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Abstract

The popularity of transformer-based text em-
beddings calls for better statistical tools for
measuring distributions of such embeddings.
One such tool would be a method for ranking
texts within a corpus by centrality, i.e. assign-
ing each text a number signifying how repre-
sentative that text is of the corpus as a whole.
However, an intrinsic center-outward ordering
of high-dimensional text representations is not
trivial. A statistical depth is a function for
ranking k-dimensional objects by measuring
centrality with respect to some observed k-
dimensional distribution. We adopt a statistical
depth to measure distributions of transformer-
based text embeddings, transformer-based text
embedding (TTE) depth, and introduce the prac-
tical use of this depth for both modeling and dis-
tributional inference in NLP pipelines. We first
define TTE depth and an associated rank sum
test for determining whether two corpora differ
significantly in embedding space. We then use
TTE depth for the task of in-context learning
prompt selection, showing that this approach
reliably improves performance over statistical
baseline approaches across six text classifica-
tion tasks. Finally, we use TTE depth and the
associated rank sum test to characterize the dis-
tributions of synthesized and human-generated
corpora, showing that five recent synthetic data
augmentation processes cause a measurable dis-
tributional shift away from associated human-
generated text.

1 Introduction

The transformer architecture (Vaswani et al., 2017)
has revolutionized the field of natural language pro-
cessing (NLP). Generalized transformer-based text
embedding models such as S-BERT (Reimers and
Gurevych, 2019) and GenSE+ (Chen et al., 2022)
have yielded state of the art performance results
on a variety of tasks such as natural language in-
ference (NLI) (Williams et al., 2018) and semantic
textual similarity (STS) (Cer et al., 2017). The

Figure 1: TTE depth gives a center-outward ordering
of texts within a corpus using their representations in
embedding space. This statistical tool can be used in
modeling tasks and inference tasks. Examples from
the Microsoft Research Paraphrase Corpus (Dolan and
Brockett, 2005) demonstrate that representative samples
from the corpus receive high depth scores and outliers
receive low depth scores.

goal of these models is to provide a semantically-
meaningful, extrinsically-capable vector represen-
tation for a given text document of any length.
However, these representations do not immedi-
ately provide a natural ordering or notion of cen-
ter with respect to a corpus distribution, which
would aid in tasks like outlier detection (see Fig-
ure 1). Many transformer-based NLP pipelines
would benefit from such a center-outward ordering
of texts within a corpus and related statistical infer-
ence, for example prompt selection for in-context
learning (Gao et al., 2020) or characterizing distri-
butional differences between embeddings of texts
from two corpora (Pillutla et al., 2021). An intrin-
sic notion of centrality (i.e. representation with
respect to the corpus distribution) and outlyingness
in k-dimensional embedding space is not trivial.

A statistical depth is a function for ordering
multidimensional objects with respect to some ob-
served distribution. Depths have been defined for



functional data (López-Pintado and Romo, 2009),
directional data (Pandolfo et al., 2018), and statisti-
cal representations of text data (Bolívar et al., 2023).
In addition to offering an ordering for a single col-
lection of multidimensional objects, a statistical
depth also enables testing for significant differences
between two distributions of such objects. We in-
troduce a statistical depth for Transformer-based
Text Embeddings, TTE depth, which provides a
center-outward ordering of texts within a corpus
based on the distributional properties of the texts in
embedding space. A diagram of this tool is given
in Figure 1. While there exist approaches for char-
acterizing corpus distributions such as perplexity
(Holtzman et al., 2019) and more recent approaches
like MAUVE (Pillutla et al., 2021), TTE depth is
an orthogonal statistical tool that gives an intuitive
centrality ranking for use in both modeling and dis-
tributional inference in NLP pipelines. We investi-
gate the use of depth in both modeling, via the task
of prompt selection for in-context learning, and
distributional characterization, via measuring the
distributional differences between synthetic data
and human-written data in synthetic data augmen-
tation pipelines. The specific contributions of this
work are as follows.

• We introduce the use of statistical depth for
transformer-based text embeddings by defin-
ing an angular distance-based depth for giv-
ing a center-outward ordering of transformer-
based embeddings of texts within a given cor-
pus. We call this depth transformer-based
text embeddings (TTE) depth. Alongside TTE
depth we introduce the use of a Wilcoxon rank
sum test for determining whether two sets of
transformer-based embeddings can reasonably
be assumed to come from significantly differ-
ent distributions. This test allows researchers
to both characterize distributional shifts be-
tween corpora and determine whether such a
shift is significant. As the goal of this work is
to introduce TTE depth as a useful new tool
in both modeling and distributional inference,
we release a simple python package1 to facili-
tate the use of TTE depth in NLP pipelines.

• To demonstrate the potential of TTE depth in
NLP modeling tasks, we use TTE depth as a
ranking for the task of prompt selection for
in-context learning across various text clas-

1https://github.com/pkseeg/tte_depth

sification tasks. Prompt selection is the task
of selecting representative examples from a
labeled training dataset to prompt a large lan-
guage model (LLM) for labeling an unseen
test sample (Gao et al., 2020). We show that
ranking via TTE depth improves F1 perfor-
mance over statistical baselines in 5 out of 6
text classification tasks.

• As TTE depth is also a statistical inference
tool for characterizing corpus distributions,
we use it to measure the differences between
the embedding distributions of 5 human-
written datasets and related synthetically aug-
mented datasets. Measuring the distance be-
tween human-written and synthetic corpora
is a critical problem in the era of LLMs (Pil-
lutla et al., 2021). We show that TTE depth
can reliably determine when human-written
and synthetic corpora differ significantly, and
thoroughly investigate a case study using the
synthetic natural language inference corpus,
SyNLI (Chen et al., 2022).

2 Related Works

2.1 Distributional Characterization of Text
Embeddings

A common task in NLP pipelines is to characterize
text documents using text metrics, either for error
analysis or other research purposes (Hansen et al.,
2023). Many statistical linguistics-based metrics
exist, such as perplexity (Holtzman et al., 2019)
or the Flesch reading ease metric (Hansen et al.,
2023), which measures the reading comprehension
level of a given document. While most existing
metrics are focused on text-level statistics, a few
tools exist for comparing transformer-based text
embeddings and other deep learning embeddings.

Recent work has defined out-of-distribution sam-
ples for image classification (Kaur et al., 2023). Ad-
ditionally, distributional shifts of machine learning
training data have been studied using classifier two-
sample tests (Jang et al., 2022). While our work
similarly measures distributions of deep learning
model inputs, we focus on a statistical approach for
transformer-based text embeddings.

A recent tool similar to TTE depth is MAUVE
(Pillutla et al., 2021), an approach to measuring
distributions of LLM-generated texts using diver-
gence frontiers. While similar in goal, MAUVE
and TTE depth differ in that TTE depth is a tool



for ordering text embeddings rather than measuring
token distributions of text itself.

Coincidentally, MAUVE is built using Kullback-
Leibler (KL) divergence (Joyce, 2011), a statistical
method for pairwise comparison of distributions,
suitable for text embeddings. While several pair-
wise comparison tools such as KL divergence exist
for comparing text embeddings, as far as we are
aware TTE depth is the first tool of its kind for
providing corpus-level measures of centrality and
spread in transformer-based text embedding space.

2.2 Depths for Multidimensional Data Objects

Statistical depth is a tool for characterizing sets of
multidimensional objects. Depth measures assign
each object in a set a measure of centrality with
respect to the observed distribution of the set, thus
an interpretable center-outward ordering. Depth
has been applied to measure a variety of multi-
dimensional data (Dai et al., 2022). As angular
measures of text embeddings are often used to de-
scribe how texts are related, depths for directional
data are particularly relevant to our work. Recently
depths have been defined for and applied in direc-
tional data (Pandolfo et al., 2018; Pandolfo and
D’Ambrosio, 2021). While depth has shown to
be an effective, interpretable method of endow-
ing multidimensional distributions with notions of
centrality and outlyingness, we are the first to use
statistical depth for transformer-based embeddings
of text data.

Perhaps most similar to our goal is a recent work
which defines compositional depth, a depth for text
corpora in which an inverse Fourier transform is
applied to the tf-idf embeddings of texts within a
corpora and a statistical depth for functional data
is used for ranking (Bolívar et al., 2023). The au-
thors use this depth for classification of health texts,
showing comparable performance to other statisti-
cal text classification methods. While our work is
similar in that we are applying a notion of depth to
text embeddings, (as far as we are aware) we are
the first to apply statistical depth to transformer-
based text embeddings and to highlight use cases
of such a depth measure in modern NLP pipelines.

3 Transformer-based Text Embedding
Depth

Angular distance properties of text embeddings,
such as high cosine similarity between embed-
dings of two similar texts, are often sought as a

desired property of such embeddings (Reimers and
Gurevych, 2019). As such, we utilize an angular
distance-based depth for our investigation. A class
of angular distance-based depths for directional
data was first introduced by (Pandolfo et al., 2018),
and later used by (Pandolfo and D’Ambrosio, 2021)
for classification of directional data. Leaning on
two depth definitions as introduced there we de-
fine a depth for transformer-based text embeddings,
TTE depth.

TTE depth: Consider a set of embedded texts
F derived from the theoretical set of all possible
such documents S, each embedded by some text
embedding model M : S → Rk which embeds
texts into vectors of length k. Given a bounded
distance δ(·, ·) : Rk × Rk → R, the TTE depth
of an embedded text x ∈ F with respect to F is
defined as

Dδ(x,F) := 2− EF [δ(x,H)] (1)

where H ∼ F is a random variable with uni-
form distribution over F . Note that while M could
be any text embedding model, in this work we
specifically investigate transformer-based embed-
ding methods. TTE depth can be used in conjunc-
tion with two bounded distance functions.

The cosine distance δcos(·, ·) between two em-
bedded text documents x, y ∈ F is well explored
as a tool for examining pairwise relationships be-
tween transformer-based text embeddings (Sunilku-
mar and Shaji, 2019). It is defined as

δcos(x, y) := 1− x · y
∥x∥∥y∥

(2)

For any two embedded texts x, y ∈ F , the chord
distance δch(·, ·) between the two is defined as

δch(x, y) :=
√

2(1− x′y) (3)

While we primarily investigate TTE depth using
cosine distance, either cosine distance or chord
distance can be used for calculating TTE depth.

Using either distance function, we define the
median of F , denoted x0, to be the text embed-
ding in F with maximum depth. In other words,
max
x∈F

Dδ(x,F) = Dδ(x0,F). TTE depth produces

this well-defined median at the center of the set of
text embeddings F . Ordering the text embeddings
in F by TTE depth gives a center-outward ranking
of all text embeddings within a corpus.

Wilcoxon Rank Sum Test: As TTE depth gives
an ordering to a corpus of text embeddings, we



can use an existing rank sum test for determining
whether the embeddings of two corpora differ sig-
nificantly. Existing applications of depth utilize the
Wilcoxon rank sum test generalized to multivariate
data through the order induced by a depth function
(López-Pintado and Romo, 2009; Liu and Singh,
1993); we follow these works in our definitions.

Suppose we have two corpora, and the sets of the
embeddings in Rk of texts within these corpora are
given by F and G. We wish to determine whether it
is unlikely that G comes from the same distribution
as F . For a given text embedding y ∈ G, we first
define R(y, F ) as the fraction of the F population
which is "less central" to F than the embedding
y. That is, let X ∼ F be a random variable with
uniform distribution over F and define

R(y, F ) = Pr[Dδ(X,F ) ≤ Dδ(y, F )] (4)

This roughly measures how central a given text
embedding y ∈ G is with respect to text embed-
dings in F . For example, if R(y, F ) is low, then
a large portion of the text embeddings in X are
more central to F than y, indicating that y is an
outlier with respect to F . Next we use R(y, F ) to
define the Q parameter to gauge the overall "outly-
ingness" of the G text embeddings with respect to
F . Let X ∼ F and Y ∼ G be independent random
variables with uniform distributions over F and G,
and define

Q(F,G) = Pr[Dδ(X,F ) ≤ Dδ(Y, F )] (5)

Since R(y, F ) is the fraction of the F corpus
which is "less central" to F than the value y,
Q(F,G) is the average of such fractions over all
y’s from the G corpus. This means that Q allows us
to characterize and quantify how two corpora differ
in embedding space. When Q < 1

2 , it means on
average more than 50% of the F corpus is deeper
than text embeddings Y from G, indicating Y is
more outlying than X with respect to F , hence an
inconsistency between F and G.

We use the Q parameter to test whether two sets
of embedded texts F and G are likely to come from
the same distribution. (Liu and Singh, 1993) pro-
pose a Wilcoxon rank sum test for the hypothe-
ses HO : F = G versus Ha : Q < 1

2 . Let
X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} be
samples of text embeddings from F and G, respec-
tively. A sample estimate of Q is Q(Fm, Gn) =

1
n

n∑
i=1

R(yi, Fm), where R(yi, Fm) is the propor-

tion of xj’s having Dδ(xj , Fm) ≤ Dδ(yi, Fm). In
other words, Q(Fm, Gn) is the average of the ranks
of yi’s in the combined sample X ∪ Y . If this sam-
ple estimate is low, we consider the likelihood that
the samples X and Y come from the same distri-
bution of text embeddings to be low, and say that
it is instead likely that F and G differ significantly.
As empirically shown in (Liu and Singh, 1993), the
null distribution of W = [Q(Fm, Gn)−Q(F,G)]

is approximated by N (0,
1
m
+ 1

n
12 ), and a Z test can

be used from there. We give a detailed example of
how to interpret the Q parameter and the Wilcoxon
rank sum test in Section 5.2.

4 Methods

To investigate the usefulness of TTE depth as both
a modeling and distributional inference tool, we
perform several experiments. We first develop an
intuition as to how many texts should be sampled
from a population to ensure quality TTE depth
results, and use this intuition throughout our evalu-
ation. Next, we explore the use of TTE depth as a
ranking technique for in-context learning prompt
selection across six classification tasks. Finally, we
use TTE depth and the associated rank sum test to
examine the distributional differences between five
{human-written dataset, synthesized dataset} pairs.

4.1 Sample Size Recommendations

We wish to develop an intuitive understanding of
how many samples are required for consistent TTE
depth measures, estimates of the Q parameter, and
Wilcoxon rank sum test results. While it is theoret-
ically possible to obtain these metrics with access
to full corpora, we choose to investigate sampling
techniques for two reasons. First, as TTE depth re-
quires a pairwise distance comparison across a cor-
pus, it becomes computationally intractable to rank
each text within a large corpus. Second, there ex-
ist situations in which obtaining exorbitantly large
samples of two corpora for comparison is expensive
or time-consuming, for example, engineers who
wish to measure a distributional shift in responses
of a deployed LLM. Hence, we are interested in
how many samples n are required from two corpora
F and G in order to get a good estimate Q(Fn, Gn)
for Q(F,G), thus a good TTE depth measurement.

We run a simulation study on the Wilcoxon rank
sum test for corpora on the order induced by TTE



depth. We use the natural language inference (NLI)
corpus (Bowman et al., 2015) and an associated
synthetic NLI (SyNLI) corpus (Chen et al., 2022)
for this study. We sample 5,000 texts from each
of the NLI and SyNLI corpora pair and treat them
as the population corpora F and G, respectively.
We then embed each text in each population cor-
pus using S-BERT, a popular general-purpose text
embedding model (Reimers and Gurevych, 2019)2.
We then use the order induced by TTE depth to
compute the “true” Q parameter of these popula-
tions, Q(F,G). To empirically determine a good
sample size n to draw from F and G for estimating
Q(F,G) with Q(Fn, Gn), we iterate over sample
sizes n ∈ {5, 25, 50, 100, 500}, randomly draw
samples of size n from F and G, and compute
Q(Fn, Gn) 20 times. We are interested in whether
the distribution of Q(Fn, Gn) accurately represents
the true value of Q(F,G) consistently with differ-
ent sample sizes.

Figure 2: Comparison of Q(Fn, Gn) estimates for dif-
ferent values of n. As expected, we see the center
of each sample distribution centered around the true
Q(F,G). Additionally, we see the spread of the dis-
tribution of Q(Fn, Gn) estimates decreases as sample
sizes increases. As the distribution of Q(Fn, Gn) with
n = 500 has low variance, we henceforth use n = 500
for estimating Q(F,G) in the Wilcoxon rank sum test.

The true value of Q(F,G) was found to be
0.4118. We can see the sample distributions of
Q(Fn, Gn) for different values of n in Figure 2. As
expected, each of the distributions of Q(Fn, Gn)
estimates is centered around Q(F,G), and the
spread of the sample distribution decreases as the

2While TTE depth can be used in conjunction with any text
embedding model and either bounded distance, we use only
S-BERT and cosine distance in our evaluations for simplicity.
A comparison of different embedding models and bounded
distances is provided in Appendix A.1.

sample size increases. We note that the distribution
of Q(F500, G500) estimates has a standard devia-
tion of just 0.009, indicating low variance around
the true value of Q(F,G) = 0.4118 while run-
ning in a reasonable amount of time. We propose
that n = 500 is a good enough sample size to test
for significantly different distributions of two suffi-
ciently large embedded corpora using the Wilcoxon
rank sum test on the order induced by TTE depth,
and we sample n = 500 texts from each corpus for
the evaluations in this work.

4.2 In-Context Learning Prompt Selection

In-context learning (ICL) is a recent paradigm used
for few-shot NLP tasks. In text classification it
involves prompting a pre-trained LLM to assign
a label to an unseen input after being given sev-
eral examples (Gao et al., 2020). Recent work has
investigated prompt selection, i.e. the task of select-
ing representative examples from a labeled training
dataset to prompt a LLM for labeling an unseen
test sample (Gao et al., 2020). We propose the
use of TTE depth for the task of prompt selection
in a model-agnostic setting. Exploration into ICL
has shown that an important component of ICL
prompting is the inclusion of in-distribution texts
in the ICL prompt (Min et al., 2022). We hypoth-
esize that texts which better represent the corpus
distribution, i.e. texts with higher TTE depth, will
improve downstream ICL performance. Since TTE
depth is a statistical ranking procedure, we do not
compare extrinsic results against existing models
for prompt selection. Instead, we extrinsically eval-
uate test two TTE depth-based rankings against
two naive statistical baseline rankings across six
text classification tasks.

Random (RAND) ranking simply randomly shuf-
fles the training dataset, after which the first N texts
are used as ICL examples for prompt selection.

Label Distribution Match (LDM) ensures that the
label distribution of the training dataset is matched
by the selected ICL examples. For each label oc-
cupying l% of the training data label space, after
applying a random shuffle the first N · l% texts
with that label are selected as ICL examples. This
ranking attempts to ensure that the LLM is able to
accurately infer the label distribution of the training
data through the ICL examples.

Depth (DEEP) ranking ranks all embedded texts
by their TTE depth. The N deepest texts are then
selected as ICL examples.



Depth with Label Distribution Match (DLDM)
ranking is a combination of both the DEEP and
LDM techniques. This ranking first ranks all em-
bedded texts by their TTE depth. Then, the same
selection strategy as the label distribution match
ranking is used. Hence, the N · l% deepest texts
for each label are selected as ICL examples.

We compare ranking methods across six text
classification tasks. The Corpus of Lingustic
Acceptability (COLA) (Warstadt et al., 2018),
Microsoft Research Paraphrase Corpus (MRPC)
(Dolan and Brockett, 2005), Stanford Sentiment
Treebank (SST2) (Socher et al., 2013), and Recog-
nizing Textual Entailment (RTE) (Bentivogli et al.,
2017) tasks are selected from the GLUE bench-
mark (Wang et al., 2019). The final 2 tasks, the
tweet hate speech detection (THATE) (Basile et al.,
2019) and tweet offensive language identification
(TOFF) (Zampieri et al., 2019) tasks are both tweet
classification tasks.

For each task, we randomly sample 500 texts
from the training corpus to represent the labeled
training dataset for prompt selection. We embed
each of these texts (for pairwise tasks we embed
a joined version of the two texts) using S-BERT.
Next, we rank each embedded text according to
each of the 4 baseline and TTE depth-based ranking
strategies described. The N ICL examples given
by each ranking strategy are then used to create the
ICL prompt. We use this prompt to query ChatGPT,
a popular LLM which has been shown to offer good
performance across several ICL text classification
tasks (Ray, 2023), to label each evaluation text
in the evaluation corpus of each task. After post-
processing ChatGPT output, results are recorded
for each ranking strategy and are averaged over
three values of N for each task.

4.3 Distributional Characterization of
Synthesized Training Datasets

The theory of data synthesis for training or fine-
tuning language models is straight-forward: more
data is good for learning, and synthesized data is
cheaper and more accessible than human-generated
and human-labeled data (He et al., 2022). How-
ever, most data synthesis techniques report only
extrinsic evaluations of the synthesized data, i.e. an
increase in F1 on hidden evaluation data. Intrin-
sic evaluations, such as the distributional effects of
synthesizing training samples for augmenting NLP
datasets, require further exploration (Pillutla et al.,

2021). Specifically, we’re interested in whether
synthesized training texts across various NLP tasks
are significantly different from their human-written
training text counterparts in embedding space. We
use TTE depth to investigate the following synthe-
sis strategies.

Inversion, Passivization, and Combination are
NLI sample synthesis techniques involving swap-
ping the subjects and objects of sentences in the
origin dataset, taking active verbs in sentences and
converting them to passive verbs, and both simul-
taneously (Min et al., 2020). These synthesized
samples are obtained by inverting samples from the
Multi NLI (MNLI) corpus from the GLUE bench-
mark (Williams et al., 2018), hence we use TTE
depth to measure the distributional shift of the in-
verted corpus against MNLI in embedding space.
To embed sentence pair samples in the NLI task,
we join them and embed them afterwards.

SyNLI is a dataset of synthetic NLI samples
generated using a generator/discriminator model
trained on the NLI corpus (MNLI + Stanford NLI
corpus (Bowman et al., 2015)) to synthesize sen-
tence pairs (Chen et al., 2022). SyNLI sentence
pairs are generated using T5, a popular open-
source LLM (Raffel et al., 2020), and are com-
pared against samples from NLI in our TTE depth
analyses.

SRQA-AUTO is a dataset of stories involving
spatial relationships between objects and spatial
reasoning questions corresponding to the stories
(Mirzaee et al., 2021). In SRQA-AUTO the stories
are generated from image captions using context-
free grammars (CFGs) and a rule base is used to
generate the corresponding spatial reasoning ques-
tions. In our evaluation, SRQA-AUTO is com-
pared against the SRQA-HUMAN dataset contain-
ing human-written {story, question} pairs. Samples
in SRQA-AUTO and SRQA-HUMAN are embed-
ded by joining story and question pairs and embed-
ding the resulting text, and these embeddings are
used in our TTE depth analysis.

For each training data synthesis technique, we
use TTE depth to rank a sample of 500 synthesized
texts and 500 texts from the corresponding human-
written corpus. We compare the depth-induced
distributions intuitively, reporting the TTE depth of
the median of the human-written text (Med Human)
and the synthesized text (Med Synth) with respect
to the human-written embedding distribution. We
then use the Wilcoxon rank sum test on the order



induced by TTE depth to compare the distributions
statistically, testing whether the human-written and
synthesized corpora differ significantly in embed-
ding space and giving Q estimates, W statistics,
and p values. We further detail one analysis, ex-
amining the Q measure of outlyingness obtained
through TTE depth and discussing what it means
for the synthesis technique to produce more outly-
ing texts than the human-written corpus.

5 Results and Discussion

5.1 TTE Depth for In-Context Learning
Prompt Selection

Prompt selection for ChatGPT is a task with a black
box evaluation setting due to opaque training pro-
cesses, hence ICL results can be somewhat random
(Ji et al., 2023). However, we hypothesize that
since TTE depth will lead to prompts which are
more representative of the labeled training dataset,
on average these prompts should lead to better in-
context tuning for LLMs such as ChatGPT.

Results of the prompt selection evaluation de-
scribed in Section 4.2 are displayed in Table 1. We
report average F1 scores across N = {5, 8, 11}
samples selected using each ranking strategy. We
use McNemar’s test to determine whether depth-
based strategies significantly outperform baselines
(McNemar, 1947). For each of the depth-based
strategies, we report whether the results were sta-
tistically significantly better than each of the base-
line strategies (p < 0.05) using the notation (Y/N)
for whether the results were significantly better
than the RAND and LDM baselines, respectively.
Across the six text classification tasks, TTE depth-
based ranking strategies outperform the naive base-
lines in five tasks and the DLDM ranking outper-
forms all other ranking strategies on average. Addi-
tionally, the DLDM ranking strategy outperforms
both baselines on average. In 9 of the 24 pairwise
comparisons (including all 8 across the 2 social me-
dia tasks) the performance of depth-based ranking
strategies is statistically significantly better than
baseline approaches.

5.2 Distributional Characterization of
Synthesized NLP Training Datasets

Results of our analysis are found in Table 2. As
described in Section 4.3, we give the median
depth values of each human-generated and syn-
thetic corpus, along with Q parameter estimates,
the Wilcoxon rank sum test statistic W , and the

associated p-value. According to the Wilcoxon
rank sum test on the order induced by TTE depth,
all of the training sample synthesis techniques we
evaluate produce a significantly different distribu-
tion of texts in embedding space. This indicates
that some aspect of each synthesis process causes
the synthesized training samples to be either gener-
ally more central or more outlying than the origin
training samples. Within the NLI task, the SyNLI
synthetic dataset results in the lowest Q estimate,
indicating that it is the furthest in embedding space
from its origin dataset. This result is intuitive–the
other three NLI synthesis strategies simply result
in transposed versions of the original text, whereas
the SyNLI text samples are entirely new samples
generated by an LLM. We briefly focus on this test
as a thorough example of using TTE depth as a
corpus analysis tool.

Figure 3: Comparison of TTE depth distributions of
samples from the NLI and SyNLI datasets, with re-
spect to the NLI embedding distributions. The NLI and
SyNLI corpora are differ significantly according to the
Wilcoxon rank sum test, hence the synthesis process
used to generate samples in the SyNLI dataset signifi-
cantly shifts the distribution away from the NLI corpus.

Examining row 4 of Table 2 we find that the TTE
depth ranking of SyNLI texts with respect to the
distribution of NLI texts results in a Q estimate of
0.4064. A direct interpretation of this parameter
means that, on average, texts from the SyNLI cor-
pus are more central (i.e. closer to the TTE depth
median of the NLI corpus) than only 40.64% of the
the texts in the NLI corpus. As described in Section
3, a Q parameter this low indicates that the texts in
the SyNLI corpus mark a clear distributional shift



Task Random Label Distribution Match Depth-First
Depth-First

Label Distribution Match
COLA 0.8164 0.8094 0.8166 (N/N) 0.8220 (N/Y)
MRPC 0.7166 0.7250 0.7334 (N/N) 0.6841 (N/N)
SST2 0.9486 0.9514 0.9518 (N/N) 0.9414 (N/N)
RTE 0.6366 0.7352 0.4413 (N/N) 0.7258 (N/N)

THATE 0.6039 0.6629 0.7072 (Y/Y) 0.7009 (Y/Y)
TOFF 0.7361 0.7189 0.7461 (Y/Y) 0.7411 (Y/Y)
AVG 0.7431 0.7671 0.7332 0.7692

Table 1: Results of the TTE depth-based naive ranking strategies across the six text classification tasks. The
TTE depth-based ranking strategies outperform the naive baselines in 5 of the 6 tasks, and the DLDM ranking
outperforms all other ranking strategies on average.

Human Corpus Synth Corpus Med Human Med Synth Q W p

MNLI Inversion 1.0431 1.0397 0.4751 2.67 0.0077
MNLI Passivization 1.0431 1.0408 0.4771 2.45 0.0142
MNLI Combination 1.0431 1.0397 0.4785 2.30 0.0214
MNLI + SNLI SyNLI 1.0339 1.0175 0.4064 10.19 < 0.0001
SRQA-HUMAN SRQA-AUTO 1.8459 1.7756 0.3131 20.36 < 0.0001

Table 2: Embedded depth and Wilcoxon rank sum test results comparing human-written and synthesized data across
five data synthesis techniques. For each test, a sample of 500 texts was taken from each of the origin and synthesized
training datasets. Each text was embedded using S-BERT, and a Wilcoxon rank sum test on the order induced by
embedded depth was performed. For each test, the Q(F500, G500) estimate is given, along with the corresponding
W statistic and associated p-value. A low p-value indicates that it is unlikely the origin and synthesized datasets are
drawn from the same distribution in embedding space.

away from the NLI corpus.

We can see this distribution shift graphically in
Figure 3, where the distributions of TTE depths for
the randomly sampled SyNLI texts and NLI texts,
with respect to the NLI texts, are separated. This
indicates that the synthesis technique used to create
the SyNLI corpus produces texts which are distant
from the texts in the human-written NLI corpus,
as measured by cosine similarity between S-BERT
embeddings. This distributional shift can be seen
in the Q parameter as well as the centers of the
TTE depth distributions: the median depth of the
NLI texts (1.0339) is higher than the median depth
of the SyNLI texts (1.0175). This shift could cause
unintended consequences if the SyNLI corpus were
to be treated equally with the human-written NLI
corpus in downstream applications.

TTE depth and the associated Wilcoxon rank
sum test have the potential to be useful in both
modeling and distributional inference tasks. TTE
depth allows NLP researchers and practitioners to
measure distributional properties of corpora such as
center and spread, as well as compare distributions
of corpora in embedding space.

6 Limitations and Future Work

As defined in Section 3, TTE depth depends on
text embedding models which produce embeddings
with desired spatial relationships. This assumption
holds for most popular text embedding models, in-
cluding those used in this work. However, text
vectorizations which do not claim this property,
such as tf-idf, are not suitable for use in TTE depth.
Additionally, TTE depth at its core is a dimension-
ality reduction method that produces a single in-
terpretable dimension along which texts can be
measured. We note that no matter how the dimen-
sionality of text embeddings is reduced, there will
always be some amount of information loss. While
the single dimension and intuitive center-outward
ordering given by TTE depth is useful for many
tasks, it may not be appropriate as a one-size-fits-all
approach to distributional inference and is meant to
be used in conjunction with other statistical tools
for a full picture of embedding space properties.

Future work may use TTE depth for a variety of
NLP modeling and inference tasks. Modeling tasks
may include the use of TTE depth to select repre-
sentative documents to facilitate hierarchical multi-



document summarization (Fabbri et al., 2019). In-
ference tasks could include the use of TTE depth to
investigate outlying documents in domain-specific
corpora, such as research in anomaly detection in
social media posts (Guha and Samanta, 2021).

7 Conclusion

In this work we have introduced TTE depth, a novel
approach to measure distributions of transformer-
based text embeddings which endows corpora with
intuitive notions of center and spread. TTE depth
gives a center-outward ordering of texts within
a corpus based on the texts in embedding space.
We have defined TTE depth and an associated
Wilcoxon rank sum test for discovering significant
differences between pairs of corpora. To demon-
strate the use of TTE depth in modeling, we have
used TTE depth as a ranking for the task of prompt
selection, showing good performance across a va-
riety of text classification tasks. Additionally, we
have shown the usefulness of TTE depth for char-
acterizing distributional properties of corpora by
investigating the embedding distributions of source
and synthetic datasets in several synthetic data aug-
mentation pipelines. TTE depth is a useful, novel
tool for both modeling and distributional inference
in modern transformer-based NLP pipelines.
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A Appendix

A.1 Comparison of Embedding Models and
Bounded Distances

While in our evaluations, we investigate TTE depth
using only S-BERT, we also provide an investiga-
tion of TTE depth under different embedding mod-
els here. We also further investigate TTE depth
using chord distance, in addition to cosine distance.
To test whether Q estimates vary across embed-
ding models and distance functions, we use the
SyNLI and NLI corpora pair as in 4.1. For each
embedding model and distance function, we sam-
ple 100 texts from each of the SyNLI and NLI cor-
pora, compute embeddings using the embedding
model, and compute TTE depth using the distance
function 20 times. As in our sample size analy-
sis, we are interested in whether the distribution of
Q(F100, G100) estimates varies depending on the
embedding method and distance function used. In
addition to the 2 bounded distances (cosine and
chord distance), we compare 4 popular embedding
models.

Sentence BERT (S-BERT) is a popular general-
purpose text embedding model which is trained
using a triplet network structure (Reimers and
Gurevych, 2019). To get a sense of whether the size
of the embedding model matters for TTE depth re-
sults, we use both S-BERT base and S-BERT large.

SimCSE is a text embedding model trained on
labeled NLI datasets with a contrastive learning
objective to learn a general text embedding model
(Gao et al., 2021). At the time of publication, Sim-
CSE achieved SOTA results on semantic textual
similarity (STS) benchmarks. We utilize both the
BERT-based and RoBERTa-based SimCSE models
in our analysis.

GenSE+ is a text embedding method trained in
part using the SyNLI dataset we use for TTE depth
analysis (Chen et al., 2022). Upon release, GenSE+
achieved SOTA performance on STS benchmarks,
making it a good embedding model for use in TTE
depth analysis.

MPNET uses a novel masked and permuted pre-
training method for developing a text embedding
model (Song et al., 2020). MPNET reports SOTA
performance on a variety of downstream tasks.

Table 3 shows the mean and standard devia-
tion of 20 Q(F100, G100) estimates on the order
induced by TTE depth across different bounded
distance functions and embedding models, where
F is the NLI corpus and G is the SyNLI corpus.

As discussed in Section 3, a lower Q indicates
that the embeddings in corpus G are more outly-
ing on average than embeddings in corpus F , with
respect to the center of F . Intuitively, the embed-
ding models with the best reported performance
on STS benchmarks (MPNET and GenSE+) have
the lowest average Q estimates, indicating that they
are better able to discriminate between NLI and
SyNLI in embedding space. Additionally, within
the embedding models the Q estimates are very
similar across the two distance functions. On av-
erage, Q estimates using chord distance are only
slightly lower than estimates using cosine distance
with an average difference of 0.0041. While MP-
NET and GenSE+ produce more desirable Q esti-
mates on average, each transformer-based embed-
ding model produces roughly the same Q estimate
with n = 100, indicating that any combination is
suitable for TTE depth analysis.



Distance Function Embedding Model Embedding Dimension Mean Q Standard Deviation Q

Cosine S-BERT Base 384 0.4158 0.0233
Chord S-BERT Base 384 0.4118 0.0233
Cosine S-BERT Large 384 0.4219 0.0283
Chord S-BERT Large 384 0.4176 0.0278
Cosine MPNET 768 0.3905 0.0242
Chord MPNET 768 0.3878 0.0236
Cosine SimCSE BERT 768 0.4309 0.0233
Chord SimCSE BERT 768 0.4270 0.0232
Cosine SimCSE RoBERTa 768 0.4180 0.0186
Chord SimCSE RoBERTa 768 0.4136 0.0185
Cosine GenSE+ 768 0.4094 0.0381
Chord GenSE+ 768 0.4042 0.0370

Table 3: Comparison of the mean and standard deviation of 20 Q(F100, G100) estimates across different bounded
distance functions and embedding models, where F is the NLI corpus and G is the SyNLI corpus.


