RLJ | RLC 2024

Aquatic Navigation: A Challenging Benchmark for
Deep Reinforcement Learning

Davide Corsi Davide Camponogara
dcorsi@uci.edu davide.camponogara@studenti.univr.it
Department of Computer Science Department of Computer Science
University of California, Irvine University of Verona

Alessandro Farinelli
alessandro.farinelli@univr.it
Department of Computer Science
University of Verona

Abstract

An exciting and promising frontier for Deep Reinforcement Learning (DRL) is its
application to real-world robotic systems. While modern DRL approaches achieved
remarkable successes in many robotic scenarios (including mobile robotics, surgi-
cal assistance, and autonomous driving) unpredictable and non-stationary environ-
ments can pose critical challenges to such methods. These features can significantly
undermine fundamental requirements for a successful training process, such as the
Markovian properties of the transition model. To address this challenge, we pro-
pose a new benchmarking environment for aquatic navigation using recent advances
in the integration between game engines and DRL. In more detail, we show that
our benchmarking environment is problematic even for state-of-the-art DRL ap-
proaches that may struggle to generate reliable policies in terms of generalization
power and safety. Specifically, we focus on PPO, one of the most widely accepted
algorithms, and we propose advanced training techniques (such as curriculum learn-
ing and learnable hyperparameters). Our extensive empirical evaluation shows that
a well-designed combination of these ingredients can achieve promising results. Our
simulation environment and training baselines are freely available to facilitate fur-
ther research on this open problem and encourage collaboration in the field.

1 Introduction

In recent years, Deep Reinforcement Learning (DRL) methods have advanced rapidly and achieved
impressive results in various domains. For instance, modern DRL algorithms, such as TD3 (Fujimoto
et al., 2018), SAC (Haarnoja et al., 2018a), PPO (Schulman et al., 2017), or Rainbow (Hessel et al.,
2018), have demonstrated remarkable capabilities in solving highly complex problems, ranging from
video games (Mnih et al., 2013) to complex decision-making tasks and robotic applications (Kober
et al., 2013; Rolf et al., 2023). However, even the state-of-the-art algorithms struggle when dealing
with unpredictable and non-stationary environments, where the basic Markovian properties may be
violated (Marchesini et al., 2021).

In this direction, the limited availability of challenging benchmarking environments, where even
state-of-the-art algorithms fail to achieve optimal performance, makes it difficult to evaluate the
impact of new DRL methods and advanced learning approaches. This is especially relevant in
the field of robotics, where issues related to safe control are often impossible to separate from the
hardware and therefore not readily available to the community as a benchmark (Aractingi et al.,
2023; Akkaya et al., 2019). Moreover, a common limitation shared by almost all the DRL algorithms



RLJ | RLC 2024

lies in their data efficiency (Lillicrap et al., 2015; Haarnoja et al., 2018b). In the context of robotics,
this limitation assumes particular significance due to the challenging process of data collection.
Collecting real-world data on the actual robot can be slow and dangerous, especially when factors
such as human safety or the use of expensive hardware are involved. Consequently, the development
of realistic simulators for the training process has emerged as a priority (Attanasio et al., 2020; Pore
et al., 2021; Amir et al., 2023a).

Against this background, the first contribution of this paper involves developing a simulator designed
for aquatic navigation, that considers both surface and underwater scenarios (see Fig.1). In this type
of environment, many of the aforementioned issues related to the complex and unpredictable evo-
lution of water can arise, potentially compromising training performance. Specifically, our focus
is on autonomous navigation, which is increasingly used for important tasks such as exploration,
cable monitoring, security, and seabed mapping in oceans and lakes (Carreras et al., 2018; Wynn
et al., 2014). The simulator is tailored specifically for this purpose and addresses several critical
requirements. First, it is designed to be lightweight and high-performing, enabling multiple exe-
cutions to collect the substantial volume of data necessary for effective training. Second, it allows
a wide range of customization possibilities to replicate different real-world environments. Finally,
it strongly emphasizes realism, crucial for training autonomous agents in environments that mirror
real-world challenges. Mapless navigation problems can generally be addressed with Deep Reinforce-
ment Learning (DRL) approaches (Zhu et al., 2017; Bojarski et al., 2016; Marchesini & Farinelli,
2021; 2022); nevertheless, our results show that the unpredictable nature of the environment makes
the task much more challenging for the DRL agent.

Our second contribution is a pipeline for training and validating a DRL agent to provide a stable
baseline for comparison with future work and algorithmic improvements. We rely on Proximal Policy
Optimization (PPO) (Schulman et al., 2017), a state-of-the-art reinforcement learning algorithm that
has shown groundbreaking results across a wide range of tasks. While PPO offers a general approach
for reinforcement learning problems, achieving satisfactory results demands careful consideration of
problem-specific configurations (Engstrom et al., 2020; Corsi et al., 2024) and additional optimization
tricks and implementation details (Schulman et al., 2015; Marchesini & Amato, 2023; Liang et al.,
2022). Throughout this paper, we present a comprehensive set of ablation studies that support our
ultimate design choices, highlighting the limitations that even state-of-the-art algorithms can have
on such a complex problem. This work emphasizes the critical problem of safety in the domain
of autonomous navigation. The involvement of expensive equipment and the inherent challenges
associated with potential rescue operations make safety a particularly relevant concern (Fossen,
2011). Our benchmark includes additional safety requirements, making it suitable for research in
the field of safe deep reinforcement learning (Corsi et al., 2021; Ray et al., 2019; Yerushalmi et al.,
2022).

Figure 1: The figures depict two environments within our simulator. The first figure shows our
Autonomous Underwater Vehicle (AUV) navigating a 3D model of Porth yr Ogof marine cave, while
the second figure shows our surface drone in one of the scenarios from our marine benchmark.
Although the two environments differ in their objective, they share the main challenges introduced
by the aquatic environment.



RLJ | RLC 2024

Finally, to further validate the effectiveness of our agent, we extensively test our baseline on a cave
navigation scenario that is created using real-world data. In detail, we recreate the Porth yr Ogof
cave, located in South Wales; where we then deploy our trained agent without any prior knowledge
of the cave’s structure. The results demonstrate that the agent is able to explore the entire cave
while avoiding catastrophic collisions. However, a more detailed analysis showed some limitations in
terms of generalization power and safety against specific corner cases, even employing state-of-the-
art solutions. For this reason, we believe that this challenging environment can be of great value
to the DRL community, and not strictly limited to applications in water navigation domains. Our
analysis shows that solving these tasks — taking into account the safety and generalization aspects —
is still an open problem, and we believe that it can be considered a challenging benchmark to validate
novel learning tools and algorithms. Crucially, to promote further research and collaboration in this
domain, we offer open access to our simulation environment and training algorithms!2.

2 Related Work

In the previous section, we discuss a critical problem in DRL, the high amount of data necessary for
an effective learning process (Lillicrap et al., 2015; Haarnoja et al., 2018b). Collecting all these expe-
riences can be hard in a robotic context, where expensive equipment is involved and failures can be
barely tolerated. A common solution is the exploitation of realistic simulation engines. Historically,
the robotic community has relied on software such as RViz (for visualization) and Gazebo (for simu-
lation); however these solutions are not designed to support fast computation and parallel execution,
both necessary requirements in a DRL context (Zhao et al., 2020; Azar et al., 2023). In contrast,
standard benchmarks for DRL rely on libraries such as MuJoCo, Bullet, or PyGame to approximate
the real-world dynamics, often sacrificing the accuracy of the physics simulation to obtain faster
computation (Gronauer, 2022; Ray et al., 2019). To bridge this gap modern approaches propose the
use of 3D simulation engines typically developed for video games such as Unreal (De Melo et al.,
2019), Coppelia (Nogueira, 2014), or Unity3D (Juliani et al., 2020). In this work, we focus on the
latter, which has been recently successfully employed as a simulation engine for robotic research
(Technologies, 2020). Unity offers unique capabilities to fasten the simulation, such as a server
mode that allows computing the simulation without the rendering part, time acceleration, and the
synchronous execution to allow easier integration with the state-of-the-art DRL libraries. In fact, a
crucial advantage of Unity3D with respect to other engines is the built-in package Unity ML-Agents,
which provides full compatibility with Gym, a standardized set of API for DRL research (Juliani
et al., 2020). We believe this is a critical asset to foster the wider use of a DRL benchmark in the
community as Gym is the de facto standard interface for the most popular DRL implementation
(e.g., Stable-Baselines, SpinningUP, CleanRL, and more). There are already underwater navigation
simulators that accurately simulate the physical characteristics of these scenarios (Loncar et al.,
2022; Cieslak, 2019), but they are not simulators designed for DRL, but rather for data collection
and dataset generation from simulations. This represents a significant limitation for DRL practi-
tioners, as it does not allow for a straightforward integration of the learning algorithm. For example,
DRL algorithms are designed to solve variations of a Markov Decision Process, which requires a dis-
cretization of the time. This is particularly challenging in the context of complex physics simulations
(e.g., water). Moreover, our environment allows for easy access to the reward (and cost) function
and a clear and explicit definition of the state and action spaces. Finally, the results presented in
this paper provide a fair baseline for future algorithm and approach development.

Navigation and Mapless Navigation

We focus on the problem of navigating a robot through an environment, to reach a specific target
position. Typically, the agent should adhere to additional constraints, that may include finding the
shortest path, avoiding obstacles, or optimizing energy consumption. In the last years, this problem

Thttps://github.com/dadecampo/aquatic_navigation_envs
2https://github.com/dadecampo/SafeRLAUV


https://github.com/dadecampo/aquatic_navigation_envs
https://github.com/dadecampo/SafeRLAUV

RLJ | RLC 2024

Figure 2: Viscous liquid. Figure 3: Runny liquid.

has gathered increasing attention, particularly due to its relevance in the context of autonomous
vehicles (Pan et al., 2017), and it is today considered one of the classical problems in robotics.
Robotic Navigation has been extensively studied over the years, resulting in various algorithmic
solutions such as planning and search-based approaches (LaValle, 2006; Latombe, 2012). Neverthe-
less, a variant of robotic navigation, known as mapless navigation, has recently emerged as a popular
problem, and a standard benchmark for DRL, that presents additional unique challenges (Zhu et al.,
2017; Marchesini & Farinelli, 2022). In mapless navigation, the robot operates within the environ-
ment without using a map, relying solely on its local observations. This configuration introduces
additional complexities, as the absence of a map hinders the use of conventional planning-based
methods. Moreover, limited sensor information makes the problem partially observable, giving rise
to additional challenges such as sensor noise and the uncertainty of action outcomes (Marchesini &
Farinelli, 2022). State-of-the-art solutions for mapless navigation suggest exploiting DRL techniques
to generate policies capable of controlling the autonomous vehicle; these solutions have demonstrated
exceptional performance (Bojarski et al., 2016) and are nowadays considered a clear example of the
DRL’s potential. Moreover, recent works show that these kinds of problems can be accomplished by
employing relatively simple and small DNN architectures, which is essential for enabling on-board
control of the robot, where resource constraints require compact models.

3 Simulation Environment

In this section, we introduce our environment, presenting the first contribution of the paper: a
realistic underwater simulator based on the Unity3D game engine. Unity has emerged as a powerful
tool for the development of Reinforcement Learning agents in simulated scenarios, especially in
the domain of robotics research (Juliani et al., 2020). As a fundamental building block for our
experiments, we developed a virtual environment tailored to closely emulate the challenges of aquatic
environments. To replicate the hydrodynamic aspects of water, we rely on ZibraAlI Liquids (ZibraAl,
2021), a state-of-the-art solution for real-time 3D liquid simulation. This versatile tool provides us
with the flexibility to manipulate a wide array of parameters, encompassing liquid physics settings
and interaction dynamics with other physical objects in the environment.

3.1 Simulation of Fluid Behavior

Simulating the behavior of fluids has always been considered a hard challenge, especially due to
the multitude of intricate physical forces involved (Lonéar et al., 2022; Cieslak, 2019). More-
over, precisely reproducing all these forces in real time remains impractical, necessitating a sig-
nificant degree of approximation. ZibraAl enables the creation of water zones that can be
precisely parameterized to adjust viscosity, surface tension, and other essential characteristics.



RLJ | RLC 2024

Through rigorous experimentation —— Path without water influence ~ ----- Path with water influence
with various settings, we identified
an optimal configuration that aligned »
perfectly with our research objectives, 70
paving the way for the subsequent —
development of our aquatic environ- o0 e
ment. An illustrative example of Zi-
. R 50
bra’s plugin capabilities can be found
in Fig.2 and Fig.3, where we show the 40 X
interaction between a simple object X = -
and a liquid of varying viscosity. The 30 /'
underlying mechanics of ZibraAI’s op- &
eration involve a novel approach to 20 /
encoding a 3D object into concise vec-
tors, subsequently decoded by a com- 10 X
pact neural network to regenerate the \\\
original Signed Distance Field (SDF). 0
This innovative technique finds prac- 20 25 30 35 40 45 50

Y

Figure 4: TIllustration of the influence that water exerts on
the AUV as it attempts to follow an ideal path.

tical application in gaming physics,
particularly in particle simulations.
The Zibra Liquids Pro plugin repre-
sents a collaborative synergy between proprietary physical solvers and machine learning-based neu-
ral representations of objects (ZibraAl, 2021). Additionally, ZibraAI has internally developed fluid
simulation technology utilizing the Moving Least Squares Material Point Method (Hu et al., 2018).
Early experiments have demonstrated the remarkable efficiency of this approach, capable of simu-
lating 300,000 particles in only 7 milliseconds on a GTX 1050, even without extensive optimizations.
The ZibraAl plugin is publicly available, further contributing to the advancement of fluid simulation
research, resulting in a critical asset also for robotics and deep learning.

Impact of Water Physics We now delve into the influence of the water in our aquatic environment,
which represents the critical challenge for our learning agent. In particular, we consider an under-
water navigation scenario where a rover must safely navigate in an underwater cave. Understanding
this detail is crucial for quantifying the level of unpredictability in the underwater environment and,
consequently, assessing the challenges the agent faces in making decisions in this non-stationary
scenario. To demonstrate how marine currents can influence AUV trajectories we conducted an
additional experiment, illustrated in Fig.4. We created an ideal trajectory (blue line) by manually
moving an AUV unaffected by water forces. Subsequently, we instructed a second AUV to follow the
same sequence of actions as the first, with the additional challenge of marine currents (red dashed
line). As shown in the figure, this second rover collided with the cave walls a total of three times.
This result underscores the critical importance of generating an intelligent agent capable of dynam-
ically correcting unexpected trajectories that could potentially bring the rover to operate too close
to cave walls.

4 Training Approach

In this section, we introduce our deep reinforcement learning pipeline, showing the various strategies
we employed to develop a safe and reliable agent that serves as a stable baseline for our benchmarking
environment. In the following sections, we discuss different approaches describing their respective
strengths and weaknesses. Our comparative analysis has been performed to meet the standard
requirements for an empirical DRL evaluation (Henderson et al., 2018); in particular, we report
the average reward with the standard deviation from different random initializations for the neural
networks (i.e., 10 different random seeds for each set of experiments). In the following sections,
we conduct a comparative analysis focusing solely on the underwater cave exploration sub-domain
available in our simulator. The choice is motivated by the fact that underwater navigation is more



RLJ | RLC 2024

2000 2000 2000

1000 [Vipsmmwited AR 1000 \ iRy 1500
0 / \M ! o \ [ 1000
S-1000 | \“ £-1000 “ Jl g S0
g | g g o0 .— _—
§-2000 | §-2000 \‘/ 2 o0
*3000“ -3000 \f
| | 1 -1000
~4000 curriculum-learning -4000 —— epsilon=0.2 sparse rewards
end-to-end epsilon=0.1 -1500 dense rewards
-5000 -5000
0 500K 1M 15M 2M  25M 3™ 0 500K 1M 15M 2M  25M M 2000 250k 500K 750K 1M 125K 1.5M
Steps Steps Steps
Figure 5: Comparison be- Figure 6: Ablation study on Figure 7: Comparison be-
tween curriculum learning and the PPO-clip hyperparame- tween sparse and dense re-
E2E. ter. ward functions.

complex than surface navigation. Indeed, additional factors such as controlling the diving motion and
adjusting pressure based on the depths reached need to be considered. These additional difficulties
allow us to conduct a more meaningful analysis. Nevertheless, in Sec. 5 we perform a validation
step on the surface navigation problem, confirming our findings.

In both our benchmarks, the goal for the agent is to reach a target destination without colliding with
obstacles. Our agent is equipped with 28 sensors arranged in the 180-degree frontal field, allowing it
to observe the immediate surrounding environment directly. It is aware of the direction of the target
point in a straight line and also knows its own linear and angular velocity. At each time step, the
model determines which actions to take by selecting them from a discrete action space, enabling the
agent to move forward, rotate, or adjust its depth when submerged. The configuration of sensors
and actuators results in a vector observation of 31 real values; while the action space can be tuned
by the user and consists of a variable set of discrete actions.

Cave Environments for Training and Testing

The primary objective of our agent is to navigate through a cave and safely reach the target point
without colliding with rocks and walls. Crucially the agent is provided with the coordinates of
the destination in terms of polar coordinates to its position; this setup is widely adopted in the
literature and constitutes a challenging benchmark for the training agent (Ray et al., 2019; Amir
et al., 2023a; Marchesini & Farinelli, 2021). Achieving this goal demands high capabilities in obstacle
avoidance and the ability to counter the unpredictable movements induced by water currents. To
comprehensively evaluate our model’s performance, we have designed various cave models. Some
of these caves serve for the training phase, while others are used for testing purposes. The idea
behind this diversity is to expose the agent to a broad spectrum of scenarios, each posing unique
challenges. All the training caves exhibit distinct characteristics that serve as robust evaluative
metrics for our model. The first cave features larger dimensions compared to the others, moreover,
it does not present any additional forces due to the currents of the water. The agent can thus focus
completely on the simple control aspect. The second cave comprises a sequence of narrow passages
interspersed with wider areas. This configuration introduces the additional challenge of navigating
through tunnels of varying difficulty. The third cave presents a long series of curves, each posing
different levels of difficulty; crucially, the parameters related to the velocity of the water particles
are raised significantly, posing a significant challenge for the agent. Moreover, in addition to the
custom caves for training and testing, in Sec.5 we perform an additional evaluation using a 3D model
built from data from a real cave. This test aims to assess the ability of the agent to navigate safely
in complex and realistic environments. All these caves and settings are available for testing in our
simulation engine. The set of hyperparameters employed for the training is reported in the public
repository®; these values have been empirically tuned through a grid search process over a set of
common configurations.

Shttps://github.com/dadecampo/aquatic_navigation_envs


https://github.com/dadecampo/aquatic_navigation_envs

RLJ | RLC 2024

Curriculum Learning

We start by comparing two distinct training approaches: curriculum learning (CL) and end-to-end
(E2E) training. The E2E approach involves training an Artificial Neural Network (ANN) from start
to finish on the entire task, without decomposing it into separate subtasks learned sequentially, this
leads to simplifying features and reward engineering. Another improvement we made among the
different phases of the curriculum regards the PPO-clip value. Specifically, we reduce the clip value
from 0.2 (as recommended in the literature) to 0.1. More details on the approaches and a detailed
comparison between the end-to-end approach and our suggested curriculum learning method can
be found in Appendix A of the supplementary materials. To summarize, from our experiments, the
curriculum learning approach only slightly reduces the convergence time but it does not provide a
substantial improvement in performance (see Fig.5). Interestingly, however, the curriculum learning
approach results in a significant improvement from a safety perspective (e.g., the number of collisions
with rocks); demonstrating a higher generalization capability in previously unseen environments, as
can be seen in Sec.5.

Conclusion: For our final experiments we adopted a curriculum learning strategy. According to
the literature in the field, our findings suggest that a more structured training pipeline strongly
supports a faster and more effective training process (Morad et al., 2021).

Reward Engineering

Reward engineering is a pivotal component of a successful deep reinforcement learning (DRL) pro-
cess. However, the formulation of effective reward functions is often non-trivial, demanding metic-
ulous consideration of various factors. In Appendix C of the supplementary materials we report
a detailed comparison between a sparse and a dense reward function, showing the strengths and
the weaknesses of both methodologies. To summarize, the training with sparse rewards did not
yield success, with the rover notably failing to reach the final goal (see Fig.7). Conversely, train-
ing conducted with dense rewarding has proven to be fruitful, demonstrating the ability to achieve
convergence without excessive difficulty.

Conclusion: For our final experiments we employed a dense function; formally the reward at time
t is calculated as follows:

RgoalReached if the goal is reached
Tt = { Rmovement; + Rtimestep T Reollision  if @ collision occurs (4.1)
Rmovementt + Rtimestep otherwise

The parameters within the reward function have been defined through empirical testing and can be
found in the appendix C.

The Safety Aspect

Although we obtained promising results with the approaches proposed in this section, we focused only
on the pure performance of the agent, while in this section, we consider an additional requirement,
the overall safety. In particular, we focus on two aspects: (i) the number of collisions with rocks
and (ii) the average distance between the agent and the walls of the cave. More details and results
about the safety-oriented reward can be found in Appendix B of the supplementary materials. Our
findings demonstrate the positive impact of our explicit safety-centric reward function in terms of
reducing the number of collisions and increasing the average safety distance from the cave walls.
However, it is worth emphasizing that our approach does not entirely eliminate unsafe behaviors,
highlighting the need for future research in this direction.

Conclusion: To enhance the agent’s safety, we implemented a reward function that considers the
distance from the walls as a cost to minimize during training. Crucially, the final training setup used
for our real-world evaluations, reported in Sec. 5, consists of the previous three training techniques
in combination.



RLJ | RLC 2024

5 Evaluation in scenarios built from real-world data

In this section, we exploit all the techniques and methodologies discussed throughout this paper
to assess the agent’s performance within the three-dimensional representation of a real cave. This
validation step is made possible through the application of photogrammetry, a technique that enables
the creation of highly accurate three-dimensional models using sequences of images or videos. In
our simulator, we recreated a detailed portion of Porth Yr Ogof, a cave situated in South Wales
(Wilton-Jones, 2023). Porth Yr Ogof is a cave of particular interest due to its unique characteristics.
The complex formation of this cave is due to the frequent floods caused by the overflowing of the
adjacent Afon Mellte River (the reconstruction of the cave is based on a 3D scan of the area). In this
environment, the agent’s goal is to reach the end of the cave and thus explore the entire map. What
makes the task challenging is that the drone does not have access to the map of the environment, the
agent must rely entirely on local observations, exploiting in the decision-making process the policy
learned by exploring the caves used for training.

In Fig.8 we show a screenshot from our simulator and a plot of the results obtained by our trained
agent; for the experimental evaluation, we deploy our agent multiple times starting from a random
position of the cave and collecting the average success rate (i.e., the number of time the AUV manages
to exit the caves normalized by the number of experiments). We note that, for this evaluation
phase, in order to highlight when safety constraints are violated, we considered a single collision as
a complete failure.

Extention to Surface Navigation In the last few sections, we have focused on underwater cave
exploration because our preliminary experiments have shown it to be the most challenging environ-
ment. However, surface navigation presents similar interesting challenges due to the non-stationary
and dynamic nature of water. In this last evaluation, we repeat the analysis of the previous problem
in this second benchmark. In this environment, the goal of the agent is to reach the target posi-
tion while avoiding collisions with rocks and reefs. The agent can only rely on observations from
local sensors, which include a GPS and compass for computing heading and distance to the target
position, and a proximity sensor for detecting obstacles in specific directions. At the initialization
of each episode, the map and the positions of the target and agent are randomly generated. Our
results are shown in Fig.9, although overall simpler, our results confirm that even in this scenario
PPO struggles to find an optimal policy, especially from the safety perspective.

6 Conclusion

This paper has presented a challenging benchmark to stimulate the advancement of DRL methods for
robot control. Our contributions span three key areas: i) we developed a realistic simulator tailored
to the unique challenges of underwater cave exploration and surface navigation; ii) we provided a

Porth Yr Ogof Cave (Curriculum Learning)
m Success rate ® Collision rate

90,00%
80,00%
70,00%
60,00%
50,00%
40,00%
30,00%
20,00%
10,00%

0,00%

Safe Approach Standard Approach

Figure 8: On the left is a screenshot of the Porth Yr Ogof cave; on the right are the results obtained
by the trained agent.



RLJ | RLC 2024

Surface Navigation Test Environment
m Success rate m Collision rate

80,00%
70,00%
60,00%
50,00%
40,00%
30,00%
20,00%
10,00%

0,00%

Safe Approach Standard Approach

Figure 9: On the left are the results obtained by the trained agent; on the right: a screenshot of the
surface navigation benchmark.

comprehensive pipeline for training autonomous agents using Deep Reinforcement Learning (DRL);
iii) we addressed safety through two critical aspects: collision avoidance and maintaining a safe
distance from cave walls. To demonstrate the effectiveness of our approach, we finally conducted
an extensive testing phase in a simulation of the real-world cave environment of "Porth yr Ogof" in
South Wales where our trained agent successfully explored the cave, avoiding catastrophic collisions
with rocks and maintaining a safe distance from cave walls. These contributions together serve to
introduce a novel benchmark for deep reinforcement learning in a challenging and realistic scenario
and a series of techniques to provide a stable and reproducible result that provides an initial baseline
for future development.

We believe this work paves the way for several future directions, including the exploration of al-
ternative approaches to ensure the safety of our trained agents, such as shielding (Alshiekh et al.,
2018), constrained reinforcement learning (Achiam et al., 2017), explainability (Bassan et al., 2023),
and formal verification tools (Marzari et al., 2023; Corsi et al., 2021; Katz et al., 2019; Amir et al.,
2021). Additionally, a natural direction is to move from the simulated environment to real robotic
platforms so to gain insights into how the agent interacts with the environment in the real world
with the idea of enhancing our simulator. In this last direction, many new challenges arise, such as
generalization to unseen situations (Amir et al., 2023b) and possible delays in the communication
between the drone and the controller (Karamzade et al., 2024). Crucially, our simulation tool is
freely available for future research and collaborations.

Acknowledgments

The work was carried out within the Interconnected Nord-Est Innovation Ecosystem (iNEST) and re-
ceived funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA
E RESILIENZA (PNRR) — MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.5 — D.D. 1058
23/06/2022, ECS00000043).

References

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization, 2017.

Tlge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand, 2019.

Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina Koénighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding, 2018.

Guy Amir, Michael Schapira, and Guy Katz. Towards scalable verification of deep reinforcement
learning. In 2021 formal methods in computer aided design (FMCAD), 2021.



RLJ | RLC 2024

Guy Amir, Davide Corsi, Raz Yerushalmi, Luca Marzari, David Harel, Alessandro Farinelli, and
Guy Katz. Verifying learning-based robotic navigation systems. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pp. 607-627, Paris, 2023a.
Springer.

Guy Amir, Osher Maayan, Tom Zelazny, Guy Katz, and Michael Schapira. Verifying generalization
in deep learning. In International Conference on Computer Aided Verification, 2023b.

Michel Aractingi, Pierre-Alexandre Léziart, Thomas Flayols, Julien Perez, Tomi Silander, and
Philippe Souéres. Controlling the solo12 quadruped robot with deep reinforcement learning, 2023.

Aleks Attanasio, Bruno Scaglioni, Matteo Leonetti, Alejandro F Frangi, William Cross, Chan-
dra Shekhar Biyani, and Pietro Valdastri. Autonomous Tissue Retraction in Robotic Assisted
Minimally Invasive Surgery - A Feasibility Study, 2020.

Ahmad Taher Azar, Muhammad Zeeshan Sardar, Saim Ahmed, Aboul Ella Hassanien, and
Nashwa Ahmad Kamal. Autonomous robot navigation and exploration using deep reinforcement
learning with gazebo and ros, 2023.

Shahaf Bassan, Guy Amir, Davide Corsi, Idan Refaeli, and Guy Katz. Formally explaining neural
networks within reactive systems. In 20238 Formal Methods in Computer-Aided Design (FMCAD),
2023.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to End Learning
for Self-Driving Cars, 2016. Technical Report. http://arxiv.org/abs/1604.07316.

Marc Carreras, Juan David Hernandez, Eduard Vidal, Narcis Palomeras, David Ribas, and Pere
Ridao. Sparus ii auv—a hovering vehicle for seabed inspection, 2018.

Patryk Cieslak. Stonefish: An advanced open-source simulation tool designed for marine robotics,
with a ros interface. =~ OCEANS 2019 - Marseille, pp. 1-6, 2019. URL https://api.
semanticscholar.org/CorpusID:204701708.

Davide Corsi, Enrico Marchesini, and Alessandro Farinelli. Formal verification of neural networks
for safety-critical tasks in deep reinforcement learning. In Uncertainty in Artificial Intelligence,
2021.

Davide Corsi, Guy Amir, Guy Katz, and Alessandro Farinelli. Analyzing adversarial inputs in deep
reinforcement learning. arXiv preprint arXiv:2402.05284, 2024.

Mirella Santos Pessoa De Melo, José Gomes da Silva Neto, Pedro Jorge Lima Da Silva, Joao Marcelo
Xavier Natario Teixeira, and Veronica Teichrieb. Analysis and comparison of robotics 3d simula-
tors, 2019.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case study
on ppo and trpo, 2020.

Thor Fossen. Handmisc of marine craft hydrodynamics and motion control, 2011.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods, 2018.

Kelam Goutam, S. Balasubramanian, Darshan Gera, and R. R. Sarma. Layerout: Freezing layers
in deep neural networks, 2020.

Sven Gronauer. Bullet-safety-gym: A framework for constrained reinforcement learning, 2022.


http://arxiv.org/abs/1604.07316
https://api.semanticscholar.org/CorpusID:204701708
https://api.semanticscholar.org/CorpusID:204701708

RLJ | RLC 2024

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations, 2018b.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters, 2018.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning, 2018.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang.
A moving least squares material point method with displacement discontinuity and two-way rigid
body coupling, 2018.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and
Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping, 2020.

Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion,
Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, and Danny Lange. Unity: A general
platform for intelligent agents, 2020.

Armin Karamzade, Kyungmin Kim, Montek Kalsi, and Roy Fox. Reinforcement learning from
delayed observations via world models. arXiv preprint arXiv:2403.12309, 2024.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zelji¢, et al. The marabou framework for veri-
fication and analysis of deep neural networks, 2019.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey, 2013.
Jean-Claude Latombe. Robot motion planning. Springer Science & Business Media, 2012.
SM LaValle. Planning algorithms. Cambridge University Press google schola, 2006.

Litian Liang, Yaosheng Xu, Stephen McAleer, Dailin Hu, Alexander Ihler, Pieter Abbeel, and Roy
Fox. Reducing variance in temporal-difference value estimation via ensemble of deep networks. In
International Conference on Machine Learning, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2015.

Ivan Loncar, Juraj Obradovié¢, Natko Krasevac, Luka Mandié¢, Igor Kvasi¢, Fausto Ferreira, Vladimir
Slosié, Pula Nad, and Nikola Migkovié. Marus - a marine robotics simulator. In OCEANS 2022,
Hampton Roads, pp. 1-7, 2022. doi: 10.1109/OCEANS47191.2022.9976969.

Enrico Marchesini and Christopher Amato. Improving deep policy gradients with value function
search. International Conference on Learning Representations, ICLR, 2023.

Enrico Marchesini and Alessandro Farinelli. Centralizing state-values in dueling networks for multi-
robot reinforcement learning mapless navigation. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4583-4588, Prague, 2021. IEEE.

Enrico Marchesini and Alessandro Farinelli. Enhancing deep reinforcement learning approaches for
multi-robot navigation via single-robot evolutionary policy search. In 2022 International Confer-
ence on Robotics and Automation (ICRA), pp. 55255531, Philadelphia, 2022. IEEE.



RLJ | RLC 2024

Enrico Marchesini, Davide Corsi, and Alessandro Farinelli. Benchmarking safe deep reinforcement
learning in aquatic navigation. In 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 5590-5595, Prague, 2021. IEEE.

Luca Marzari, Davide Corsi, Ferdinando Cicalese, and Alessandro Farinelli. The #dnn-verification
problem: Counting unsafe inputs for deep neural networks. In International Joint Conference on
Artificial Intelligence (IJCAI), 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, 2013. Technical
Report. https://arxiv.org/abs/1312.5602.

Steven D Morad, Roberto Mecca, Rudra PK Poudel, Stephan Liwicki, and Roberto Cipolla. Em-
bodied visual navigation with automatic curriculum learning in real environments. IEEE Robotics
and Automation Letters, 2021.

Lucas Nogueira. Comparative analysis between gazebo and v-rep robotic simulators, 2014.

Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual to real reinforcement learning for
autonomous driving, 2017.

Ameya Pore, Davide Corsi, Enrico Marchesini, Diego Dall’Alba, Alicia Casals, Alessandro Farinelli,
and Paolo Fiorini. Safe reinforcement learning using formal verification for tissue retraction in
autonomous robotic-assisted surgery. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2021.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning, 2019.

Benjamin Rolf, Ilya Jackson, Marcel Miiller, Sebastian Lang, Tobias Reggelin, and Dmitry Ivanov. A
review on reinforcement learning algorithms and applications in supply chain management, 2023.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiw preprint
arXiv:1506.024 38, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms, 2017. Technical Report. http://arxiv.org/abs/1707.06347.

Thiago Siméo, Nils Jansen, and Matthijs Spaan. Alwayssafe: Reinforcement learning without safety
constraint violations during training, 2021.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods, 2020.

Unity Technologies. Unity robotics hub, 2020. URL https://github.com/Unity-Technologies/
Unity-Robotics-Hub.

Mark Wilton-Jones. Porth yr ogof - uk caves database, 2023. URL http://www.ukcaves.co.uk/
cave-porthyrogof.

Russell B Wynn, Veerle Al Huvenne, Timothy P Le Bas, Bramley J Murton, Douglas P Connelly,
Brian J Bett, Henry A Ruhl, Kirsty J Morris, Jeffrey Peakall, Daniel R Parsons, et al. Autonomous
underwater vehicles (auvs): Their past, present and future contributions to the advancement of
marine geoscience, 2014.

Raz Yerushalmi, Guy Amir, Achiya Elyasaf, David Harel, Guy Katz, and Assaf Marron. Scenario-
assisted deep reinforcement learning. In 10th International Conference on Model-Driven Engi-
neering and Software Development, MODELSWARD 2022, pp. 310-319. Science and Technology
Publications, Lda, 2022.


https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1707.06347
https://github.com/Unity-Technologies/Unity-Robotics-Hub
https://github.com/Unity-Technologies/Unity-Robotics-Hub
http://www.ukcaves.co.uk/cave-porthyrogof
http://www.ukcaves.co.uk/cave-porthyrogof

RLJ | RLC 2024

Wenshuai Zhao, Jorge Pena Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforce-
ment learning for robotics: a survey, 2020.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi.
Target-driven visual navigation in indoor scenes using deep reinforcement learning, 2017.

ZibraAl. Zibraai and its ml-powered toolset to boost the game development industry, 2021.



RLJ | RLC 2024

A Curriculum Learning

We start by comparing two distinct training approaches: curriculum learning (CL) and end-to-end
(E2E) training.

The E2E approach involves training an Artificial Neural Network (ANN) from start to finish on the
entire task, without decomposing it into separate subtasks learned sequentially. End-to-end training
offers the advantage of simplifying feature and reward engineering and reducing the need for manually
designing intermediate steps. However, it often necessitates a substantial amount of training data
and can pose challenges in terms of interpretability. Curriculum learning, on the other hand, consists
of training the agent in a sequence of problems, typically of increasing difficulty; this enables the agent
to leverage knowledge and skills acquired in simpler tasks to enhance learning and performance when
facing the complete problem. Our curriculum learning pipeline starts with the simplest environment,
denoted as Cave_Trainl (Fig.10), where the agent learns a set of fundamental skills such as keeping a
safe distance from walls and navigating toward the target while executing gentle turns. Subsequently,
the weights learned in the initial task are transferred to the new neural network as we progress to
the Cave Train2 environment. Here, the agent exploits the already learned capabilities in a more
intricate environment. Additionally, the rover encounters water currents for the first time, albeit
at half the strength intended for the evaluation phase. The third and final phase of our training
process introduces the rover to water currents at the intended evaluation strength. This phase can
be regarded as a refinement stage, building upon the model developed during the initial two phases.
To prevent any loss of knowledge acquired throughout the entire training process, we lowered the
learning rate for this final step.

Another improvement we made among the different phases of the curriculum regards the PPO-clip
value. Specifically, we reduce the clip value from 0.2 (as recommended in the literature) to 0.1. The
intuition behind this modification is that during the initial Cave Trainl phase, the rover learns
fundamental movement policies, which we aim to preserve as the training progresses to the more
complex stages. By lowering the clip value, we aim to maintain policy stability. However, reducing
this parameter requires a tradeoff that lies in a loss in data efficiency (i.e., slowing the acquisition
of new behaviors). Typically, knowledge transfer across phases is accompanied by the freezing of
layers trained in the previous stage. However, given that the fundamental objective of our agent
remains unchanged despite the changing environments, we opted to avoid this technique, allowing
for continuous learning and adaptation throughout the curriculum Goutam et al. (2020).

Results:

Fig.5 presents the results of our comparison between the curriculum learning and the E2E approach.
Noticeable drops in rewards correspond to the transitions between lessons, occurring at the 1.5
million and 2.5 million timestep marks. However, in both cases, the reward graphs quickly recover
and converge to approximately 1200. To ensure a fair comparison, we assign to E2E training
the cumulative number of timesteps across all phases of curriculum learning required to achieve
a satisfactory result in the analyzed environment.

N

’\ WATER -0 WATER - 0.5 WATER =1
y) STRENGTH = STRENGTH = *- STRENGTH =

N

Figure 10: Curriculum Learning lessons plan. From left to right the pictures represent the training
caves ordered by growing difficult.



RLJ | RLC 2024

The curriculum learning approach slightly reduces the convergence time required but it does not
provide a substantial improvement in performance. Interestingly, however, the curriculum learning
approach results in a significant improvement from a safety perspective (e.g., number of collisions
with rocks); demonstrating a higher generalization capability (Sec.B provides more detail about this
result). Moreover, Fig.6 shows an ablation study to motivate our choice of using a smaller PPO-clip
value with respect to the standard setting; our results clearly show the obtained improvements,
confirming our design choice.

B The Safety Aspect

Although we obtained promising results with the approaches proposed in Sec. 4, we focused only on
the pure performance of the agent, while in this section, we consider an additional requirement, the
overall safety. In particular, we focus on two aspects: (i) the number of collisions with rocks and (ii)
the average safe distance between the agent and the walls of the cave. In the literature, numerous
approaches exist to improve the safety of a learning agent, such as Constrained Deep Reinforcement
Learning Stooke et al. (2020), Safe Exploration Siméao et al. (2021), Shielding Alshiekh et al. (2018),
and Formal Verification Katz et al. (2019); however, these techniques go beyond the benchmarking
scope of this work, and we leave the analysis of these approaches for future research. In contrast, in
this paper, we focus on the concept of “reward engineering". In particular, we propose to modify the
reward function presented in Sec. 4, refining it to encourage more cautious behaviors. Through this
rewarding mechanism, we emphasize the role of the proximity sensors, treating them not only as
part of the observation space but also as key components in the calculation of the reward function.
By doing so, we expect our agent to exhibit safer behavior, actively attempting to maintain a safe
distance from the cave walls.

RgoalReaChed goal
Ty = Rmovementt + Rtimestep + Rcollision + Rsensors collision
Rmovementt + Rtimestep + Rsensors otherwise

The term Rgensors iS calculated based on the measurements taken at each timestep by the rover’s
sensors. When contact occurs through the lidar sensor, a value is returned indicating the
height at which the ray was intercepted. This value is normalized to 1, and then, by using
—(1 — rayInterceptionValue), subsequently multiplied by a constant. This operation is repeated
for each of the 28 rays at every single timestep. The way this reward has been adjusted, based
on the multiplication by the chosen constants, limits the range of Rsensors to (—0.6,0.0]. Figure 11
provides a visual explanation of the lidar sensor readings of our robot.

Figure 11: This image illustrates the concept of “interceptionValue", highlighted in green, while the
penalties imposed on the agent are indicated in red.



RLJ | RLC 2024

Cave_Eval? (Curriculum Learning) Cave_Eval3 (Curriculum Learning)

L [0 safe Approach [l Standard Approach
B Success Rate Collision Rate

100,00%
90,00%
80,00%
70,00% us

60,00%

50,00%

40,00%

DISTANCE FROM WALLS

30,00%
20,00%

10,00%

5,556% 28,0% 72,0% 102
0,00% e

Safe Approach Standard Approach

Figure 12: Analysis of the agent’s performance from a safety perspective.

Results:

In this section, we delve into the results of our safety-oriented analysis by focusing on the results
obtained in the most challenging scenario, referred to as “cave test3". Results are presented in
Figure 12. Our findings demonstrate the positive impact of our safety-centric reward function in
terms of reducing the number of collisions and increasing the average safety distance from the
cave walls. However, it is worth emphasizing that our approach does not entirely eliminate unsafe
behaviors, highlighting the need for future research in this direction.

C Reward Engineering

Reward engineering is a pivotal component of a successful deep reinforcement learning (DRL) pro-
cess. However, the formulation of effective reward functions is often non-trivial, demanding meticu-
lous consideration of various factors. For example, an important challenge revolves around achieving
the delicate balance between shaping the agent’s behavior and avoiding inadvertent side effects. An
excessively simplistic or sparse reward may prevent an effective learning process. Conversely, an
overly intricate function may result in an agent incapable of generalizing beyond the training envi-
ronment Hu et al. (2020). Another well-known problem pertains to reward hacking, i.e., whereby
an agent exploits loopholes or biases in the reward function to maximize rewards without genuinely
fulfilling the intended task. This underscores the imperative need for crafting reward functions that
are both informative and resilient to manipulation. In literature, reward functions are typically
subdivided into two main categories: sparse and dense. In this section, we conduct an analysis
comparing the efficacy of these two reward paradigms applied to our case study.

Sparse Rewards

Sparse rewards consist of a structure where the agent receives a reward signal only upon accomplish-
ing specific operations (e.g., avoiding an obstacle) or achieving particular objectives (e.g., reaching a
target position). However, for the majority of the learning process, the agent encounters limited to
no feedback. Sparse rewards present notable challenges for RL agents due to their nature, offering
minimal guidance during the learning process. For example, an agent may struggle to understand
which actions or states contribute to their success or failure, given the sporadic feedback. Con-
sequently, this can lead to a slow learning loop or hindered convergence, particularly in complex



RLJ | RLC 2024

Figure 13: Comparison between DistanceRewarder (white) and Euclidean distance (black line).

environments. Despite these limitations, sparse rewards are easy to design and are more robust
against reward hacking.

We now introduce the discrete reward function we employed in our training process. This is a
straightforward reward system that grants rewards to the rover under specific conditions while
imposing penalties for undesirable outcomes (e.g., collisions with rocks or cave walls).

RyoalReached  if the goal is reached
7t = § Reollision if the rover collides (C.1)

Reann timeout

In this reward function, RgoalReachea represents the reward granted when the rover successfully
reaches its goal, Reolision Signifies the penalty for collisions, and Ry, denotes the penalty imposed
if the rover fails to achieve the goal within the stipulated time frame. In our setup, we impose
RgoalReached =10, Reoltision = —10, and Reay = —1.

Dense Rewards

Dense rewards represent an alternative structure where the agent receives a signal more frequently,
typically at each time step of an episode. These rewards exhibit a higher level of continuity and
furnish constant feedback to the agent as it progresses through the environment. We now introduce
the continuous function we proposed in our work. This reward incentivizes movement toward the
cave exit while penalizing proximity to cave walls. During training, an accurate calculation of the
distance from the goal is crucial, and to achieve this, we introduce a system of panels that trace
the tunnel’s curvature (Fig. 13). By measuring the distance between these panels, along with the
distance from the last panel to the rover, we obtain a more precise approximation of the distance
from the goal. This system, termed “DistanceRewarder", is a specific and fundamental component
we developed to furnish a more precise reward to the agent.

Moreover, the reward function we employed for our standard training includes multiple additional
components designed to incentivize specific behaviors. First, a specific signal that encourages the
rover to progress along the path toward the goal. At each timestep, the agent is rewarded with a
value proportional to the distance traveled toward the cave exit. It’s important to note that moving
away from the goal results in a penalty. Second, to promote behavior that takes the environment
into account, a penalty is applied when the agent collides with a cave wall. The third component of
the function is a reward bonus, which is obtained upon reaching the cave exit. During training, the
reward at time t is calculated as follows:



RLJ | RLC 2024

RgoalReached if the goal is reached
Tt = Rmovementt + Rtimestep + Rcollision if a collision occurs (02)
Rmovementt + Rtimestep otherwise
For our experiment we set RgoalReached = 500, Rmovementt = (dz’stanceToGoalt,l -
distanceT'oGoal;) * 10, Ryimestep = —0.01 and Reoytision = —0.01.  Rpovement, rewards the dis-

placement of the rover in the direction of the goal. In our environment, the combination of
rover speed and water friction puts this reward in a range from -0.03 to 0.03, so we can conclude
Rm,ovemem‘,,, S (*003,003)

Results:

We now provide a comparative analysis of dense and sparse rewarding approaches. As depicted in
Fig.7, training with sparse rewards did not yield success, with the rover notably failing to reach
the final goal. Conversely, training conducted with dense rewarding has proven to be fruitful,
demonstrating the ability to achieve convergence without excessive difficulty. In the next section,
we will focus on the safety aspects, showing how the reward engineering process is crucial also for
this latter aspect.



