt, st+1

end for
// Split trajectory τ into chunks of length L
for l = 0, 1, .., T//L do

D = D ∪ (c[l : l + T ])
end for

end for
// (Optional) Train the context model for augmentation
if Need to train context model then

for mini-batch k = 1, . . . ,K1 do
b← random mini-batch from D with all agent data
Update capacity-context dynamics model with Eq. 8

end for
Adam update ω with data b

end if
OUTPUT context dynamics {c−i

t }Tt=1 for i = 1, . . . , n; (Optional) fω
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Algorithm 3 DecentralizedPPO

// Generate data for agent i with corresponding context dynamic model
INPUT local simulator Envilocal, policy πi

θi
and value function V i

ϕi

Set data buffer D = {}
Initialize h1

0,π, · · · , hn
0,π actor RNN states

Initialize h1
0,V , . . . h

n
0,V critic RNN states

τ = [] empty list
for t = 1 to T do
pit, h

i
t,π = πi(sit, h

i
t−1,π, c

i
t; θi)

ait ∼ pit
vit, h

i
t,V = V i(sit, c

i
t, h

i
t−1,V ;ϕi)

Execute actions ait in Envi
local, and then observe rit, c

i
t+1, s

i
t+1

τ+ = [sit, c
i
t, a

i
t, h

i
t,π, h

i
t,V , s

i
t+1, c

i
t+1]

end for
Compute advantage estimate Â via GAE on τ (Eq. 9)
Compute reward-to-go R̂ on τ
// Split trajectory τ into chunks of length L in D
for l = 0, 1, .., T//L do
D = D ∪ (τ [l : l + T, Â[l : l + L], R̂[l : l + L])

end for
for mini-batch k = 1, . . . ,K2 do
b← random mini-batch from D with all agent data
for each data chunk c in the mini-batch b do

update RNN hidden states for πi and V i from first hidden state in data chunk
end for

end for
Calculate the overall loss according to Eq. equation 10-equation 12
Adam update θi on Li(θi) and gH with data b
Adam update ϕi on Li(ϕi) with data b
OUTPUT policy πi

θi
and value function V i

ϕi

Algorithm 4 Context-aware Decentralized PPO with Context Augmentation

Given the joint simulator Envjoint and local simulators {Envilocal}ni=1

Initialize policies πi and value functions V i for i = 1, . . . , n
Initialize context model fω and the augmentation probability paug
for M epochs do

// Collect context dynamics via running joint simulation
{c−1

t }Tt=0, . . . , {c−n
t }Tt=0, fω ← GetContextDynamics(Envjoint, {πi}ni=1, fω) (Algorithm 2)

for k = 1, 2 . . . ,K do
for all agents i do

// Set capacity trajectory by augmented context dynamics
Envilocal.set c trajectory(aug({c−i

t }Tt=0, fω, paug))
// Train policy by running simulation in the corresponding local environment
πi, V i ← DecentralizedPPO(Envilocal, π

i, V i) (Algorithm 3)
end for

end for
Evaluate policies {πi}ni=1 on joint simulator Envjoint

end for
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C DETAILS FOR THE EXPERIMENTS

C.1 THE CODEBASE

As part of this work we extended the well-known EPyMARL codebase((Papoudakis et al., 2021)) to
integrated our simulator and algorithm, which already include several common-used algorithms and
support more environments as well as allow for more flexible tuning of the implementation details. It
is convenience for us to compare our algorithm with other baselines. All code for our new codebase
is publicly available open-source on Anonymous GitHub under the following link: https://
anonymous.4open.science/r/replenishment-marl-baselines-75F4

C.2 HYPERPARAMETERS DETAILS

We present the hyperparameters used in our algorithm for environment with 5 SKUs in Table 3.

Table 3: Hyparameters used in CD-PPO

Hyperparameters Value
runner ParallelRunner
batch size run 10
decoupled training True
use individual envs True
max individual envs 5
decoupled iterations 1
train with joint data True
context perturbation prob 1.0
hidden dimension 64
learning rate 0.00025
reward standardisation True
network type FC
entropy coefficient 0.01
target update 200 (hard)
n-step 5

C.3 DETAILS OF STATES AND REWARDS

Table 4 shows the features of the state for our MARL agent that corresponds to the i-th SKU on the
t-th time step.

It is worthy to note that we use the profit generated on the i-th SKU at the t-th time step F i
t divided

by 1× 106 as the individual reward of i-th agent at the t-th time step, for team reward methods, we
simply sum up all the individual rewards, which corresponds to the daily profit of the whole store at
the t-th time step, divided by 1× 106.

D BASE STOCK POLICY AND (S, S)-POLICY

In this paper, we choose two well-known classical methods, the base-stock policy and the (s, S)-
policy, from the OR community as our non-RL baselines. In the (s, S)-policy, the two parameters s
and S control the replenishment strategy where s is the reorder point and S is the maximum level.
On each time step (or review period), when the inventory position (including the units in stock and
the units in transit) declines to or below the reorder point s, we order up to the maximum level S.
The base-stock policy is a special case of the (s, S)-policy with s = S, i.e., on each time step we
place an order to fill the inventory position up to S. Previous studies proposes different algorithms
to determine these two parameters (see e.g., Axsäter, 2015). In our experiments, we search for the
posteriori optimal parameters for each of the SKUs in control. Therefore, the performance of these
two policies presented in Table 1 can be regarded as the best performance that can be achieved by
such classical methods.
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Table 4: Features of the state

Features
State
Storage information Storage capacity C

Inventory information Quantity of products in stock Iit
Quantity of products in transit T i

t

History information Replenishment history in the latest 21 days
[
Oi

t−21, · · · , Oi
t−1

]
Sales history in the latest 21 days

[
Si
t−21, · · · , Si

t−1

]
Standard deviation of historical sales std

(
Si
t−21, · · · , Si

t−1

)
Product information Unit sales price pi

Unit procurement cost qi
Context
Global storage utilization Current total storage level of the store

∑l−1
j=1 I

j
t

Global unloading level Current total unloading level of the store
∑l−1

j=1 O
j
t−Lj+1

Global excess level Current total excess level of the store ρ×
∑l−1

j=1 O
j
t−Lj+1

E ADDITIONAL EXPERIMENT RESULTS

E.1 THE COMPLETE RESULTS

Here we present the complete experiment results in Table 5 and display the training curves of algo-
rithms in 50-SKUs scenarios in Figure 5 and Figure 6. We also present the results from OR methods
designed to deal with IM problem, namely the base-stock policy, in Table 5.

Please note that, actually, VLT (i.e., leading time) for each SKU in N50 and N100 is stochastic
during simulation. On the one hand, the specified VLTs can be modelled as exponential distributions
in our simulator. On the other hand, the real lead time for each procurement can be longer than
specified due to lack of upstream vehicles. (Distribution capacity is also considered in the simulator,
though not the focus of this paper). So that the results running on N50 and N100 are all considering
stochastic VLTs.

It is worthy noting that throughout all the environments we have experimented on, CD-PPO enjoys
higher sample efficiency as shown in Table 6. Though it seems that in environment where the
storage capacity is extremely tense, like N5-C50, CD-PPO performs not as well as IPPO, we reason
that these tense situations favor IPPO (with team reward), which may quickly learn how to adjust
each agents’ behavior to improve team reward. While CD-PPO, owing to its decentralized training
paradigm, struggles to learn a highly cooperative policy to cope with the strong resource limits while
meeting stochastic customer demands. Yet we still claim that CD-PPO does outperform its IR (w/o
context) baselines while producing comparable performance when compared to IR (with context)
algorithms. On the other hand, IPPO(with team reward) struggles to learn a good policy in 50-agents
environment for the large action space compared to the single team reward signal, and it fails when
faced with N50-C2000 whose state space is even larger. To top it all off, CD-PPO does have its
strengths in terms of sample efficiency. Though we will continue to address the above challenge in
our future work.

E.2 ABLATION STUDIES FOR CONTEXT AUGMENTATION

In this section, we aim to seek a better way to augment the context dynamics in order to boost
performance of our algorithm. We ponder the following two questions:

Q1: Which is a better way to augment the original data, adding noise or using a Deep predic-
tion model?

To answer this question, we set out experiments on environment N5-C100 with our algorithm CD-
PPO, using either context trajectories generated by a deep LSTM prediction model, or simply adding
a random normal perturbation to the original dynamics trajectories, both on 3 different seeds. As
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Figure 5: Training curves on N50-C500. Figure 6: Training curves on N50-C2000

shown in Figure 7, those runs with deep prediction model generated dynamics enjoy less std and bet-
ter final performance. This could result from that the diversity of deep model generated trajectories
surpasses that of random perturbation.

Figure 7: Training curves of CD-PPO with different augmentation methods

Figure 8: Training curves of CD-PPO with varied ratio of augmented data.
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Q2: Does dynamics augmentation improve the performance of the algorithm? If so, how much
should we perturb the original data?

We run similar experiments on environment N5-C100 with CD-PPO, in which the local simulator
is ingested with a mixture of original dynamics data and LSTM generated data. The ratio of per-
turbed dynamics data varies from 0% to 100%. And we found that the algorithm turns out the best
performance when we use fully generated data, as shown in Figure 8.
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