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ABSTRACT

Despite recent advances in Reinforcement Learning (RL), the Markov Decision
Processes are not always the best choice to model complex dynamical systems
requiring interactions at high frequency. Being able to work with arbitrary time
intervals, Continuous Time Reinforcement Learning (CTRL) is more suitable for
those problems. Instead of the Bellman equation operating in discrete time, it
is the Hamiltonian Jacobi Bellman (HJB) equation that describes value function
evolution in CTRL. Even though the value function is a solution of the HJB
equation, it may not be its unique solution. To distinguish the value function
from other solutions, it is important to look for the viscosity solutions of the HIB
equation. The viscosity solutions constitute a special class of solutions that possess
uniqueness and stability properties. This paper proposes a novel approach to
approximate the value function by training a Physics Informed Neural Network
(PINN) through a specific e-scheduling iterative process constraining the PINN
to converge towards the viscosity solution and shows experimental results with
classical control tasks.

1 INTRODUCTION

Reinforcement learning (RL) is getting more and more attention. Most of state-of-the-art RL methods
are designed to work with Markov Decision Processes (MDPs) and, in particular, rely on a discrete
time assumption. Even though this assumption is not that restrictive in some tasks like games, it is no
longer valid in complex problems such as driving cars, finance trading or controling the dynamical
system. Such problems are usually described by a dynamical system where discrete time RL (DTRL)
often struggles to provide accurate control within short time intervals due to several reasons (Doyal
2000; Wang et al.,2020; Mukherjee & Liuj 2023)). As DTRL algorithms operate in regular discrete
time steps, it becomes challenging to capture the nuances of continuous state dynamics within small
intervals. Even when the timestep is set to be small, DTRL may fail to learn the optimal policy as
exploration cannot be done efficiently.

Continuous Time Reinforcement Learning (CTRL) derives from the optimal control theory and
thus provides a promising theoretical framework to tackle aforementioned shortcomings of DTRL.
Moreover, CTRL is agnostic on the discretization of time and thus can provide a good control at any
chosen frequency without the need to retrain the policy. Similar to DTRL, one way to find an optimal
policy is to compute it using the value function. Thus, the key ingredient in CTRL is the Hamilton-
Jacobi-Bellman (HJB) equation (Doya, [2000; Munos, |2000), a Partial Differential Equation (PDE),
which is a continuous-time counterpart of the Bellman equation. This PDE describes the evolution of
the value function with respect to a state of the system, which in turn evolves continuously with time.
In principle, the value function is a solution of the HIB equation. However, it is only a necessary
condition and not sufficient. The HIB equation may have multiple solutions in a class of continuous
functions (Munos, [2000) making it a challenging task to find the value function. Distinguishing the
value function from the other solutions of the HJIB equation relies on the search for the viscosity
solution that possesses uniqueness and stability properties.

However, there is no guarantee in general that the solution found by existing methods is the good
solution, i.e. the viscosity solution. Moreover, even verifying if a given solution is a viscosity solution
is a hard task let alone finding them. The existing methods for solving the HIB equation are limited
and mainly applicable to specific cases such as Linear Quadratic Regulator (LQR) problems or
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variational problems (Fleming & Soner, |2000). There exist approaches that can be applied in general
case, such as Finite Difference (FD), Finite Element Methods (FEM) (Grossmann et al., [2007), and
dynamic programming methods (Munos, [2000) that transform a CTRL problem back to a DTRL
problem thanks to the discretization. However, their effectiveness is hindered by the exponentially
growing algorithmic complexity with respect to the state space dimensionality. In addition, they are
also affected by discretization error.

Conversely, neural networks (NNs) are emerging as PDE solvers that can cope with the curse of
dimensionality (Raissi et al., [2019). Although Neural Networks have shown a great potential in
various domains (Lu et al.| 2021; [Karniadakis et al.,[2021)), applying them to solve the HIB equation
requires caution because of the aforementioned non-uniqueness issue.

In this paper, we revisit CTRL approaches and analyze how the latest advances in deep learning can
be applied and adjusted to solve the HIB equation in the viscosity sense. The main contribution of
this paper is to provide the NN based framework to find the viscosity solutions of the general HIB
equation. To the best of our knowledge it is the first attempt to do it. Further, we focus on the case
of deterministic environments with known dynamics. The extension to stochastic environments and
unknown dynamics is possible (see Wang et al.|(2020);|Cagatay Yildiz et al.| (2021))), but left for the
future work. To achieve viscosity, our approach is to solve sequentially a series of PDE equations so
that the solution of the final one is the value function. We use NN solvers for those PDEs and we
propose several ways of building the sequence of those equations. Thus, this work can be interesting
for the optimal control community as we show how to use the neural networks to get the viscosity
solutions and for the reinforcement learning community as our work can be used as a basis for Model
Based Continuous Time Reinforcement Learning.

This work is divided in several parts. We start with the analysis of the existing literature in Section 2}
Then, we carefully introduce the definitions and notations related to CTRL in Section @ describe
the HJB equation in Section and define viscosity solutions in Section[3.3] Then, different ways of
integrating neural networks in the process of solving the HIB equation are discussed in Section 4]
Finally, we demonstrate performances of our approach from Sectiond on the inverted pendulum, a
classical use case from RL, and compare with DTRL methods on some other classical control tasks
in Section

2 RELATED WORKS

Among the first papers to study CTRL are Doyal (2000); Munos| (2000); Coulom| (2002)). Those works
introduced the HIB equation as a key equation for finding the optimal policy. In[Doya|(2000), different
discretization schemes and algorithms are analysed for computing the value function, including
continuous TD(A) and continuous Actor-Critic. In his Ph.D. (Coulom, 2002), Coulom studied
applicability of Doya’s methods (Doya, 2000) to a large class of control problems. Munos (Munos),
2000) tackled CTRL by the study of viscosity solutions and their properties. He demonstrated
the challenges of solving the HIB equation such as the non-uniqueness of solutions and inequality
boundary conditions. In addition, convergent numerical schemes based on dynamic programming
were derived to approximate the value function. One of the problems of numerical schemes is the
curse of dimensionality. To mitigate this problem, sparse grids (Kang & Wilcox 2016) can be used
instead of naive uniform grid. In this article, we take the formalism proposed in[Munos| (2000), but we
consider neural network based approaches to find viscosity solutions, while [Munos| (2000) considers
tabular algorithms.

NN can be applied for solving the HIB equation (Munos et al.,|1999; |Liu et al.| 2014; |Cheng et al.,
2007; Tassa & Erez, 2007 Lutter et al.l[2020; Han et al., 2018; |Adhyaru et al., |2011)). It was first
demonstrated in Munos et al.|(1999)). In Tassa & Erez| (2007), the training is regularized to avoid
finding “bad” solutions. Moreover, the same work raised the problem of falling in a local minimum
of the squared HJB residual, and some solutions to avoid it were proposed. Compared to previous
papers, [Liu et al.| (2014)); |/Adhyaru et al.| (2011) have emphasized the robustness of the resulting
controller and the stability of the proposed algorithm. Adapting the former methods for more practical
cases such as the inverted pendulum and the cartpole was done in |[Lutter et al.|(2020). We consider
similar approaches as|Tassa & Erez|(2007); Lutter et al.|(2020), but unlike them we use the formalism
proposed in [Munos| (2000) to develop an approach that can converge to viscosity solutions.
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Several extensions to the classical HIB equation were also introduced such as HJB for an explorative
reward function (Wang et al.}|[2020)), the soft HIB equation with maximum entropy regularization (Kim
& Yangl, [2020; |[Halperin, 2021)) and the distributional HIB equation (Wiltzer et al.| [2022). Those
works extend the existing theory to other definitions of the value function, however experiments
are conducted on a limited set of simple problems. Futhermore, it is also possible to extend the
HJB equation to continuous-time partially observable Markov decision processes (CTPOMDPs).
In (Alt et al.| 2020)), they proposed a formalism to describe CTPOMDPs, including the CTPOMDP
HJB equation. Kim et al.|(2021])) tackles the problem of CTRL by adapting the well-known DQN
algorithm to this framework. A definition for the Q-function in the continuous case is given and
the “HJB equation for the Q-function” is derived, which results in a DQN-like algorithm for the
semi-discrete time setting. However, this approach is limited to Lipschitz continuous control. The
HJB equation was used to improve DTRL algorithms like PPO in Mukherjee & Liu|(2023) and it
resulted in a significant improvement on MuJoCo, proving that HIB loss is better adapted for learning
value functions of dynamical systems.

There were some attempts to propose alternative ways for solving the HIB equation. An other NN
approach to approximate the value function based on Pontryagin’s maximum principle has been
proposed (Nakamura-Zimmerer et al.,2021). Conversely, Darbon et al.|(2023) considers some special
neural network architectures that can work with min-plus algebra, though this approach is suitable
only for some optimal control problems.

Another line of research exploits the continuous time formulation to do more accurate Monte Carlo
estimations of value function (Lutter et al.,|2021bja; (Cagatay Yildiz et al.,|2021)) rather than using the
HIJB equation. [Lutter et al.| (2021b)) adapted the fitted value iteration algorithm to the CTRL problem.
In|Cagatay Yildiz et al.|(2021), a model-based algorithm was introduced, which aims at solving the
problem in an actor-critic manner. Bayesian neural ODEs are used in order to learn the dynamics of
the system.

3 HAMILTON-JACOBI-BELLMAN EQUATION

3.1 FORMALISM FOR REINFORCEMENT LEARNING IN THE CONTINUOUS CASE

In this work, we consider the optimal control problem for infinite-horizon deterministic dynamical
systems. The dynamics are known and reward signal is giving at each control step. The extension to
unknown dynamics and rewards is left for future works.

In what follows, we denote with O C R, the open set of controlable states of our system, and
then the admissible control u € U keeps the state trajectory inside the domain O, where U C R™
corresponds to the action/control space. We assume that U is bounded. We use g € C(O) to denote
that g is a continuous function on O, while g € C'(O) that g is a continuously differentiable function
on O.

The main difference between the continuous time and the discrete time cases is that transitions depend
on time ¢, which is a continuous variable, generating trajectories of states continuously in time.
More formally, in the continuous case the states do not form a sequence {z;}$2, but a trajectory
r: R, — O C R% Similarly, the actions are defined for any ¢: u : R, — U. The dynamics of the
environment (the transition function) is defined through the following ordinary differential equation
(ODE):
dz(t) / g ,
T flx(t),u(t)) or x(t) =x(t) +/ f(z(s),u(s))ds, t' >t (1)
t

where f : O x U — R? is called the state dynamics function. To compare, z(t) is only defined at
times {0, dt, 2dt, ... } in discrete time case, where dt is a time step. While the state x is inside the
control domain O (i.e. z(t) € O), the reward r : O x U — R is received.

Without loss of generality, we focus on the problem of optimal contol under state constraints in this
paper, i.e. z(t) € O for any ¢t > 0 and we define the further notations related to the problem from this
standpoint. Note that it is a common requirement in the dynamical systems. For example, we may
want to limit the maximal angular speed in the inverted pendulum to mitigate the risk of wearing off
or breaking the mechanism. The interested reader can refer to Appendix [A.T.4]to learn more about
other possible cases.
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Given the initial state 2(0) = x(, we define the cumulative discounted reward for a given control
function u(t) as follows

J(wosu(t)) = / (), u(t)dt, )

where v € [0,1) is a discount factor. J is called the reinforcement functional. Then, the value
function is defined as:

V(z) = sup J(z;u(t)), 3)

u(t)€Us

where U, = {u(t)|z(t) € O,Vt > 0 and z(0) = z}, i.e. control that keeps the state of the system
inside the domain O. Our goal is to find an optimal policy 7 : O — U, such that u*(¢) = 7(z*(t))
for any ¢, where u* () and *(¢) are control and state of the optimal trajectory respectively, such that
V(z) = J(x;u*(t)).

3.2 HAMILTON-JACOBI-BELLMAN EQUATION

Let H(z, W,V,W) = =W (z) Invy — sup, ey, [Va W (2)T f(x,u) + r(z,u)], then the HIB equation
can be expressed as

H(x,W,V,W)=0. “4)
We can prove that the value function defined in equation [3]satisfies the following result (see Fleming
& Soner (2006)):

Theorem 3.1 (Hamilton-Jacobi-Bellman). If the value function V is differentiable at x, then it
should satisfy the Hamilton-Jacobi-Bellman (HJB) equation.

If the value function V(z) is known, then we can define a feed-back control policy 7 : O — U such
that 7(z(t)) = u*(¢) by setting:

m(x) € arges[ljlp {VwV(x)Tf(x, u) +r(z,u)} (5)

When O # R?, the control in state constrained optimal control problems should also satisfy
f(z,u*(z))Tn(x) <0 forany x € DO, where n(z) the external normal vector at point x € JO. The
optimal policy is not known a priori and thus it is hard to verify this constraint. In|Fleming & Soner
(2006); Soner| (1986), it was shown that it can be reformulated as:

— H(z, W,V W +an(z)) <0 Va <0,z € 0. (6)

From equation [3] it is crucial to find an efficient way to compute V' to get the optimal control u*.
In DTRL, the Bellman equation is traditionally used to find V. The HJB equation can be seen as a
continuous-time analog of the Bellman equation. However, solving the HIB equation involves several
challenges (see Munos|(2000)). First, the value function V' is often non-smooth, and only continuous
on O. Second, the HIB equation may have multiple generalized continuous solutions. Third, it is
common that the HJB equation (equation ) has to be solved under inequality boundary conditions.
To address those points, we introduce the viscosity property.

3.3 VISCOSITY

Here, we present the crucial and yet complex notion of viscosity (refer to Appendix for an
intuition behind).

Definition 3.1 (Viscosity solution)

o W € C(O) is a viscosity subsolution of the HIB equation in O if V) € C1(O) and Yz € O
local maximum of W — 1) such that W (z) = ¢(x), we have:

H(x,(x), Varp(z)) <0

e W € C(O) is a viscosity supersolution of the HIB equation in O if Vi € C1(O) and
Vo € O local minimum of W — 1 such that W (x) = ¢ (x), we have:

H(z, ¢(z), Voo (z)) 2 0
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o [fW € C(O) is a viscosity subsolution and a supersolution then it is a viscosity solution.

Viscosity allows us to separate “good” solutions of the HIB equation from “bad” ones. Viscosity
solutions were first introduced in [Crandall & Lions| (1983) and they are proven to be unique for
multiple types of PDEs. Under some additional assumptions, which includes continuity of f and r,
one can prove that the value function is a unique viscosity solution for O = R (See Appendix
for more details). The similar result exists for O C R? and when the value function should satisfy
the boundary condition equation [6]

The uniqueness of the value function as a viscosity solution holds for the large class of control
problems with continuous dynamics that appear in practice, like classical control or MuJoCo (Todorov:
et al.,2012)). Therefore, there is an interest of having the methods that are able to compute the viscosity
solutions of the PDE equations. However, checking the conditions of Definition [3.1]is not feasible in
practice. Instead, we use the next property of viscosity solutions.

Lemma 3.1 (Stability) Let W€ be a viscosity subsolution (resp. a super solution) of
We(z) + F(z, W(z), V. W (z), VoW (2)) = 0
in O. Suppose that F'¢ converges to F' uniformly on every compact subset of its domain, and W ¢

converges to W uniformly on compact subsets of O. Then W is a viscosity subsolution (resp. a
supersolution) of the limiting equation.

This lemma is proven in (Fleming & Soner;, |20006). In our case, we are interested in equation:
H(z,W(z), V,W(2)) = ¢ Tr V2W*(z), @)
where the left hand side is the same as in equation[d] while the right hand side depends linearly on € >
0. Therefore, F'*(z, W*(x), V. W*(x), VW (z)) = —p= H(z, W (x), V,W*(2)) — We(z) +
ﬁTrVins(x) and F(z, W (z), VW (z), V2W (z)) = —ﬁH(x, W(z),V,W(zx))—W(x)in
Lemma 3.1} In[Fleming & Soner| (2006), it is shown that equation [7|has a unique smooth solution
We(z), i.e. it admits a classical solution, which is a viscosity solution at the same time. Therefore,
if W¢(z) converges uniformly to W (z) then W (x) is a viscosity solution of the original HIB

equation (equation ).

4 HoW TO REACH VISCOSITY

In what follows, we present two methods to find viscosity solutions of the HIB equation. First,
we present the existing method based on dynamic programming. Then, we introduce a new neural
approach. Further, we assume that the state dynamics f(x, u) are known and the control space U is
discrete. The case of unknown f(z, ) and continuous control space is left for future work.

4.1 DYNAMIC PROGRAMMING

Several solvers exist such as Finite Difference method (FD) or Finite Element Method (FEM). These
methods require the discretization of the domain (a grid for FD or a triangulation for FEM). The
work of Munos| (2000) establishes the connection between solving the HIB equation and the classical
reinforcement learning framework by deriving an MDP from the discretization of the HJB equation,
using either FD or FEM schemes (see Appendix [A.3|for a short summary of the method). The strong
point of this method is that there exist viscosity convergence guarantees (Munos, |2000). The weak
point is that they are mesh-dependent, making it suffer from the curse of dimensionality. For example,
in case of CartPole where O C R*, a naive approach that divides all axes uniformly in N parts results
in N states to handle. Setting N = 32, which may not be sufficient to solve the problem, leads
to 220 states, which is already too many to process on a single device. In Section we present the
performance of the FEM based dynamic programming only on the inverted pendulum environment
due to the aforementioned reasons. Despite many efforts, we were not able to make the algorithm
based on FD work in our experiments, thus it is not considered.

4.2 NEURAL SOLVER

The dynamic programming approaches are able to find the solutions of the HIB equation that are
intrinsically viscosity solutions. The latter is ensured by the choice of discretization step. In general, it
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is hard to derive schemes that find the viscosity solutions directly. Conversely, checking the conditions
of Definition [3.1]is not feasible in practice. Instead, we use the stability property of viscosity solutions
(Lemma [3.1). That result lies at the heart of our approach. The idea is to solve a series of PDE
equations starting from some ¢; and gradually decrease it so that the solution of the final PDE for
€00 = 0 1is the desired viscosity solution. Thus, the general framework to get viscosity solutions is the
following: define the sequence of {¢,}>2 ,, choose a PDE solver, then iteratively solve equation SO
that W€ (z) form a convergent sequence to W (x) and output W (z) as a final result. In what follows,
we choose PINNs as a PDE solver and we define a few e-schedulers to generate {e, }.

PINNs The idea of PINNs was proposed in|Raissi et al.|(2019) and applied to some simple PDEs like
one-dimensional nonlinear Schrodinger equation, but not for optimal control. In PINNs framework,
the neural network acts as a solution of the PDE that needs to be solved. Being randomly initialized,
the neural network is gradually fit to satisfy the PDE and its corresponding boundary conditions with
the help of optimization and automatic differentiation that allows to compute precise derivatives. For
example, the solution of the equation W/ — W = 0 for W € C*(O = [0, 1]) with the boundary
condition W (0) = 1 can be found by minimizing the loss miny{||W. — W||3 + \||W(0) — 1||3}.
The first term of this loss is called a PDE loss and the second term a boundary loss, where A is a
hyperparameter that weighs a boundary loss against a PDE loss. PINNs can be trained in a self-
supervised manner as a dataset can be generated by simply drawing random samples from the domain
O. Still, if the solution is known at some points of the domain, then the training can be augmented
with a data-driven loss. Refer to Appendix [A.4]for a more detailed introduction to PINNs.

Further, we denote W*(-,6) and W (-, #) as neural networks that compute the solutions of equation|[7]
and equation ] respectively with 6 being its parameters. In PINNs-like mannner, we define losses
corresponding to equationand equation@ Let us define Sp ~ U (O, N ), a sample of points drawn
uniformly from O of size Ny, and Spo ~ U(OO, Nj). Further, if € and 6 are indicated without an
iteration number, then they correspond to the current iteration n. We have:

Ng
Lo(0,80) = NLF S (H (s, We(21,60), YW (20,0)) — €T(V2W(2:,0)))° a1 € So,
=1
®)
L 2
Loo(8,Sas0) = o Z ([—H(Jci,We(xi,9)7VW5(xi,9) + an(m))ﬁ) z; € Spo,
B =1
)

where [f(z)]t = max{f(z),0}. In addition to PDE-related and boundary-related losses, we
introduce an MSE regularization loss that should encourage uniform convergence:
Ng
1

2
== (z,0) = W (@i, 0, _, i 1
Lr(0,80) NF;(W (23,0) — W= (2,0c, ,)) 2 €So (10)
where We—1(x, 0., _,) is the best function obtained for €,,_;. The final loss is:
[,(9,80,830) = 50(9,80) + )\,Cao(a,Sao) + )\R,CR(G,So). (11D

e-schedulers To ensure the uniform convergence of equation [7]to equation[d] we need to define a

sequence of {€,, }°° ,, such that €, — 0 and ||e, Tr(VZW¢(z))|| — 0 uniformly for all z € O when

n — oo0. We propose three ways to define this sequence. The first is non-adaptive scheduler:
enke ifn+1=0 mod N,

Entl {en otherwise (12)

where n corresponds to the current iteration number, k. € (0,1) a speed with which
llen Tr(V2WE(z))||? should decrease and NV, the number of iterations between each update.

The second scheduler is called adaptive scheduler. Let §(e,0) = =3, || Tr(V2W*(x;,0)) ||2
Given the first element of the sequence €, we get all the consecutive elements with the next update
rule
Regtenlostl e, if ked(n, O 1) < 6(en, On),
€nt1 = and £(0;) > L(0;—1)Vi:n—n.+1<i<n (13)
€n otherwise,
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Figure 1: Value function of Pendulum for different e-schedulers: (a) ground truth, (b) hybrid, (c)
non-adaptive, k. = 0.5, N, = 10 (d) non-adaptive, k. = 0.5, N, = 75 (e) adaptive, ¢g = 1,
ke = 0.99 (f) adaptive, ¢g = 1072, k. = 0.99

where n and k. have the same purpose as above. Moreover, n. serves as a number of iterations since
0; does not improve the loss, i.e. it also specifies the minimum number of iterations with fixed € to
obtain W¢(z, #) ~ W¢(x) that solves equation 7]

We also try a hybrid scheduler, mixing the two previous schedulers by starting with the non-adaptive
scheduler for several e-updates and then using the adaptive scheduler until the end of the training.
The nonadaptive scheduler serves as a "warm-start” at the beginning of the training allowing us to do
more regular updates for large € for which training is easier (see Appendix [A.5.3). Then, it is better
to use the adaptive scheduler for smaller € to ensure the convergence d(¢, #) — 0. Finally, putting
everything together gives Algorithm [T}

Algorithm 1 e-HIBPINNs

Set € = €g, 0 = b, initialize W€(-, 0)
for iteration n in {1,...,NB_ITER} do
Generate datasets Do(Np) and Dyo(Np) of Np states uniformly sampled from O and 0O
respectively
for batches Sp € Z/[(Do, Ns) and Spp € U(Dao, Ns) do
Update 6,, := 6, — vV L(0,S0,Ss0), where L(0, Sp, S) is computed with equation
end for
Compute €,, using equation[I2]and equation[T3|
Sete =¢, and 0 = 0,
end for

5 EXPERIMENTAL RESULTS

Analysis of e-Schedulers on Pendulum In this section we evaluate the performance of Algo-
rithmﬁﬂ for different e-schedulers on inverted pendulum environment. The state space consists of the

angle ¢ and the angular speed ¢. Here, we consider O = [—7, 7] x [—20,20] and U = {-2,0, 2}.

Each training was executed for 300 iterations (NB_ITER = 300). We tried 2 types of architectures,
such as Multi-Layer Perceptron (MLP) and Fourier-Feature Network (FFN) with
different number of layers and neurons. We have obtained the best performances with FFN, consisting
of 3 layers, where the first layer is of size d x 40 (as recommended in the original article, where d
is the dimensionality of state space) and other layers are 100 neurons each. The best performing
activation function is tanh. When working with PINNS, it is important to use smooth activation
functions as using non-smooth activations like relu may cause the training to fail. Indeed, the
PDE loss Lo requires computing second order derivatives, and even the third derivative during the
backward propagation, but those derivatives do not exist for relu. We have also observed that
the training is more stable if we standardize the output of the neural networks, i.e. W¢(x;, 6) and
Wen=1(x;, 0, _, ), across the samples in the batch Sp just before computing the regularization loss
(equation[T0). Indeed, the scale of the value function computed with the neural network is constantly
changing during the training, therefore standardization helps to enforce uniform convergence without
restraining the neural network to fit the solution of equation[7]for the current e.

!The placeholder for the repository link. The code will be available for the final version.
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Value function PINNs loss
-

Figure 2: Value function (left), control (middle) and loss (right) maps obtained with PINNs after 300
iterations.

We have experimented with different e-schedulers from Section[#.2]and their hyperparameters. Some
results are shown in Figure [I] and more can be found in Appendix [A.5.2] To sum up, all three
schedulers can learn the value function under some set of hyperparameters. However, one should
be careful about the hyperparameters choice. The non-adaptive scheduler may fail if € is updated
too fast and the neural network is not able to adjust to a new e, but also it may fail if € is updated too
slow, as the neural network starts to overfit to the given e (Figures[Ic{Td). The adaptive scheduler
performs well if it starts from high ¢y = 1, however it can be slow to converge, conversely starting
from ¢y = 0.001 may fail for some seeds (Figures [Ie{If). The hybrid scheduler (Figure[IDb) is the
fastest to converge and the most robust with respect to different random initializations (We obtain
the similar results across 8 different seeds). Next, we use the hybrid scheduler for our experiments,
consult Appendix [A.5.4]for the list of the best hyperparameters for the hybrid scheduler.

PINNSs Loss Map on Pendulum In Figure 2] we present the value function, control and loss maps
that we have obtained after training. PINNs are able to find the general structure of the value function,
but it is less precise when approximating non-smooth zones. This problem can be observed from
Figure [2[right), where the PINNs loss (equation 8] has high values in the non-smooth zones from
Figure Eleft). In previous works, it was observed that smooth activation functions may fail at grasping
high frequency signals (Sitzmann et al} [2020). Thus, further research on how to choose the neural
networks architecture for solving HJB is necessary.

Comparison with DTRL and Dynamic Programming Algorithms In this section, we compare
the performance of Algorithm [T]on different classical RL control tasks with well-studied DTRL
algorithms such as PPO and A2C. We use a continuous-time adaptation of Inverted Pendulum,
CartPole and Acrobotﬂ Those are challenging benchmarks similar to [Lutter et al. (2020), where
PINNSs are also applied to solve the HIB equation.

Pendulum (dt = 0.001)| The state space consists of the angle ¢ and the angular speed ¢> We
consider O = [—7, 7] x [—10, 10] (reducing the domain makes the comparison fairer with respect

to exploration-based algorithms that do not compute value function on the whole domain) and
U=1{-2,0,2}.

CartPole (dt = 0.001) The state space consists of the pole angle ¢, the pole angular speed ¢,
the cart coordinate y and its speed y. We consider two problems: swing up the pole with O =
[—m, 7] x [—10,10] x [~5,—5] x [=5, 5] and stabilizing the pole O = [—1=7, 7] x [-10,10] x
[—2.4,—-2.4] x [-5,5] with U = {—3, 0, 3} in both cases.

Acrobot (dt = 0.005) The state space consists of angles ¢1 and ¢, and their corresponding angular
speeds ¢ and ¢o. The control is the torque applied to the extreme tip. We consider O = [—7, 7] x
[—7, 7] x [-12.57,12.57] x [—28.27,28.27] and U = {-5,0,5}.

To test the algorithms, we perform 100 rollouts, each rollout being made of 5000 time steps. For
the Pendulum task, we also show the performance of dynamic programming (DP) for the grid size

2We used the environments taken from|ht tps: //github.com/cagatayyildiz/oderl and slightly
modified them to define O explicitly in each case
3In the gym inverted pendulum environment dt is set to 1/20
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N = 200. A complete discussion of our experiments with dynamic programming can be found in
[A.5.1] To compare PINNs and DTRL agents, we used the same number of samples, however note
that this setting is less advantageous for PINNSs as it requires to sample uniformly across the whole
domain to guarantee the viscosity, while DTRL agents can learn more from the trajectories that bring
the highest outcome. For each algorithm, we take the best trained agent and we report its evalution
mean and standard deviation over all rollouts in Table E} Despite our best efforts, we could not make
A2C learn on Acrobot with small dt, therefore this result is absent.

Even though, PINNS is performing worse than DP on Pendulum as it struggles to reach the optimal
control in the area where the value function is non-smooth, it still performs much better than PPO
or A2C that are unable to learn the optimal policy function for such a small dt. We note that
PINNSs remains competitive with PPO and A2C when O is relatively small (Pendulum and CartPole).
However, as the domain size increases, PINNs begins to yield in performance compared to PPO.
Increasing the number of samples in the dataset can improve its performance, but it means more
computational resources are required.

| environment method  mean std ||

Pendulum DP 4133.71  433.02
A2C  2180.22 766.25
PPO 327351 906.41
PINNs  3860.2 511.0
CartPole A2C 1697.15 398.81
PPO 5000.0 0.0
PINNs  5000.0 0.0
CartPole Swing-Up  A2C 90.87 0.73
PPO 970.63  130.3
PINNs 723.3 175.16
Acrobot PPO 1387.3  294.1
PINNs 506.4 180.8

Table 1: Mean and standard deviation of the cumulative reward for different methods.

6 CONCLUSION

In this article, we consider the problem of finding the viscosity solutions of the deterministic HIB
equation with neural network solvers. We propose a general scheme, which relies on solving a series
of different PDE equations depending on e. When € = 0, the original HIB equation is retrieved.
This framework gives flexibility on how e are updated. In our experiments, we have shown that
our scheme is able to learn the optimal value function with different e-schedulers for Pendulum.
However, PINNS still struggle to match the performances of DTRL algorithms on larger domains.
First reason that prevents it from scaling is its difficulty to match preciselsy the solution at the points
of non-smoothness, which causes a bad control at those points. The second one is its restriction to
uniform sampling across the domain, not allowing it to train more on more informative points unlike
RL. In future works, we plan to get over those limitations. Integrating the adaptive sampling methods
can help to improve sample efficiency and considering more sophisticated neural networks can help
with better approximating non-smooth areas. Another limitation of our work is that it assumes that
the dynamics are continuous (f € C'(O)), which is an important assumption for proving uniqueness
of a viscosity solution. Thus, the approach considered in this paper cannot be applied to the case of
non-continuous dynamics in the straightforward way. As the latter case is very important in real life
applications, it should be studied in the future work. Finally, an interesting research perspective is to
add model learning and actor/critic paradigm into our algorithm to explore the unknown dynamics
case and enable the training based on trajectories.

Despite that, training a PINNs agent remains technically very challenging and it is not yet possible to
cope with optimal control tasks that are as large as those dealt by DTRL. Yet, it is our goal to design
agents suitable for solving large CTRL tasks and we provide some recipes to make it eventually as
easy and accessible as training a DQN or PPO for DTRL.
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A APPENDIX

A.1 OPTIMAL CONTROL BACKGROUND

We use the same set-up as in Section[3.1] Further, we generalize the problem to the situations when
exiting the domain O is possible and we state some known theoretical results from the literature.

A.1.1 GENERAL FORMALISM

In addition to the notions defined in Section[3.1] we also introduce some additional notations related
to exiting the domain. Let 7 denote the exit time. At time 7, we have x(7) € O. Thus, let us define
the exit reward R : 00 — R, which is obtained at the boundary points when control is pushing the
system out of O. Under these notations, we redefine the reinforcement functional:

J(xo;u(t)) = / yir(z(t), u(t))dt + 7 R(z(T)) (14)
0
and the value function
V(z)= sup J(x;u(t)). (15)
u(t)eU

Note that, when R(x) — —oo, then 7 — oo, which brings us back to the problem considered in
Section[3.1]

A.1.2 HAMILTON-JACOBI-BELLMAN EQUATION
Similar to Section the similar result holds for the value function defined with equation

Theorem A.1 (Hamilton-Jacobi-Bellman). If the value function V is differentiable at x, then the
Hamilton-Jacobi-Bellman (HJB) equation holds at any x € O:

V(z)In(y) + sup {(V.V(@)" f(z,u) + r(z,u)} =0. (16)

When O C R?, V also statisfies the following boundary conditions:
V(z) > R(xz) forx € 00 (17)

A.1.3 UNIQUENESS OF VISCOSITY SOLUTIONS

In this section, we state more formally the uniqueness result that holds for viscosity solutions and
the additional assumptions under which it is verified. This section presents the short summary of the
main theoretical results from Fleming & Soner| (2006).

Assumption A.1 (i) U is bounded,
(ii) f,r are bounded, f is continuous on R? x U and r is uniform continuous on R% x U,

(iii) there exists Ly, such that || f(z,u) — f(y,uw)| < L¢lla — y|| for any x,y € R

Theorem A.2 Given Assumption[A.l] the value function V' is uniformly continuous and bounded in
R and then it is a unique viscosity solution of the HIB equation equation 4]

This theorem is given for the case when O = R? and therefore there is no boundary condition. The
other cases are discussed in the next sections.

The proof of Theorem [A.2]consists of several parts. First, one can prove that under Assumption [A.T]
the value function is indeed uniform continuous and bounded. Then, one can show that it is a viscosity
solution due to the dynamic programming principle that holds in continuous time case as well. The
uniqueness comes from the comparison principle. It states that under Assumptions [A.1] if W and V/
are viscosity subsolution and supersolution respectively and are bounded and uniformly continuous
functions, then W < V. The comparison principle implies that if such W and V are viscosity
solutions (both subsolutions and supersolutions), then W < V and W > V, therefore W = V. Thus,
V is a unique viscosity solution of the HJB equation in R<.
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domain O domain O

Figure 3: Boundary conditions. Case 1(left), Case 2 (middle) and Case 3(right).

A.1.4 VISCOSITY FOR DIFFERENT BOUNDARY CONDITIONS

When O # R<, the additional assumptions on O are required.

Assumption A.2 For any x € 0O and its normal vector n(x)
(i) u(z) € U with f(z,u(z)) n(z) < 0;
(ii) Ju(z) € U with f(z,u(x))Tn(z) > 0.

Assumption A.3 (Regularity condition) There exist g, > 0 and 7)(x), a bounded and uniform
continuous map of O, satisfying

B(z + en(x),re) C O, Vx € O,¢ € (0, €] (18)
with B(z,r) = {y € R%: ||z —y|| < r}.

In this section, we cover three different cases of boundary conditions that appear in control problems
when O C R?, which are illustrated in Figure

Case 1 If the system exits at any boundary point z € 9O once the boundary is reached, e.g. it
is the case when the exit reward R(z) is sufficiently high to prefer to leave the area, e.g. when
R(x) = R > rforany z € 0O and r > r(Z,u(z)) for any Z, u(Z). Then, the boundary condition is
described with the following equation:

V(z)— R(x) =0 Vz € 00. (19)

The uniqueness result holds due to the comparison principle that states that under Assumptions
and provided that W and V' are bounded and uniform continuous functions, if W and V' are viscosity
subsolution and supersolution respectively, then sup .5 (W (z) =V (z)) < sup,cgo(W(x) =V (x)).
The existence of such value function is assured with Assumption

Case 2 If the system never exits the control domain. Let us denote the external normal vector at point
x € 00 as n(x), then this boundary can be expressed as f(z,u*(z))"n(x) < 0 for any z € 0.
The optimal policy is not known a priori and thus it is hard to verify this constraint. In [Fleming &
Soner| (2006)); [Soner| (1986), it was shown that it can be reformulated as:

— H(x, W,V, W +an(z)) <0 VYa<0,z € 00. (20)
This allows to extend Definition [3.1]

Definition A.1 (Constrained viscosity solution) W € C(O) is called a constrained viscosity solu-
tion of the HIB equation equation[I6|if it is a viscosity subsolution in O and a viscosity supersolution
in O, i.e. if Vip € CY(0) and Yz € O Uargmin{(W — ¢)(x) : z € O} with W (z) = ¢(z), we
have:

H(z,¢(z), Voto(x)) = 0.
It is also possible to prove that there exists a continuous value function provided that Assump-

tion [A{1)] holds and the set of admissible actions is not empty for any state of the system. Under the
additional Assumption[A.3] there exists a unique constrained viscosity solution (see [Soner| (1986)).
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Case 3 If there exists a subset of points of the boundary at which the system exits the control domain.
This is the same boudary condition considered in [Munos|(2000). This boundary is formulated as
follows:

R(x) —V(x) <0 Vz e 00. (21)
However, this boundary is not sufficient to have uniqueness, therefore we redefine viscosity for this
inequality constraint equation [21]

Definition A.2 (Viscosity solution with the boundary condition equation 21 °
W € C(O) is a viscosity subsolution of the HIB equation in O with the boundary
condition equation if it is a viscosity subsolution in O and ¥ € C1(O) and Vz € 00O

local maximum of W — 1 such that W (z) = ¢ (x), we have:
min{H (z, (), Vap(z)), R(z) = W(z)} <0
o W € C(O) is a viscosity supersolution of the HIB equation in O with the boundary

condition equation if it is a viscosity supersolution and ¥y € C*(O) and ¥x € O local
minimum of W — 1) such that W (z) = ¢(z), we have:

max{H (z,¢(x), Vot (z)), R(z) = W(zx)} = 0

o I[fW € C(O) is a viscosity subsolution and a supersolution with the boundary condi-
tion equation 21| then it is a viscosity solution with the boundary condition equation [21]

It is easy to check that when equationis verified then a viscosity subsolution W (z) in O is a vis-
cosity subsolution with the boundary condition equation 21} However, when W (x) > R(z) for some
point z € 9O then deﬁnitionimposes an additional constraint that W (x) should be a viscosity
supersolution at such boundary points. Then similarly to Case 2, boundary condition equation [6]
should be also satisfied, which can be interpreted as the system not being able to exit at those points.
Similarly to Case 2, there is a uniqueness result:

Theorem A.3 Let us assume that Assumptions hold, then the value function V is in C(O) and
it is the unique viscosity solution of the HJIB equation in O with the boundary condition equation 21

The proof of this theorem can be found in|Fleming & Soner|(2006); (Cannarsa et al.| (1991)).

We choose to distinguish 3 different cases as it creates 3 different ways of approaching boundary
conditions in practice. Indeed, equation equation |20 and equation 21| produce different boundary
losses for PINNS, i.e. L5o. However, note that Case 1 and Case 2 are subcases of Case 3.

Finally, some of the assumptions can be relaxed and it is possible to obtain more general uniqueness
results (see Fleming & Soner (2006); (Cannarsa et al.| (1991); [Ishii| (1984)). However, the assumptions
mentioned earlier are verified for the large class of control problems that appear in practice, like
classical control or MuJoCo problems with no contacts (Todorov et al.,|2012). Dealing with more
general dynamics should be tackled in the future works.

A.2 INTUITION FOR VISCOSITY SOLUTIONS
In this section, we aim at providing the intuition behind the viscosity solutions. For that, we draw

some parallels between DTRL and CTRLE]

Let us consider the DTRL formulation of the problem. We know that the optimal value function V' in
DTRL should satisfy the Bellman equation

V(@) = max{r(z,u) +~)_p(a'lz,u)V(2")}. (22)
x/
From that, we can introduce the Bellman operator as

T(¥)(x) = max{r(z,u) +7 ) _ pla’e, u)p(a')} (23)

x!

“This section is based on https://benjaminmoll.com/wp—content/uploads/2020/02/
viscosity_for_dummies.pdfl
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where 1) is an arbitrary function defined on the state space. This operator is known to be monotonic,
i.e. for any functions ¢, 1)’ we have
=9 = T) = T (24)

Moreover, from Eq. equationfollows that V' should satisfy V' = T'(V'). Therefore, from Eq. equa-
tion 22}equation [24] we get the alternative definition for the solution of the Bellman equation [22]

Definition A.3 Let V € C(O), then V is the optimal value function if and only if
o Vo € CH(O) such thatp >V

mgx{r(m,u) + 72p(w’|x,u)w(x’)} > V(x),Vz € O,

o iy € CHO) such that ) <V
max{r(z,u) + 7Y p(a’|z, u) (@)} < V() ¥z € O.

x

This definition can be seen as the discrete-time version of the viscosity solution definition. Therefore,
in the discrete-time case, satisfying the fixed point equation is equivalent to satisfying the "discrete-
time" viscosity solution definition.

As mentionned in the paper, V' € C(O) can be non differentiable at some points of O, thus it is
impossible to verify whether HIB equation is satisfied everywhere. Therefore, the main idea behind
viscosity solutions is to replace V' by some smooth functions where V' is non differentiable.

In the following, first, we suppose that V' is differentiable everywhere and we show a connection
between Hamilton-Jacobi-Bellman equation and Bellman equation. Then, for the case when V' is non
smooth, we replace V' by a smooth function and we show that it is possible to derive the notions of
viscosity super/subsolutions.

Let us discretize our continous-time problem with a time-step dt. For simplicity, we consider that for
any x € O there exists an optimal control u* = m(x) € U so that V(x) = J(z; u*). Therefore, we
replace sup with max in the definition of the value function, though it is possible to show that the
next results also hold in case of sup. From the definition of the value function, we get

t+dt
V(x(t)) = max {/t D (2(s), u(s))ds + YUV (x(t + dt))}

u

t+dt
= max {/ O (2(s), u(s))ds + eIV (x(t + dt))}

u

~ max {r(x(t), w(t))dt + OV (2 (t + dt))}

u

~ max {r(z(t),u(t))dt + (1 + In(y)dt)V (x(t + dt))}

So we derive this discrete-time dynamic programming problem:

V(@) = max {r(a, u)dt + (1 4+ n()d)V (wrear)) @5)
where T4y qr = f (x4, u)dt + x4
Let us suppose that V' is differentiable for all x € O and that dt € (0, 7%) By subtracting
(1 + In(y)dt)V (2;) from both sides of Eq. equation[25]and then dividing by d¢, we obtain

=)V (o) = g { o)+ (g 100 ) (Voera) = Vo) |

If dt goes toward 0, we have

In(y)V(z:) = — max {r(ze,u) + Vi V(z)" fze,u)}
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This is exactly the Hamilton-Jacobi-Bellman equation, the continuous time equivalent of the Bellman
equation.

Now, let us assume that V' is non differentiable. As mentionned before, V' should be replaced by
a smooth function at the points where V,V does not exist. Let ¢ be an arbitrary smooth function
on O such that V' — ¢ has a local maximum at x; and V (z;) = (). Therefore, V < ¢ in a
neighborhood of ;. If 1 + In(v)dt > 0, then

Vixy) = max {r(zs, w)dt + (1 + In(y)dt)V (2 pat) }
< max {r(ze, )t + (1+ In(7)de) (e ar)}

Let us subtract (1 4 In(y)dt)1y(z;) from both sides and use 9 (x;) = V' (x¢), as a result we have
—In(MV (z¢)dt < max {r(zs, u)dt + (14 In(y)dt) (@ (zr4ar) — (xe))}
Then, let us divide by dt and let dt goes toward 0, we have
—In(y)V(zy) < max {r(xt, u) + Vﬂ/)(azt)Tf(xt, u)}
< In(y)V(x) — max {r(ze,u) + Vo (z)" f(2e,u)} <0

= H(ze,9(21), Vap(21)) < 0.
This gives us the definition of a viscosity subsolution.

It is possible to obtain the definition of a viscosity supersolution in a like manner, by performing the
same derivations for an arbitrary 1 € C'*(O) such that V — ) has a local minimum in z; and V' (x;) =
1(x¢). In both cases, we use the monotonicity of max, {r(z:,u)dt + (1 4 In(y)dt)p(xirqt)} in
the function v, which is a counterpart of the Bellman operator in Definition

Thus, we recover the defition of a viscosity solution. The intuition is whenever a solution V' of
the HJB equation is non differentiable at some point x € O, it should also satisfy other conditions
imposed by viscosity for it to be a proper value function. In this way, the viscosity property serves as
a regularizer to help to eliminate "bad" solutions of the HIB equation.

A.3 DYNAMIC PROGRAMMING

Further, we consider only FEM based dynamic programming proposed in [Munos| (2000). In the
FEM case, we use a triangulation 2% to cover the state space. It is also possible to discretize the
control space, denoted by U?. The vertices of the triangulation ¥° are denoted {&1, &2, ..., En, }
with N5 € N. In this setting, V is approximated by a piecewise linear function V°. Thus, for
x € Simplex (&, .., &q), we have

d
Vi) =) Aa(@V(&)
i=0

where ¢, () is the barycentric coordinates inside the simplex (&, ..., q).

By using a FEM approximation scheme, the HIB equation is transformed into:
VO(g) = sup [yTEIVI (€, u)) + (& wr (€, w)]
uelU
where n(&,u) = & + 7(&,u) f(&, u) and 7(&, u) is a time discretization function that should satisfy:

Jkr, kg > 0,V€ € X0, Vu € U, k18 < 7(&,u) < ko

If F¥ is defined as F°[g](€) = sup,eps[y™ @™ S0 Ae, (€, 1)) p(&) + T(€, w)r (€, )], it is
possible to show that F° satisfies a contraction property, and since V?(¢) = F°[V?](£) holds,
dynamic programming techniques can be applied to compute V°. Moreover, it can be proved that

Vo 5—) V' uniformly on any compact of the state space. With this method, one can derive algorithms
—0

that converge towards V', without even knowing the dynamics of the system. Thus, this is one of the
approaches that allows us to find a viscosity solution of the HIB equation (see [Munos| (2000) for
more details).
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A.4 INTRODUCTION TO PINNS

Here, we provide a short introduction to PINNs for those readers who are not familiar with this
method. The adaptation of PINNSs to solving the HIB equation in the viscosity sense is covered in
Section 421

To solve a differential equation
F(x,W(2),V,W(z), VW (x)) =0, W:0—=R,z€O, (26)
with K equality boundary conditions
Bi(x, W (z), V., W(z), V2 W(x)) =0, z€0d0,i<K;, (7)
and K inequality boundary conditions
Gi(z, W(x), V., W(x), V2 W(z)) <0, 2€d0,i< K. (28)

one can assume that W (z) lies in the class of functions Fy = {fg(z) = NN(z,0) : § € O}
represented by neural networks of a fixed architecture and parametrized with weights 6 € ©. If it is
the case then there exists 6 such that W (z, 0) should satisfy equation [26{and thus minimize the loss

L

ﬁpDE(e) = N7F Z (F(aﬁ,, W(ZL‘Z‘, 9), VIW(Z‘Z‘, 9), VEwW(.I‘“ 9)))2 Vr; € Su(O, NF), 29)
=1

with S, (O, Nr) denoting a sample of N points drawn uniformly from O. If the solution W (z, 6)
should satisfy some additional boundary constraints then it should also minimize the boundary losses
forall k < Ky and k' < Ky

Ng
Lp,(0) = % Z (Bk(ﬂﬂi,W(fEi,@)aVzW(ﬂﬂiﬁ),VimW(xi,@)))Q Vz; € S,(00,NE) (30)
B i=1

NE
Lo, (0) = Nik S ([ (i, W (2, 0), 9. (2:.6), vixW(xi,e))r)z Vs € 8u(90, NE),
G =
1 (1)
where [f(z)]t = max{f(z),0}.

To put everything together, when solving a PDE in a PINNs-like manner, one should train a neural
network W (z, 0) that minimizes:

Kl K2
L(0) = Lppp(0) + > MLp, (0) + Y NLa,(0). (32)
k=1 k=1

where A\g, A}, > 0 are some mixing coefficients for different boundary conditions.

A.5 EXPERIMENTAL RESULTS. SUPPLEMENTARY
A.5.1 DYNAMIC PROGRAMMING EXPERIMENTAL RESULTS

In this section, we present the results obtained with one of the algorithms proposed in Munos| (2000).
First, a grid is built by dividing each axis by N points. Then, we use the Delaunay’s triangulation
over the grid and apply the Value Iteration algorithm (VI) to the FEM-MDP derived in|Munos| (2000).

We set 6§ = %, ¢ being the discretization step. The stopping criterion used at the step n is
Vi, = Viu—1 ]|, < € where € is a chosen tolerance. In our experiments we work with e = 1075.

When § goes towards 0, our approximated value function, V%, converges towards the true value
function. In our case,  — 0 is equivalent to N — +o0. Empirically, we can see in Figure [] that
this property is satisfied. Indeed, as we increase N, we obtain a more accurate V°, and as a result, a
better control that leads to a higher cumulative reward.
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Figure 4: The cumulative reward obtained on the inverted pendulum for different grid sizes N.

A.5.2 COMPARISON OF ¢ SCHEDULERS

As mentioned in Section4.2] we tested three kind of e-schedulers. All scheduler experiments have
been performed with the parameters described in Section[A.5.4] except mentioned so.

In Figure 5] we can see that the non-adaptive scheduler never leads to the true solution for k. = 0.9 ,
even with 75 epochs between each update.

Value function Value function
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- 0.54

- 0.42 2 -0.53

‘ o4 l -0.52

0
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3
2
1
- 0 -0.3
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-1 -0.36 -1 -0.49
- 0.48
-2 - 0.34 -2
- 0.47
-0.3
0 -5 0 5 10
[

-3 2 -3
-1

Figure 5: Value function obtained for non-adaptive scheduler. The parameters used are k. =
0.9, N, = 25 (left) and k. = 0.9, N,, = 75 (right).

As aresult, we try another scheduling strategy. This time, the loss is taken into account. It gives
us a metric to know whether the convergence is achieved or not. Thanks to this scheduler, it is
possible to approximate the true solution by starting from a small €y (e.g. ¢g = 10~3). Nevertheless,
it is preferable to start from a higher ¢y (e.g. ¢ = 1) to improve the algorithm stability. Indeed,
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more e is high, more W€ is easy to approximate. This property can be observed empirically in
Appendix [A’5.3] Therefore, by starting from a high ¢, the risk of divergence is curbed, but the
training time is increased since we need more iterations to reach the ¢, that are very near to 0. In
Figure|6 we can see that if we start from €y = 1073 with k. = 0.9 then it is possible to reach a good
value function approximation. At the same time, the algorithm may diverge for some seeds (different
random initializations). By trying to increase the convergence speed and setting k. = 0.1 leads to a
lot of instability during the training phase. In Figureﬁl we can note that for both ¢g = 1, ¢y = 1073,
the algorithm may diverge.

Value function Value function

- 45.8
2 2 - 46.6
1 - 1
45.6 - 46.4
= 0 s 0
-45.4 - 46.2
-1 -1
- 46.0
- I— 45.2 s I
-3 ‘ 3 ‘ - - 458
10 -5 0 5 1 -10 -5 0 5 10
[ [4

Figure 6: Value function for k. = 0.9 with ¢y = 1 (left) and ¢y = 102 (right).

I- 49.4

-49.2

0

Value function Value function

3 3

- 55.6

2

- 5.4 2
! -55.2 1
e 0 -55.0 = 0
-1 - 54.8 -1
2 - 54.6 -2

. - -

-10 -5 0 5 10
¢

. a
-10 -5 0 5 10
[

- 49.0

-48.8
|— 48.6

- 48.4
Figure 7: Value function for k. = 0.1 with ¢y = 1 (left) and ¢y = 10-3 (right).

Finally, we have mixed the two algorithms to keep the strength of both schedulers while their
weaknesses are eliminated. Starting with the non-adaptive scheduler during the "easy" phase (the
first €, for which W€ are easy to approximate) allows us to rapidly reach a small €,, and then the
adaptive scheduler is used to reduce the risk of divergence. We have tested the hybrid algorithm
on 8 different seeds and our model has reached convergence on every attempt. Our final choice of
parameters is g = 1, k. = 0.1, N,, = 10 for 5 updates of € then we switch to the adaptive scheduler
and we set k. = 0.9,n. = 7.

A.5.3 CONVERGENCE OF PINNS FOR A FIXED €

In this section, we provide the results that we have obtained for different fixed e. We have used the
same parameters as in table[2] On figure[§] it is clear that it is easier for PINNs to approach W ¢ when
e is high enough. Therefore, we assume that starting our e scheduler from ¢y = 1 leads to a more
stable convergence. That is one of the reasons we designed the hybrid scheduler: to improve the
stability while maintaining a good speed.

A.5.4 BEST HYPERPARAMETERS

The best performing hyperparameters are gathered in Table [2]
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PINNs loss Boundary loss
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Figure 8: W€ pinns loss and boundary loss for e = 1,103,107

|| Environment Names Hyperparameters  values ||
Shared batch size Ng 100
learning rate v 0.00085
patience adaptive scheduler Ne 1
boundary loss coefficient A 107!
starting € €0 1
number of epochs between e updates N, 10
non-adaptive scheduler coefficient ke 0.1
adaptive scheduler coefficient k. 0.99
number of € updates with non-adaptive scheduler N, 5
Pendulum number of sampled points Np 20000
reg loss coefficient AR 1073
Cartpole number of sampled points Np 30000
reg loss coefficient AR 1073
Acrobot number of sampled points Np 30000
reg loss coefficient AR 1072

Table 2: Hyperparameters for Algorithm
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