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Abstract

Conventional reinforcement learning methods can successfully solve a wide range
of sequential decision problems. However, learning policies that can generalize
predictably across multiple tasks in a setting with non-Markovian reward specifi-
cations is a challenging problem. We propose to use successor features to learn
a policy basis so that each subpolicy in it solves a well-defined subproblem. In
a task described by a reward machine that involves the same set of subproblems,
the combination of these subpolicies can then be used to generate an optimal
solution without additional learning. In contrast to other methods that combine
subpolicies via planning, our method asymptotically attains global optimality, even
in stochastic environments.1

Introduction

Autonomous agents that interact with an environment usually face tasks that comprise complex,
entangled behaviors over long horizons. Conventional reinforcement learning (RL) methods have
successfully addressed this. However, in cases when the agent is meant to perform several tasks
across similar environments, training a policy for every task separately can be time-consuming and
requires a lot of data. In such cases, the agent can utilize a method that has built-in generalization
capabilities. One such method relies on the assumption that reward functions of these tasks can
be decomposed into a linear combination of successor features (SF) [Barreto et al., 2017]. When
a new task is presented, it is possible to combine previously learned policies and their successor
features to solve a new task. While combining such policies is guaranteed to be an improvement
over any previously learned policy, it may not necessarily be optimal. However, as shown by Alegre
et al. [2022], one can leverage recent advancements in multi-objective RL to learn a set of policies
that constitutes a policy basis to retrieve an optimal policy for any linear combination of successor
features.

While traditional RL methods rely on Markovian reward functions, defining a task using such a
function can be challenging and sometimes impossible [Whitehead and Lin, 1995]. In scenarios where
expressing the reward function in Markovian terms is not feasible, there has been a growing interest
in alternative methods for task specification in recent years [Toro Icarte et al., 2018a, Camacho et al.,
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2019]. In our work we focus on developing a method that utilizes the generalization capabilities of
SF in a setting with non-Markovian reward functions.

Prior techniques for such settings have been proposed in contexts where a set of propositional symbols
P enables the definition of high-level tasks using logic [Vaezipoor et al., 2021, Toro Icarte et al.,
2019] or reward machines (RM) [Toro Icarte et al., 2018a]. Like in hierarchical RL, they are often
based on decomposing tasks into subtasks and solving each subtask independently [Dietterich, 2000,
Sutton et al., 1999]. However, combining optimal solutions for subtasks may potentially result in a
suboptimal overall policy. This is referred to as recursive optimality [Dietterich, 2000] or myopic
policy [Vaezipoor et al., 2021].

To alleviate this issue, one can consider methods that condition the policy or the value function on
the specification of the whole task [Schaul et al., 2015] and such approaches were recently also
proposed for tasks with non-Markovian reward functions [Vaezipoor et al., 2021]. However, the
methods that specify the whole task usually rely on a blackbox neural network for planning when
determining which subgoal to reach next. This makes it hard to interpret the plan to solve the task and
although they show promising results in practice, it is unclear whether and when these approaches
will generalize to a new task.

Instead, our work aims to use task decomposition without sacrificing global optimality to achieve
predictable generalization. The method we propose learns a set of local policies in subtasks such
that their combination forms a globally optimal policy for a large collection of problems described
with RMs. A new policy that solves any new task can then be created, without additional learning, by
planning on a given RM instance. Our contributions are:

• We propose to use successor features to learn a policy basis that is suitable for planning in
stochastic domains.

• We develop a planning framework that uses such policy bases for zero-shot generalization
to complex temporal tasks described by an arbitrary reward machine.

• We prove that if the policies in this basis are optimal, our framework produces a globally
optimal solution even in stochastic domains.

Background and Notation

Given a finite set X , let ∆(X ) = {p ∈ RX :
∑

x p(x) = 1, p(x) ≥ 0 (∀x)} denote the probability
simplex on X . Given a probability distribution q ∈ ∆(X ), let supp(q) = {x ∈ X : q(x) > 0} ⊆ X
denote the support of q. We abuse notation and let ∆(d) represent the (standard) simplex in Rd.

Reinforcement Learning RL problems commonly assume an underlying Markov Decision Process
(MDP). We define an MDP as the tupleM = ⟨S, E ,A,R,P0,P, γ⟩ where S is the set of states,
E is the set of exit states (or terminal states), A is the action space, R : S × A × S → R is the
reward function, P0 ∈ ∆(S) is the probability distribution of initial states, P : S ×A → ∆(S) is the
transition probability function and 0 ≤ γ < 1 is the discount factor. The set of exit states E induces a
set of terminal transitions T = (S \ E)×A× E .

The learning agent interacts in an episodic manner with the environment following a policy π : S →
∆(A). At each timestep, the agent observes a state st, chooses the action at ∼ π(st), transitions
to a new state st+1 ∼ P(·|st, at) and receives a rewardR(st, at, st+1). The episode ends when the
agent observes a terminal transition (st, at, st+1) ∈ T and a new episode starts with initial state
s0 ∼ P0(·).
The goal of the agent is to find an optimal policy π∗ that maximizes the expected discounted return,
for any state-action pair (s, a) ∈ S ×A,

Qπ(s, a) = Eπ

[ ∞∑
i=t

γi−tR(Si, Ai, Si+1)

∣∣∣∣∣ St = s,At = a

]
. (1)

Hence, an optimal policy is π∗(s) ∈ argmaxa maxπ Q
π(s, a) for all states s ∈ S, with ties broken

arbitrarily. The action value function defined in Equation (1) satisfies the recursive Bellman equation

Qπ(s, a) = Es′∼P(·|s,a)

[
R(s, a, s′) + γV π(s′)

]
, (2)
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for any (s, a) ∈ S ×A. The state value function is obtained by averaging the action value function
over the actions, V π(s) = Ea∼π(s) [Q

π(s, a)] ∀s ∈ S . Throughout the paper we use Q∗ and V ∗ to
refer to the optimal, respectively, action and state value functions.

Successor Features [Dayan, 1993, Barreto et al., 2017] introduce a widely used RL representation
framework that assumes the reward function is linearly expressible with respect to a feature vector,

Rw(s, a, s′) = w⊺ϕ(s, a, s′). (3)

Here, ϕ : S ×A×S → Rd maps transitions to feature vectors and w ∈ Rd is a weight vector. Every
weight vector w induces a different reward function and, thus, a task. The SF vector of a state-action
pair (s, a) ∈ S ×A under a policy π is the expected discounted sum of future feature vectors:

ψπ(s, a) = Eπ

[ ∞∑
i=t

γi−tϕ(Si, Ai, Si+1)

∣∣∣∣∣ St = s,At = a

]
. (4)

The action value function for a state-action pair (s, a) under policy π can be efficiently represented
using the SF vector. Due to the linearity of the reward function, the weight vector can be decoupled
from the Bellman recursion. Following the definition of Equations (1) and (3), the action value
function in the SF framework can be rewritten as

Qπ
w(s, a) = Eπ

[ ∞∑
i=t

γi−tw⊺ϕ(Si, Ai, Si+1)

∣∣∣∣∣ St = s,At = a

]

= w⊺Eπ

[ ∞∑
i=t

γi−tϕ(Si, Ai, Si+1)

∣∣∣∣∣ St = s,At = a

]
= w⊺ψπ(s, a). (5)

The SF representation leads to generalized policy evaluation (GPE) over multiple tasks [Barreto et al.,
2020], and similarly, to generalized policy improvement (GPI) to obtain new better policies [Barreto
et al., 2017].

A family of MDPs is defined as the set of MDPs that share all the components, except the reward
function. This set is formally defined as

Mϕ ≡ {⟨S, E ,A,Rw,P0,P, γ⟩ | Rw = w⊺ϕ,∀w ∈ Rd}.

Transfer learning on families of MDPs is possible thanks to GPI. Given a set of policies Π, learned
on the same familyMϕ, for which their respective SF representations have been computed, and a
new task w′ ∈ Rd, a GPI policy πGPI for any s ∈ S is derived as

πGPI(s) ∈ argmax
a∈A

max
π∈Π

Qπ
w′(s, a). (6)

However, there is no guarantee of optimality for w′. A fundamental question to solve the so-called
optimal policy transfer learning problem is which policies should be included in the set of policies Π
so an optimal policy for any weight vector w ∈ Rd can be obtained with GPI.

Convex Coverage Set of Policies The recent work of Alegre et al. [2022] solves the optimal policy
transfer learning problem. They draw the connection between the SF transfer learning problem and
multi-objective RL. The pivotal fact is that the SF representation in Equation (4) can be interpreted as
a multidimensional value function and the construction of the aforementioned set of policies Π can
be cast as a multi-objective optimization problem.

Consequently, the optimistic linear support (OLS) algorithm is extended with successor features in
order to learn a set of policies that constitutes a convex coverage set (CCS) [Roijers et al., 2015].
Their main result is the SFOLS algorithm (see Appendix B for a full, technical description) in which
a set ΠCCS is built incrementally by adding (new) policies to such a set, until convergence. The set
ΠCCS contains all non-dominated policies in terms of their multi-objective value functions, where the
dominance relation is defined over scalarized values V π

w = ES0∼P0 [V
π
w(S0)], and is characterized as

ΠCCS = {π | ∃w s.t. ∀ψπ′
, w⊺ψπ ≥ w⊺ψπ′

}

= {π | ∃w s.t. ∀π′, V π
w ≥ V π′

w }. (7)
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Figure 1: Depiction of the Office (a) and Delivery (b) environments. In (a) P = {K,B, o} and
E = {K1,K2,B1,B2, o1, o2}. In (b), E = {A,B,C,H} and P = {A,B,C,H,■}.

In every iteration k, SFOLS proposes a new weight vector wk ∈ ∆(d) for which an optimal
policy (and its corresponding SF representation) is learned and added to ΠCCS. It is sufficient to
consider weights in ∆(d) to learn a complete ΠCCS. The output of SFOLS is both ΠCCS and the SF
representation ψπ for every π ∈ ΠCCS.

Intuitively, all policies in ΠCCS are optimal in at least one task w ∈ ∆(d). The set ΠCCS is combined
with GPI, see Equation (6), and upon convergence, for any (new) given task w′ ∈ Rd an optimal
policy can be identified [Alegre et al., 2022, cf. Theorem 2].
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Figure 2

Propositional Logic We assume that environments are endowed with a
set of high-level, boolean-valued propositional symbols P . Without loss
of generality, we assume for now that these symbols are observed when
the agent transitions into some exit state ε ∈ E of the low-level MDPMϕ.
This may not be necessarily the case, as the agent could observe further
symbols in non-exit states (e.g. a symbol representing an obstacle). Every
transition (s, a, s′) ∈ S × A × S induces some propositional valuation
(assignment of truth values) 2P . Such a valuation depends solely on the
new state s′ and occurs under a mapping O : S → 2P that is known to the
agent. This implies that the agent can associate valuations 2P to transitions
any time. Propositional symbols are assumed to be mutually exclusive
which means that the agent cannot observe two symbols evaluated true in
the same transition. A valuation Γ is said to satisfy a propositional symbol
p, formally Γ ⊨ p, if p is true in Γ.

Reward Machines Task instructions can be specified via a reward machine.
These are tuples F = ⟨U , u0, T , L, δ⟩ where U is the finite set of states,
u0 ∈ U is the initial state, T is the set of terminal states with U ∩ T = ∅, L : U × (U ∪ T )→ 2P

is a labeling function that maps RM states transitions to truth values for the propositions and
δ : U ∪ T → R is a high-level reward function. Each transition among RM states (u, u′) defines a
subgoal. The agent has to observe some propositional valuation L(u, u′) in order to achieve it and
RM states can only be connected by a subgoal. E.g. in Figure 2, the RM state u0 has two outgoing
subgoals: getting mail (labeled as B) and getting coffee (labeled as K). Non-existing transitions
(u, u′) get mapped to L(u, u′) = ⊥. The reward function δ gives a reward larger than 0 only to
terminal states. In other words, such a reward function is δ(u) = 0 ∀u ∈ U and δ(t) > 0 ∀t ∈ T .

Using Successor Features to Solve non-Markovian Reward Specifications

We focus on the setting in which a low-level MDP is equipped with a reward structure like in
Equation (3). We let the low-level be represented by a family of MDPsMϕ, where each weight
vector w ∈ Rd specifies a low-level task. The agent receives high-level task specifications in the
more flexible form of a RM which permits the specification of non-Markovian reward structures. The
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Algorithm 1: SF-RM-VI
Input: Low-level MDPMϕ, task specification F

1: Obtain ΠCCS onMϕ.
2: Initially w0(u) = 0 ∈ R|E| ∀u ∈ U .
3: while not done do
4: for u ∈ U do
5: Update each wk+1

j (u) with Equation (11).

6: return {w∗(u) ∀u ∈ U}

combination of a low-level family of MDPs and a RM gives rise to a product MDPM′ = F ×Mϕ

that satisfies the Markov property, and where the state space is augmented to be U × S.

A product MDPM′ is a well-defined MDP. The agent now follows a policy µ : U ×S → ∆(A), that
depends both on the RM state and the underlying MDP state.M′ can be solved with conventional
RL methods by finding an optimal policy µ∗ that maximizes

Qµ(u, s, a) = Eµ

[ ∞∑
i=t

γi−tR(Ui, Si, Ai, Ui+1, Si+1)

∣∣∣∣∣ Ut = u, St = s,At = a

]
.

This is, however, impractical since policies should be retrained every time a new high-level task is
specified. Exploiting the problem structure is essential for tractable learning, where components can
be reused for new task specifications. The special reward structure of the low-level MDPs and our
particular choice of feature vectors, introduced below, allow us to define an algorithm able to achieve
a solution by simply planning in the space of augmented exit states U × E . This inherently makes
obtaining an optimal policy more efficient than solving the whole product MDP, as we reduce the
number of states on which it is necessary to compute the value function.

The agent may have to perform the same subtask at different moments of the plan or in different
RM instances. We aim to provide agents with a collection of base behaviors that can be combined to
retrieve the optimal behavior for the whole task.

In line with the previous reasoning, we introduce a two-step algorithm in which the agent first learns
a ΠCCS (a set of policies that constitute a CCS) on a well-specified representation of the environment.
Then these subpolicies are used to solve efficiently any RM specification on the propositional symbols
of the environment. In what follows, we motivate the design of the feature vectors, explain our
high-level dynamic programming algorithm and prove that it achieves the optimal solution.

Feature vectors Our approach works with a very specific set of feature vectors that we proceed
to explain. For a family of MDPsMϕ, the feature map is ϕ : S × A × S → R|E|. Each feature
component ϕj is associated with an exit state εj ∈ E = {ε1, . . . , ε|E|}. Such vectors are built as
follows. At terminal transitions (s, a, εi) ∈ T , ϕj = 1 when j = i and ϕj = 0 when j ̸= i. For non-
terminal transitions, ϕ(s, a, s′) = 0, implying that the reward is 0 and that the SF representation in
Equation (4) of each policy consists of a discounted distribution over the exit states. This indicates how
likely it is to reach each exit state following such a policy. We can further extend this representation to
consider undesirable symbols (such as obstacles). In this case, it is enough to add one component per
extra symbol to the feature vector, which is defined as ϕj = −1 where j is the component associated
with such extra symbol and ϕi = 0 when i ̸= j. Furthermore, we require that E ⊂ supp(P0) so the
value functions at exit states are well-defined.

Example In the office domain depicted in Figure 1a, the propositional symbols are P = {K,B, o}
while the exit states E = {K1,K2,B1,B2, o1, o2}. Consequently, the same propositional symbol is
satisfied at different exit locations, this isO(K1) ⊨ K andO(K2) ⊨ K. In this case,ϕ(s, a, s′) ∈ R6,
is defined as the zero vector in R6 for every s′ ∈ S \ E and gets the corresponding vector component
equal to 1 when s′ ∈ E . Figure 2 shows the RM specification for the composite task in this domain,
note that RMs use symbols in P to define the subgoals. The interpretation of this RM in natural
language is ‘get coffee and mail in any order, and then go to an office’.

Algorithm The solution to a RM task specification implies solving a product MDPM′ = F ×Mϕ.
Since we have the CCS, the optimal Q-function can be represented by a weight vector w∗(u) for
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each RM state u:
Q∗

w(u, s, a) = max
π∈ΠCCS

w∗(u)⊺ψπ(s, a). (8)

for all (u, s, a) ∈ U × S ×A. Here, w∗
j (u) indicates the optimal value of exit state εj ∈ E for RM

state u. Then an optimal policy is defined as

µ∗
w(u, s) ∈ argmax

a∈A
Q∗

w(u, s, a) ∀(s, u) ∈ U × S. (9)

Therefore, we observe that finding the optimal weight vectors w∗(u), ∀u ∈ U is enough for retrieving
the optimal action value function of the product MDPM′ and, thus, an optimal policy. Using GPI,
we can obtain this vector using a dynamic-programming approach similar to value iteration:

wk+1
j (u) =max

a
Q∗

w

(
τ(u,O(εj)), a

)
(10)

=max
a,π

wk
(
τ(u,O(εj))

)⊺
ψπ(εj , a), (11)

where τ(u,O(ε)) ∈ U is the RM state that results from achieving the valuation O(ε) in u. We
know that wk

j (u) = δ(t) if τ(u,O(j)) = t, by definition. As a result, we propose SF-RM-VI (see
Algorithm 1) to extract an optimal policy for a product MDP. As k →∞, SF-RM-VI converges to the
optimal set of weight vectors {w∗(u)}u∈U and, hence, to the optimal value function in Equation (8).
We provide a proof of optimality for SF-RM-VI in Appendix A.

Experiments
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Figure 3: Experimental results for learning (Delivery, top-left and Office, bottom-left) and composi-
tionality (Delivery, top-right and Office, bottom-right). Results show the average performance and
standard deviation over the three tasks and 5 seeds per task.

We test SF-RM-VI in two complex discrete environments.2 At test time, we change the reward to
−1 for non-terminal states and use the cumulative reward as the performance metric. We report two
types of results. First, we are interested in observing the performance of the derived optimal policy,
in Equation (9), during the learning phase. For this, we fully retrain the high-level policy (lines 2-6
in Algorithm 1) every several interactions with the environment as ΠCCS is being learned. Second,
once the base behaviors are learned (in other words, a complete convex coverage set ΠCCS has been
computed), we measure how many planning iterations SF-RM-VI needs to converge to an optimal
solution for different task specifications. In both cases, we compare against existing baselines.

2Code available in the following URL:https://github.com/guillermoim/sf-fsa-vi.
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Environments and tasks We use the Delivery domain [Araki et al., 2021] and a modified version of
the Office domain [Toro Icarte et al., 2018a] as testbeds for our algorithm. Both environments are
depicted in Figure 1 and present a propositional vocabulary that is rich enough to build complex tasks.
In the Delivery domain there is a single low-level state associated with each of the propositional
symbols, implying that E = {A,B,C,H} and P = {A,B,C,H,■}. The feature vectors are consis-
tent with our design choice. For terminal transitions, the feature vector is a one-hot encoding of the
terminal states. There exist obstacle states (represented by black squares that raise the propositional
symbol ■) that share a feature which equals −1 upon entering, and the associated weight is 1000,
corresponding to a large negative reward. For regular grid cells (in white) ϕ(s, a, s′) = 0 ∈ R5. The
Office domain is more complex since there are three propositional symbols P = {K,B, o} which
can be satisfied at different locations, namely E = {K1,K2,B1,B1, o1, o2}. Here, there are no
obstacle states and ϕ(s, a, s′) = 0 ∈ R6 for non-terminal transitions.

For each of the environments we define three different tasks: sequential, disjunction and composite
(all described in Appendix C). The sequential task is meant to show how our algorithm can indeed be
effectively used to plan over long horizons, when the other two tasks show the ability of our method
to optimally compose the base subpolicies in complex settings. In natural language, the tasks in the
Delivery domain correspond to: "go to A, then B, then C and finally H" (sequential), "go to A or B,
then C and finally H" (disjunction) and "go to A and B in any order, then B, then C and finally H"
(composite). The agent has to complete the tasks by avoiding obstacles. The counterpart of these tasks
in the Office environment are: "get a coffee, then pick up mail and then go to an office" (sequential),
"get coffee or mail, and then go to an office" (disjunction) and "get coffee and mail in any order, and
then go to an office" (composite). Our agent never learns how to solve these tasks, but rather learns
the set of subpolicies that constitutes the CCS. At test time, we provide the agent with the RM task
specification, extract a high-level optimal policy and test its performance on solving the task.

Baselines In the literature, we find the most similar approach to ours is the Logical Options Framework
(LOF) [Araki et al., 2021]. We thus use LOF and flat Q-learning [Watkins and Dayan, 1992] on the
product MDP as baselines. LOF trains one option per exit state, which are trained simultaneously
using intra-option learning, and then uses a high-level value iteration algorithm to train a meta-policy
that decides which option to execute in each of the MDP states. On the other hand, Q-learning learns
the action value function in the flat product MDP, from which it extracts the policy. Under certain
conditions, flat Q-learning converges to the optimal value function but, especially for longer tasks, it
may take a large number of samples. Additionally, it is trained for a specific task, so it is not able to
generalize to other task specifications. For LOF, we followed the implementation details prescribed
by the authors.

Results

Learning Empirical results for learning are shown in Figure 3 (top-left and bottom-left). The plots
reflect how the different methods (ours, LOF and flat Q-learning) perform at solving a RM task
specification during the learning phase. In the case of SF-RM-VI and LOF, the learning phase
corresponds to obtaining the low level subpolicies for ΠCCS and the options for LOF. Results are
averaged over the three tasks (sequential, disjunction and composite) previously described for each
environment. Each data point in the plots represent the cumulative reward obtained by a fully retrained
policy with the current status of ΠCCS and options. In both environments, SF-RM-VI is the first to
reach optimal performance. There exist, however, some differences between LOF and SF-RM-VI.
LOF trains all options simultaneously with intra-option learning. This means that every transition
(st, at, st+1) is used to update all options’ value functions and policies. The learning of a ΠCCS, on the
other hand, is done sequentially. A fixed sample budget per subpolicy is set prior to learning, which
can be seen as a hyperparameter. We use a total of 8 · 103 samples per subpolicy in both environments.
A experience replay buffer is used to speed up the learning of the policy basis ΠCCS. Both options
and the SF representation of subpolicies are learned using Q-learning. Due to the incremental nature,
at the beginning of the learning process there might not be enough policies in the basis ΠCCS to
construct a feasible solution. This is clearly observed in the Delivery domain (Figure 3, top left),
where at the early stages of the interaction, SF-RM-VI achieves very low cumulative reward due to
failing at delivering a solution. It is not until there are enough subpolicies in the basis that Algorithm 1
attains a policy that solves the problem, which eventually converges to an optimal policy. Similarly,
LOF converges to an optimal policy albeit takes slightly longer to learn. In the more complex Office
environment, results follow the same pattern. However, this environment breaks one of the of LOF
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Figure 4: Double Slit environment (left) and RM task specification to reach either goal locations blue
or red.

requirements for optimality: to have a single exit state associated with each propositional predicate.
In this problem, for each predicate there exist two exit states that can satisfy them. This makes LOF
prone to converge to suboptimal solutions while SF-RM-VI attains optimality. This is the case for the
composite task, where LOF is short-sighted and returns a longer path (in red, Figure 1a) in contrast
to ours that retrieves the optimal solution (in green, Figure 1a). This means that SF-RM-VI is more
flexible in the task specification. In this environment, our algorithm also converges faster with a more
obvious gap with respect to LOF. In any case, learning subpolicies or options is faster than learning
directly on the flat product MDP, as flat Q-learning takes the longest to converge.

Planning Figure 3 top-right and bottom-right show how fast SF-RM-VI and LOF can plan for
an optimal solution. Results are again averaged for the three tasks for each environment. Here, a
complete policy basis ΠCCS has been previously computed, as well as the option’s optimal policies.
In LOF, the cost of each iteration of value iteration is |U| × |S| × |K|, where K is the set of options,
while for the Algorithm 1 we propose it is |U| × |E| × |ΠCCS|. By definition, the number of options is
equivalent to the number of exit states |K| = |E|, so a single iteration of SF-RM-VI is more efficient
than LOF whenever |ΠCCS| ≪ |S|. In our experiments, the sizes of the CCS are 15 and 12 for the
Delivery and Office domains, respectively, while the sizes of the state spaces are of 225 and 121.
Therefore, since our algorithm needs fewer, shorter iterations during planning, it outperforms LOF in
terms of planning speed in both domains when composing the global solution. This can be observed
in the plots for both environments.

Policy basis over options In deterministic environments, it is sufficient to learn the subpolicies asso-
ciated with the extrema weights (i.e. those subpolicies that reach each of the exit states individually)
to find a globally optimal policy via planning. In such cases, it may not be necessary to learn a full
CCS. That is why approaches that use the options framework such as LOF traditionally define one
option per subgoal. However, there are scenarios in which these approaches will not find an optimal
policy. This is the case for most stochastic environments. For example, consider the very simple
domain of Double Slit in and the RM task specification in Figure 4. In this environment, there are
two exit states E = {blue, red}. The agent starts in the leftmost column and middle row. At every
timestep, the agent chooses an action among {UP,RIGHT,DOWN} and is pushed one column to
the right in addition to moving in the chosen direction, except in the last column. If the agent chooses
RIGHT, it moves an extra column to the right. At every timestep there is a random wind that can blow
the agent away up to three positions in the vertical direction. The RM task specification represents a
task in which the agent is indifferent between achieving either of the goal states. Since the RIGHT
action brings the agent closer to both goals, the optimal behavior in this case is to commit to either
goal as late as possible. In this setting, methods that use one policy per subgoal, such as LOF, train
two policies to reach both goals. This means that the agent has to commit to one of the goals from
the very beginning, which hurts the performance as it has to make up for the consequences of the
random noise. On the other hand, the CCS used by SF-RM-VI will contain an additional policy that is
indifferent between two goals. This leads to a performance gap as our approach achieves an average
accumulated reward of −19.7± 3.65 and LOF −22.70± 5.72.
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Related Work

One of the key distinctions in our research compared to prior studies is the optimality of the final
solution. As noted by Dietterich [2000], hierarchical methods usually have the capability to achieve
hierarchical, recursive, or global optimality. The challenge that often arises when subtask policies
are trained in isolation is that the combination of these locally optimal policies does not lead to a
globally optimal policy but a recursively [Dayan and Hinton, 1992] or hierarchically optimal policy
[Sutton et al., 1999, Mann et al., 2015, Araki et al., 2021]. To tackle this challenge, our approach
relies on acquiring a set of low-level policies for each subtask and employing planning to identify the
optimal combination of low-level policies when solving a particular task. By learning the CCS with
OLS [Roijers et al., 2014] in combination with high-level planning our approach ensures that globally
optimal policy is found. In this regard, the work of Alegre et al. [2022] is of particular interest as
it was the first work that used OLS and successor features [Barreto et al., 2017] for optimal policy
transfer learning. However, this method has only been applied in a setting with Markovian reward
function and has not been used with non-Markovian task specifications or high-level planning.

On the other hand, many recent approaches proposed to use high-level task specifications in the form
of LTL [Toro Icarte et al., 2018b, Kuo et al., 2020, Vaezipoor et al., 2021, Jothimurugan et al., 2021],
or similar formal language specifications [Toro Icarte et al., 2019, Camacho et al., 2019, Araki et al.,
2021, Toro Icarte et al., 2022] to learn policies. However, the majority of the methods in this area are
designed for single-task solutions, with only several focusing on acquiring a set of policies that is
capable of addressing multiple tasks [Toro Icarte et al., 2018b, León et al., 2020, Kuo et al., 2020,
Araki et al., 2021, Vaezipoor et al., 2021]. But, in contrast to our approach, they do not guarantee
optimality of the solution.

From these works, our approach is the most similar to the Logical Options Framework [Araki et al.,
2021]. The main difference is that LOF trains a single policy for each subgoal, resulting in a set of
learned policies that is either smaller than or equal to the set acquired through SF-RM-VI. While
employing one policy per subgoal proves sufficient for obtaining a globally optimal policy through
planning in deterministic environments [Wen et al., 2020], this may not hold true in stochastic
environments, as our experiments demonstrate. In such instances, the policies generated by LOF are
hierarchically optimal but fall short of global optimality.

Two notable examples from aforementioned works on multi-task learning with formal language
specifications are the works of Toro Icarte et al. [2018b] and Vaezipoor et al. [2021]. The former
struggles with generalizing to unseen tasks, because it uses LTL progression to determine which
subtasks need to be learned to solve given tasks. The Q-functions that are subsequently learned for
each LTL subtask will therefore not be useful for a new task if its subtasks were not part of the
training set. Such limitation does not apply to the latter as it instead encodes the remaining LTL task
specification using a neural network and conditions the policy on this LTL embedding. While this
approach may be more adaptable to tasks with numerous propositions or subgoals, it risks generating
suboptimal policies as it relies solely on the neural network to select the next proposition to achieve,
without incorporating planning. Additionally, since the planning is implicitly done by the neural
network, the policy is less interpretable than when explicit planning is used.

The method we propose can be viewed as a method for composing value functions through successor
features, akin to previously proposed approaches for composition of value functions and policies
[van Niekerk et al., 2019, Barreto et al., 2019, Nangue Tasse et al., 2020, Infante et al., 2022]. Lastly,
since our approach uses the values of exit states for planning it is also related to planning with exit
profiles [Wen et al., 2020]. The CCS that we propose to use as a policy basis in our work can be seen
as a collection of policies that are optimal for all possible exit profiles.

Discussion and Conclusion

In this work, we address the problem of finding optimal behavior for new non-Markovian goal
specifications in known environments. To do so, we introduce a novel approach that uses successor
features to learn a policy basis, that can subsequently be used to solve any unseen task specified by a
RM with the set of given predicates P by planning. SF-RM-VI is the first algorithm that can provably
generalize to such new task specification without sacrificing optimality in both deterministic and
stochastic environments.
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The experiments show that SF-RM-VI offers several advantages over previous methods. First, due
to the use of SF, it allows for faster composition of the high-level value function since it drastically
reduces the number of states to plan on. Secondly, thanks to using a CCS over a set of options, SF-
RM-VI achieves optimality even in stochastic environments (as shown in the Double Slit example).
Lastly, we do not require that there exists a single exit state per predicate which permits more flexible
task specification while at the same time allowing deployment in more complex environments.

A limitation of our approach could be the need to construct a full CCS if one wants to attain global
optimality. While the construction of CCS is not time-comsuming for environments with several exit
states presented in our work, the computation cost of finding the full CCS could become too large for
environments with many exit states. In such case one could instead learn a partial CCS at the cost of
a bounded decrease in performance [Alegre et al., 2022] or consider splitting the environment into
smaller parts with fewer exit states. While our experiments only considered discrete environments,
SF-RM-VI should also be applicable in continuous environments with minor adjustments. These
include: using an contiguous set of states instead of a single exit state and using reward shaping to
facilitate learning in sparse reward setting.
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A Proof of Optimality

We first restate the following theorem from Alegre et al. [2022].
Theorem 1 (Alegre, Bazzan, and Silva, 2022). Let Π be a set of policies such that the set of their
expected SFs, Ψ = {ψπ}π∈Π, constitutes a CCS. Then, given any weight vector w ∈ Rd, the GPI
policy πGPI

w (s) ∈ argmaxa∈A maxπ∈Π Qπ
w(s, a) is optimal with respect to w : V GPI

w = V ∗
w.

Applied to our setting, once the set of policies ΠCCS and associated SFs have been computed, we can
define an arbitrary vector w of rewards on the exit states, and use the CCS to obtain an optimal policy
µ∗
w and an optimal value function V ∗

w without learning. We can then use composition by setting the
reward of the exit states equal to the optimal value.

We aim to show that for each augmented state (u, s) ∈ U × S, the value function output by our
algorithm equals the optimal value of (u, s) in the product MDPM′ = F×Mϕ, i.e. that Vw(u)(s) =
V ∗
M′(u, s). To do so, it is sufficient to show that the weight vectors {w(u)}u∈U are optimal.

Each element of w(u) is recursively defined as wj(u) = Vw(τ(u,O(εj)))(εj). If all weight vectors are
optimal, it holds that Vw(τ(u,O(εj)))(εj) = V ∗

M′(w(τ(u,O(εj))), εj) for each such exit state. Due to
the above theorem, the value function Vw(u) is optimal for w(u). Due to composition that follows GPE
and GPI, this means that the value of each internal state s is optimal, i.e. that Vw(u)(s) = V ∗

M′(u, s).

It remains to show that the weight vectors {w(u)}u∈U returned by the algorithm are indeed optimal.
To do so it is sufficient to focus on the set of augmented exit states U × E . We can state a set of
optimality equations on the weight vectors as follows:

w∗
j (u) = Vw∗(τ(u,O(ε)))(εj) = max

a
Q∗(τ(u,O(ε)), εj , a)

= max
a

max
π
ψπ(εj , a)

⊺w∗(τ(u,O(ε))),

where ψπ(εj , a) =
∑

s′ P(s′|εj , a)ψ
π(εj , a, s

′). Our termination condition implies that all subtasks
take at least one time step to complete, and due to the discount factor γ, we have ∥ψ(εj , a)∥1 < 1.
Hence the update rule in Equation (11) is a contraction and converges to the set of optimal weight
vectors due to the Contraction Mapping Theorem.

B Computation of a ΠCCS

The successor features (SF) extension of the optimistic linear support (OLS) algorithm (SFOLS, Ale-
gre et al. [2022]) that is used in our work to compute ΠCCS is fully described in Algorithm 2.

It utilizes the value of the set max policy (SMP, Zahavy et al. [2021]), which is a commonly used,
weaker approach for transfer learning in multi-objective RL. For a given weight vector w and a set of
policies Π, it is defined as:

πSMP
w (s) = π′(s),where π′ = argmax

π∈Π
V π
w

and the value of this policy is V SMP
w = maxπ∈Π V π

w .

The algorithm constructs ΠCCS incrementally. Starting with the extremum points of weights simplex
Cd, it sequentially processes weights from its weight priority queue Q. In each iteration, an (optimal)
policy and its successor feature representation are found for the selected weight w. If the successor
features of this policy are different from the successor features of policies currently in the ΠCCS,
the new policy is added to the ΠCCS and the weight priority queue Q is adjusted. This adjustment
has two steps. Firstly, the weights for which the new policy performs better than all current policies
are removed and secondly, the new corner weights found with Algorithm 4 are added to Q with
corresponding priority computed with Algorithm 3.

The runtime complexity of the SFOLS algorithm depends heavily on the number of policies that have
to be trained and considered for ΠCCS. It is the same as the number of corner weights that must be
analyzed in the original OLS for which Roijers et al. [2015] provide a following bound:

O(

(
|CCS|⌊ |E|+1

2 ⌋
|CCS| − |E|

)
+

(
|CCS|⌊ |E|+2

2 ⌋
|CCS| − |E|

)
).
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Algorithm 2: SFs Optimistic Linear Support (SFOLS)
Initialize: ΠCCS ← {},Ψ← {},W ← {}, Q← {}

1: for each extremum weight vector we ∈ Cd do
2: Add we to Q with max. priority
3: repeat
4: w← pop weight with max. priority in Q
5: π,ψπ ← Solve ⟨S, E ,A,Rw,P0,P, γ⟩
6: Add w toW
7: if ψπ /∈ Ψ then
8: Remove from Q all w′ s.t. w′⊺ψπ > V SMP

w′

9: X ← CornerWeights(ψπ,w,Ψ)
10: Add Ψπ to Ψ and π to ΠCCS
11: for w′ ∈ X do
12: ∆(w′)← EstimateImprovement(w′,Ψ)
13: Add w′ to Q with priority ∆(w′)

14: until Q is empty
15: return ΠCCS,Ψ

Scaling to many objectives can thus be prohibitive but should be possible by sacrificing optimality
and using ϵ-CCS [Alegre et al., 2022].

Algorithm 3: EstimateImprovement
Input: New weight vector w, Ψ,W

1: Let V̄ ∗
w′ be the optimistic upper bound on V ∗

w′ computed by the following linear program

max w⊺ψ

subject to w′⊺ψ ≤ V SMP
w′ ∀ w′ ∈ W

2: ∆(w)← V̄ ∗
w′ − V SMP

w′

3: return ∆(w)

Algorithm 4: CornerWeights
Input: New SF vector ψπ , current weight vector w, current set Ψ

1: LetWdel be the set of obsolete weights removed from Q in line 8 of Algorithm 2
2: Add w toWdel
3: Vrel ← {ψπ|ψπ ∈ argmaxψπ∈Ψ w′⊺ψπ} for at least one w′ ∈ Wdel

4: Brel ← the set of boundaries of the weight simplex Cd involved in any w′ ∈ Wdel
5: X ← {}
6: for each subset Y of d− 1 elements from Vrel ∪ Brel do
7: wc ∈ Cd where ψπ intersects with boundaries in Y
8: Add wc to Cc
9: return X

C Task specifications

The RM specifications used in the experiments are fully described in Figure 5 (Office environment)
and Figure 6 (Delivery environment). We divide the tasks into three types and their natural language
interpretation is as follows:

• Sequential ‘Get coffee, then get mail and then go to an office location’ (Office domain,
Figure 5a) and ‘go A, then B, then C and then H’ (Delivery domain, Figure 6a).

• Disjunction ‘Get coffee OR get mail, then go to an office location’ (Office domain, Fig-
ure 5b)) and ‘go to A OR B, then to C, and then to H’ (Delivery domain, Figure 6b).
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• Composite ‘Get coffee AND get mail in any order, then go to an office location’ (office
domain, Figure 5c)) ‘go to A AND B in any order, then go to C, then H’ (Delivery domain,
Figure 6c).

Note that agents must satisfy such tasks in the least possible number of steps.
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Figure 5: RMs for the Office domain (sequential (a), disjunction (b) and composite (c)) tasks.
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Figure 6: RMs for the Delivery domain (sequential (d), disjunction (e) and composite (f)) tasks. In
this case, all non-terminal states also have a transition to a rejecting, terminal state ur for which
δ(ur) = 1000 that represents observing an obstacle ■.
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