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Abstract

Recent advances in single-cell technologies have enabled the simultaneous quantifi-
cation of multiple biomolecules in the same cell, opening new avenues for under-
standing cellular complexity and heterogeneity. However, the resulting multimodal
single-cell datasets present unique challenges arising from the high dimensionality
of the data and the multiple sources of acquisition noise. In this work, we propose
MATCHCLOT, a novel method for single-cell data integration based on ideas
borrowed from contrastive learning, optimal transport, and transductive learning.
In particular, we use contrastive learning to learn a common representation between
two modalities and apply entropic optimal transport as an approximate maximum
weight bipartite matching algorithm. Our model obtains state-of-the-art perfor-
mance in the modality matching task from the NeurIPS 2021 multimodal single-cell
data integration challenge, improving the previous best competition score by 28.9%.
Our code can be accessed at https://github.com/AI4SCR/MatchCLOT.

1 Introduction

Single cells are complex dynamical systems where a variety of biomolecules interact in a coordinated
way to produce robust and adaptive behaviors. Understanding the causal relationships between these
biomolecules and their role in health and disease is a longstanding question in biology and medicine
[10]. Recent advances in single-cell technologies have made it possible to simultaneously quantify
different combinations of (epi)genomic, transcriptomic, and proteomic profiles [19]. Integrated
analysis of the resulting multiomic profiles has the potential to capture cellular state, complexity and
heterogeneity at an unprecedented scale. However, a number of emerging challenges, associated
with the high dimensionality and acquisition noise in the resulting datasets, limit this potential
[8]. To address these challenges, the single-cell community launched a multimodal single-cell
data integration challenge at NeurIPS 2021 [12]. The challenge provided a curated multimodal
benchmarking dataset and defined three tasks, namely, modality prediction, modality matching,
and joint representation across modalities. Here we propose MATCHCLOT (Single-cell modality
MATCHing with Contrastive Learning and Optimal Transport), a novel solution that addresses
modality matching, i.e., predicting the cell matching between two sets of single-cell profiles from
different omic modalities. Our work is inspired by recent promising applications of optimal transport
(OT) in various single-cell data analysis tasks ([1, 3, 7, 9, 14, 18, 20]). MATCHCLOT is built on top
of CLIP [17], a contrastive learning model also used by Team Novel in the challenge [12]. Unlike
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Team Novel’s model that uses a maximum weight bipartite graph and generates hard matchings,
we propose a novel OT solution that allows MATCHCLOT to generate soft matchings, leading to
increased performance and significant gains in computational time and memory. MATCHCLOT
additionally exploits prior knowledge of the batch label, resulting in a smaller search space, and
uses a transductive learning setup that mitigates the effects of distribution shifts in the test data.
Overall, MATCHCLOT obtains the state-of-the-art result, improving over the competing best method,
scMoGNN [21], by 28.9% for the overall matching probability score and by 209% for a top-5
matching accuracy metric.

2 Methods

MATCHCLOT consists of three different modules, shown in different colors (Figure 1). Preprocess-
ing includes normalization, low-dimensional projection and batch effect correction in a transductive
setting. Training leverages a contrastive learning setup to maximize the similarity between matching
cell profiles in the embedding space. Finally, testing involves an entropic regularized differentiable
OT and utilization of batch labels for predicting the matching cell profiles.

Figure 1: Overview of our proposed MATCHCLOT framework.

Preprocessing: The first component of MATCHCLOT preprocesses the raw single-cell data in a
transductive setting, by operating on the union of the train and test set that is available while training.
For each modality, MATCHCLOT normalizes and reduces the dimensions of the combined train and
test set using latent semantic indexing (LSI), a common method for processing scATAC-seq data [5].
LSI consists of a term frequency-inverse document frequency (TF-IDF) normalization coupled to an
L1-normalization and a log(1 + x) transformation, and followed by truncated SVD and a zero mean
and unit variance scaling. LSI results in preprocessed measurements of lower dimensions, that are in
turn corrected for batch effects using Harmony [11], an established batch effect correction method.
Since the test data batches are independent of the training data batches, correcting the batch effects
in a transductive setting minimizes the impact of the distribution shifts due to acquisition variations
in the data. We note that during the transductive preprocessing, the two modalities are processed
independently and the ground-truth labels are not used by the model. We also note that leveraging
the unlabeled test data was a common practice during the competition, as several methods applied
unsupervised approaches on the test data prior to model training.

Contrastive learning and Encoder architecture: The backbone of MATCHCLOT is built on
CLIP [17], a contrastive learning model, aiming to generate similar latent representations for profiles
of the same cell and orthogonal representations for non-matching profiles. Both encoders, as shown
in Figure 1, are shallow multi-layer perceptrons (MLPs) designed as per the modalities. The output
embedding dimensions of the encoders are also set according to the operating subtask, i.e., CITE or
Multiome. Modality-specific embeddings are unit normalized and multiplied via a dot product to
produce a cosine similarity matrix. Afterwards, an InfoNCE [15] contrastive objective is calculated
for all the embedding pairs in the similarity matrix for backpropagation. We tune the model and
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training hyperparameters, namely LSI reduced dimensions, encoder hidden layer dimensions, dropout
rate, learning rate, and weight decay, on a validation split obtained from the labeled training data.

Optimal transport matching: The method proposed by Team Novel used a maximum weight
bipartite perfect matching to generate a matching prediction from the cosine similarity matrix of the
multiomic profiles. Instead, we propose to use OT for faster and better matching. OT is a field of
mathematics that studies the best way of transporting a source distribution to a target distribution
while minimizing the costs of displacement. Given two discrete probability distributions with supports
A,B of the same size (|A| = |B| = n), with densities α, β and costs c(a, b) defined ∀a ∈ A,∀b ∈ B,
the linear program formulation of the OT problem is given as,

min
Γ

∑
(a,b)∈A×B

c(a, b)Γ(a, b) subject to:

∑
b∈B

Γ(a, b) = α(a) ∀a ∈ A,
∑
a∈A

Γ(a, b) = β(b) ∀b ∈ B, Γ(a, b) ≥ 0 ∀a ∈ A, ∀b ∈ B

To use OT as an approximation of the max-weight bipartite matching, we can relax the integer linear
program (ILP) formulation of the max-weight bipartite matching and convert it to an OT problem.
Given a bipartite graph G = (V,E) with bipartition (A,B), weight function w : E 7→ R, a matching
M ⊆ E, let x(a, b) = 1, if (a, b) ∈ M and 0 otherwise. Then, the ILP formulation of the maximum
weight bipartite perfect matching is as follows,

max
x

∑
(a,b)∈A×B

w(a, b)x(a, b) subject to:

∑
b∈B

x(a, b) = 1 ∀a ∈ A,
∑
a∈A

x(a, b) = 1 ∀b ∈ B, x(a, b) ∈ {0, 1}, ∀a ∈ A, b ∈ B

By dropping the integrality constraint on the variables x(a, b), the problem becomes an LP and can
be converted to an OT problem. The corresponding OT problem uses negative weights −w(a, b) as
costs c(a, b), a function of variables 1

nx(a, b) as transport plan Γ(a, b), and uniform distributions
over A,B with densities α(a) = β(b) = 1

n ∀a ∈ A,∀b ∈ B. With the OT formulation, the transport
plan Γ can be interpreted as a soft matching, where each vertex a ∈ A can be matched with multiple
vertices b ∈ B. Adding an entropic regularization [6] can speed up the computation of OT and leads
to the following objective,

min
Γ

∑
(a,b)∈A×B

c(a, b)Γ(a, b)︸ ︷︷ ︸
transportation cost

+ ε Γ(a, b) log Γ(a, b)︸ ︷︷ ︸
entropic regularization

The term ε determines the strength of the entropic regularization, with higher values producing noisier
transport plans Γ. In our case, we use ε = 0.01 to generate a soft matching from the cosine similarity
matrix.

Matching with batch label information: To avoid matching cell profiles from different batches,
MATCHCLOT exploits the test data batch labels to reduce the search space for the matching algorithm.
This is achieved by splitting the profiles by batch labels, computing the cosine similarity matrices and
entropic OT matching per batch, and combining the matching matrices for the final prediction. We
note that the batch labels were available to all teams during the competition, and were also exploited
by some of the top-scoring methods (e.g., Team CLUE and scMoGNN).

3 Results and Discussion

Dataset: We benchmarked MATCHCLOT on the modality matching task from NeurIPS 2021
multimodal single-cell data integration challenge [13]. The dataset processed bone marrow samples
from 12 donors at 4 data generation sites via two multiomic single cell technologies: CITE-seq,
which captures single-cell RNA gene expression (GEX) and surface protein levels (as Antibody
Derived Tags, ADT); and the 10X Multiome assay, which captures chromatin accessibility (based on
the Assay for Transposase-Accessible Chromatin, ATAC) and single-nucleus RNA gene expression
(GEX) levels. The CITE-seq and Multiome data included 90,000 and 70,000 cells, respectively. The
test data consists of 15,066 cells for the CITE subtasks GEX2ADT and ADT2GEX, and 20,009 cells
for the Multiome subtasks ATAC2GEX and GEX2ATAC.
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Evaluation metrics: The NeurIPS challenge measures the modality matching performance of a
method in terms of the weight/probability assigned to the correct cell pairings. Provided a probability
matching matrix M ∈ Rn×n for n cells, the matching probability score is computed as,

1

n

n∑
row=1

n∑
col=1

Mrow, col · 1
{

row = true-match(col)
}

Additionally, we measure the top-K matching accuracy, which quantifies the accuracy of matching
the top score in the rows/columns of M with the correct cell pairings, given as,

1

2n

(
n∑

row=1

1

{ K⋃
k=1

top-k(row) = true-match(row)
}
+

n∑
col=1

1

{ K⋃
k=1

top-k(col) = true-match(col)
})

Implementation: We implemented MATCHCLOT using PyTorch [16] and conducted the experi-
ments on NVIDIA Tesla P100 GPU and POWER9 CPU. The labeled CITE-seq and Multiome data
was split into two sets according to the batch labels for method validation (1 batch) and training
(8-9 batches). The model and training hyperparameters were optimized using Wandb [2], a bayesian
hyperparameter optimization library. The comprehensive list of hyperparameters are provided in the
Appendix Tab. 2.

Quantitative analysis: The matching probability scores of MATCHCLOT and the competing meth-
ods for five modality matching subtasks, i.e., GEX2ATAC, ATAC2GEX, ADT2GEX, GEX2ADT, and
Overall, is presented in Table 1. Team CLUE and Team Novel ranked first and second, respectively,
among a total of 462 submissions from 23 teams, across all the subtasks in the NeurIPS challenge.
scMoGNN [21] is a post-challenge method that outperformed the winners. MATCHCLOT achieved
the state-of-the-art scores for all the subtasks and improves over scMoGNN by 28.9% for the overall
matching score. For the top-5 matching accuracy, MATCHCLOT produced 0.2226 compared to
0.0720 by scMoGNN, an improvement of 209%. We note that, as scMoGNN follows a hard-matching
approach, the competition score and the top-5 matching accuracy of their predictions are identical.
This significant gain demonstrates the superiority of the matching matrix M, where the paired cellular
profiles appear among the top-5 probability scores across the rows and the columns. Noticeably,
MATCHCLOT is independent of the sequence of the modality matching task, i.e., GEX2ATAC &
ATAC2GEX, and ADT2GEX & GEX2ADT are the same, similar to Team Novel and scMoGNN.
Table 1: Cell-level modality matching scores for competing methods. Task-wise best results in bold.

ATAC2GEX GEX2ATAC GEX2ADT ADT2GEX Overall

M
et

ho
ds

Random 0.0000 0.0000 0.0001 0.0001 0.0001
Team Novel 0.0412 0.0412 0.0373 0.0373 0.0392
Team CLUE 0.0583 0.0560 0.0495 0.0516 0.0539
scMoGNN 0.0630 0.0630 0.0810 0.0810 0.0720
MATCHCLOT (ours) 0.0755 0.0755 0.1100 0.1100 0.0928

A
bl

at
io

n
(o

ur
s)

Baseline 0.0412 0.0412 0.0373 0.0373 0.0392
+ Hyperparams 0.0501 0.0501 0.0425 0.0425 0.0463
+ OT matching 0.0504 0.0504 0.0431 0.0431 0.0467
+ Batch label 0.0676 0.0676 0.0975 0.0975 0.0826
+ Entropic OT 0.0740 0.0740 0.1055 0.1055 0.0897
+ Transductive 0.0751 0.0751 0.1093 0.1093 0.0922
+ Harmony 0.0755 0.0755 0.1100 0.1100 0.0928

Table 1 also presents the ablation studies of our method in an incremental order of different compo-
nents for all the subtasks. The baseline refers to the method by Team Novel, on which MATCHCLOT
is built on. MATCHCLOT improved over the baseline by 18.1% via thorough hyperparameter tuning.
Utilizing the batch labels rendered the largest gain of 76.9%. Further gains of 8.6% and 2.8% in
matching score were achieved via entropic regularization and differentiable OT, and transductive
learning, respectively. Though the OT matching did not contribute to the matching score, it signifi-
cantly improved the computation time and memory usage (Appendix Fig. 2). We quantified these
gains on M ∈ R15066×15066 over five runs for GEX2ADT subtask. Team Novel discarded 99.5% of
the edges in M during maximum weight bipartite matching to render a computation time and memory
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usage of ∼125 seconds and 12GB, respectively, compared to OT using 100% of the edges within 50
seconds and 16GB. For equal memory constraint, Team Novel required to discard 95% of the edges.
Although discarding small values in M works well in this task, in different contexts it might inhibit
the performance by ignoring valuable information.

4 Conclusion and Future work

In this work, we proposed a solution for matching modalities across multimodal single-cell data. Our
method MATCHCLOT utilizes optimal transport, contrastive and transductive learning and achieves
the state-of-the-art performance, while being significantly more efficient in terms of computational
time and memory usage. A key challenge in our solution is to define reasonable data augmentations
of single-cell omics, which is crucial for contrastive learning[4]. Future works in this direction
can address this challenge, and explore the recent advances in contrastive learning techniques and
investigate powerful encoding models, e.g., transformer-based encoders, to potentially improve the
results along with identifying interpretable omics information utilized by the model.
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A Appendix

Hyperparameter values:

Table 2: Best hyperparameter configurations for the modality matching model found with bayesian
optimization. The batch size was set without using bayesian optimization.

Hyperparameter Search space GEX2ATAC GEX2ADT

LSI dim mod1 {64, 96, 128, 192, 256, 384, 512} 192 192
LSI dim mod2 {64, 96, 128, 192, 256, 384, 512} 256 134

Encoder hidden dim mod1 {128, 256, 512, 1024, 2048, 4096}2 (2048, 1024) (256, 2048)

Encoder hidden dim mod2 {128, 256, 512, 1024, 2048, 4096}2 (2048) (4096, 2048)
Embedding dim {128, 256, 512, 1024} 128 256

Dropout rates mod1 [0.0, 0.7]
2

(0.34, 0.47) (0.3, 0.05)

Dropout rates mod2 [0.0, 0.7]
2

(0.67) (0.4, 0.2)
Initial temperature log τ [1.0, 5.0] 2.74 4.0
Learning rate

[
10−6, 10−3

]
6 · 10−4 1.75 · 10−4

Weight decay
[
10−6, 10−3

]
1.25 · 10−4 2 · 10−4

Batch size* - 16384 16384

Efficiency benchmarking for optimal transport matching:

(a) (b)

Figure 2: Comparison of computation time (a) and memory usage (b) between the baseline method
using max-weight bipartite matching (baseline - blue) and OT matching (MATCHCLOT - orange)
for different proportions of retained matching edges.
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