
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNDERSTANDING WHEN AND WHY GRAPH ATTEN-
TION MECHANISMS WORK VIA NODE CLASSIFICA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the growing popularity of graph attention mechanisms, their theoretical
understanding remains limited. This paper aims to explore the conditions un-
der which these mechanisms are effective in node classification tasks through the
lens of Contextual Stochastic Block Models (CSBMs). Our theoretical analysis
reveals that incorporating graph attention mechanisms is not universally bene-
ficial. Specifically, by appropriately defining structure noise and feature noise
in graphs, we show that graph attention mechanisms can enhance classification
performance when structure noise exceeds feature noise. Conversely, when fea-
ture noise predominates, simpler graph convolution operations are more effective.
Furthermore, we examine the over-smoothing phenomenon and show that, in the
high signal-to-noise ratio (SNR) regime, graph convolutional networks suffer from
over-smoothing, whereas graph attention mechanisms can effectively resolve this
issue. Building on these insights, we propose a novel multi-layer Graph Attention
Network (GAT) architecture that significantly outperforms single-layer GATs in
achieving perfect node classification in CSBMs, relaxing the SNR requirement
from ω(

√
log n) to ω(

√
log n/ 3

√
n). To our knowledge, this is the first study to

delineate the conditions for perfect node classification using multi-layer GATs.
Our theoretical contributions are corroborated by extensive experiments on both
synthetic and real-world datasets, highlighting the practical implications of our
findings.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become essential tools for analyzing graph-structured data,
with applications in social networks (Fan et al., 2019), biology (Gligorijević et al., 2021), computer
vision (Ma et al., 2022) and recommendation systems (Wu et al., 2020; 2022a). A foundational
approach within GNNs is the Graph Convolutional Network (GCN) (Kipf & Welling, 2022), which
aggregates information from a node’s neighbors to generate feature representations. Building on
GCNs, Graph Attention Networks (GATs) (Veličković et al., 2018) introduce the graph attention
mechanism that dynamically assigns weights to neighboring nodes based on the similarity of their
features, thereby enhancing performance by prioritizing the most relevant information.

Despite the growing interest in graph attention mechanisms (Wang et al., 2019c; Lee et al., 2019;
Wang et al., 2019a;b; Hu et al., 2020), the understanding of when and why they are effective re-
mains limited. While these mechanisms are designed to prioritize relevant nodes in a graph, their
effectiveness appears to be highly influenced by the graph’s properties, particularly in the presence
of noise. The graph data commonly used in contemporary tasks is featured graph, containing both
topological and node feature information. Consequently, two types of noise emerge: structure noise
and feature noise. Structure noise disrupts graph connections, complicating the accurate identifi-
cation of community structures. Feature noise refers to inaccuracies in node feature information,
such as imprecise values or excessive similarity among features of different nodes, which can lead
to incorrect classifications (Yang et al., 2024). Given that both types of noise have the potential to
affect the performance of attention mechanisms, a critical question arises: What factors influence
the effectiveness of graph attention mechanisms, and how do structure noise and feature noise
impact their performance in different scenarios?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

This paper addresses this question by providing an in-depth theoretical analysis of the graph atten-
tion mechanism. We employ the Contextual Stochastic Block Model (CSBM) (Deshpande et al.,
2018), a commonly used tool for simulating graph structures and node features to model real graph
data. In the CSBM, the graph structure is generated using the well-known Stochastic Block Model
(SBM) (Holland et al., 1983)—a random graph model that consists of community structures, while
the node features are generated through a Gaussian Mixture Model (GMM) (Reynolds et al., 2009).
A key focus in the CSBM is the signal-to-noise ratio (SNR) of the node features, linked to the mean
and variance parameters of the GMM. A higher SNR indicates greater distinguishability of the node
features. By utilizing the CSBM, we can precisely control levels of structure noise and feature noise
by tuning model parameters—structure noise relates to connection probabilities between different
communities in the SBM, while feature noise is defined as the inverse of the SNR1. Moreover, we
use node classification, a fundamental task in graph learning that is widely employed to explore
GNN properties (Baranwal et al., 2023; Wei et al., 2022), as a benchmark to assess the effectiveness
of graph attention mechanisms across different levels of structure and feature noise.

Through our investigation, we provide a clear understanding of how graph attention mechanisms
can be leveraged more effectively, and identify scenarios where simpler GCNs may provide better
performance. By rigorously analyzing the impact of graph attention in the context of CSBM, this
paper not only advances theoretical understandings but also provides valuable insights for practical
applications in various domains. Our main contributions are as follows:

Main Contributions

• Inspired by (Fountoulakis et al., 2023), we design a non-linear graph attention mechanism and
show that its effectiveness is comparable to the mechanism in (Fountoulakis et al., 2023), while
being simpler and easier to analyze (Theorem 1). Then, by analyzing the changes in SNR after
applying graph attention layers (Theorem 2), we show that the graph attention mechanism is not
always effective. Specifically, when the structure noise of the graph exceeds the feature noise,
incorporating graph attention is beneficial, with higher attention intensity yielding better results.
Conversely, when the feature noise of the nodes is greater than the structure noise, using graph
attention can degrade node classification performance. In such cases, a simple graph convolution
is more effective (see Section 3.2.1 for details).

• We investigate the impact of the graph attention mechanism on the over-smoothing problem. First,
we introduce a refined definition of over-smoothing in an asymptotic setting where the number
of nodes n approaches infinity, highlighting its occurrence when the network depth is O(n). We
then show that for featured graphs generated by the CSBM, the graph attention mechanism is able
to resolve the over-smoothing issue in the high SNR regime (see Theorem 3).

• Building on our analysis of the graph attention mechanism, we design an effective multi-
layer GAT and demonstrate that it significantly outperforms the single-layer GAT in achiev-
ing perfect node classification (see Definition 1). Specifically, the requirement is relaxed from
SNR= ω(

√
log n) as stated in (Fountoulakis et al., 2023), to SNR= ω(

√
log n/ 3

√
n) (see The-

orem 4). To our knowledge, this is the first study to examine the conditions for perfect node
classification with multi-layer GATs.

• We conduct extensive experiments on synthetic datasets, as well as on three widely used real-
world datasets, to validate our theoretical findings.

1.1 RELATED WORKS

In recent years, there has been growing interest in the theoretical analysis of GNNs, particularly us-
ing the CSBMs (Baranwal et al., 2021; 2023; Luan et al., 2023; Adam-Day et al., 2024; Wang et al.,
2024; Javaloy et al.). Among these works, the two most relevant to our study are (Fountoulakis
et al., 2023; Javaloy et al.), whose settings are partially adopted in our work. Fountoulakis et al.
(2023) primarily investigate the role of graph attention mechanisms in the presence of structural
noise, where the graph itself provides limited information. They are the first to establish the feasi-
ble region for achieving perfect node classification using a single-layer GAT. Motivated by similar
challenges, Javaloy et al. propose a learnable GAT, termed L-CAT, which combines the strengths

1We refer readers to Eqn. 5 for detailed definitions of structure noise, feature noise, and SNR.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of GCNs and GATs to address cases where GATs may not always outperform GCNs. Our work
broadens this perspective by analyzing the effects of both structural and feature noise on graph at-
tention mechanisms. We identify the precise regimes where GCNs or GATs perform better, extend
the feasible region for perfect node classification to multi-layer GATs, and achieve improved results
on sparse graphs compared to Javaloy et al..

The issue of over-smoothing in GNNs has also garnered extensive attention (Xu et al., 2018; Keriven,
2022; Liu et al., 2020; Yang et al., 2020; Zhao & Akoglu). Two closely related works are (Wu
et al., 2022b; 2024), both of which theoretically explore the over-smoothing problem in GNNs. Wu
et al. (2022b) analyzes how the SNR evolves through GCN layers within the CSBM framework,
showing that GCNs experience over-smoothing after O(log n/ log(log n)) layers. In (Wu et al.,
2024), the authors examine the impact of the graph attention mechanism on over-smoothing and
concludes that it does not resolve the issue. In contrast, this paper investigates the effect of the graph
attention mechanism on over-smoothing within the CSBM framework, demonstrating that under
suitable conditions, a well-designed GAT can avoid over-smoothing for up to Θ(n) layers.

Finally, research on community detection within SBMs is also pertinent to our study (Abbe, 2018;
Abbe & Sandon, 2015; Zhang & Zhou, 2016; Zhang & Tan, 2022; Chen et al., 2020). Specifically,
the problem of community detection in CSBMs has recently attracted considerable attention from
statisticians, including investigations into thresholds for exact and almost exact recovery and algo-
rithm design (Lu & Sen, 2023; Deshpande et al., 2018; Braun et al., 2022; Duranthon & Zdeborova,
2024; Dreveton et al., 2024). The node perfect classification problem examined in this paper is
analogous to performing exact node recovery in the community detection problem.

2 PRELIMINARIES AND PROBLEM SETUP

Notations: For any positive integer a, let [a] ≜ {1, 2, . . . , a}. For an undirected graph G with n
nodes, we use the adjacency matrix A ∈ {0, 1}n×n to represent the graph, such that for any (i, j) ∈
[n]× [n], Aij = 1 if i and j are connected, and Aij = 0 otherwise. Besides, we consider a featured
graph where we use X ∈ Rn×d to represent the features for all n nodes, with Xi ∈ R1×d denoting
the feature of node i. When the dimension d = 1 (as considered in Section 2.1 and from Section 3
onwards), we use un-bold letters X or Xi instead. We use standard asymptotic notations, including
O(.), o(.), Ω(.), ω(.), and Θ(.), to describe the limiting behaviour of functions/sequences (Leiserson
et al., 2001).

Let ∥·∥F be the Frobenius norm. Let sgn(·) denote to the sign function that maps a number to −1,
0, or 1 based on its sign. Let Φ(·) be the cumulative distribution function of the standard Gaussian
distribution. For an event ∆, we denote by 1{∆} the indicator function, which equals 1 if ∆ is true
and 0 otherwise.

2.1 CONTEXTUAL STOCHASTIC BLOCK MODEL (CSBM)

We consider a CSBM with a balanced setting where the n nodes are divided into two classes of
approximately equal size. Let ϵ1, ϵ2, . . . , ϵn ∼ Bern(1/2) be n independent Bernoulli random
variables, and the class assignment is given by Ck = {j ∈ [n] | ϵj = k}, where k ∈ {0, 1}. For a
pair of nodes i, j in the same class, they are connected with probability p, i.e., Aij ∼ Bern(p); for a
pair of nodes i, j in different classes, they are connected with probability q, i.e., Aij ∼ Bern(q). For
simplicity, we assume node features are one-dimensional (i.e., d = 1), with X ∈ Rn representing
the node feature vector of all n nodes and Xi denoting the feature of node i. We employ a one-
dimensional GMM with parameters (µ, σ) to generate the feature of each node as Xi ∼ N((2ϵi −
1)µ, σ2), and we assume µ > 0. Let (A, X) ∼ CSBM(p, q, µ, σ) denote the featured graph sampled
from the above CSBM.

2.2 GRAPH CONVOLUTION AND GRAPH ATTENTION MECHANISM

The following provides an overview of graph convolution operations and graph attention mecha-
nisms in their general form. We then detail the multi-layer GAT for CSBMs, where each layer
consists of a simplified graph convolution layer combined with an attention mechanism.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Graph convolution operation: For a node i ∈ [n] with feature Xi ∈ Rd, the output feature X′
i

after one layer of graph convolution is

X′
i = α

(∑
j∈[n]

AijdijΘXj

)
, dij ≜ (

∑
l∈[n]

Ail)
−1, (1)

where Θ ∈ Rd′×d is a learnable matrix, dij is the inverse of the degree of node i and is used for
normalization, and α(·) represents a non-linear activation function.

Graph attention mechanism: Graph attention mechanism enables nodes in a graph to focus on
relevant edges when aggregating information, based on the similarity between node features. As-
suming an edge connects two nodes i and j, and Xi and Xj are the features of these two nodes, the
attention mechanism is defined as: Ψ(Xi,Xj) ≜ f(WXi,WXj), where f : Rd′ ×Rd′ → R and
W ∈ Rd′×d is another learnable matrix.

For any node i, let Ni be the set of neighbors of node i. Then, the attention coefficient cij for a node
i and its neighbor j ∈ Ni is calculated using a softmax function

cij ≜
exp(Ψ(Xi,Xj))∑

k∈Ni
exp(Ψ(Xi,Xk))

. (2)

By substituting cij for dij in Eqn. 1, we get the output after one layer of the attention-based graph
convolution as

X′
i = α

(∑
j∈[n]

AijcijWXj

)
. (3)

Since a graph attention mechanism can consist of multiple layers of neural networks, this paper
standardizes the definition of a GAT layer as given in Eqn. 3, regardless of the specific attention
mechanism used, to avoid confusion. This definition implies that each layer in the GAT includes a
graph convolution operation that incorporates a graph attention mechanism.

Generalization to multi-layer GAT in the CSBM: The previous discussion explained the stan-
dard operation of each GAT layer. However, we make some adjustments for the CSBM-generated
data. First, recall from Section 2.1 that we assume each node feature Xi ∈ R is one-dimensional,
thus the learnable matrices Θ and W are unnecessary. Additionally, to simplify our analysis, the
non-linear activation function α(·) is applied only to the last layer of the multi-layer GAT. Conse-
quently, the output of each GAT layer is X ′

i =
∑

j∈[n] AijcijXj .

For a multi-layer GAT with L ≥ 1 layers, the output feature of node i at the l-th layer is given by

X l
i =

∑
j∈[n]

Aijc
l−1
ij X l−1

j , and XL
i = sgn

(∑
j∈[n]

Aijc
L−1
ij XL−1

j

)
, (4)

where X l−1
i is the output feature of node i in the (l − 1)-th layer, and {cl−1

ij }j∈Ni
are the attention

coefficients of its neighbors derived from the features of the (l − 1)-th layers. Here, XL
i is the final

output of this GAT, i.e., the classification result for node i.

Remark 1 In a multi-layer GAT, neighbor coefficients vary across layers and depend on the node
features of each specific layer, unlike GCNs that merely average neighbor information. Note that
Eqn. 4 illustrates the single-head attention setting, which is the primary focus of this paper.

2.3 PERFECT NODE CLASSIFICATION

This paper considers the node classification problem for CSBMs using multi-layer GATs, with per-
fect node classification serving as the evaluation metric. This metric is equivalent to exact recov-
ery (Abbe et al., 2015) in the community detection literature.

Definition 1 (Perfect node classification) Suppose we have a GAT with L layers. For a given
node i, we say that the GAT correctly classifies this node if its output XL

i satisfies XL
i = 1 when

i ∈ C1, and XL
i = −1 when i ∈ C0. We say this GAT achieves perfect node classification if it

correctly classifies all the nodes simultaneously with probability at least 1− o(1).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 MAIN RESULTS

This section presents a number of results derived in this paper. We begin by introducing the graph
attention mechanism used and analyzed in our work (Section 3.1). In Section 3.2, we investigate the
conditions under which the graph attention mechanism proves effective on node classification task.
Next, we delve into the influence of the graph attention mechanism on the over-smoothing issue in
Section 3.3. Following our analysis, we assess the enhancements that a well-designed multi-layer
GAT can bring to the node classification task compared to a single-layer GAT (see Section 3.4).

Before diving into the main text, we first define signal-to-noise ratio (SNR), structure noise Snoise,
and feature noise Fnoise, as these concepts are essential for the subsequent analysis:

SNR ≜
µ

σ
, Snoise ≜

p+ q

p− q
, Fnoise ≜ SNR−1. (5)

Following Fountoulakis et al. (2023), we introduce the following assumption to focus on homophilic,
reasonably dense graphs that cover many practical graph data. The assumption is primarily moti-
vated by the requirements of the proof technique. For sparser graphs, alternative proof techniques
would be required.

Assumption 1. p, q = Ω(log2 n/n) and p > q.

3.1 A SIMPLE NON-LINEAR GRAPH ATTENTION MECHANISM AND ITS PERFORMANCE

In this section, we first present a graph attention mechanism inspired by Fountoulakis et al. (2023)
and then demonstrate that its performance in node classification is comparable to that of the mecha-
nism described in (Fountoulakis et al., 2023), within a single-layer GAT setting.

In the homophilic CSBMs, edges between nodes in the same class, referred to as intra-class edges,
should receive higher weights, while edges between nodes in different classes, referred to as inter-
class edges, should receive lower weights. Therefore, the goal of incorporating graph attention
mechanisms in CSBMs is to more effectively distinguish between intra-class and inter-class edges.
Fountoulakis et al. (2023) framed this as an “XOR” problem and addressed it using a two-layer
neural network. A detailed description of their attention mechanism is provided in Appendix B.
However, their approach is computationally complex and challenging to analyze, particularly for
multi-layer GATs. Therefore, we propose a simpler non-linear function to approximate the attention
mechanism from (Fountoulakis et al., 2023), as detailed below.

Proposed graph attention mechanism: For a node i and its neighbor j, with Xi and Xj repre-
senting their respective features, the graph attention mechanism used in this paper is defined as

Ψ(Xi, Xj) ≜

{
t if Xi ·Xj ≥ 0,

−t if Xi ·Xj < 0,
(6)

where t > 0 is referred to as the attention intensity.

Next, we compare the performance of the two attention mechanisms described above, using perfect
node classification as the evaluation metric and focusing on the single-layer GAT scenario.

Perfect Node Classification for Single-Layer GAT: Section 3 of (Fountoulakis et al., 2023)
demonstrates that the graph attention mechanism proposed in their work can achieve perfect node
classification when SNR = ω(

√
log n), which is referred to as the “easy regime”. In this study,

we are also interested in the influence of SNR on node classification when employing our designed
attention mechanism in Eqn. 6. Pleasingly, we prove that in the aforementioned “easy regime”, a
single-layer GAT equipped with the attention mechanism in Eqn. 6 is equally capable for perfect
node classification. This implies that our designed attention mechanism is as efficient as those intro-
duced in Fountoulakis et al. (2023). The aforementioned result is summarized in Theorem 1 below.

Theorem 1 For a featured graph (A, X) ∼ CSBM(p, q, µ, σ), suppose that SNR = ω(
√
log n) and

that Assumption 1 is satisfied. Then, employing the graph attention mechanism in Eqn. 6, a single-
layer GAT, as specified in Eqn. 4 with L = 1, is capable of achieving perfect node classification
(i.e., perfectly classifying all nodes with probability at least 1− o(1)).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 WHEN DOES GRAPH ATTENTION MECHANISM HELP NODE CLASSIFICATION?

The previous subsection shows that node classification performance is inherently linked to the SNR,
while in this subsection we investigate the conditions under which GAT layers can enhance the
SNR and when they fail to do so. Two type of noises, Snoise and Fnoise (as defined in Eqn. 5), are
considered. Note that Snoise increases as p and q get closer, making the graph less informative. As
Fnoise increases, the SNR decreases, resulting in less informative node features. The key implications
from our findings is that when Snoise exceeds Fnoise, the graph attention mechanism is effective, with
higher attention intensity t yielding better performance. Conversely, when Fnoise predominates and
Snoise is relatively low, the graph attention mechanism is less effective, and a high attention intensity
may even be detrimental.

Since the SNR is correlated with the expectations and variances of the node features, below we
first present the changes in the expectations and variances of the node features after a GAT layer
(Theorem 2). Before introducing the theorem, we first define N p

i as the set of neighbors of node i
that are in the same class as node i, and N q

i as the set of neighbors from the different class.

Theorem 2 For any node i ∈ Cϵi where Xi ∼ N((2ϵi−1)µ, σ2), let X ′
i represent the node feature

after a single GAT layer, with E[X ′
i] denoting the expectation of X ′

i and Var(X ′
i) denoting the

variance. Then, there exist two computable functions F (·) and F̂ (·) such that as n tends to infinity,
with probability at least 1− o(1), we have
• lim
n→+∞

E[X′
i]

(2ϵi−1)µ′ = 1,where µ′ ≜ F (µ, σ, t, |N p
i |, |N

q
i |),

• lim
n→+∞

Var(X′
i)

(σ′)2 = 1,where (σ′)2 ≜ F̂ (µ, σ, t, |N p
i |, |N

q
i |).

The detailed expressions of F (·) and F̂ (·) are provided in Appendix C.

It is important to highlight that, unlike simple graph convolutions, graph attention mechanisms per-
form non-linear operations on node features. As a result, the output node features no longer follows
a simple Gaussian distribution, making the analysis non-trivial. To tackle this challenge, we con-
duct a case-by-case examination of the non-linear attention mechanism, calculating expectations and
variances for each scenario and aggregating the results (see Appendices E and F). The key to these
calculations lies in the higher-order moments of the truncated Gaussian distribution (see Lemma 4).
Additionally, during the simplification process, we were pleasantly surprised to find two seemingly
different pairs of sequences whose sums converge to the same limit. We provide a proof for this
observation, which led to the final expression (see Lemmas 5 and 6).

The following corollary specializes Theorem 1 to several specific parameter regimes.

Corollary 1 For the expectation and variance of X ′
i in Theorem 2, the following statements hold,

• If t = 0, then µ′ = p−q
p+qµ and (σ′)2 = 1

n(p+q)σ
2.

• If SNR= ω(
√
log n), then µ′ = pet−qe−t

pet+qe−tµ and (σ′)2 = 1
n(p+q)σ

2.

• If SNR= o(1) and t = O(1), then µ′ = Θ
(

p−q
p+qµ

)
and (σ′)2 = Θ

((
(et − e−t)2 + 1

n(p+q)

)
σ2
)

.

Remark 2 In Corollary 1, when t = 0, the GAT layer reduces to a simple graph convolution layer.
In this case, our conclusions on expectation and variance align with the results in (Wu et al., 2022b).

3.2.1 DISCUSSIONS

Having obtained the expectation and variance (i.e., µ′ and σ′) after a GAT layer, we will now dis-
cuss the effectiveness of the graph attention mechanism in two distinct cases. Notably, our goal is
to increase the SNR (i.e., increase µ′/σ′ compared to µ/σ) after applying the GAT layer, as this
enhances node classification performance, which serves as the criterion for evaluating the efficacy
of the graph attention mechanism.

Graph attention mechanism helps when: Snoise = ω(1) and Fnoise = o(1√
logn

).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In this case, where structure noise is high and feature noise is low, based on Corollary 1, we obtain

µ′

σ′ =
√
n · δ(t) · µ

σ
, where δ(t) ≜

√
(pet − qe−t)2

pe2t + qe−2t
. (7)

Note that δ(t) has a unique inflection point at t = 1
2 log

q
p < 0 and is monotonically increasing in the

interval t > 0. Thus, the graph attention mechanism proves effective, with the improvement in the
SNR becoming more pronounced as the attention strength t increases. When the attention strength
is sufficiently large, the SNR can be enhanced by up to µ′/σ′ =

√
np · µ/σ.

Graph attention mechanism does not help when: Snoise = O(1) and Fnoise = ω(1).

Now we consider the case where feature noise is high and structure noise is low. It follows from
Corollary 1 that

µ′

σ′ = Θ

(
p− q

p+ q
·
(
c1 · (et − e−t)2 + c2 ·

1

n(p+ q)

)− 1
2

)
· µ
σ
. (8)

For the above expression, it is clear that as t increases, µ′/σ′ decreases. Furthermore, we observe
that if t is not infinitesimal, meaning (et− e−t)2 is constant, then passing through such a GAT layer
does not necessarily guarantee an increase in the SNR. This implies that the GAT layer may not serve
a useful purpose. Therefore, when feature noise predominates, using the attention mechanism can
be counterproductive. In this case, simple graph convolution (with t = 0) performs better, yielding
an improvement in SNR of µ′/σ′ = Θ(

√
n(p+ q)) · µ/σ.

Remark 3 Note that the previous discussion does not cover all possible parameter regimes of Fnoise
and Snoise, and below we present our comments or conjectures for the remaining regimes. When
Snoise = ω(1) and Fnoise = Ω(1√

logn
), both structure and feature noise are strong, meaning the

feature graph contains very little information. In such a scenario, no method is likely to perform
well in node classification, making the discussion of the attention mechanism meaningless. When
Snoise = O(1) and 1√

logn
≪ Fnoise ≪ 1, we conjecture that the graph attention mechanism may

have some effect, but a smaller value of t would be required. When Snoise = O(1) and Fnoise =
o(1√

logn
), both structure and feature noise are minimal, leading to strong performance from both

GCN and GAT, with little additional benefit from the graph attention mechanism.

To summarize, our theoretical analysis indicates that the graph attention mechanism is not always
effective for node classification tasks. When Fnoise is high and Snoise is low, it performs worse than
simple graph convolutions. This occurs because graph convolution leverages structure information
for message passing, whereas the graph attention mechanism assigns edge weights based on feature
similarity. Under these conditions, GAT’s weights become unreliable and may introduce additional
noise. This finding complements the results in Fountoulakis et al. (2023), which highlighted the
benefits of graph attention in reducing structure noise. Furthermore, carefully timing the application
of graph attention can enhance SNR in both scenarios.

3.3 HOW DOES GRAPH ATTENTION MECHANISM AFFECT OVER-SMOOTHING?

We begin by introducing a formal definition of over-smoothing, based on the definition in Rusch
et al. (2023) with some improvements. Our improvement stems from a consensus regarding the
issue of over-smoothing, namely, that over-smoothing tends to occur in shallow layers relative to the
number of nodes in the graph (Yang et al., 2020; Wu et al., 2022b). To facilitate our analysis, we
consider the scenario where the number of nodes n approaches infinity, and assume that the number
of layers L in the GNN is O(n). The refined definition of oversmoothing is as follows

Definition 2 (Over-smoothing) For an undirected featured graph G with A being the adjacency
matrix and X being the the features of all nodes, we say γ : Rn → R≥0 is a node-similarity
measure if it satisfies the following axioms:
• ∃ c ∈ R such that Xi = c for all i ∈ [n] if and only if γ(X) = 0, for X ∈ Rn;
• γ(X + Y) ≤ γ(X) + γ(Y), for all X,Y ∈ Rn.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We denote the output node features after l layers as X(l). For a GNN with L layers (where L =
O(n)), we define over-smoothing to occur if there exist constants C1, C2 > 0 such that for all
l ∈ [L]: γ(X(l)) ≤ C1e

−C2lγ(X(0)).

In this paper, we employ a node-similarity measure function similar to Wu et al. (2024), which has
been proved to satisfy the above axioms and takes the form

γ(X) ≜
1√
n
∥X − 1 · 1T

n
X∥F . (9)

The difference from (Wu et al., 2024) is that the function γ we use incorporates normalization;
however, this does not prevent it from serving as a node-similarity measure.

The above definition of over-smoothing is a general one applicable to any featured graph. Within the
CSBM, it becomes apparent that over-smoothing is related to the model’s parameters, particularly
the model’s expectation and variance. The following lemma describes their relationship.

Lemma 1 For a featured graph (A, X) ∼ CSBM(p, q, µ, σ), as n approaches infinity, with proba-
bility at least 1− o(1), the node-similarity measure in Eqn. 9 satisfies: lim

n→+∞
γ(X)√
µ2+σ2

= 1.

We focus on cases with low feature noise, i.e., SNR = ω(
√
log n), as the previous section con-

cluded that when feature noise is high, the attention mechanism offers no improvement for node
classification. Therefore, discussing over-smoothing in such cases is irrelevant.

The following theorem demonstrates that when SNR is sufficiently high, GCN suffers from over-
smoothing, while the graph attention mechanism can resolve the over-smoothing problem.

Theorem 3 Assume that SNR= ω(
√
log n). Based on Definition 2, the graph convolutional net-

works suffer from over-smoothing. However, when t = ω(
√
log n), networks with graph attention

mechanisms can prevent this over-smoothing phenomenon.

To prove Theorem 3, we begin by analyzing how the expectations of node features evolve through
multiple layers of GCN or GAT. Subsequently, we use Lemma 1 to assess how the node-similarity
measure function changes in these two network architectures, allowing us to determine whether over-
smoothing occurs. Specifically, for an L-layer GCN, we show that γ(X(l)) = (1 − 2q

p+q)
lγ(X(0))

holds for every l ∈ [L], indicating that over-smoothing occurs. In contrast, for an L-layer GAT
with L = O(n) and t = ω(

√
log n), we demonstrate that γ(X(l)) = (1 − 2q

pe2t+q)
lγ(X(0)) =

Θ(γ(X(0))) holds for every l ∈ [L], thereby resolving the over-smoothing problem according to
Definition 2. The detailed proof is provided in Appendix H. A synthetic experiment is presented in
Section 4.1, and the results (see Figure 1c) support this theoretical result.

3.4 PERFECT NODE CLASSIFICATION IN MULTI-LAYER GATS

Based on the preceding discussion, we have identified scenarios where the graph attention mech-
anism enhances node classification and mitigates the over-smoothing issue. Leveraging these in-
sights, we can strategically design more effective multi-layer GATs for node classification tasks, i.e.,
using our proposed graph attention mechanism with different values of t for different layers. Further-
more, we show that the well-designed multi-layer GATs can significantly relax the “easy regime”
conditions required by single-layer GATs to achieve perfect node classification (Theorem 1).

Theorem 4 For a featured graph (A, X) ∼ CSBM(p, q, µ, σ), suppose p = a log2 n
n and q = b log2 n

n

where a > b > 0 are positive constants2. When SNR = ω
(√

logn
3
√
n

)
, there exists a multi-layer GAT

capable of achieving perfect node classification.

By comparing Theorem 4 with Theorem 1, we find that the multi-layer GATs can significantly ex-
pand the conditions for achieving perfect node classification from SNR = ω(

√
log n) to SNR =

2Here, we adopt a slightly stricter assumption than Assumption 1 to ensure that the structure noise is not
excessively large.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ω(
√
log n/ 3

√
n) when the structure noise is not excessively high. This represents a considerable

advancement, indicating that while previously an infinitely large SNR used to be required for per-
fect classification, now even an infinitely small SNR suffices. This underscores the superior noise
tolerance of multi-layer GATs compared to single-layer GATs.

In our proof, we employ a hybrid network combining GCN and GAT layers (introduced in Ap-
pendix J). Specifically, for layers where the input SNR is less than

√
log n, we utilize graph convo-

lution layers without the attention mechanism (i.e., setting t = 0). As the SNR increases beyond√
log n after multiple layers of graph convolution, we switch to graph attention layers with higher

values of t. This design ensures that each layer effectively enhances the SNR while preventing the
over-smoothing problem.

Importantly, although this approach is tailored for the CSBM for theoretical convenience, it also
offers practical insights for GAT design in real-world applications. In scenarios with substantial
feature noise, one can initially set a low intensity for the graph attention mechanism to fully leverage
structure information. As the network depth increases, the intensity of the attention mechanism can
be gradually increased to prevent premature over-smoothing.

4 EXPERIMENTS

In this section, we perform extensive experiments on both synthetic and real-world datasets to vali-
date the theorems and findings of this paper. The synthetic datasets are created using CSBMs, while
the real-world datasets include the widely used Citeseer, Cora, and Pubmed, utilizing the default
train-test splits provided by PyTorch Geometric (Fey & Lenssen, 2019). The characteristics of the
real-world datasets are provided in Table 2 in Appendix K. All experiments are conducted on a
machine equipped with an Intel(R) Xeon(R) Silver 4215R CPU @ 3.20GHz, 64GB RAM, and an
NVIDIA GeForce RTX 3090.

Figure 1: Results of the four experiments conducted on synthetic datasets. Here, Figure 1a shows
the results of node classification with high Snoise and low Fnoise; Figure 1b presents the results for
node classification with high Fnoise and low Snoise; Figure 1c shows the results of the over-smoothing
experiment; and Figure 1d illustrates node classification results across three different networks.

4.1 SYNTHETIC DATASETS

We conduct four experiments on synthetic datasets. Experiments 1 and 2 are designed to validate
the conclusions from Section 3.2.1 on the conditions under which the graph attention mechanism
is effective. Experiments 3 and 4 are aimed at confirming Theorems 3 and 4, respectively. In all
experiments, the CSBMs used to generate the data share some identical settings: n = 3000, σ = 10,
p = a log2 n

n , and q = b log2 n
n , where a and b are positive constants. For Experiments 1, 2, and 4,

classification accuracy is used as the evaluation metric, defined as
∑

i∈[n] 1{XL
i = 2ϵi − 1}/n. All

results are averaged over 100 trials.

For Experiment 1, we investigate the effectiveness of the graph attention mechanism in a high Snoise
and low Fnoise scenario. We use a four-layer GAT as specified in Eqn. 4 with the attention mechanism
defined in Eqn. 6, setting the attention intensity to t. We fix µ = 2σ

√
log n and b = 2, and explore

cases with a = 2.1, a = 2.5, and a = 3. Classification accuracy as a function of t is recorded, with
each data point representing the average of 100 independent trials, as shown in Figure 1a. The trends
in Figure 1a indicate that the graph attention mechanism enhances classification performance under
these conditions, supporting the conclusions in Section 3.2.1. Performance improvements become
more pronounced with higher values of t and Snoise.

Experiment 2 examines a scenario with low Snoise and high Fnoise. We fix a = 6 and b = 2, and
test three values for µ: 2, 5, and 10, while recording the relationship between classification accuracy

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and t. Using a three-layer GAT with a uniform attention intensity t across all layers, we find that
classification accuracy decreases with increasing t, indicating that the graph attention mechanism
becomes counterproductive. This observation corroborates the conclusions drawn in Section 3.2.1
regarding the conditions under which the graph attention mechanism fails.

Experiment 3 aims to validate Theorem 3, which suggests that the graph attention mechanism can
prevent over-smoothing under certain conditions. We set a = 2, b = 3, and u = 10, using the
similarity metric γ from Eqn. 9 to measure node similarity. We construct a 100-layer GAT, varied
t, and record changes in γ after each attention layer, as shown in Figure 1c. The results show that,
for small values of t, γ decreases exponentially, indicating over-smoothing. As t increases, the rate
of decrease in γ slows, and for sufficiently large t, the node similarity metric γ approximates a
linear decline rather than an exponential one. This indicates that, under the current settings, over-
smoothing can be eliminated when t is sufficiently large.

In Experiment 4, we compare three graph neural network models for node classification across
different SNRs, setting to a = 2 and b = 4. The first model is a four-layer GCN. The second
is a four-layer GAT with fixed attention intensity t = 5. The third model, referred to as GAT*,
uses a gradually increasing attention intensity, with values of [0, 0.5, 0.5, 5] across the four layers.
Figure 1d shows that GAT* consistently delivers the highest classification accuracy, especially at low
SNRs, where it significantly outperforms the other models. As SNR increases, GAT’s performance
approaches that of GAT*, with both models surpassing GCN. The figure also highlights the line
SNR =

√
logn
3
√
n

. When SNR exceeds approximately 2
√
logn
3
√
n

, GAT* achieves perfect classification
accuracy, thus validating Theorem 4.

Figure 2: Experimental results on real-world datasets. Figures 2a, 2b and 2c illustrate the results for
the Citeseer, Cora and Pubmed datasets, respectively.

4.2 REAL-WORLD DATASETS

We select three commonly used real-world datasets, Citeseer, Cora and Pubmed, and constructed
three different models to compare their classification accuracy under varying levels of feature noise.
Specifically, we build a two-layer GCN, a two-layer GAT, and a hybrid model where the first layer
is a graph convolution layer and the second layer is a graph attention layer, referred to as GAT*.
To control the feature noise, we added Gaussian noise with zero mean to the features of the three
datasets, where the noise intensity is determined by the variance of the Gaussian distribution. The
experiment tracked the classification accuracy of the three models as a function of the Gaussian
noise intensity, with the results shown in Figure 2. From Figure 2, we observe that when the feature
noise is small, GAT outperforms GCN. However, as the feature noise increases, GAT’s performance
begins to fall behind that of GCN, which is consistent with our theoretical analysis in Section 3.2.1.
Furthermore, GAT* exhibits greater robustness to feature noise, maintaining high accuracy regard-
less of the noise strength, which also validates our theoretical results in Section 3.4.

Additionally, we also conduct experiments comparing the performance of our proposed attention
mechanism with the mechanism from (Fountoulakis et al., 2023) on real-world datasets. Due to
space limitations, we have included this part in Appendix L.

5 CONCLUSION

This paper analyzes the graph attention mechanism using CSBM, revealing its potential failures un-
der certain conditions. We rigorously define its effective and ineffective ranges based on structure
and feature noise and explore its role in mitigating the over-smoothing problem, particularly in high
SNR regime. We also propose a multi-layer GAT, establishing conditions for perfect node classifi-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

cation and demonstrating its superiority over single-layer GATs. Our findings provide insights for
practical applications, such as selecting graph attention based on graph data characteristics and de-
signing noise-robust networks, which we validate through experiments on real datasets. Future work
may involve GNNs with non-linear activation functions in each layer, multi-head attention mech-
anisms, or graph transformer modules. Additionally, exploring the performance of graph attention
mechanisms on tasks beyond node classification, such as link prediction and graph classification, is
also worthwhile.

REFERENCES

Emmanuel Abbe. Community detection and stochastic block models: recent developments. Journal
of Machine Learning Research, 18(177):1–86, 2018.

Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block models:
Fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science, pp. 670–688. IEEE, 2015.

Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic block
model. IEEE Transactions on Information Theory, 62(1):471–487, 2015.

Sam Adam-Day, Michael Benedikt, İsmail İlkan Ceylan, and Ben Finkelshtein. Graph neural net-
work outputs are almost surely asymptotically constant. arXiv preprint arXiv:2403.03880, 2024.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Graph convolution for semi-
supervised classification: Improved linear separability and out-of-distribution generalization. In
International Conference on Machine Learning, pp. 684–693. PMLR, 2021.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Effects of graph convolutions in
multi-layer networks. In International Conference on Learning Representations, 2023.

Guillaume Braun, Hemant Tyagi, and Christophe Biernacki. An iterative clustering algorithm for
the contextual stochastic block model with optimality guarantees. In International Conference on
Machine Learning, pp. 2257–2291. PMLR, 2022.

Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community detection with line graph neural
networks. In International Conference on Learning Representations, 2020.

Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual stochastic
block models. 31, 2018.

Maximilien Dreveton, Felipe Fernandes, and Daniel Figueiredo. Exact recovery and bregman hard
clustering of node-attributed stochastic block model. 36, 2024.

O Duranthon and Lenka Zdeborova. Optimal inference in contextual stochastic block models. Trans-
actions on Machine Learning Research, 2024. ISSN 2835-8856.

Fourth Edition, Athanasios Papoulis, and S Unnikrishna Pillai. Probability, random variables, and
stochastic processes. McGraw-Hill Europe: New York, NY, USA, 2002.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds, 2019.

Kimon Fountoulakis, Amit Levi, Shenghao Yang, Aseem Baranwal, and Aukosh Jagannath. Graph
attention retrospective. Journal of Machine Learning Research, 24(246):1–52, 2023.

Alan Frieze and Michał Karoński. Introduction to random graphs. Cambridge University Press,
2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel Beren-
berg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis, et al. Structure-
based protein function prediction using graph convolutional networks. Nature communications,
12(1):3168, 2021.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. 33:22118–
22133, 2020.

Adrián Javaloy, Pablo Sanchez Martin, Amit Levi, and Isabel Valera. Learnable graph convolutional
attention networks. In The Eleventh International Conference on Learning Representations.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing. In
Advances in Neural Information Processing Systems, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2022.

John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee Koh. Attention
models in graphs: A survey. ACM Transactions on Knowledge Discovery from Data, 13(6):1–25,
2019.

Charles Eric Leiserson, Ronald L Rivest, Thomas H Cormen, and Clifford Stein. Introduction to
algorithms, volume 6. MIT press Cambridge, MA, USA, 2001.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
338–348, 2020.

Chen Lu and Subhabrata Sen. Contextual stochastic block model: Sharp thresholds and contiguity.
Journal of Machine Learning Research, 24(54):1–34, 2023.

Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
Leskovec, and Doina Precup. When do graph neural networks help with node classification? in-
vestigating the homophily principle on node distinguishability. In Advances in Neural Information
Processing Systems, 2023.

Zhongtian Ma, Zhiguo Jiang, and Haopeng Zhang. Hyperspectral image classification using feature
fusion hypergraph convolution neural network. IEEE Transactions on Geoscience and Remote
Sensing, 60:1–14, 2022. doi: 10.1109/TGRS.2021.3123423.

Douglas A Reynolds et al. Gaussian mixture models. Encyclopedia of biometrics, 741(659-663),
2009.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Junfu Wang, Yuanfang Guo, Liang Yang, and Yunhong Wang. Understanding heterophily for graph
neural networks. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pp. 50489–50529. PMLR, 21–27 Jul 2024.

Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and Jie Shan. Graph attention convolution
for point cloud semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10296–10305, 2019a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019b.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. Kgat: Knowledge graph
attention network for recommendation. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 950–958, 2019c.

Rongzhe Wei, Haoteng Yin, Junteng Jia, Austin R Benson, and Pan Li. Understanding non-linearity
in graph neural networks from the bayesian-inference perspective. 35:34024–34038, 2022.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022a.

Xinyi Wu, Zhengdao Chen, William Wang, and Ali Jadbabaie. A non-asymptotic analysis of over-
smoothing in graph neural networks. arXiv preprint arXiv:2212.10701, 2022b.

Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying oversmoothing in attention-
based graph neural networks. 36, 2024.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting
over-smoothing in deep gcns. arXiv preprint arXiv:2003.13663, 2020.

Tianmeng Yang, Jiahao Meng, Min Zhou, Yaming Yang, Yujing Wang, Xiangtai Li, and Yunhai
Tong. You can’t ignore either: Unifying structure and feature denoising for robust graph learning.
arXiv preprint arXiv:2408.00700, 2024.

James J Yeh. Real analysis: theory of measure and integration. World Scientific Publishing Com-
pany, 2014.

Anderson Y Zhang and Harrison H Zhou. Minimax rates of community detection in stochastic block
models. The Annals of Statistics, 44(5):2252–2280, 2016.

Qiaosheng Zhang and Vincent YF Tan. Exact recovery in the general hypergraph stochastic block
model. IEEE Transactions on Information Theory, 69(1):453–471, 2022.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations.

A OUTLINE OF APPENDICES

Outline: In Appendix B, we provide additional details on the graph attention mechanism designed
in (Fountoulakis et al., 2023) and explain how the mechanism used in this paper approximates it.
Appendix C supplements definitions and a vital lemma that will be referenced throughout the proofs.
Appendix D presents the proof of Theorem 1. Appendices E and F provide the proof of Theorem 2
in two parts: the expectation and variance components. Appendix G details the proof of Corollary 1,
while Appendix H covers the proof of Lemma 1. Appendix I provides the proof of Theorem 3, and
Appendix J presents the proof of Theorem 4. Appendix K includes additional proofs of lemmas, and
Appendix L gives the results of additional experiments.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B GRAPH ATTENTION MECHANISM IN (FOUNTOULAKIS ET AL., 2023)

In the referenced work (Fountoulakis et al., 2023), the authors indicate that the edge classification
problem is essentially an “XOR problem” and have designed a two-layer neural network architecture
Ψ to address this XOR issue, as detailed below,

Ψ(Xi, Xj) ≜ rT LeakyRelu
(
S

[
Xi

Xj

])
, (10)

where

S ≜

 1 1
−1 −1
1 −1
−1 1

 , r ≜ R ·

 1
1
−1
−1

 (11)

where R > 0 is the scaling parameter. Furthermore, LeakyRelu(·) is a non-linear activation function
characterized as

LeakyRelu(x) =
{
x if x ≥ 0,

βx if x < 0,

where β > 0 typically refers to a very small constant.

Substituting Eqn. 11 into Eqn. 10, we have

Ψ(Xi, Xj) =

−2R(1− β)Xi, if Xj ≤ −|Xi|,
2R(1− β)sgn(Xi)Xj , if − |Xi| < Xj < |Xi|,
2R(1− β)Xi, if Xj > |Xi|.

(12)

Then we find that when the features of the two input nodes, Xi and Xj , have the same sign, the
value of Ψ is greater than 0. Conversely, when Xi and Xj have opposite signs, the value of Ψ is less
than 0. After applying the softmax function, edges with positive Ψ values are considered intra-class
edges and are assigned higher weights, while edges with negative Ψ values are treated as inter-class
edges and are given lower weights. Additionally, the disparity in the weights can be regulated by the
scaling parameter R.

Motivated by the preceding insights, in this paper we abandon the neural network framework and
adopt a simpler graph attention mechanism for CSBM, that is,

Ψ(Xi, Xj) ≜

{
t if Xi ·Xj ≥ 0,

−t if Xi ·Xj < 0,
(13)

where t > 0 serves a similar role to R, which we refer to as the attention intensity.

Additionally, it is worth noting that the attention mechanism proposed in (Fountoulakis et al., 2023)
can handle cases where the dimensionality of node features d is greater than 1. In (Fountoulakis
et al., 2023), when the CSBM generates node features, the following change occurs: for a node i,
its feature Xi is generated by N((2ϵi − 1)µ, σ2I) , where µ ∈ Rd, σ ∈ R and I ∈ {0, 1}d×d

is the identity matrix. Thus, for a pair of nodes (i, j) and their features Xi and Xj , the attention
mechanism in (Fountoulakis et al., 2023) becomes

Ψ(Xi,Xj) ≜ rT LeakyRelu

(
S

[
µT

∥µ∥Xi

µT

∥µ∥Xj

])
, (14)

where S and r follow from Eqn. 11.

In this case, our proposed attention mechanism can also approximate the above-mentioned one with
minor modifications, leading to the following expression:

Ψ(Xi,Xj) ≜

{
t if µTXi · µTXj ≥ 0,

−t if µTXi · µTXj < 0.
(15)

By comparing Eqns. 14 and 15, we observe that our proposed attention mechanism eliminates two
matrix multiplication operations, resulting in greater efficiency.

Note that since the node features in real datasets have d > 1, the attention mechanisms in Eqns. 14
and 15 are employed in experiments with real datasets in Appendix K.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C PRELIMINARIES FOR PROOFS

We begin by providing the complete expressions for functions F (µ, σ, t, |N p
i |, |N

q
i |) and

F̂ (µ, σ, t, |N p
i |, |N

q
i |), which were omitted in Theorem 2 of the main text. For simplicity, we define

y ≜
σ√
2π

e−
µ2

2σ2 , z ≜ Φ
(µ
σ

)
, A(z, t) ≜ et

(
y + µ(1− z)

)
+ e−t

(
− y + µz

)
,

B(z, t) ≜ e2t
(
µy + µ2(1− z) + σ2(1− z)

)
+ e−2t

(
− µy + µ2z + σ2z

)
−A2(z, t).

(16)

Then we present that

F (µ, σ, t, |N p
i |, |N

q
i |) = S (z, t, |N p

i |, |N
q
i |) · T

(
z, y, t, |N p

i |, |N
q
i |
)
, where (17)

S (z, t, |N p
i |, |N

q
i |) ≜

|Np
i |∑

r=0

|N q
i |∑

s=0

(|Np
i |
r

)(|N q
i |
s

)
(1− Φ

(
µ
σ

)
)|N

q
i |−s+r · Φ|Np

i |+s−r
(
µ
σ

)
(r + s)et + (|Ni| − r − s)e−t

,

T
(
z, y, t, |N p

i |, |N
q
i |
)

≜ |N p
i | ·

(
(1− z)A(z, t) + zA(z,−t)

)
− |N q

i | ·
(
(1− z)A(z,−t) + zA(z, t)

)
;

(18)
and

F̂ (µ, σ, t, |N p
i |, |N

q
i |) = Ŝ (z, t, |N p

i |, |N
q
i |) · T̂

(
z, y, t, |N p

i |, |N
q
i |
)
, where (19)

Ŝ (z, t, |N p
i |, |N

q
i |) ≜

|Np
i |∑

r=0

|N q
i |∑

s=0

(|Np
i |
r

)(|N q
i |
s

)
(1− Φ

(
µ
σ

)
)|N

q
i |−s+r · Φ|Np

i |+s−r
(
µ
σ

)
((r + s)et + (|Ni| − r − s)e−t)

2 ,

T̂
(
z, y, t, |N p

i |, |N
q
i |
)
≜ (|N p

i |
2 + |N q

i |
2) · (et − e−t)2 · z(1− z) · (2y + µ(1− 2z))2+

2|N p
i ||N

q
i | · (e

t − e−t) ·
(
− 2(1− z)y + µz(1− 2z)

)
·
(
(1− z)A(z, t) + zA(z,−t)

)
+

|N p
i | ·

(
(1− z)B(z, t) + zB(z,−t)

)
+ |N q

i | ·
(
(1− z)B(z,−t) + zB(z, t)

)
.

(20)

Then we introduce an important lemma from the referenced paper (Fountoulakis et al., 2023), which
plays a key role in the proofs of several theorems. This lemma concerns a series of high-probability
events, which can be proven by directly use of the Chernoff bound and the union bound. See Foun-
toulakis et al. (2023) for the detailed proof.

Lemma 2 Consider the following events,

1. ∆1: |C0| = n
2 ±O(

√
n log n) and |C1| = n

2 ±O(
√
n log n).

2. ∆2: for each node i ∈ [n], |Ni| = n(p+q)
2

(
1±

√
logn
10

)
.

3. ∆3: for each node i ∈ [n], |N p
i | = |Ni| · p

p+q

(
1±

√
logn
10

)
and |N q

i | = |Ni| · q
p+q

(
1±

√
logn
10

)
.

4. ∆4: for each node i ∈ [n], |Xi −E[Xi]| ≤ 10σ
√
log n.

Suppose that Assumption 1 holds. For a featured graph (A, X) sampled from CSBM(p, q, µ, σ), the
event ∆ ≜ ∆1 ∩∆2 ∩∆3 ∩∆4 happens with probability at least 1− o(1).

D PROOF OF THEOREM 1

Without loss of generality, we first discuss a node i that belongs to C1. For any neighbor j ∈ N p
i ,

using the graph attention Ψ defined in Eqn. 6, we have

P{Ψ(Xi, Xj) = t} = P{Xi ·Xj ≥ 0} =
(
1− Φ

(µ
σ

))2
+Φ2

(µ
σ

)
,

P{Ψ(Xi, Xj) = −t} = P{Xi ·Xj < 0} = 2
(
1− Φ

(µ
σ

))
Φ
(µ
σ

)
.

(21)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The following lemma gives a tail bound of Φ.

Lemma 3 Assume a random variable y ∼ N(0, 1), then for any constant s > 0, the following tail
bound holds,

P{y ≥ s} = Φ(s) ≤ min

{
1

2
e−

s2

2 ,
1

s
√
2π

e−
s2

2

}
. (22)

Proof: See Appendix K for the detailed proof. □

Next, we illustrate the concentration of the attention coefficients in the easy regime. Consider the
probability of the following event of node i,

P{∀j ∈ N p
i : Xi ·Xj ≥ 0} = 1− P{∃j ∈ N p

i : Xi ·Xj < 0}
(i)

≥ 1− 2 · |N p
i | ·

(
1− Φ

(µ
σ

))
Φ
(µ
σ

)
(ii)

≥ 1− 2 · |N p
i | ·

1

ω(
√
log n)

√
2π

· e−
ω(log n)

2

(iii)

≥ 1− 2 · |N p
i | · o(

1

n
√
log n

) = 1− o(1),

(23)

where (i) is derived using the union bound, (ii) follows from SNR= µ
σ = ω(

√
log n) and Lemma 3,

(iii) is due to the fact that |N p
i | = O(n).

Similarly, for the inter-class neighbors of node i, we have
P{∀j ∈ N q

i : Xi ·Xj < 0} = 1− o(1). (24)
Then, for any j ∈ N p

i , the attention coefficient cij , with high probability, is determined as

cij =
exp(Ψ(Xi, Xj))∑

k∈Ni
exp(Ψ(Xi, Xk))

=
exp(Ψ(Xi, Xj))∑

k∈Np
i
exp(Ψ(Xi, Xk)) +

∑
k′∈N q

i
exp(Ψ(Xi, Xk′))

(i)
=

et

|N p
i |et + |N q

i |e−t

(25)

where (i) is due to Eqn. 23 and Eqn. 24.

Accordingly, for any j′ ∈ N q
i ,

cij′ =
e−t

|N p
i |et + |N q

i |e−t
, w.h.p.. (26)

Then, after a single-layer GAT as outlined in Eqn. 4 with L = 1, the output of node i is determined
as

X ′
i = sgn

(∑
j∈[n]

AijcijXj

)
= sgn

(∑
j∈Np

i

cijXj +
∑

j′∈N q
i

cij′Xj′

)
(i)
=

w.h.p.
sgn
(|N p

i |et

|N p
i |et + |N q

i |e−t
· (µ± 10σ

√
log n) +

|N q
i |e−t

|N p
i |et + |N q

i |e−t
· (−µ± 10σ

√
log n)

)
(ii)
=

w.h.p.
sgn
(pet − qe−t

pet + qe−t
· µ · (1± o(1))

)
,

(27)
where (i) directly follows from the high probability events ∆4 in Lemma 2 and Eqn. 25- 26, (ii) is
due to the high probability event ∆3 in Lemma 2 and the fact that µ = ω(σ

√
log n). Notably, for a

sufficienst large t, we have
pet − qe−t

pet + qe−t
= 1− 2q

pe2t + q
= 1− o(1). (28)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Thus, Eqn. 27 can be further calculated as

X ′
i

w.h.p.
= sgn

(
µ · (1± o(1))

)
= 1. (29)

Likewise, for any node i′ ∈ C0, it can be proven that, with high probability, the output X ′
i′ equals

−1.

E PROOF OF THEOREM 2 (EXPECTATION PART)

We first present two lemmas that play a significant role in the proofs of the expectation part of
Theorem 2.

Lemma 4 Assume a random variable x ∼ N(µ, σ2) with f(x) being the probability density func-
tion of x, then

∫ +∞
0

xf(x) dx = σ√
2π

e−
µ2

2σ2 + µ
(
1− Φ

(
µ
σ

))
,∫ 0

−∞ xf(x) dx = − σ√
2π

e−
µ2

2σ2 + µΦ
(
µ
σ

)
,

(30)

and
∫ +∞
0

x2f(x) dx = µ σ√
2π

e−
µ2

2σ2 + µ2
(
1− Φ

(
µ
σ

))
+ σ2

(
1− Φ

(
µ
σ

))
,∫ 0

−∞ x2f(x) dx = −µ σ√
2π

e−
µ2

2σ2 + µ2Φ
(
µ
σ

)
+ σ2Φ

(
µ
σ

)
.

(31)

Accordingly, if x ∼ N(−µ, σ2), then
∫ +∞
0

xf(x) dx = σ√
2π

e−
µ2

2σ2 − µΦ
(
µ
σ

)
,∫ 0

−∞ xf(x) dx = − σ√
2π

e−
µ2

2σ2 − µ
(
1− Φ

(
µ
σ

))
,

(32)

and
∫ +∞
0

x2f(x) dx = −µ σ√
2π

e−
µ2

2σ2 + µ2Φ
(
µ
σ

)
+ σ2Φ

(
µ
σ

)
,∫ 0

−∞ x2f(x) dx = µ σ√
2π

e−
µ2

2σ2 + µ
(
1− Φ

(
µ
σ

))
+ σ2

(
1− Φ

(
µ
σ

))
.

(33)

Proof: Refer to Appendix K for the complete proof. □

Lemma 5 Assume 0 < x < 1/2, for any constants t > 0 and k > 0, let

Γ(n,m) ≜
n∑

i=0

m∑
j=0

(
n
i

)(
m
j

)
(1− x)m+i−jxn−i+j

((i+ j)et + (n+m− i− j)e−t)k
.

Then the following equation holds

lim
n,m→+∞

Γ(n,m)

Γ(n+ c1,m+ c2)
= 1, (34)

where c1 and c2 are positive integer constants.

Proof: See Appendix K for the full proof. □

For the expectation part of Theorem 2, without loss of generality, assume that node i ∈ C1, then we
have

X ′
i =

∑
j∈Np

i

Xj · eΨ(Xi,Xj)∑
l∈Ni

eΨ(Xi,Xl)
+
∑

j′∈N q
i

Xj′ · eΨ(Xi,Xj′)∑
l∈Ni

eΨ(Xi,Xl)
. (35)

And the expectation of X ′
i is then given by

E[X ′
i] = E

[∑
j∈Np

i

Xj · eΨ(Xi,Xj)∑
l∈Ni

eΨ(Xi,Xl)
+
∑

j′∈N q
i

Xj′ · eΨ(Xi,Xj′)∑
l∈Ni

eΨ(Xi,Xl)

]
(i)
= |N p

i | · E
[Xj · eΨ(Xi,Xj)∑

l∈Ni
eΨ(Xi,Xl)︸ ︷︷ ︸
A

]
+ |N q

i | · E
[Xj′ · eΨ(Xi,Xj′)∑

l∈Ni
eΨ(Xi,Xl)︸ ︷︷ ︸
B

]
,

(36)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where (i) follows from the fact that each node’s feature is generated independently.

Next, we calculate E[A] and E[B] in Eqn.36 separately.

E.1 CALCULATION OF E[A]

Calculating E[A] essentially entails determining the expectation of a joint probability distribution,
with the random variables of this distribution being the features of node i and the features of all the
neighboring nodes of i. Here, we denote them as {X1, X2, . . . , X|Ni|}. Then, for every j ∈ N p

i , it
follows that

E
[Xj · eΨ(Xi,Xj)∑

l∈Np
i
eΨ(Xi,Xl) +

∑
l′∈N q

i
eΨ(Xi,Xl′)

]
=

∫
Xi

∫
X1

∫
X2

..

∫
X|Ni|

Xj · eΨ(Xi,Xj)∑
l∈Np

i
eΨ(Xi,Xl) +

∑
l′∈N q

i
eΨ(Xi,Xl′)

· f(Xi, X1, .., X|Ni|) dXidX1dX|Ni|

(i)
=

∫
Xi

∫
X1

..

∫
X|Ni|

Xj · eΨ(Xi,Xj)∑
l∈Np

i
eΨ(Xi,Xl) +

∑
l′∈N q

i
eΨ(Xi,Xl′)

· f(Xi)f(X1)..f(X|Ni|) dXidX1dX|Ni|,
(37)

where (i) is due to the fact that each node’s feature is generated independently.

Noting that i ∈ C1 and considering the graph attention mechanism outlined in Eqn.6, we categorize
the discussions into four cases depending on the values of Xi and Xj being above or below zero.
Thus we have

E[A]

= E[A|Xi > 0, Xj > 0] · P{Xi > 0, Xj > 0}+ E[A|Xi > 0, Xj < 0] · P{Xi > 0, Xj < 0}
+ E[A|Xi < 0, Xj > 0] · P{Xi < 0, Xj > 0}+ E[A|Xi < 0, Xj < 0] · P{Xi < 0, Xj < 0}.

(38)

Case 1: Xi > 0, Xj > 0, Ψ(Xi, Xj) = t.

Excluding node j, node i has (|N p
i |−1) intra-class neighbors and |N q

i | inter-class neighbors. Let
NR ≜ {l ∈ N p

i |Xl ≥ 0} and NS ≜ {l′ ∈ N q
i |Xl′ ≥ 0}. For some integers r, s ≥ 0, we define the

event ∆rs as

∆rs : |NR| = r and |NS | = s. (39)

For every j ∈ N p
i , given that i is in C0, it follows that Xj ∼ N(µ, σ2). Conversely, for every

j′ ∈ N q
i , Xj′ ∼ N(−µ, σ2). Then we have

∫ +∞

0

f(Xj) dXj =

∫ 0

−∞
f(Xj′) dXj′ = 1− Φ

(µ
σ

)
,∫ 0

−∞
f(Xj) dXj =

∫ +∞

0

f(Xj′) dXj′ = Φ
(µ
σ

)
.

(40)

Hence,

E[A|Xi > 0, Xj > 0] · P{Xi > 0, Xj > 0}

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

E[A|Xi > 0, Xj > 0,∆rs]P{Xi > 0, Xj > 0,∆rs}

(41)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· et

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
r+1

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|Np

i |−r−1

f(Xi)f(X1) . . . f(X|Np
i |−1) dXidX1 . . . dX|Np

i |−1

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
s

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|N q

i |−s

f(X|Np
i |+1) . . . f(X|Ni|) dX|Np

i |+1 . . . dX|Ni| ·
∫ +∞

0

Xjf(Xj) dXj

(i)
=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· et

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s+1

·
(
Φ
(µ
σ

))|Np
i |−r+s−1

·
∫ +∞

0

Xjf(Xj) dXj ,

where (i) is due to Eqn. 40.

Note that Xj ∼ N(µ, σ2), according to Lemma 4, we get that∫ +∞

0

Xjf(Xj) dXj =
σ√
2π

e−
µ2

2σ2 + µ
(
1− Φ

(µ
σ

))
. (42)

Hence,

E[A|Xi > 0, Xj > 0] · P{Xi > 0, Xj > 0} =

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· et

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s+1

·
(
Φ
(µ
σ

))|Np
i |−r+s−1

·

(
σ√
2π

e−
µ2

2σ2 + µ
(
1− Φ

(µ
σ

)))
.

(43)

Case 2: Xi > 0, Xj < 0, Ψ(Xi, Xj) = −t.

Similar to the analysis of Case 1, we have that

E[A|Xi > 0, Xj > 0] · P{Xi > 0, Xj > 0}

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

E[A|Xi > 0, Xj > 0,∆rs] · P{Xi > 0, Xj > 0,∆rs}

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· e−t

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
r+1

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|Np

i |−r−1

f(Xi)f(X1) . . . f(X|Np
i |−1) dXidX1 . . . dX|Np

i |−1

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
s

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|N q

i |−s

f(X|Np
i |+1) . . . f(X|Ni|) dX|Np

i |+1 . . . dX|Ni| ·
∫ 0

−∞
Xjf(Xj) dXj

(44)

(i)
=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· e−t

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s+1

·
(
Φ
(µ
σ

))|Np
i |−r+s−1

·

(
− σ√

2π
e−

µ2

2σ2 + µΦ
(µ
σ

))
,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where (i) is due to Lemma 4.

Case 3: Xi < 0, Xj > 0, Ψ(Xi, Xj) = −t.

In this case, we have that

E[A|Xi < 0, Xj > 0] · P{Xi < 0, Xj > 0}

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

E[A|Xi < 0, Xj > 0,∆rs] · P{Xi < 0, Xj > 0,∆rs}
(45)

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· e−t

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
r

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|Np

i |−r

f(Xi)f(X1) . . . f(X|Np
i |−1) dXidX1 . . . dX|Np

i |−1

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
s

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|N q

i |−s

f(X|Np
i |+1) . . . f(X|Ni|) dX|Np

i |+1 . . . dX|Ni| ·
∫ +∞

0

Xjf(Xj) dXj

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· e−t

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s

·
(
Φ
(µ
σ

))|Np
i |−r+s

·

(
σ√
2π

e−
µ2

2σ2 + µ
(
1− Φ

(µ
σ

)))
.

Case 4: Xi < 0, Xj < 0, Ψ(Xi, Xj) = t.

Similarly, in this case, we get that

E[A|Xi < 0, Xj < 0] · P{Xi < 0, Xj < 0}

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

E[A|Xi < 0, Xj < 0,∆rs] · P{Xi < 0, Xj < 0,∆rs}

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· et

(r + s)et + (|Ni| − r − s)e−t

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
r+1

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|Np

i |−r−1

f(Xi)f(X1) . . . f(X|Np
i |−1) dXidX1 . . . dX|Np

i |−1

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
s

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|N q

i |−s

f(X|Np
i |+1) . . . f(X|Ni|) dX|Np

i |+1 . . . dX|Ni| ·
∫ 0

−∞
Xjf(Xj) dXj

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· et

(r + s)et + (|Ni| − r − s)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s+1

·
(
Φ
(µ
σ

))|Np
i |−r+s−1

·

(
− σ√

2π
e−

µ2

2σ2 + µΦ
(µ
σ

))
.

(46)

Recall that, for the sake of brevity, the following definations are given in Eqn. 16,

y ≜
σ√
2π

e−
µ2

2σ2 , z ≜ Φ
(µ
σ

)
, A(z, t) ≜ et

(
y + µ(1− z)

)
+ e−t

(
− y + µz

)
. (47)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

By substituting Eqns. 43-46 into Eqn. 38, we obtain

E[A]

= E[A|Xi > 0, Xj > 0] · P{Xi > 0, Xj > 0}+ E[A|Xi > 0, Xj < 0] · P{Xi > 0, Xj < 0}
+ E[A|Xi < 0, Xj > 0] · P{Xi < 0, Xj > 0}+ E[A|Xi < 0, Xj < 0] · P{Xi < 0, Xj < 0}

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· et

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s+1

·
(
Φ
(µ
σ

))|Np
i |−r+s−1

·

(
σ√
2π

e−
µ2

2σ2 + µ
(
1− Φ

(µ
σ

)))

+

(|Np
i |−1
r

)(|N q
i |
s

)
· e−t

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s+1

·
(
Φ
(µ
σ

))|Np
i |−r+s−1

·

(
− σ√

2π
e−

µ2

2σ2 + µΦ
(µ
σ

))

+

(|Np
i |−1
r

)(|N q
i |
s

)
· e−t

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s

·
(
Φ
(µ
σ

))|Np
i |−r+s

·

(
σ√
2π

e−
µ2

2σ2 + µ
(
1− Φ

(µ
σ

)))

+

(|Np
i |−1
r

)(|N q
i |
s

)
· et

(r + s)et + (|Ni| − r − s)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s+1

·
(
Φ
(µ
σ

))|Np
i |−r+s−1

·

(
− σ√

2π
e−

µ2

2σ2 + µΦ
(µ
σ

))

(i)
=

w.h.p.

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s−1

(r + s)et + (|Ni| − r − s)e−t

·

(
(1− z) ·

(
et(y + µ(1− z)) + e−t(−y + µz)

)
+ z ·

(
e−t(y + µ(1− z)) + et(−y + µz)

))

(ii)
=

w.h.p.

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
(1− z)|N

q
i |+r−sz|N

p
i |−r+s−1

(r + s)et + (|Ni| − r − s)e−t

(
(1− z)A(z, t) + zA(z,−t)

)
,

(48)
where (i) holds since Lemma 2 ensures that |Ni| = n(p+q)

2

(
1 ±

√
logn
10

)
= ω(1), and (ii) follows

from Eqn. 47.

E.2 CALCULATION OF E[B]

The process for calculating E[B] is the same as for E[A], focusing on finding the expectation of
a joint probability distribution for all the features of node i’s neighbors. Moreover, because of
the graph attention mechanism, both calculations require a discussion for when the product of Xi

and Xj′ is positive, involving four different cases. The main difference between calculating E[B]
and E[A] is that Xj′ is considered an inter-class neighbor, implying it follows a different normal
distribution, Xj′ ∼ N(−µ, σ2). Similarly, we have that

E[B] = E[B|Xi > 0, Xj > 0] · P{Xi > 0, Xj > 0}+ E[B|Xi > 0, Xj < 0] · P{Xi > 0, Xj < 0}
+ E[B|Xi < 0, Xj > 0] · P{Xi < 0, Xj > 0}+ E[B|Xi < 0, Xj < 0] · P{Xi < 0, Xj < 0}.

(49)
Additionally, we continue to use the event ∆rs as defined in Eqn. 39. Notably, with j′ being an
inter-class neighbor, r is constrained to a maximum of |N p

i |, and correspondingly, s reaches its
upper limit at (|N q

i | − 1).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Then for the case that Xi > 0 and Xj′ > 0, we have that

E[B|Xi > 0, Xj′ > 0] · P{Xi > 0, Xj′ > 0}

=

|Np
i |∑

r=0

|N q
i |−1∑
s=0

E[B|Xi > 0, Xj′ > 0,∆rs]P{Xi > 0, Xj′ > 0,∆rs}

=

|Np
i |∑

r=0

|N q
i |−1∑
s=0

(|Np
i |
r

)(|N q
i |−1
s

)
· et

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
r+1

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|Np

i |−r

f(Xi)f(X1) . . . f(X|Np
i |) dXidX1 . . . dX|Np

i |

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
s

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|N q

i |−s−1

f(X|Np
i |+2) . . . f(X|Ni|) dX|Np

i |+2 . . . dX|Ni| ·
∫ +∞

0

Xj′f(Xj′) dXj′

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· et

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s

·
(
Φ
(µ
σ

))|Np
i |−r+s

·
∫ +∞

0

Xj′f(Xj′) dXj′

(50)

(i)
=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· et

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s

·
(
Φ
(µ
σ

))|Np
i |−r+s

·
(σ√

2π
e−

µ2

2σ2 − µΦ
(µ
σ

))
,

where (i) holds since Xj′ ∼ N(−µ, σ2) and Lemma 3.

As the other three cases follow the similar approach, we directly state the final result for E[B] as

E[B] = E[B|Xi > 0, Xj > 0] · P{Xi > 0, Xj > 0}+ E[B|Xi > 0, Xj < 0] · P{Xi > 0, Xj < 0}
+ E[B|Xi < 0, Xj > 0] · P{Xi < 0, Xj > 0}+ E[B|Xi < 0, Xj < 0] · P{Xi < 0, Xj < 0}

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· et

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s

·
(
Φ
(µ
σ

))|Np
i |−r+s

·

(
σ√
2π

e−
µ2

2σ2 − µΦ
(µ
σ

))

+

(|Np
i |−1
r

)(|N q
i |
s

)
· e−t

(r + s)et + (|Ni| − r − s)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s

·
(
Φ
(µ
σ

))|Np
i |−r+s

·

(
− σ√

2π
e−

µ2

2σ2 − µ
(
1− Φ

(µ
σ

)))

+

(|Np
i |−1
r

)(|N q
i |
s

)
· e−t

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s−1

·
(
Φ
(µ
σ

))|Np
i |−r+s+1

·

(
σ√
2π

e−
µ2

2σ2 − µΦ
(µ
σ

))
(51)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

+

(|Np
i |−1
r

)(|N q
i |
s

)
· et

(r + s)et + (|Ni| − r − s)e−t

·
(
1− Φ

(µ
σ

))|N q
i |+r−s−1(

Φ
(µ
σ

))|Np
i |−r+s+1

(
− σ√

2π
e−

µ2

2σ2 − µ
(
1− Φ

(µ
σ

)))

(i)
=

w.h.p.

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
(1− z)|N

q
i |+r−s−1z|N

p
i |−r+s

(r + s)et + (|Ni| − r − s)e−t

(
(1− z)A(z,−t) + zA(z, t)

)
,

where (i) is due to |Ni| = ω(1) and Eqn. 47.

After obtaining E[A] and E[B], by revisiting Eqn. 36, it follows that

E[X ′
i]

w.h.p.
=

|N p
i |

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
(1− z)|N

q
i |+r−sz|N

p
i |−r+s−1

(r + s)et + (|Ni| − r − s)e−t

(
(1− z)A(z, t) + zA(z,−t)

)

+ |N q
i |

|Np
i |∑

r=0

|N q
i |−1∑
s=0

(|Np
i |
r

)(|N q
i |−1
s

)
(1− z)|N

q
i |+r−s−1z|N

p
i |−r+s

(r + s)et + (|Ni| − r − s)e−t

(
(1− z)A(z,−t) + zA(z, t)

)
w.h.p.
= |N p

i | · S (z, t, |N p
i | − 1, |N q

i |) ·
(
(1− z) ·A(z, t) + z ·A(z,−t)

)
+ |N q

i | · S (z, t, |N p
i |, |N

q
i | − 1) ·

(
(1− z) ·A(z,−t) + z ·A(z, t)

)
,

(52)
where

S (z, t, |N p
i |, |N

q
i |) ≜

|Np
i |∑

r=0

|N q
i |∑

s=0

(|Np
i |
r

)(|N q
i |
s

)
(1− Φ

(
µ
σ

)
)|N

q
i |−s+r · Φ|Np

i |+s−r
(
µ
σ

)
(r + s)et + (|Ni| − r − s)e−t

.

Notably, given that Φ
(
µ
σ

)
∈ (0, 1/2) and t > 0, applying Lemma 5, it follows that

S (z, t, |N p
i | − 1, |N q

i |)
w.h.p.
= S (z, t, |N p

i |, |N
q
i | − 1) . (53)

Hence, it is sufficient to show that

E[X ′
i]

w.h.p.
= S (z, t, |N p

i |, |N
q
i |) · T (z, y, t, |N

p
i |, |N

q
i |), (54)

where

T
(
z, y, t, |N p

i |, |N
q
i |
)
≜ |N p

i |·
(
(1−z)A(z, t)+zA(z,−t)

)
−|N q

i |·
(
(1−z)A(z,−t)+zA(z, t)

)
.

Similarly, if node i belongs to community C0, by symmetry, we obtain that

E[X ′
i]

w.h.p.
= −S (z, t, |N p

i |, |N
q
i |) · T (z, y, t, |N

p
i |, |N

q
i |). (55)

Thus, for any node i ∈ Cϵi , with probability 1− o(1), E[X ′
i] equals (2ϵi − 1)µ′, where

µ′ = S (z, t, |N p
i |, |N

q
i |) · T (z, y, t, |N

p
i |, |N

q
i |). (56)

F PROOF OF THEOREM 2 (VARIANCE PART)

We first present a key lemma for proving the variance part of Theorem 2.

Lemma 6 Assume 0 < x < 1/2, for any constant t > 0, define A(n,m) ≜∑n
i=0

∑m
j=0

(ni)(
m
j)(1−x)m+i−jxn−i+j

((i+j)et+(n+m−i−j)e−t)2 , and B(n,m) ≜
(∑n

i=0

∑m
j=0

(ni)(
m
j)(1−x)m+i−jxn−i+j

(i+j)et+(n+m−i−j)e−t

)2
.

Then, for n+m → +∞, we have

A(n,m) = Θ((n+m)−2), B(n,m) = Θ((n+m)−2), A(n,m)−B(n,m) = o((n+m)−3).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Proof: We provide the detailed proof in Section K. □

Without loss of generality, we assume that node i ∈ C1. Note that

Var(X ′
i) = E[(X

′
i)

2]− E2[X ′
i]. (57)

Since we have obtained E[X ′
i] in the proof of Theorem 2, the key now is how to calculate E[(X ′

i)
2].

By Eqn. 35, we have

(X ′
i)

2 =
(∑

j∈Np
i

Xj · eΨ(Xi,Xj)∑
l∈Ni

eΨ(Xi,Xl)
+
∑

j′∈N q
i

Xj′ · eΨ(Xi,Xj′)∑
l∈Ni

eΨ(Xi,Xl)

)2
=
(∑

j∈Np
i

Xj · eΨ(Xi,Xj)∑
l∈Ni

eΨ(Xi,Xl)

)2
︸ ︷︷ ︸

A

+
(∑

j′∈N q
i

Xj′ · eΨ(Xi,Xj′)∑
l∈Ni

eΨ(Xi,Xl)

)2
︸ ︷︷ ︸

B

+ 2
∑
j∈Np

i

∑
j′∈N q

i

Xj ·Xj′ · eΨ(Xi,Xj) · eΨ(Xi,Xj′)

(
∑

l∈Ni
eΨ(Xi,Xl))2︸ ︷︷ ︸

C
(58)

Thus, we have established that E[(X ′
i)

2] = E[A] + E[B] + E[C]. Subsequently, we will calculate
each of these three components in turn.

F.1 CALCULATION OF E[A]

Firstly, since the node features are generated independently, we have

E[A] = E
[(∑

j∈Np
i

Xj · eΨ(Xi,Xj)∑
l∈Np

i
eΨ(Xi,Xl) +

∑
l′∈N q

i
eΨ(Xi,Xl′)

)2]

= (|N p
i |

2 − |N p
i |) · E

[Xj1 ·Xj2 · eΨ(Xi,Xj1
) · eΨ(Xi,Xj2

)

(
∑

l∈Np
i
eΨ(Xi,Xl) +

∑
l′∈N q

i
eΨ(Xi,Xl′))2︸ ︷︷ ︸

A1

]

+ |N p
i | · E

[X2
j1
· e2Ψ(Xi,Xj1

)

(
∑

l∈Np
i
eΨ(Xi,Xl) +

∑
l′∈N q

i
eΨ(Xi,Xl′))2︸ ︷︷ ︸

A2

]
,

(59)
where j1, j2 ∈ N p

i . The key is to compute the expectations of A1 and A2.

F.1.1 CALCULATION OF E[A1]

Given that node i is in C1, and using the graph attention mechanism from Eqn. 6, we break down
the discussion into eight cases, each defined by the positive or negative values of Xi, Xj1 , and Xj2 ,
as shown in Table 1.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
Xi ≥ 0 ≥ 0 ≥ 0 ≥ 0 < 0 < 0 < 0 < 0
Xj1 ≥ 0 ≥ 0 < 0 < 0 ≥ 0 ≥ 0 < 0 < 0
Xj2 ≥ 0 < 0 ≥ 0 < 0 ≥ 0 < 0 ≥ 0 < 0

Table 1: Different cases of Xi, Xj1 and Xj2 .

Hence, we have

E[A1] = E[A1|Case 1] · P{Case 1}+ . . .+ E[A1|Case 8] · P{Case 8}. (60)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Case 1: Xi ≥ 0, Xj1 ≥ 0, Xj2 ≥ 0, Ψ(Xi, Xj1) = t, Ψ(Xi, Xj2) = t.
Using the same notion of event ∆rs defined in Eqn. 39, we have

E[A1|Case 1] · P{Case 1} =

|Np
i |−2∑
r=0

|N q
i |∑

s=0

E[A1|∆rs] · P{∆rs}

=

|Np
i |−2∑
r=0

|N q
i |∑

s=0

(|Np
i |−2
r

)(|N q
i |
s

)
· e2t

((r + s+ 2)et + (|Ni| − r − s− 2)e−t)2

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
r+1

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|Np

i |−r−2

f(Xi)f(X1) . . . f(X|Np
i |−2) dXidX1 . . . dX|Np

i |−2

·
∫ +∞

0

∫ +∞

0︸ ︷︷ ︸
s

∫ 0

−∞

∫ 0

−∞︸ ︷︷ ︸
|N q

i |−s

f(X|Np
i |+1) . . . f(X|Ni|) dX|Np

i |+1 . . . dX|Ni|

·
∫ +∞

0

Xj1f(Xj1) dXj1 ·
∫ +∞

0

Xj2f(Xj2) dXj1

(i)
=

|Np
i |−2∑
r=0

|N q
i |∑

s=0

(|Np
i |−2
r

)(|N q
i |
s

)
· e2t

((r + s+ 2)et + (|Ni| − r − s− 2)e−t)2

· (1− z)|N
q
i |+r−s+1 · z|N

p
i |−r+s−2 · (y + µ(1− z))2,

(61)
where (i) follows from Lemma 4, Eqn. 40 and Eqn. 16.

Case 2: Xi ≥ 0, Xj1 ≥ 0, Xj2 < 0, Ψ(Xi, Xj1) = t, Ψ(Xi, Xj2) = −t.
Following the same approach as in case 1, we have that

E[A1|Case 2] · P{Case 2}

=

|Np
i |−2∑
r=0

|N q
i |∑

s=0

(|Np
i |−2
r

)(|N q
i |
s

)
((r + s+ 1)et + (|Ni| − r − s− 1)e−t)2

· (1− z)|N
q
i |+r−s+1 · z|N

p
i |−r+s−2 · (y + µ(1− z)) · (−y + µz).

(62)

Case 3: Xi ≥ 0, Xj1 < 0, Xj2 ≥ 0, Ψ(Xi, Xj1) = −t, Ψ(Xi, Xj2) = t.
Similarly, we have

E[A1|Case 3] · P{Case 3}

=

|Np
i |−2∑
r=0

|N q
i |∑

s=0

(|Np
i |−2
r

)(|N q
i |
s

)
((r + s+ 1)et + (|Ni| − r − s− 1)e−t)2

· (1− z)|N
q
i |+r−s+1 · z|N

p
i |−r+s−2 · (y + µ(1− z)) · (−y + µz).

(63)

Case 4: Xi ≥ 0, Xj1 < 0, Xj2 < 0, Ψ(Xi, Xj1) = −t, Ψ(Xi, Xj2) = −t.
Likewise, we have

E[A1|Case 4] · P{Case 4}

=

|Np
i |−2∑
r=0

|N q
i |∑

s=0

(|Np
i |−2
r

)(|N q
i |
s

)
· e−2t

((r + s)et + (|Ni| − r − s)e−t)2
· (1− z)|N

q
i |+r−s+1 · z|N

p
i |−r+s−2 · (−y + µz)2.

(64)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Case 5: Xi < 0, Xj1 ≥ 0, Xj2 ≥ 0, Ψ(Xi, Xj1) = −t, Ψ(Xi, Xj2) = −t.
We get that

E[A1|Case 5] · P{Case 5}

=

|Np
i |−2∑
r=0

|N q
i |∑

s=0

(|Np
i |−2
r

)(|N q
i |
s

)
· e−2t

((r + s+ 2)et + (|Ni| − r − s− 2)e−t)2

· (1− z)|N
q
i |+r−s · z|N

p
i |−r+s−1 · (y + µ(1− z))2.

(65)

Case 6: Xi < 0, Xj1 ≥ 0, Xj2 < 0, Ψ(Xi, Xj1) = −t, Ψ(Xi, Xj2) = t.
In the same way, we find that

E[A1|Case 6] · P{Case 6}

=

|Np
i |−2∑
r=0

|N q
i |∑

s=0

(|Np
i |−2
r

)(|N q
i |
s

)
((r + s+ 1)et + (|Ni| − r − s− 1)e−t)2

· (1− z)|N
q
i |+r−s · z|N

p
i |−r+s−1 · (y + µ(1− z)) · (−y + µz).

(66)

Case 7: Xi < 0, Xj1 < 0, Xj2 ≥ 0, Ψ(Xi, Xj1) = t, Ψ(Xi, Xj2) = −t.
We obtain that

E[A1|Case 7] · P{Case 7}

=

|Np
i |−2∑
r=0

|N q
i |∑

s=0

(|Np
i |−2
r

)(|N q
i |
s

)
((r + s+ 1)et + (|Ni| − r − s− 1)e−t)2

· (1− z)|N
q
i |+r−s · z|N

p
i |−r+s−1 · (y + µ(1− z)) · (−y + µz).

(67)

Case 8: Xi < 0, Xj1 < 0, Xj2 < 0, Ψ(Xi, Xj1) = t, Ψ(Xi, Xj2) = t.
Correspondingly, it follows that

E[A1|Case 8] · P{Case 8}

=

|Np
i |−2∑
r=0

|N q
i |∑

s=0

(|Np
i |−2
r

)(|N q
i |
s

)
· e2t

((r + s)et + (|Ni| − r − s)e−t)2
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s−1 · (−y + µz)2.

(68)

Next, substituting Eqns. 61-68 into Eqn. 60, we have
E[A1] = E[A1|Case 1] · P{Case 1}+ . . .+ E[A1|Case 8] · P{Case 8}

(i)
=

w.h.p.

|Np
i |−2∑
r=0

|N q
i |∑

s=0

(|Np
i |−2
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s−2

((r + s)et + (|Ni| − r − s)e−t)2

·

(
(1− z) ·

(
et(y + µ(1− z) + e−t(−y + µz))

)2
+ z ·

(
e−t(y + µ(1− z)) + et(−y + µz)

)2)
,

(69)
where (i) holds since Lemma 2 ensures that |Ni| = n(p+q)

2

(
1±

√
logn
10

)
= ω(1).

F.1.2 CALCULATION OF E[A2]

Likewise, we categorize the discussion into four distinct cases as
E[A2]

= E[A2|Xi ≥ 0, Xj ≥ 0] · P{Xi ≥ 0, Xj ≥ 0}+ E[A2|Xi ≥ 0, Xj < 0] · P{Xi ≥ 0, Xj < 0}
+ E[A2|Xi < 0, Xj ≥ 0] · P{Xi < 0, Xj ≥ 0}+ E[A2|Xi < 0, Xj < 0] · P{Xi < 0, Xj < 0}.

(70)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

With the definition of event ∆rs in Eqn. 39, it follows that

E[A2|Xi ≥ 0, Xj ≥ 0] · P{Xi ≥ 0, Xj ≥ 0} =

|Np
i |−1∑
r=0

|N q
i |∑

s=0

E[A2|∆rs] · P{∆rs}

=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
(1− z)|N

q
i |+r−sz|N

p
i |−r+s−1

((r + s+ 1)et + (|Ni| − r − s− 1)e−t)2
(1− z)e2t

∫ +∞

0

X2
j1f(Xj1) dXj1

(i)
=

w.h.p.

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s−1

((r + s)et + (|Ni| − r − s)e−t)2

· (1− z) · e2t · (µy + µ2(1− z) + σ2(1− z)),
(71)

where (i) follows from Lemma 4.

Similarly, the results for the remaining three cases are as follows,

E[A2|Xi ≥ 0, Xj < 0] · P{Xi ≥ 0, Xj < 0}

w.h.p.
=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s−1

((r + s)et + (|Ni| − r − s)e−t)2

· (1− z) · e−2t · (−µy + µ2z + σ2z),
(72)

E[A2|Xi < 0, Xj ≥ 0] · P{Xi < 0, Xj ≥ 0}

w.h.p.
=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s−1

((r + s)et + (|Ni| − r − s)e−t)2

· (1− z) · e−2t · (µy + µ2(1− z) + σ2(1− z)),
(73)

E[A2|Xi < 0, Xj < 0] · P{Xi < 0, Xj < 0}

w.h.p.
=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s−1

((r + s)et + (|Ni| − r − s)e−t)2

· (1− z) · e2t · (−µy + µ2z + σ2z).
(74)

Subsequently, by integrating Eqn. 71 and 74 into Eqn. 70, we obtain

E[A2]
w.h.p.
=

|Np
i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s−1

((r + s)et + (|Ni| − r − s)e−t)2

·

(
(1− z) ·

(
e2t(µy + µ2(1− z) + σ2(1− z))

)
+ e−2t

(
− µy + µ2z + σ2z

)
+ z ·

(
e−2t(µy + µ2(1− z) + σ2(1− z))

)
+ e2t

(
− µy + µ2z + σ2z

))
.

(75)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Next, substituting Eqn. 69 and 75 into Eqn. 59 yields that

E[A] = (|N p
i |

2 − |N p
i |) · E[A1] + |N p

i | · E[A2]

(i)
=

w.h.p.
(|N p

i |
2 − |N p

i |) · Ŝ (z, t, |N p
i |, |N

q
i |)

·

(
(1− z)

(
et(y + µ(1− z)) + e−t(−y + µz)

)2
+ z
(
e−t(y + µ(1− z)) + et(−y + µz)

)2)
+ |N p

i | · Ŝ (z, t, |N p
i |, |N

q
i |)

·

(
(1− z) ·

(
e2t · (µy + µ2(1− z) + σ2(1− z)) + e−2t · (−µy + µ2z + σ2z)

)
+ z ·

(
e−2t · (µy + µ2(1− z) + σ2(1− z)) + e2t · (−µy + µ2z + σ2z)

))
,

(76)
where Ŝ (z, t, |N p

i |, |N
q
i |) is defined in Eqn. 20, and (i) is due to Lemmas 5 and 6.

F.2 CALCULATION OF E[B]

The calculation of E[B] follows the exact same steps as that of E[A]. Initially, leveraging the
independence of the node features, we decompose the entire expectation into the expectations of
two distinct types of random variables, as indicated in Eqn. 59. Following this, we calculate the
expectations of these parts separately through different cases. For the sake of succinctness, we
provide the final expressions directly as follows,

E[B] w.h.p.
= (|N q

i |
2 − |N q

i |) · Ŝ (z, t, |N p
i |, |N

q
i |)

·

(
(1− z)

(
et(y − µz) + e−t(−y − µ(1− z))

)2
+ z
(
e−t(y − µz) + et(−y − µ(1− z))

)2)
+ |N q

i | · Ŝ (z, t, |N p
i |, |N

q
i |)

·

(
(1− z) ·

(
e2t · (−µy + µ2z + σ2z) + e−2t · (µy + µ2(1− z) + σ2(1− z))

)
+ z ·

(
e−2t · (−µy + µ2z + σ2z) + e2t · (µy + µ2(1− z) + σ2(1− z))

))
.

(77)

F.3 CALCULATION OF E[C]

First, due to the independence in the generation of node features, we have

E[B] = 2|N p
i ||N

q
i | · E

[Xj1 ·Xj2 · eΨ(Xi,Xj1) · eΨ(Xi,Xj2)

(
∑

l∈Np
i
eΨ(Xi,Xl) +

∑
l′∈N q

i
eΨ(Xi,Xl′))2

]
, (78)

where ji ∈ N p
i and j2 ∈ N q

i .

Then, similarly, we divide Xi, Xj1 and Xj2 into eight cases as shown in Table 1. The only difference
is that the distribution of Xj2 changes to N(−µ, σ2). After calculation and simplification, we obtain

E[C] w.h.p.
= 2|N p

i ||N
q
i | · Ŝ (z, t, |N p

i |, |N
q
i |)

·

(
(1− z) ·

(
et(y + µ(1− z)) + e−t(−y + µz)

)
·
(
(et(−y − µz) + e−t(y − µ(1− z)))

)
+ z ·

(
e−t(y + µ(1− z)) + et(−y + µz)

)
·
(
(e−t(−y − µz) + et(y − µ(1− z)))

))
(79)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Thus, using Eqns. 76-79, we can obtain the final result for E[(X ′
i)

2] as E[(X ′
i)

2] = E[A] +E[B] +
E[C].
By incorporating the above results into Eqn. 57, we finally obtain

Var(X ′
i) = E[(X

′
i)

2] + E2[X ′
i]

(i)
=

w.h.p.
(|N p

i |
2 − |N p

i |) ·
|Np

i |∑
r=0

|N q
i |∑

s=0

·
(|Np

i |
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s

((r + s)et + (|Ni| − r − s)e−t)2

·

(
(1− z)

(
et(y + µ(1− z)) + e−t(−y + µz)

)2
+ z
(
e−t(y + µ(1− z)) + et(−y + µz)

)2)
(80)

+ |N p
i | ·

|Np
i |∑

r=0

|N q
i |∑

s=0

·
(|Np

i |
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s

((r + s)et + (|Ni| − r − s)e−t)2

·

(
(1− z) ·

(
e2t · (µy + µ2(1− z) + σ2(1− z)) + e−2t · (−µy + µ2z + σ2z)

)
+ z ·

(
e−2t · (µy + µ2(1− z) + σ2(1− z)) + e2t · (−µy + µ2z + σ2z)

))

+ 2|N p
i ||N

q
i | ·

|Np
i |∑

r=0

|N q
i |∑

s=0

·
(|Np

i |
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s

((r + s)et + (|Ni| − r − s)e−t)2

·

(
(1− z) ·

(
et(y + µ(1− z)) + e−t(−y + µz)

)
·
(
(et(−y − µz) + e−t(y − µ(1− z)))

)
+ z ·

(
e−t(y + µ(1− z)) + et(−y + µz)

)
·
(
(e−t(−y − µz) + et(y − µ(1− z)))

))

+ (|N q
i |

2 − |N q
i |) ·

|Np
i |∑

r=0

|N q
i |∑

s=0

·
(|Np

i |
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s

((r + s)et + (|Ni| − r − s)e−t)2

·

(
(1− z)

(
et(y − µz) + e−t(−y − µ(1− z))

)2
+ z
(
e−t(y − µz) + et(−y − µ(1− z))

)2)

+ |N q
i | ·

|Np
i |∑

r=0

|N q
i |∑

s=0

·
(|Np

i |
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s

((r + s)et + (|Ni| − r − s)e−t)2

·

(
(1− z) ·

(
e2t · (−µy + µ2z + σ2z) + e−2t · (µy + µ2(1− z) + σ2(1− z))

)
+ z ·

(
e−2t · (−µy + µ2z + σ2z) + e2t · (µy + µ2(1− z) + σ2(1− z))

))

+

(
|N p

i |
|Np

i |−1∑
r=0

|N q
i |∑

s=0

(|Np
i |−1
r

)(|N q
i |
s

)
(1− z)|N

q
i |+r−sz|N

p
i |−r+s−1

(r + s)et + (|Ni| − r − s)e−t

(
(1− z)A(z, t) + zA(z,−t)

)

+ |N q
i |

|Np
i |∑

r=0

|N q
i |−1∑
s=0

(|Np
i |
r

)(|N q
i |−1
s

)
(1− z)|N

q
i |+r−s−1z|N

p
i |−r+s

(r + s)et + (|Ni| − r − s)e−t

(
(1− z)A(z,−t) + zA(z, t)

))2

(ii)
= Ŝ (z, t, |N p

i |, |N
q
i |) · T̂

(
z, y, t, |N p

i |, |N
q
i |
)
,

where (i) follows from Eqn. 52, (ii) is derived through calculations and simplifications utilizing
Lemmas 5 and 6. The terms Ŝ (z, t, |N p

i |, |N
q
i |) and T̂

(
z, y, t, |N p

i |, |N
q
i |
)

are defined in Eqn. 20.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Similarly, if node i ∈ C0, due to symmetry, we also have

Var(X ′
i)

w.h.p.
= Ŝ (z, t, |N p

i |, |N
q
i |) · T̂

(
z, y, t, |N p

i |, |N
q
i |
)
. (81)

The conclusion on variance in Theorem 2 is hereby proven.

G PROOF OF COROLLARY 1

This corollary consists of three statements, and we will prove each of these statements individually.

G.1

When t = 0, for the expectation part, we have for every node i

S (z, t, |N p
i |, |N

q
i |) =

|Np
i |∑

r=0

|N q
i |∑

s=0

(|Np
i |
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s

(r + s)et + (|Ni| − r − s)e−t

=

|Np
i |∑

r=0

|N q
i |∑

s=0

(|Np
i |
r

)(|N q
i |
s

)
· (1− z)|N

q
i |+r−s · z|N

p
i |−r+s

|Ni|

=
(1− z + z)|N

p
i |+|N q

i |

|Ni|
= |Ni|−1

(82)

Substituting the above result into Eqn. 56, we get

µ′ = S (z, t, |N p
i |, |N

q
i |) · T (z, y, t, |N

p
i |, |N

q
i |) =

(|N p
i | − |N q

i |) · µ
|Ni|

(i)
=

w.h.p.

p− q

p+ q
µ, (83)

where (i) follows from the high probability event ∆3 in Lemma 2.

For the variance part, when t = 0, straightforward calculations yield

Ŝ (z, t, |N p
i |, |N

q
i |) =

|Np
i |∑

r=0

|N q
i |∑

s=0

(|Np
i |
r

)(|N q
i |
s

)
(1− z)|N

q
i |−s+r · z|N

p
i |+s−r

|Ni|2
= |Ni|−2, (84)

and
T̂
(
z, y, t, |N p

i |, |N
q
i |
)
= (|N p

i |+ |N q
i |) · σ

2 = |Ni| · σ2. (85)

According to the high probability event ∆3 in Lemma 2, we further obtain

(σ′)2 = Ŝ (z, t, |N p
i |, |N

q
i |) · T̂

(
z, y, t, |N p

i |, |N
q
i |
)
=

σ2

|Ni|
w.h.p.
=

1

n(p+ q)
σ2. (86)

G.2

When SNR = ω(
√
log n), for expectation part in the second statement, we first show that the

following equation holds for every node i,

S (z, t, |N p
i |, |N

q
i |) =

(1− z)|Ni|

|N p
i |et + |N q

i |e−t
· (1 + o(1)). (87)

Define

g(r, s) ≜

(
|N p

i |
r

)(
|N q

i |
s

)
(1− z)|N

q
i |−s+r · z|N

p
i |+s−r

(r + s)et + (|Ni| − r − s)e−t
. (88)

Then we have

S (z, t, |N p
i |, |N

q
i |) =

|Np
i |∑
r

|N q
i |∑
s

g(r, s). (89)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Thus, Eqn. 87 indicates that the summation of the sequence S (z, t, |N p
i |, |N

q
i |) is dominated by one

of its terms, specifically the term with r = |N p
i | and s = 0. To prove Eqn. 87, it is sufficient to show

that the following equation holds

g(r + 1, s) = ω
(
g(r, s)

)
and g(r, s+ 1) = o

(
g(r, s)

)
. (90)

Note that this statement assumes that SNR = µ/σ = ω(
√
log n), by Lemma 3, we have

z ≤ 1

2
e−

ω(log n)
2 = o(n−1). (91)

Hence,
g(r + 1, s)

g(r, s)
=

(r + s+ 1)et + (|Ni| − r − s− 1)e−t

(r + s)et + (|Ni| − r − s)e−t

(|Np
i |

r+1

)(|Np
i |
r

) · 1− z

z

(i)

≥ c

|N p
i |

· 1− z

z

(ii)

≥ ω(n)

|N p
i |

= ω(1).

(92)

where c is a bounded constant, (i) follows from the fact that |N p
i |−1 ≤

(|Np
i |

r+1

)
/
(|Np

i |
r

)
≤ |N p

i | and
(ii) is due to Eqn. 91.

Similarly, we can show that g(r,s+1)
g(r,s) = o(1). Then Eqn. 87 is proved. Next, since µ/σ =

ω(
√
log n), we can derive through simple calculations that

T (z, y, t, |N p
i |, |N

q
i |) = |N p

i | · e
tµ(1 + o(1))− |N q

i | · e
−tµ(1 + o(1)). (93)

Hence, by combining Eqn. 87 and Eqn. 93, we have

µ′ = S (z, t, |N p
i |, |N

q
i |) · T (z, y, t, |N

p
i |, |N

q
i |) =

(1− z)|Ni|(|N p
i |etµ− |N q

i |e−tµ)

|N p
i |et + |N q

i |e−t
(1 + o(1))

(i)
=

1 · (|N p
i | · etµ− |N q

i | · e−tµ)

|N p
i |et + |N q

i |e−t
· (1 + o(1))

(ii)
=

w.h.p.

pet − qe−t

pet + qe−t
µ,

(94)
where (i) is due to the fact that z = o(n−1) and |Ni| < n, (ii) follows from the high probability
event ∆3 in Lemma 2.

For the variance part, we first define

ĝ(r, s) ≜

(
|N p

i |
r

)(
|N q

i |
s

)
(1− z)|N

q
i |−s+r · z|N

p
i |+s−r

((r + s)et + (|Ni| − r − s)e−t)2
. (95)

Then

Ŝ (z, t, |N p
i |, |N

q
i |) =

|Np
i |∑
r

|N q
i |∑
s

ĝ(r, s). (96)

Following the same steps as in Eqns. 90-92, we can deduce that

ĝ(r + 1, s) = ω
(
ĝ(r, s)

)
and ĝ(r, s+ 1) = o

(
ĝ(r, s)

)
. (97)

This implies that the summation of the sequence Ŝ (z, t, |N p
i |, |N

q
i |) is dominated by one of its

terms, specifically the term with r = |N p
i | and s = 0. Then we have

Ŝ (z, t, |N p
i |, |N

q
i |) =

(1− z)|Ni|

(|N p
i |et + |N q

i |e−t)2
·(1+o(1))

(i)
=

1

(|N p
i |et + |N q

i |e−t)2
·(1+o(1)), (98)

where (i) is due to Eqn. 91.

Next, since µ/σ = ω(
√
log n) , we can derive through simple calculations that

T̂ (z, y, t, |N p
i |, |N

q
i |) = (|N p

i |e
2t + |N q

i |e
−2t)σ2 · (1 + o(1)). (99)

Hence, (σ′)2 is given by

(σ′)2 = Ŝ (z, t, |N p
i |, |N

q
i |) · T̂ (z, y, t, |N

p
i |, |N

q
i |)

=
|N p

i |e2t + |N q
i |e−2t

(|N p
i |et + |N q

i |e−t)2
σ2 · (1 + o(1))

(i)
=

w.h.p.

pe2t + qe−2t

(pet + qe−t)2
σ2,

(100)

where (i) follows from Lemma 2.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

G.3

When SNR = o(1) and t = O(1), for expectation part in the third statement, note that SNR =
µ/σ = o(1), then with high probability z = 1− z = 1

2 .

First, we establish the bound for S (z, t, |N p
i |, |N

q
i |) as

1

|Ni|et
=

|Np
i |∑

r=0

|N q
i |∑

s=0

(|Np
i |
r

)(|N q
i |
s

)
2|Ni| · |Ni| · et

≤ S (z, t, |N p
i |, |N

q
i |) ≤

|Np
i |∑

r=0

|N q
i |∑

s=0

(|Np
i |
r

)(|N q
i |
s

)
2|Ni| · |Ni| · e−t

=
1

|Ni|e−t
.

(101)
Since t = O(1), the above bound also implies S (z, t, |N p

i |, |N
q
i |) = Θ(|Ni|−1). Next, through

simple calculations, we obtain

T (z, y, t, |N p
i |, |N

q
i |) =

et + e−t

2
· (|N p

i | − |N q
i |) · µ = Θ

(
(|N p

i | − |N q
i |) · µ

)
(102)

Hence, by Lemma 2 and Eqn. 101-102, it follows that

µ′ = S (z, t, |N p
i |, |N

q
i |) · T (z, y, t, |N

p
i |, |N

q
i |) = Θ

(|N p
i | − |N q

i |
|Ni|

· µ
)
= Θ

(p− q

p+ q
µ
)

(103)

As for the variance part, note that SNR = µ/σ = o(1), then with high probability z = 1− z = 1
2 .

Following the same step as Eqn. 101, we establish the bound for Ŝ (z, t, |N p
i |, |N

q
i |) as

1

|Ni|2 · e2t
≤ Ŝ (z, t, |N p

i |, |N
q
i |) ≤

1

|Ni|2 · e−2t
. (104)

Since t = O(1), the above bound also implies Ŝ (z, t, |N p
i |, |N

q
i |) = Θ(|Ni|−2). Next, through

simple calculations, we get that

T̂ (z, y, t, |N p
i |, |N

q
i |) =

(
(|N p

i |
2+|N q

i |
2)· (e

t − e−t)2

2π
+(|N p

i |+|N q
i |)·

e2t + e−2t

2

)
σ2·(1+o(1)).

(105)
Hence,

(σ′)2 = Ŝ (z, t, |N p
i |, |N

q
i |) · T̂ (z, y, t, |N

p
i |, |N

q
i |)

(i)
= Θ

((
c1 · (et − e−t)2 + c2 ·

1

n(p+ q)

)
σ2

)
,

(106)
where c1 and c2 are positive constants and (i) is due to the high probability events in Lemma 2.

H PROOF OF LEMMA 1

Firstly, we have

γ(X) =
1√
n
∥X − 1 · 1T

n
X∥F =

√∑n
i=1(Xi − X̄)2

n
, (107)

where X̄ is the mean value of all node features.

Based on Lemma 2, approximately half of the nodes’ features are drawn independently from
N(µ, σ), while the other half are drawn from N(−µ, σ). Consequently, X̄ ∼ N(0, σ2

n). As n

tends to infinity, we can approximate that Xi − X̄ ∼ N(2(ϵi − 1)µ, σ2) for each node i. Thus, we
obtain that, with high probability,

E[(Xi − X̄)2] = Var(Xi − X̄) + E2[Xi − X̄] = µ2 + σ2,

Var((Xi − X̄)2) = E[(Xi − X̄)4]− E2[(Xi − X̄)2]

(i)
= 3σ4 + 6µ2σ2 + µ4 − (µ2 + σ2)2 = 2σ4 + 4σ2µ2,

(108)

where (i) follows from the calculation of the moment of a Gaussian distribution (see page 148
of Edition et al. (2002)).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Note that, it suffices to prove
∑n

i=1(Xi − X̄)2 equals to n(µ2 + σ2) with high probability. Next,
we apply Chebyshev’s inequality to bound

∑n
i=1(Xi − X̄)2 as follows

P
{
|

n∑
i=1

(Xi − X̄)2 − n(µ2 + σ2)| ≥ nτ
}
≤ (2σ4 + 4σ2µ2)2

nτ2
(109)

Setting τ = (µ2 + σ2)/
√
log n, then we have

P
{
n(µ2 + σ2) · (1− 1√

log n
) ≤

n∑
i=1

(Xi − X̄)2 ≤ n(µ2 + σ2) · (1 + 1√
log n

)
}

≥ 1− log n · (2σ4 + 4σ2µ2)

n · (µ2 + σ2)2

(110)

which implies
∑n

i=1(Xi − X̄)2
w.h.p.
= n(µ2 + σ2).

I PROOF OF THEOREM 3

According to Theorem 2, for a GAT layer, when the input node features follow a Gaussian distribu-
tion, we can precisely compute the expectation and variance of the output node features. Therefore,
when t = 0, i.e., the graph attention layer degenerates into a simple graph convolution layer, the
attention coefficients become independent of the node features, and the output node features of each
layer still follow a Gaussian distribution. Subsequently, according to Corollary 1, for an L-layer
GCN, we have

µ(l) w.h.p.
=

(
p− q

p+ q

)l

µ, (111)

where l ∈ [L] denotes the l-th layer and µ(l) indicates the expectation after the l-th layer.

When SNR= ω(
√
log n), according to Eqn. 23, the graph attention mechanism is capable to dis-

tinguish all intra-class and inter-class edges with high probability. Consequently, the attention co-
efficients can be approximated as independent of the node features: setting the attention coefficient
to et for all intra-class edges and to e−t for all inter-class edges. Thus, the output of each layer in
a multi-layer GAT also follows a Gaussian distribution. Similarly, according to Corollary 1, for an
L-layer GAT where the attention coefficient t is the same for each layer, we have

µ(l) w.h.p.
=

(
pet − qe−t

pet + qe−t

)l

µ. (112)

According to Lemma 1, we know that γ(X) =
√
µ2 + σ2. Note that we consider the case where

SNR= ω(
√
log n). According to Corollary 1, along with Eqn. 7, the SNR decreases after every

GCN or GAT layer. Therefore, it follows that, for every l ∈ [L], γ(X(l)) = µ(l) · (1 + o(1)).

Then, by Eqn. 111, for an L-layer GCN, we have that for all l ∈ [L]:

γ(X(l)) = µ(l) · (1 + o(1))

=

(
p− q

p+ q

)l

µ · (1 + o(1)) =

(
1− 2q

p+ q

)l

µ(1 + o(1)) ≤ 2elog(1−2q/p+q)·lµ,
(113)

which indicates that the over-smoothing problem will arise.

For an L-layer GAT where L = O(n) and a sufficiently large attention coefficient, i.e., t =
ω(

√
log n), Eqn. 112 yields that

γ(X(l)) =

(
pet − qe−t

pet + qe−t

)l

µ · (1 + o(1))

=

(
1− 2q

pe2t + q

)l

µ · (1 + o(1)) = Θ
(
(1− ω(n)−1)O(n)µ

)
= Θ(µ),

(114)

which indicates that the over-smoothing problem is resolved.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

J PROOF OF THEOREM 4

According to Theorem 1, we know that a single-layer GAT can achieve perfect node classification
when SNR= ω(

√
log n). Furthermore, from Eqns. 7 and 8, we understand that over a wide range,

we can ensure an increase in SNR after one layer of GAT by adjusting the value of t. Therefore,
considering a simple case where t = 0, and the graph attention layer degenerates into a graph
convolution layer, we have the following lemma based on the work by Wu et al. (2022b).

Lemma 7 For a featured graph generated from CSBM(p, q, µ, σ), suppose p = a log2 n
n , q = b log2 n

n
and a > b > 0 are positive constants. Given an L-th layer linear GCN with each layer being defined
in Eqn. 9 without the non-linear activation function, let µ′ and σ(l) be the expectation and variance
of the output node feature after the l-th layer. For L = O

(
logn

log(b log2 n)

)
, the following holds with

high probability:

(i). µ(l) =
(a− b

a+ b

)l
µ, (ii). (σ2)(l) =

c1

(c2 · log2 n)l
σ2, (115)

where c1, c2 are two positive constants.

Proof: See Appendix K for the detailed proof. □

Based on Lemma 7 and Theorem 1, we consider a multi-layer GAT network where the first L layers
use t = 0, and the (L + 1)-th layer sets t to a sufficiently large value. To achieve perfect node
classification, it is sufficient to ensure that the expectation and variance of the node features after L
layers satisfy µ(L)/σ(L) = ω(

√
log n). Note that, by setting L = logn

log(b log2 n)
and using Eqn. 115, it

follows that

µ(L)

σ(L)
=

(
a−b
a+b

)L
· (√c2 log n)

L

√
c1

· µ
σ

=
(c′ log n)

log n

log(b log2 n)

√
c1

· µ
σ

≥ (log n)
log n

3 log log n · µ
σ

= n
1
3 · µ

σ
,

(116)
where c′ =

√
c2(a− b)/(a+ b) is a constant.

Hence, to satisfy the condition µ(L)/σ(L) = ω(
√
log n), it is sufficient to satisfy condition n

1
3 ·

µ/σ = ω(
√
log n), i.e., SNR = ω(

√
log n/ 3

√
n). This completes the proof.

K ADDITIONAL PROOFS OF LEMMAS

In this part, we present the proofs for several lemmas that are utilized in the preceding proofs. For
clarity, we restate each lemma before presenting its proof.

Lemma 3 Assume a random variable y ∼ N(0, 1), then for any constant s > 0, the following tail
bound holds,

P{y ≥ s} = Φ(s) ≤ min

{
1

2
e−

s2

2 ,
1

s
√
2π

e−
s2

2

}
. (117)

Proof: We first prove the former part of the tail bound,

P{y ≥ s} =

∫ +∞

s

1√
2π

e−
y2

2 dy

=

∫ +∞

0

1√
2π

e−
(y+s)2

2 dy.

(118)

For any y ≥ 0, we have

e−
(y+s)2

2 = e−
y2+2ys+s2

2

≤ e−
y2

2 · e− s2

2 .
(119)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Hence,

P{y > s} ≤
∫ +∞

0

1√
2π

e−
y2

2 · e− s2

2 dy

= e−
t2

2 ·
∫ +∞

0

1√
2π

e−
y2

2 dy

=
1

2
e−

s2

2 .

(120)

Then, we give the proof of the second part. Note that

P{y > s} =

∫ +∞

s

1√
2π

e−
y2

2 dy

≤
∫ +∞

s

y

s

1√
2π

e−
y2

2 dy

=
1

t
√
2π

e−
t2

2 .

(121)

By integrating Eqn. 120 with Eqn. 121, the proof is completed.

□

Lemma 4 Assume a random variable x ∼ N(µ, σ2) with f(x) being the probability density
function of x, then

∫ +∞
0

xf(x) dx = σ√
2π

e−
µ2

2σ2 + µ
(
1− Φ

(
µ
σ

))
,∫ 0

−∞ xf(x) dx = − σ√
2π

e−
µ2

2σ2 + µΦ
(
µ
σ

)
,

(122)

and
∫ +∞
0

x2f(x) dx = µ σ√
2π

e−
µ2

2σ2 + µ2
(
1− Φ

(
µ
σ

))
+ σ2

(
1− Φ

(
µ
σ

))
,∫ 0

−∞ x2f(x) dx = −µ σ√
2π

e−
µ2

2σ2 + µ2Φ
(
µ
σ

)
+ σ2Φ

(
µ
σ

)
.

(123)

Accordingly, if x ∼ N(−µ, σ2), then
∫ +∞
0

xf(x) dx = σ√
2π

e−
µ2

2σ2 − µΦ
(
µ
σ

)
,∫ 0

−∞ xf(x) dx = − σ√
2π

e−
µ2

2σ2 − µ
(
1− Φ

(
µ
σ

))
,

(124)

and
∫ +∞
0

x2f(x) dx = −µ σ√
2π

e−
µ2

2σ2 + µ2Φ
(
µ
σ

)
+ σ2Φ

(
µ
σ

)
,∫ 0

−∞ x2f(x) dx = µ σ√
2π

e−
µ2

2σ2 + µ
(
1− Φ

(
µ
σ

))
+ σ2

(
1− Φ

(
µ
σ

))
.

(125)

Proof: Here, we only present the proof when x ∼ N(µ, σ2), the proof for the other case can be
obtained similarly. Note that∫ +∞

0

xf(x) dx =

∫ +∞

0

x · 1

σ
√
2π

· e−
(x−µ)2

2σ2 dx

=

∫ +∞

0

(x− µ)
1

σ
√
2π

· e−
(x−µ)2

2σ2 dx+ µ

∫ +∞

0

1

σ
√
2π

· e−
(x−µ)2

2σ2 dx

= − σ√
2π

e−
(x−µ)2

2σ2

∣∣∣+∞

0
+ µ

(
1− Φ

(µ
σ

))
=

σ√
2π

e−
µ2

2σ2 + µ
(
1− Φ

(µ
σ

))
.

(126)
Likewise, we have ∫ 0

−∞
xf(x) dx = − σ√

2π
e−

µ2

2σ2 + µΦ
(µ
σ

)
. (127)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Next, Eqn. 123 is obtained by∫ +∞

0

x2f(x) dx =

∫ +∞

0

(x2 − 2xµ+ µ2)f(x) dx+

∫ +∞

0

2xµ · f(x) dx− µ2

∫ +∞

0

f(x) dx

=

∫ +∞

0

(x− µ)2f(x) dx+ 2µ
(σ√

2π
e−

µ2

2σ2 + µ
(
1− Φ

(µ
σ

)))
− µ2 ·

(
1− Φ

(µ
σ

))
,

(128)
and ∫ +∞

0

(x− µ)2f(x) dx =

∫ +∞

0

(x− µ)2
1

σ
√
2π

e−
(x−µ)2

2σ2 dx

=

∫ +∞

0

− σ√
2π

(x− µ)
(
e−

(x−µ)2

2σ2

)′
dx

= − σ√
2π

e−
(x−µ)2

2σ2

∣∣∣+∞

0
+

∫ +∞

0

σ√
2π

e−
(x−µ)2

2σ2 dx

= −µ
σ√
2π

e−
µ2

2σ2 + σ2
(
1− Φ

(µ
σ

))
.

(129)

Hence,∫ +∞

0

x2f(x) dx

= −µ
σ√
2π

e−
µ2

2σ2 + σ2
(
1− Φ

(µ
σ

))
+ 2µ

(σ√
2π

e−
µ2

2σ2 + µ
(
1− Φ

(µ
σ

)))
− µ2 ·

(
1− Φ

(µ
σ

))
= µ

σ√
2π

e−
µ2

2σ2 + µ2
(
1− Φ

(µ
σ

))
+ σ2

(
1− Φ

(µ
σ

))
.

(130)
Similarly, it can be calculated that∫ 0

−∞
x2f(x) dx = −µ

σ√
2π

e−
µ2

2σ2 + µ2Φ
(µ
σ

)
+ σ2Φ

(µ
σ

)
. (131)

□

Lemma 5 Assume 0 < x < 1/2, for any constants t > 0 and k > 0, let

Γ(n,m) ≜
n∑

i=0

m∑
j=0

(
n
i

)(
m
j

)
(1− x)m+i−jxn−i+j

((i+ j)et + (n+m− i− j)e−t)k
.

Then the following equation holds

lim
n,m→+∞

Γ(n+ c1,m+ c2) = Γ(n,m), (132)

where c1 and c2 are positive integer constants.

Proof: Our approach to the proof starts with establishing the boundedness of the sequence
Γ(n,m). Subsequently, we show that the sequence is monotonically decreasing in both n and m.
Then applying the Monotone Convergence Theorem (Yeh, 2014) is sufficient to complete the proof.

Firstly, since t > 0, it is important to note the following facts that
n∑

i=0

m∑
j=0

(
n

i

)(
m

j

)
(1− x)m+i−jxn−i+j = (1− x+ x)n+m = 1, (133)

and
n∑

i=0

m∑
j=0

(
n
i

)(
m
j

)
(1− x)m+i−jxn−i+j

(n+m)k · ekt
≤ Γ(n,m) ≤

n∑
i=0

m∑
j=0

(
n
i

)(
m
j

)
(1− x)m+i−jxn−i+j

(n+m)k · e−kt
.

(134)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Thus, Γ(n,m) is bounded by
1

(n+m)kekt
≤ Γ(n,m) ≤ 1

(n+m)ke−kt
. (135)

Then, for a positive integer constant c1, we have
n+c1∑
i=0

m∑
j=0

(
n+ c1

i

)(
m

j

)
(1−x)m+i−jxn+c1−i+j =

n∑
i=0

m∑
j=0

(
n

i

)(
m

j

)
(1−x)m+i−jxn−i+j = 1.

(136)
And, for any i, j,

1

(i+ j)et + (n+ c1 +m− i− j)e−t
≤ 1

(i+ j)et + (n+m− i− j)e−t
(137)

Hence, Γ(n + c1,m) ≤ Γ(n,m) holds. Likewise, assuming another positive integer constant c2, it
can be deduced that

Γ(n+ c1,m+ c2) ≤ Γ(n,m). (138)

Consequently, for the sequence Γ(n,m), Eqn. 135 and 138 guarantee both the monotonicity and the
boundedness of the sequence. By the Monotone Convergence Theorem, it follows that the sequence
converges, which also ensures that limn,m→+∞ Γ(n+ c1,m+ c2)/Γ(n,m) = 1.

□

Lemma 6 Assume 0 < x < 1/2, for any constant t > 0, we define A(n,m) ≜∑n
i=0

∑m
j=0

(ni)(
m
j)(1−x)m+i−jxn−i+j

((i+j)et+(n+m−i−j)e−t)2 , and B(n,m) ≜
(∑n

i=0

∑m
j=0

(ni)(
m
j)(1−x)m+i−jxn−i+j

(i+j)et+(n+m−i−j)e−t

)2
.

Then, for n+m → +∞, we have

A(n,m) = Θ((n+m)−2), B(n,m) = Θ((n+m)−2), A(n,m)−B(n,m) = o((n+m)−3).

Proof: Define aij ≜ e−t[(n +m) + (e2t − 1)(i + j)], bij ≜
(
n
i

)(
m
j

)
(1 − x)m+i−jxn−i+j and

[n]× [m] = {(i, j)|0 ≤ i ≤ n, 0 ≤ j ≤ m, i, j ∈ Z}, [n]× [m]× [n]× [m] = {(i1, j1, i2, j2)|0 ≤
il ≤ n, 0 ≤ jl ≤ m, il, jl ∈ Z, l ∈ {1, 2}}, then we can rewrite:

A(n,m) =
∑

(i,j)∈[n]×[m]

bij
a2ij

, B(n,m) =
(∑

(i,j)∈[n]×[m]

bij
aij

)2
Firstly, note that

∑
(i,j)∈[n]×[m]

bij = 1, to see this:

∑
(i,j)∈[n]×[m]

bij =
∑

(i,j)∈[n]×[m]

(
n

i

)(
m

j

)
(1− x)m+i−jxn−i+j

=
∑

(i,j)∈[n]×[m]

((n
i

)
(1− x)ixn−i

)((m
j

)
xj(1− x)m−j

)

=
(n∑

i=0

(
n

i

)
(1− x)ixn−i

)(m∑
j=0

(
m

j

)
xj(1− x)m−j

)
= (1− x+ x)n(x+ 1− x)m

= 1

By definition, it is clear that e−t(n+m) ≤ aij ≤ et(n+m), then:

|A(n,m)| =
∑

(i,j)∈[n]×[m]

bij
a2ij

≤ e2t

(n+m)2

∑
(i,j)∈[n]×[m]

bij =
e2t

(n+m)2

|A(n,m)| =
∑

(i,j)∈[n]×[m]

bij
a2ij

≥ e−2t

(n+m)2

∑
(i,j)∈[n]×[m]

bij =
e−2t

(n+m)2

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Hence, A(n,m) = Θ((n+m)−2), Now we show that |A(n,m)−B(n,m)| can be upper bounded
by e6tx(1 − x)(n + m)−3.The key observation is that bij = P (X = i, Y = j), where X and Y
follow from two Binomial distributions, i.e., X ∼ Bino(n, 1 − x), Y ∼ Bino(m,x), while X and
Y are independent:
|A(n,m)−B(n,m)|

=
∣∣∣ ∑
(i,j)∈[n]×[m]

bij
a2ij

−
(∑

(i,j)∈[n]×[m]

bij
aij

)2∣∣∣
=
∣∣∣(∑

(i,j)∈[n]×[m]

bij
a2ij

)(∑
(i,j)∈[n]×[m]

bij

)
−
(∑

(i,j)∈[n]×[m]

bij
aij

)2∣∣∣
(i)
=

1

2

∣∣∣ ∑
(i1,j1)∈[n]×[m]
(i2,j2)∈[n]×[m]

(√bi1j1
ai1j1

√
bi2j2 −

√
bi2j2

ai2j2

√
bi1j1

)2∣∣∣
=

1

2

∣∣∣ ∑
(i1,j1)∈[n]×[m]
(i2,j2)∈[n]×[m]

bi1j1bi2j2(
ai1j1 − ai2j2
ai1j1ai2j2

)2
∣∣∣

=
1

2

∣∣∣ ∑
(i1,j1)∈[n]×[m]
(i2,j2)∈[n]×[m]

bi1j1bi2j2

((et − e−t)[(i1 + j1)− (i2 + j2)]

ai1j1ai2j2

)2∣∣∣
(139)

(ii)

≤ e6t

2(n+m)4

∣∣∣ ∑
(i1,j1)∈[n]×[m]
(i2,j2)∈[n]×[m]

bi1j1bi2j2 [(i1 + j1)− (i2 + j2)]
2
∣∣∣

(iii)
=

e6t

2(n+m)4

∣∣∣ ∑
(i1,j1)∈[n]×[m]
(i2,j2)∈[n]×[m]

P (X1 = i1, Y1 = j1)P (X2 = i2, Y2 = j2)[(i1 + j1)− (i2 + j2)]
2
∣∣∣

=
e6t

2(n+m)4
E[(X1 + Y1 −X2 − Y2)

2]

(iv)
=

e6t

(n+m)4

(
Var(X1) + Var(Y1)

)
=

e6tx(1− x)

(n+m)3

Here is some notes for the above proof: (i) Apply Lagrange’s identity; (ii) Plug in aij; (iii) using
previous observe for bij , where Xl ∼ Bino(n, 1 − x), Yl ∼ Bino(m,x), l ∈ {1, 2} and they are
independent; (iv) Linearity of Expectation.

Finally, given A(n,m) = Θ((n + m)−2) and A(n,m) − B(n,m) = o((n + m)−3), it is easy to
see B(n,m) = Θ((n+m)−2), so we finish the proof. □

Lemma 7 For a featured graph generated from CSBM(p, q, µ, σ), suppose p = a log2 n
n , q =

b log2 n
n and a > b > 0 are positive constants. Given an L-th layer linear GCN with each layer being

defined in Eqn. 9 without the non-linear activation function, let µ′ and σ(l) be the expectation and
variance of the output node feature after the l-th layer. For L = O

(
logn

log(b log2 n)

)
, the following holds

with high probability:

1. µ(l) =
(a− b

a+ b

)l
µ, 2. (σ2)(l) =

c1

(c2 · log2 n)l
σ2, (140)

where c1, c2 are two positive constants.

Proof: The proof of the first part in Eqn. 140 can be directly derived by substituting the values of
p and q into Eqn. 111. For the second part concerning the change in variance, we refer to Theorem
2 from Wu et al. (2022b). By substituting the values of p = a log2 n

n and q = b log2 n
n , we obtain

c3

((a+ b) · log2 n)l
· σ2 ≤ (σ2)(l) ≤ c4

(a · log2 n)l
· σ2, (141)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

where c3, c4 are two positive constants. Thus, apparently, there exists two constants c1 ∈ (a, a+ b)
and c2 > 0 such that (σ2)(l) = c1

(c2·log2 n)l
σ2.

The above equation demonstrates that using multiple layers of graph convolution can reduce the
variance of node features. However, Theorem 2 in Wu et al. (2022b) also indicates that this im-
provement is only effective in the initial layers. Specifically, the proof of Theorem 2 in Wu et al.
(2022b) reveals that the enhancement fundamentally arises from incorporating higher-order neigh-
bor information. In the context of random graphs, we can estimate the graph’s diameter, which
allows us to determine the maximum number of hops between any two nodes. This estimation con-
sequently indicates the upper limit on the number of graph convolution layers (i.e., the value of L)
that can effectively reduce variance.

For a graph G generated by the above CSBM, let diam(G) denote its diameter. According to Theo-
rem 7.2 in Frieze & Karoński (2015), we have

diam(G)
w.h.p.
≥ log n

log(b log2 n)
, (142)

which means the maximum number of GCN layers that can reduce the variance of node features is
L = O

(
logn

log(b log2 n)

)
.

□

L ADDITIONAL EXPERIMENTS

(a) (b) (c)
Figure 3: Additional experimental results on real-world datasets. Figures 3a, 3b and 3c illustrate the
results for the Citeseer, Cora, and Pubmed datasets, respectively.

Table 2: Dataset characteristics.

Dataset Number of Nodes Number of Edges Number of Classes Feature Dimension

Citeseer 3,327 4,732 6 3,703
Cora 2,708 5,278 7 1,433
Pubmed 19,717 44,338 3 500

Table 3: Comparison of runng times for GCN, GAT-jmlr and GAT*.

Method GCN GAT-jmlr GAT*
Runtime (/s) 8.63 10.03 8.93

We conducted additional experiments on three real-world datasets (Citeseer, Cora, and Pubmed)
to compare the capabilities of our proposed graph attention mechanism with the mechanism
from (Fountoulakis et al., 2023). The characteristics of the datasets is provided in Table 2. The
experimental setup mirrors that used in the experiments from (Fountoulakis et al., 2023). Specif-
ically, the three datasets contain multiple classes, and in each experiment, we perform one-vs-all

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

classification for a single class, converting it into a binary classification problem, as our attention
mechanism is designed for binary classification. To control the mean of node features across differ-
ent classes, we compute the mean of the features for each class using their labels and then adjust the
features of nodes in that class by subtracting the mean and adding either µ or −µ.

For the three datasets, we classify the 0 class in a one-vs-all manner and record the classification
accuracy for that class. The training and testing set splits follow the default settings of PyTorch
Geometric. We designed three models: a graph convolutional network, a GAT network utilizing the
attention mechanism from (Fountoulakis et al., 2023) (denoted as GAT-jmlr), and a GAT employing
the attention mechanism defined in Eqn. 15 (denoted as GAT*). Each of these models incorporates
a single attention layer. In GAT-jmlr, the parameters β and R are set to 0.2 and 1, respectively,
while the parameter t in GAT* is set to 1. Figure 3 illustrates how the classification accuracy of the
three models varies with changes in the distance between the means of the node features for the two
classes. From Figure 3, we see that when the distance between the means of the node features for
the two classes is large, indicating low feature noise, GAT* performs the best. In contrast, when the
distance is small, suggesting high feature noise, GAT-jmlr delivers the best results. Overall, GAT*
significantly enhances GCN performance, especially under conditions of low feature noise.

Additionally, Table 3 presents the runtime of the three methods. For the three datasets, we set the
number of epochs to 100 and ran each dataset once, recording the total time taken for all runs. Table 3
shows that the graph attention mechanism we designed is slightly more computationally efficient
than the one presented in (Fountoulakis et al., 2023), which confirms our analysis in Appendix B.

40

	Introduction
	Related Works

	Preliminaries and Problem Setup
	Contextual Stochastic Block Model (CSBM)
	Graph Convolution and Graph Attention Mechanism
	Perfect Node Classification

	Main Results
	A Simple Non-linear Graph Attention Mechanism and Its Performance
	When Does Graph Attention Mechanism Help Node Classification?
	Discussions

	How Does Graph Attention Mechanism Affect Over-smoothing?
	Perfect Node Classification in Multi-layer GATs

	Experiments
	Synthetic datasets
	Real-world datasets

	Conclusion
	Outline of Appendices
	Graph Attention Mechanism in JMLR:v24:22-125
	Preliminaries for Proofs
	Proof of Theorem 1
	Proof of Theorem 2 (Expectation Part)
	Calculation of E[A]
	Calculation of E[B]

	Proof of Theorem 2 (Variance Part)
	Calculation of E[A]
	Calculation of E[A1]
	Calculation of E[A2]

	Calculation of E[B]
	Calculation of E[C]

	Proof of Corollary 1
	
	
	

	Proof of Lemma 1
	Proof of Theorem 3
	Proof of Theorem 4
	Additional Proofs of Lemmas
	Additional Experiments

