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ABSTRACT

Unsupervised semantic segmentation aims to achieve high-quality semantic group-
ing without human-labeled annotations. With the advent of self-supervised pre-
training, various frameworks utilize the pre-trained features to train prediction
heads for unsupervised dense prediction. However, a significant challenge in this
unsupervised setup is determining the appropriate level of clustering required for
segmenting concepts. To address it, we propose a novel framework, CAusal Unsu-
pervised Semantic sEgmentation (CAUSE), which leverages insights from causal
inference. Specifically, we bridge intervention-oriented approach (i.e., frontdoor
adjustment) to define suitable two-step tasks for unsupervised prediction. The first
step involves constructing a concept clusterbook as a mediator, which represents
possible concept prototypes at different levels of granularity in a discretized form.
Then, the mediator establishes an explicit link to the subsequent concept-wise
self-supervised learning for pixel-level grouping. Through extensive experiments
and analyses on various datasets, we corroborate the effectiveness of CAUSE and
achieve state-of-the-art performance in unsupervised semantic segmentation.

1 INTRODUCTION

Semantic segmentation is one of the essential computer vision tasks that has continuously advanced
in the last decade with the growth of Deep Neural Networks (DNNs) (He et al., 2016; Dosovitskiy
et al., 2020; Carion et al., 2020) and large-scale annotated datasets (Everingham et al., 2010; Cordts
et al., 2016; Caesar et al., 2018). However, obtaining such pixel-level annotations for dense prediction
requires an enormous amount of human resources and is more time-consuming compared to other
image analysis tasks. Alternatively, weakly-supervised semantic segmentation approaches have been
proposed to relieve the costs by using of facile forms of supervision such as class labels (Wang et al.,
2020b; Zhang et al., 2020a), scribbles (Lin et al., 2016), bounding boxes (Dai et al., 2015; Khoreva
et al., 2017), and image-level tags (Xu et al., 2015; Tang et al., 2018).

While relatively few works have been dedicated to explore unsupervised semantic segmentation
(USS), several methods have presented the way of segmenting feature representations without any
annotated labels by exploiting visual consistency maximization (Ji et al., 2019; Hwang et al., 2019),
multi-view equivalence (Cho et al., 2021), or saliency priors (Van Gansbeke et al., 2021; Ke et al.,
2022). In parallel with segmentation researches, recent self-supervised learning frameworks (Caron
et al., 2021; Bao et al., 2022) using Vision Transformer have observed that their representations
exhibit semantic consistency at the pixel-level scale for object targets. Based on such intriguing
properties of self-supervised training, recent USS methods (Hamilton et al., 2022; Ziegler & Asano,
2022; Yin et al., 2022; Zadaianchuk et al., 2023; Li et al., 2023; Seong et al., 2023) have employed
the pre-trained features as a powerful source of prior knowledge and introduced contrastive learning
frameworks by maximizing feature correspondence for the unsupervised segmentation task.

In this paper, we begin with a fundamental question for the unsupervised semantic segmentation:
How can we define what to cluster and how to do so under an unsupervised setting?, which has
been overlooked in previous works. A major challenge for USS lies in the fact that unsupervised
segmentation is more akin to clustering rather than semantics with respect to pixel representation.
Therefore, even with the support of self-supervised representation, the lack of awareness regarding
what and how to cluster for each pixel representation makes USS a challenging task, especially
when aiming for the desired level of granularity. For example, elements such as head, torso, hand,
leg, etc., should ideally be grouped together under the broader-level category person, a task that
previous methods (Hamilton et al., 2022; Seong et al., 2023) have had difficulty accomplishing, as in
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Figure 1: Visual comparison of USS for COCO-stuff (Caesar et al., 2018). Note that, in contrast to
true labels, baseline frameworks (Hamilton et al., 2022; Seong et al., 2023; Shin et al., 2022) fail to
achieve targeted level of granularity, while CAUSE successfully clusters person, sports, vehicle, etc.

Fig. 1. To address these difficulties, we, for the first time, treat USS procedure within the context
of causality and propose suitable two-step tasks for the unsupervised learning. As shown in Fig. 2,
we first schematize a causal diagram for a simplified understanding of causal relations for the given
variables and the corresponding unsupervised tasks for each step. Note that our main goal is to group
semantic concepts Y that meet the targeted level of granularity, utilizing feature representation T
from pre-trained self-supervised methods such as DINO (Caron et al., 2021).
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Figure 2: Causal diagram of
CAUSE. We split USS into two
steps to identify relation between
pre-trained features T and seman-
tic groups Y using clusterbook M .

Specifically, the unsupervised segmentation (T → Y ) is a pro-
cedure for deriving semantically clustered groups Y distilled
from pre-trained features T . However, the indeterminate U of
unsupervised prediction (i.e., what and how to cluster) can lead
confounding effects during pixel-level clustering without su-
pervision. Such effects can be considered as a backdoor path
(T ← U → Y ) that hinders the targeted level of segmenta-
tion. Accordingly, our primary insight stems from constructing
a subdivided concept representation M , with discretized indices,
which serves as an explicit link between T and Y in alternative
forms of supervision. Intuitively, the construction of subdivided
concept clusterbook M implies the creation of as many inherent
concept prototypes as possible in advance, spanning various
levels of granularity. Subsequently, for the given pre-trained
features, we train a segmentation head that can effectively con-
solidate the concept prototypes into the targeted broader-level
categories using the constructed clusterbook. This strategy in-
volves utilizing the discretized indices within M to identify
positive and negative features for the given anchor, enabling concept-wise self-supervised learning.

Beyond the intuitive causal procedure of USS, building a mediator M can be viewed as a blocking
procedure of the backdoor paths induced from U by assigning possible concepts in discretized
states such as in Van Den Oord et al. (2017); Esser et al. (2021). That is, it satisfies a condition for
frontdoor adjustment (Pearl, 1993), which is a powerful causal estimator that can establish only causal
association1 (T → M → Y ). We name our novel framework as CAusal Unsupervised Semantic
sEgmentation (CAUSE), which integrates the causal approach into the field of USS. As illustrated
in Fig. 2, in brief, we divide the unsupervised dense prediction into two step tasks: (1) discrete
subdivided representation learning with Modularity theory (Newman, 2006) and (2) conducting do-
calculus (Pearl, 1995) with self-supervised learning (Oord et al., 2018) in the absence of annotations.

1In Step 1, Y is a collider variable in the path of T→Y through U , and it blocks backdoor path. Therefore,
causal association only flows into M from T . Then, in Step 2, T blocks M←T←U→Y . By combining two
steps, we can distill the pre-trained representation using only causal association path and reflect it on semantic
groups, which is our ultimate goal for unsupervised semantic segmentation. Please see preliminary in Section 3.1.
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Figure 3: The overall architecture of CAUSE comprises (i): constructing discretized concept cluster-
book as a mediator and (ii): clustering semantic groups using concept-wise self-supervised learning.

By combining the above tasks, we can bridge causal inference into the unsupervised segmentation
and obtain semantically clustered groups with the support of pre-trained feature representation.

Our main contributions can be concluded as: (i) We approach unsupervised semantic segmentation
task with an intervention-oriented approach (i.e., causal inference) and propose a novel unsupervised
dense prediction framework called CAusal Unsupervised Semantic sEgmentation (CAUSE), (ii) To
address the ambiguity in unsupervised segmentation, we integrate frontdoor adjustment into USS and
introduce two-step tasks: deploying a discretized concept clustering and concept-wise self-supervised
learning, and (iii) Through extensive experiments, we corroborate the effectiveness of CAUSE on
various datasets and achieve state-of-the-art results in unsupervised semantic segmentation.

2 RELATED WORK

As an early work for USS, Ji et al. (2019) have proposed IIC to maximize mutual information of
feature representations from augmented views. After that, several methods have further improved
the segmentation quality by incorporating inductive bias in the form of cross-image correspon-
dences (Hwang et al., 2019; Cho et al., 2021; Wen et al., 2022) or saliency information in an
end-to-end manner (Van Gansbeke et al., 2021; Ke et al., 2022). Recently, with the discovery of
semantic consistency for pre-trained self-supervised frameworks (Caron et al., 2021), Hamilton et al.
(2022) have leveraged the pre-trained features for the unsupervised segmentation. Subsequently, vari-
ous works (Wen et al., 2022; Yin et al., 2022; Ziegler & Asano, 2022) have utilized the self-supervised
representation as a form of pseudo segmentation labels (Zadaianchuk et al., 2023; Li et al., 2023) or a
pre-encoded representation to further incorporate additional prior knowledge (Van Gansbeke et al.,
2021; Zadaianchuk et al., 2023) into the segmentation frameworks. Our work aligns with previous
studies (Hamilton et al., 2022; Seong et al., 2023) in the aspect of refining segmentation features
using pre-trained representations without external information. However, we highlight that the lack
of a well-defined clustering target in the unsupervised setup leads to suboptimal segmentation quality.
Accordingly, we interpret USS within the context of causality, bridging the construction of discretized
representation with pixel-level self-supervised learning (see extended explanations in Appendix A.)

3 CAUSAL UNSUPERVISED SEMANTIC SEGMENTATION

3.1 DATA GENERATING PROCESS FOR UNSUPERVISED SEMANTIC SEGMENTATION

Preliminary. It is important to define Data Generating Process (DGP) early in the process for
causal inference. DGP outlines the causal relationships between treatment T and outcome of our
interest Y , and the interrupting factors, so-called confounder U . For example, if we want to identify
the causal relationship between smoking (i.e., treatment) and lung cancer (i.e., outcome of our
interest), genotype can be deduced as one of potential confounders that provoke confounding effects
between smoking T and lung cancer Y . Once we define the confounder U , and if it is observable,
backdoor adjustment (Pearl, 1993) is an appropriate solution to estimate the causal influence between
T and Y by controlling U . However, not only in the above example but also in many real-world
scenarios, including high-dimensional complex DNNs, confounder is often unobservable and either
uncontrollable. In this condition, controlling U may not be a feasible option, and it prevents us from
precisely establishing the causal relationship between T and Y .
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Algorithm 1 (STEP 1) Maximizing Modularity for Constructing Concept Clusterbook M

Require: Image Samples X ∼ Data, Pre-trained Model f , Concept Fractions M ∈ Rk×c

1: Initialize M
2: for X ∼ Data do
3: T ∈ Rhw×c ← f(X) ▷ Pre-trained Model Representation
4: A ← max(0, cos(T, T )) ∈ Rhw×hw ▷ Affinity matrix
5: d, e← A ▷ Degree Matrix and Number of Total edges
6: C ← max(0, cos(T,M)) ∈ Rhw×k ▷ Cluster Assignment Matrix
7: H ← 1

2eTr
(
tanh

(
CCT

τ

) [
A− ddT

2e

])
▷ Maximizing Modularity (τ = 0.1)

8: M ← Increase(H) ▷ Updating Concept ClusterBook (lr: 0.001)
9: end for

Fortunately, Pearl (2009) introduces frontdoor adjustment allowing us to elucidate the causal associa-
tion even in the presence of unobservable confounder U . Here, the key successful points for frontdoor
adjustment are two factors, as shown in Fig. 2: (a) assigning a mediator M bridging treatment T
into outcome of our interest Y while being independent with confounder U and (b) averaging all
possible treatments between the mediator and outcome. When revisiting the above example, we can
instantiate a mediator M as accumulation of tar in lungs, which only affects lung cancer Y from
smoking T . We then average the probable effect between tar M and lung cancer Y across all of the
participants’ population T ′ on smoking. The following formulation represents frontdoor adjustment:

p(Y | do(T )) =
∑
m∈M

p(m | T )︸ ︷︷ ︸
Step 1

∑
t′∈T ′

p(Y | t′,m)p(t′)︸ ︷︷ ︸
Step 2

, (1)

where do(·) operator describes do-calculus (Pearl, 1995), which indicates intervention on treatment T
to block unassociated backdoor path induced from U between the treatments and outcome of interest.

Causal Perspective on USS. Bridging the causal view into unsupervised semantic segmentation,
our objective is clustering semantic groups Y with a support of pre-trained self-supervised features
T . Here, in unsupervised setups, we define U as indetermination during clustering (i.e., a lack of
awareness about what and how to cluster), which cannot be observed within the unsupervised context.
Therefore, in Step 1 of Eq. (1), we first need to build a mediator directly relying on T while being
independent with the unobserved confounder U . To do so, we construct concept clusterbook as M ,
which is set of concept prototypes that encompass potential concept candidates spanning different
levels of granularity only through T . The underlying assumption for the construction of M is based
on the object alignment property observed in recent self-supervised methods (Caron et al., 2021;
Oquab et al., 2023), a characteristic exploited by Hamilton et al. (2022); Seong et al. (2023). Next, in
Step 2 of Eq. (1), we need to determine whether to consolidate or separate the concept prototypes
into the targeted semantic-level groups Y . We utilize the discretized indices from M for discriminate
positive and negative features for the given anchor and conduct concept-wise self-supervised learning.
The following is an approximation of Eq. (1) for the unsupervised dense prediction:

E
t∈T

[p(Y | do(t))] = E
t∈T

[ ∑
m∈M

p(m | t)
∑
t′∈T ′

p(Y | t′,m)p(t′)

]
, (2)

where, T ′ indicates a population of all feature points, but notably in a pixel-level manner suitable for
dense prediction. In summary, our focus is enhancing p(Y |do(t)) for feature points t by assigning ap-
propriate unsupervised two tasks (i) p(m|t): construction of concept clusterbook and (ii) p(Y |t′,m):
concept-wise self-supervised learning, all of which can be bridged to frontdoor adjustment.

3.2 CONSTRUCTING CONCEPT CLUSTERBOOK FOR MEDIATOR

Concept Prototypes. We initially define a mediator M and maintain it as a link between the pre-
trained features T and the semantic groups Y . This mediator necessitates an explicit representation
that transforms the continuous representation found in pre-trained self-supervised frameworks, into
a discretized form. One of possible approaches is reconstruction-based vector-quantization (Van
Den Oord et al., 2017; Esser et al., 2021) that is well-suited for generative modeling. However, for
dense prediction, we require more sophisticated pixel-level clustering methods that consider pixel
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Algorithm 2 (STEP 2): Enhancing Likelihood of Semantic Groups through Self-Supervised Learning

Require: Head S;θS , Head-EMA Sema;θSema , Clusterbook M , Distance DM , Concept Bank Ybank
1: for X ∼ Data do
2: T ← f(X) ▷ Pre-trained Model Representation
3: Q← T ▷ Vector Quantization from M
4: Y, Yema ← S(Q,T ), Sema(Q,T ) (∗MLP: S(T ), Sema(T )) ▷ Segmentation Head Output
5: y ∼ Y ▷ Anchor Selection (Appendix B for Detail)
6: y+, y− ∼ {Yema, Ybank | y} ▷ Positive/Negative Selection from DM (Appendix B for Detail)
7: p← Ey

[
logEy+

[
exp(cos(y,y+)/τ)

exp(cos(y,y+)/τ)+
∑

y− exp(cos(y,y−)/τ)

]]
▷ Self-supervised Learning

8: θS ← Increase(p) ▷ Updating Parameters of Segmentation Head (lr: 0.001)
9: θSema ← λθSema + (1− λ)θS ▷ Exponential Moving Average (λ : 0.99)

10: Ybank ← R2(Ybank, Yema) ▷ R2: Random Cut Ybank and Random Sample Yema
11: end for

locality and connectivity. Importantly, they should be capable of constructing such representations in
discretized forms for alternative role of supervisions. Accordingly, we exploit a clustering method
that maximizes modularity (Newman, 2006), which is one of the most effective approaches for
considering relations among vertices. The following formulation represents maximizing a measure of
modularityH to acquire the discretized concept fractions from pre-trained features T :

max
M
H =

1

2e
Tr

(
C(T,M)T

[
A(T )− ddT

2e

]
C(T,M)

)
∈ R, (3)

where C(T,M) ∈ Rhw×k denotes cluster assignment matrix such that max(0, cos(T,M)) between
all hw patch feature points in pre-trained features T ∈ Rhw×c and all k concept prototypes in
M ∈ Rk×c. The cluster assignment matrix implies how each patch feature point is close to concept
prototypes. In addition, A(T ) ∈ Rhw×hw indicates the affinity matrix of T = {t ∈ Rc}hw such
that Aij = max(0, cos(ti, tj)) between the two patch feature points ti, tj in T , which represents the
intensity of connections among vertices. Note that, degree vector d ∈ Rhw describes the number of
the connected edges in its affinity A, and e ∈ R denotes the total number of the edges.

By jointly considering cluster assignments C(T,M) and affinity matrix A(T ) at once, in brief,
maximizing modularityH constructs the discretized concept clusterbook M taking into account the
patch-wise locality and connectivity in pre-trained representation T . In practical, directly calculating
Eq. (3) can lead to much small value of H due to multiplying tiny elements of C twice. Thus, we
use trace property and hyperbolic tangent with temperature term τ to scale up C (see Appendix
B). Algorithm 1 provides more details on achieving maximizing modularity to generate concept
clusterbook M , where we train only one epoch with Adam (Kingma & Ba, 2015) optimizer.

3.3 ENHANCING LIKELIHOOD FOR SEMANTIC GROUPS

Concept-Matched Segmentation Head. As part of Step 2, to embed segmentation features Y that
match with concept prototypes from pre-trained features T , we train a task-specific prediction head S.
As in Fig. 3, the pre-trained model remains frozen, and their features T = {t ∈ Rc}hw are fed into
the segmentation head S that performs cross-attention with querying prototype embedding Q = {q ∈
Rc}hw. Here, for the given patch features T , the prototype embedding Q represents a vector-quantized
outputs, which indicates the most representative concept q = argmaxm∈M cos(t,m) ∈ Rc within
the concept clusterbook M . The segmentation head S comprises a single transformer layer followed
by a MLP projection layer only used for training, and we can derive a concept-matched feature
Y = {y ∈ Rr}hw for concept fractions in M , satisfying Y = S(Q,T ) (refer to Appendix B).

Concept-wise Self-supervised Learning. Using the concept-attended segmentation features, we
proceed to enhance the likelihood p(Y |t′,m) for effectively clustering pixel-level semantics. To
easily handle it, we first re-formulate it as p(Y |t′,m) =

∏
y∈Y p(y|t′,m)2, recognizing that Y

2We only utilize the most closest concept at every patch feature point t in T . Hence, p(m|t) of Step 1
can be calculated by using sharpening technique: p(m=q|t)=1 if it is q=argmaxm∈M cos(m, t); otherwise,
p(m|t)=0. Then, enhancing Et∈T [p(Y |do(t))] for our main purpose to accomplish unsuperivsed dense
prediction can be simplified with increasing Et∈T [p(Y |t′,m=q)p(t′)]. When p(t′) is assumed to be uniform
distribution, it satisfies Et∈T [p(Y |do(t))] ↑∝ Et∈T [p(Y |t′,m=q)] ↑ so that enhancing the likelihood of
semantic groups Y directly leads to increasing causal effect between T and Y even under the presence of U .
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consists of independently learned patch feature points y ∈ Rr. However, we cannot directly compute
this likelihood as in standard supervised learning, primarily because there are no available pixel
annotations. Instead, we substitute the likelihood of unsupervised dense prediction to concept-wise
self-supervised learning based on Noise-Contrastive Estimation (Gutmann & Hyvärinen, 2010):

p(y | t′,m) = E
y+

[
exp(cos(y, y+)/τ)

exp(cos(y, y+)/τ) +
∑

y− exp(cos(y, y−)/τ)

]
, (4)

where y, y+, y− denote anchor, positive, and negative features, and τ indicates temperature term.

Positive & Negative Concept Selection. When selecting positive and negative concept features
for the proposed self-supervised learning, we use a pre-computed distance matrix DM that reflects
concept-wise similarity between all k concept prototypes such that DM = cos(M,M) ∈ Rk×k

in concept clusterbook M . Specifically, for the given patch feature t ∈ Rc as an anchor, we can
identify the most similar concept q ∈ Rc and its index: idq such that q = argmaxm∈M cos(t,m).
Subsequently, we use the anchor index idq to access all concept-wise distances for k concept
prototypes within M through DM [idq, :] ∈ Rk as pseudo-code-like manner. By using a selection
criterion based on the distance DM , we can access concept indices for whole patch features to
distinguish positive and negative concept features for the given anchor. That is, once we find patch
feature points in T satisfying DM [idq, :] > ϕ+ for the given anchor t, we designate them as positive
concept feature t+. Similarly, if they meet the condition DM [idq, :] < ϕ−, we categorize them
as negative concept feature t−. Here, ϕ+ and ϕ− represent the hyper-parameters for positive and
negative relaxation, which are both set to 0.3 and 0.1, respectively. Note that, we opt for soft
relaxation when selecting positive concept features because the main purpose of our unsupervised
setup is to group subdivided concept prototypes into the targeted broader-level categories. In this
context, a soft positive bound is advantageous as it facilitates a smoother consolidation process.
While, we set tight negative relaxation for selecting negative concept features, which aligns with
findings in various studies (Khosla et al., 2020; Kalantidis et al., 2020; Robinson et al., 2021; Wang
et al., 2021a) emphasizing that hard negative mining is crucial to advance self-supervised learning.

In the end, after choosing in-batch positive and negative concept features t+ and t− for the given
anchor t, we sample positive segmentation features y+ and negative segmentation features y− from
the concept-matched Y = {y ∈ Rr}hw within the same spatial location as the selected concept
features. Through the concept-wise self-supervised learning in Eq. (4), we can then guide the
segmentation head S to enhance the likelihood of semantic groups Y . We re-emphasize that for the
given anchor feature (head), our goal of USS is the feature consolidation corresponding to positive
concept features (torso, hand, leg, etc.), and the separation corresponding to negative concept features
(sky, water, board, etc.), in order to achieve the targeted broader-level semantic groups (person).

Concept Bank: Out-batch Accumulation. Unlike image-level self-supervised learning, unsu-
pervised dense prediction requires more intricate pixel-wise comparisons, as discussed in Zhang
et al. (2021). To facilitate this, we establish a concept bank, similar to He et al. (2020) but no-
tably at a pixel-level scale, to accumulate out-batch concept features for additional comparison
pairs. Following the same selection criterion as described above, we dynamically sample in-batch
features in each training iteration and accumulate them into the concept bank Ybank ∈ Rk×b×r for
continuously utilizing other informative feature from out-batches, where b represents the maximum
number of feature points saved for each concept in M ∈ Rk×c. We incorporate these additional
positive and negative concept features into the sets of y+ and y− for the concept-wise self-supervised
learning. Here, creating a concept bank can be seen as incorporating global views into the pixel-
level self-supervised learning beyond local views, which also corresponds to considering all feature
representations T ′ ∈ Rn×hw×c (n: total number of images in dataset) for frontdoor adjustment.
As a concept bank update strategy, we implement random removal of 50% of the bank’s patch
features for each concept prototype, followed by random sampling of 50% new patch features into the
concept bank at every training iteration. In addition, to perform stable self-supervised learning, we
employ: (i) using log-probability not to converge to near-zero value due to numerous multiplication of
probabilities: 1

|Y | log p(Y |t
′,m)= 1

|Y | log
∏

y∈Y p(y|t′,m)=Ey∈Y [log p(y|t′,m)], and (ii) utilizing
exponential moving average (EMA) on teacher-student structure, all of which have been widely used
by recent self-supervised learning frameworks such as Grill et al. (2020); Chen et al. (2021); Caron
et al. (2021); Zhou et al. (2022); Assran et al. (2022). Please see complete details of Step 2 procedure
in Algorithm 2 and Appendix B.
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Table 1: Comparing quantitative results and applicability to other self-supervised methods on CAUSE.

(a) Experimental results on COCO-Stuff.
Method (C = 27) Backbone mIoU pAcc

IIC (Ji et al., 2019) ResNet18 6.7 21.8
PiCIE (Cho et al., 2021) ResNet18 14.4 50.0
SegDiscover (Huang et al., 2022) ResNet50 14.3 40.1
SlotCon (Wen et al., 2022) ResNet50 18.3 42.4
HSG (Ke et al., 2022) ResNet50 23.8 57.6
ReCo+ (Shin et al., 2022) DeiT-B/8 32.6 54.1

DINO (Caron et al., 2021) ViT-S/16 8.0 22.0
+ STEGO (Hamilton et al., 2022) ViT-S/16 23.7 52.5
+ HP (Seong et al., 2023) ViT-S/16 24.3 54.5
+ CAUSE-MLP ViT-S/16 25.9 66.3
+ CAUSE-TR ViT-S/16 33.1 70.4
DINO (Caron et al., 2021) ViT-S/8 11.3 28.7
+ ACSeg (Li et al., 2023) ViT-S/8 16.4 -
+ TranFGU (Yin et al., 2022) ViT-S/8 17.5 52.7
+ STEGO (Hamilton et al., 2022) ViT-S/8 24.5 48.3
+ HP (Seong et al., 2023) ViT-S/8 24.6 57.2
+ CAUSE-MLP ViT-S/8 27.9 66.8
+ CAUSE-TR ViT-S/8 32.4 69.6
DINO (Caron et al., 2021) ViT-B/8 13.0 42.4
+ DINOSAUR (Seitzer et al., 2023) ViT-B/8 24.0 -
+ STEGO (Hamilton et al., 2022) ViT-B/8 28.2 56.9
+ CAUSE-MLP ViT-B/8 34.3 72.8
+ CAUSE-TR ViT-B/8 41.9 74.9

(c) Self-supervised methods with CAUSE-TR.
Dataset Self-Supervised Methods Backbone mIoU pAcc

COCO-Stuff
DINOv2 (Oquab et al., 2023) ViT-B/14

45.3 78.0
Cityscapes 29.9 89.8
Pascal VOC 53.2 91.5
COCO-Stuff

iBOT (Zhou et al., 2022) ViT-B/16
39.5 73.8

Cityscapes 23.0 89.1
Pascal VOC 53.4 89.6
COCO-Stuff

MSN (Assran et al., 2022) ViT-S/16
34.1 72.1

Cityscapes 21.2 89.1
Pascal VOC 30.2 84.2
COCO-Stuff

MAE (He et al., 2022) ViT-B/16
21.5 59.1

Cityscapes 12.5 82.0
Pascal VOC 25.8 83.7

(b) Experimental results on Cityscapes.
Method (C = 27) Backbone mIoU pAcc

IIC (Ji et al., 2019) ResNet18 6.4 47.9
PiCIE (Cho et al., 2021) ResNet18 10.3 43.0
SegSort (Hwang et al., 2019) ResNet101 12.3 65.5
SegDiscover (Huang et al., 2022) ResNet50 24.6 81.9
HSG (Ke et al., 2022) ResNet50 32.5 86.0
ReCo+ (Shin et al., 2022) DeiT-B/8 24.2 83.7

DINO (Caron et al., 2021) ViT-S/8 10.9 34.5
+ TransFGU (Yin et al., 2022) ViT-S/8 16.8 77.9
+ HP (Seong et al., 2023) ViT-S/8 18.4 80.1
+ CAUSE-MLP ViT-S/8 21.7 87.7
+ CAUSE-TR ViT-S/8 24.6 89.4
DINO (Caron et al., 2021) ViT-B/8 15.2 52.6
+ STEGO (Hamilton et al., 2022) ViT-B/8 21.0 73.2
+ HP (Seong et al., 2023) ViT-B/8 18.4 79.5
+ CAUSE-MLP ViT-B/8 25.7 90.3
+ CAUSE-TR ViT-B/8 28.0 90.8

(d) Experimental results on Pascal VOC 2012.
Method (C = 21) Backbone mIoU

IIC (Ji et al., 2019) ResNet18 9.8
SegSort (Hwang et al., 2019) ResNet101 11.7
DenseCL (Wang et al., 2021b) ResNet50 35.1
HSG (Ke et al., 2022) ResNet50 41.9
MaskContrast (Van Gansbeke et al., 2021) ResNet50 35.0
MaskDistill (Van Gansbeke et al., 2022) ResNet50 48.9

DINO (Caron et al., 2021) ViT-S/8 -
+TransFGU (Yin et al., 2022) ViT-S/8 37.2
+ACSeg (Li et al., 2023) ViT-S/8 47.1
+CAUSE-MLP ViT-S/8 46.0
+CAUSE-TR ViT-S/8 50.0
DINO (Caron et al., 2021) ViT-B/8 -
+DeepSpectral (Melas-Kyriazi et al., 2022) ViT-B/8 37.2
+DINOSAUR (Seitzer et al., 2023) ViT-B/8 37.2
+Leopart (Ziegler & Asano, 2022) ViT-B/8 41.7
+COMUS (Zadaianchuk et al., 2023) ViT-B/8 50.0
+CAUSE-MLP ViT-B/8 47.9
+CAUSE-TR ViT-B/8 53.3

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Inference. In inference phase for USS, STEGO (Hamilton et al., 2022) and HP (Seong et al., 2023)
equally perform the following six steps: (a) learning C cluster centroids (Caron et al., 2018) from the
trained segmentation head output where C denotes the number of categories in dataset, (b) upsampling
segmentation head output to the image resolution, (c) finding the most closest centroid indices to the
upsampled output, (d) refining the predicted indices through Fully-connected Conditional Random
Field (CRF) (Krähenbühl & Koltun, 2011) with 10 steps, (e) Hungarian Matching (Kuhn, 1955)
for alignment with CRF indices and true labels, and (f) evaluating mean of intersection over union
(mIoU) and pixel accuracy (pAcc). We follow the equal six steps with Sema of CAUSE.

Implementation. Following recent works, we adopt DINO as an encoder baseline and freeze it,
where the feature dimension c of T depends on the size of ViT: small (c = 384) or base (c = 768).
For hyper-parameter in the clusterbook, the number of concept k in M is set to 2048 to encompass
concept prototypes from pre-trained features as much as possible. During the self-supervised learning,
the number of feature accumulation b in concept bank is set to 100. In addition, output dimension
r of segmentation head is set to 90 based on the dimension analysis (Koenig et al., 2023). For the
segmentation head, we use two variations: (i) CAUSE-MLP with simple MLP layers as in Hamilton
et al. (2022) and (ii) CAUSE-TR with a single layer transformer. Please see details in Appendix B.

Datasets. We mainly benchmark CAUSE with three datasets: COCO-Stuff (Caesar et al., 2018),
Cityscapes (Cordts et al., 2016), and Pascal VOC (Everingham et al., 2010). COCO-Stuff is a
scene texture segmentation dataset as subset of MS-COCO 2017 (Lin et al., 2014) with full pixel
annotations of common Stuff and Thing categories. Cityscapes is an urban street scene parsing dataset
with annotations. Following Ji et al. (2019); Cho et al. (2021), we use the curated 27 mid-level
categories from label hierarchy for COCO-Stuff and Cityscapes. As an object-centric USS, we
follow Van Gansbeke et al. (2022) and report the results of total 21 classes for PASCAL VOC.

7



Under review as a conference paper at ICLR 2024

Table 2: Comparing linear probing performance.
COCO-Stuff Cityscapes

Method Baseline mIoU pAcc mIoU pAcc

DINO (Caron et al., 2021) ViT-S/8 33.9 68.6 22.8 84.6
+HP (Seong et al., 2023) ViT-S/8 42.7 75.6 30.6 91.2
+CAUSE-MLP ViT-S/8 46.4 77.3 35.2 92.1
+CAUSE-TR ViT-S/8 47.2 78.8 37.2 93.5
DINO (Caron et al., 2021) ViT-B/8 29.4 66.8 23.0 84.2
+STEGO (Hamilton et al., 2022) ViT-B/8 41.0 76.1 26.8 90.3
+CAUSE-MLP ViT-B/8 48.3 79.8 38.2 93.4
+CAUSE-TR ViT-B/8 52.3 80.1 40.2 94.5

Table 3: Results of CAUSE with larger categories.
Method Backbone mIoU pAcc

C
O

C
O

-8
1 MaskContrast (Van Gansbeke et al., 2021) ResNet50 3.7 8.8

TransFGU (Yin et al., 2022) ViT-S/8 12.7 64.3
CAUSE-MLP ViT-S/8 19.1 78.8
CAUSE-TR ViT-S/8 21.2 75.2

C
O

C
O

-1
71

IIC (Ji et al., 2019) ResNet50 2.2 15.7
PiCIE (Cho et al., 2021) ResNet50 5.6 29.8
TransFGU (Yin et al., 2022) ViT-S/8 12.0 34.3
CAUSE-MLP ViT-S/8 10.6 44.9
CAUSE-TR ViT-S/8 15.2 46.6

Im
ag

e
L

ab
el

ST
E

G
O

H
P

C
A

U
SE

R
eC

o+

sidewalk parking car bus vegetation skyterrainroad building
pole person bicycle rider traffic sign traffic lighttruckwall ignored

Figure 4: Qualitative comparison of unsupervised semantic segmentation for Cityscapes dataset.

4.2 VALIDATING CAUSE

Quantitative & Qualitative Results. We validate CAUSE by comparing with recent USS frame-
works using mIoU and pAcc on various datasets. Table 1 (a) and (b) show CAUSE generally
outperforms HSG (Ke et al., 2022), TransFGU (Yin et al., 2022), STEGO (Hamilton et al., 2022),
HP (Seong et al., 2023), and ReCo+ (Shin et al., 2022), and our method achieves state-of-the-art re-
sults without any external information. Table 2 shows another superior quantitative results of CAUSE
for linear probing than baselines, which indicates competitive dense representation quality learned
in unsupervised manners. Furthermore, Fig. 1 and Fig. 4 illustrate CAUSE effectively assembles
different level of granularity (head, torso, hand, leg, etc.), into one semantically-alike group (person).
Please see additional qualitative results, analyses, and failure cases in Appendix C.

Applicability to Object-centric Semantic Segmentation. Preceding works, rooted in object-
centric semantic segmentation models (Van Gansbeke et al., 2021; Yin et al., 2022; Zadaianchuk
et al., 2023), initially generate pseudo-labels that differentiate between foreground (objects) and
background. This process is typically accomplished by using Mask R-CNN (He et al., 2017) and
DeepLabv3 (Chen et al., 2017), or saliency maps from DeepUSPS (Nguyen et al., 2019). In contrast,
STEGO and HP abstains from relying on any external information beyond self-supervised knowledge.
Therefore, they inherently lack the capability to segment an image into two broad categories: objects
and a single background category, making them unsuitable for direct application to object-centric
semantic segmentation. However, we highlight that simply adjusting smoother positive relaxation
in CAUSE enables to discern background from foreground without any external information. The
results of Pascal VOC 2012 is shown in Table 1(d), and its figures are illustrated in Appendix C.

Generalization Capability We first incorporate alternative self-supervised methods as our baseline,
replacing DINO (Caron et al., 2021). In Table 1(c), we present an overview of adaptability in CAUSE
across DINOv2 (Oquab et al., 2023), iBOT (Zhou et al., 2022), MSN (Assran et al., 2022), and
MAE (He et al., 2022). Furthermore, we extend the number of clusters in CAUSE by utilizing MS-
COCO 2017 (Lin et al., 2014), which comprises 80 object categories and one background category:
(object-centric) COCO-81, and 171 categories encompassing both Stuff and Thing categories: COCO-
171. Note that, positive ϕ+ relaxation is set to 0.4 and 0.55 respectively. Table 3 highlights CAUSE
retains superior performances for USS even with larger categories. Especially, TransFGU (Yin et al.,
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(a) Log scale of IoU results for each categories in COCO-Stuff (Black: Thing / Gray: Stuff )
mIoU
pAcc
coco
city

mIoU
pAcc
coco
city

mIoU
pAcc
coco
city

(b) Positive Relaxation ϕ+ (c) Negative Relaxation ϕ− (d) Concept number k in M
Figure 5: Additional experimental for in-depth analysis and ablation studies of CAUSE-TR.

Table 4: Quantitative ablation results by controlling the other three factors of CAUSE-TR on ViT-B/8.
(%) CAUSE-MLP CAUSE-TR

COCO-Stuff Cityscapes COCO-Stuff Cityscapes

Method of Concept Discretization Bank CRF mIoU pAcc mIoU pAcc mIoU pAcc mIoU pAcc

Maximizing Modularity (Newman, 2006)

✗ ✗ 24.9 54.1 15.8 75.6 27.8 57.3 17.3 79.2
✓ ✗ 31.3 69.0 25.3 89.5 39.5 72.5 28.8 90.7
✗ ✓ 27.5 57.9 17.3 78.8 30.3 60.1 19.6 82.1
✓ ✓ 34.3 72.8 25.7 90.3 41.9 74.9 28.0 90.8

K-Means++ (Arthur & Vassilvitskii, 2007) ✓ ✓ 27.8 64.7 18.9 81.3 33.7 62.7 20.4 83.2
Spectral Clustering (Von Luxburg, 2007) ✓ ✓ 30.7 65.1 20.8 83.5 35.9 66.7 22.8 84.1
Agglomerative Clustering (Müllner, 2011) ✓ ✓ 31.4 67.9 22.2 84.0 37.7 68.1 24.5 86.3
Ward-Hierarchical Clustering (Murtagh & Legendre, 2014) ✓ ✓ 31.8 67.5 22.9 84.7 37.5 68.2 24.7 87.0

2022) used Grad-CAM (Selvaraju et al., 2017) for generating category-specific pseudo-labels, thereby
keeping consistent mIoU performance compared with COCO-81 and COCO-171. Nonetheless,
CAUSE has a great advantage to pAcc especially in COCO-171 without any external information.

Categorical Analysis. To demonstrate that CAUSE can effectively address the targeted level of
semantic grouping, we closely examine IoU results for each category. By validating the IoU results
on a logarithmic scale in Fig. 5(a), we can observe that STEGO and HP struggle with segmenting
Thing categories in COCO-Stuff, which demands fine-grained discrimination among concepts within
complex scenes. In contrast, CAUSE consistently exhibits superior capability in segmenting concepts
across most categories. These results are largely attributed to the causal design aspects, including the
construction of the concept clusterbook and concept-wise self-supervised learning among concept
prototypes. Beyond the quantitative results, it is important to highlight again that CAUSE exhibits
significantly improved visual quality in achieving targeted level of semantic groupings than baselines
as in Fig. 1 and Fig. 4. We include further discussions and limitations in Appendix D.

Ablation Studies. We conduct ablation studies on six factors of CAUSE to identify where the
effectiveness comes from as in Fig. 5 and Table 4: (i) positive ϕ+ and (ii) negative relaxation ϕ−,
(iii) the number of concepts k in M , (iv) the effects of concept bank Ybank and (v) fully-connected
CRF, and (vi) discretizing methods for concept clusterbook M . Through the empirical results, we
first observe the appropriate relaxation parameter plays a crucial role in determining the quality of
self-supervised learning. Furthermore, unlike semantic representation-level pre-training (Bao et al.,
2022), we find that the number of discretized concepts saturates after reaching 2048 for clustering.
We also highlight the effects of concept bank, CRF, and modularity maximization for effective USS.

5 CONCLUSION

In this work, we propose a novel framework called CAusal Unsupervised Semantic sEgmentation
(CAUSE) to address the indeterminate clustering targets that exist in unsupervised semantic segmen-
tation tasks. By employing frontdoor adjustment, we construct the concept clusterbook as a mediator
and utilize the concept prototypes for semantic grouping through concept-wise self-supervised learn-
ing. Extensive experiments demonstrate the effectiveness of CAUSE, resulting in state-of-the-art
performance in unsupervised semantic segmentation. Our findings bridge causal perspectives into the
unsupervised prediction, and improve segmentation quality without any pixel annotations.
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A EXPANSION OF RELATED WORKS

Unsupervised Semantic Segmentation. One of the key challenges in unsupervised dense prediction
is the need to learn semantic representations for each pixel without the guidance of labeled data. In
an early work for unsupervised semantic segmentation (USS), Ji et al. (2019) introduced the IIC
framework, which aims to maximize mutual information between feature representations obtained
from augmented views. Subsequently, several methods have advanced the quality of segmentation by
introducing inductive bias through cross-image correspondences (Hwang et al., 2019; Cho et al., 2021;
Wen et al., 2022) or by incorporating saliency information in an end-to-end manner (Van Gansbeke
et al., 2021; Ke et al., 2022).

More recently, the discovery of semantic consistency in pre-trained self-supervised frameworks
at the feature attention map (Caron et al., 2021) has led to prevalent approaches. Hamilton et al.
(2022) introduced a method that leverages pre-trained knowledge and distills this information into
the unsupervised segmentation task. Following this, various works (Wen et al., 2022; Yin et al.,
2022; Ziegler & Asano, 2022) have employed self-supervised representations as pseudo segmentation
labels (Zadaianchuk et al., 2023; Li et al., 2023) or as pre-encoded representations to incorporate ad-
ditional prior knowledge (Van Gansbeke et al., 2021; Zadaianchuk et al., 2023) into the segmentation
frameworks.

Our work aligns with Hamilton et al. (2022); Seong et al. (2023) in terms of enhancing segmen-
tation features solely with the pre-trained representation. However, we emphasize the presence of
indeterminate clustering targets inherent in unsupervised segmentation tasks. Our qualitative and
quantitative results have demonstrated that the absence of evident clustering targets leads to poor
segmentation outcomes in unsupervised settings. These negative effects have not been adequately
addressed in previous works within the existing literature. Accordingly, for the first time, we interpret
the unsupervised segmentation task within the context of causality, effectively bridging discretized
representation learning and contrastive learning within this task.

Causal Inference. In recent years, numerous studies (Wang et al., 2020a; Zhang et al., 2020b;
Schölkopf et al., 2021; Lv et al., 2022) have applied causal inference techniques in DNNs to estimate
the true causal effects between treatments and outcomes of interest. The fundamental approach to
achieve causal identification involves blocking backdoor paths induced from confounders.

In several computer vision methods have employed various causal approaches such as backdoor
adjustment establishing explicit confounders (Tang et al., 2020a; Zhang et al., 2020a; Yue et al.,
2020; Liu et al., 2022), mediation analysis (Tang et al., 2020b; Niu et al., 2021), and generating
counterfactual augmentations for randomized treatment assignments (Agarwal et al., 2020; Yue et al.,
2021; Wang et al., 2022) and have been successfully applied at task-specific levels. More recently,
various works (Kim et al., 2023b; Lee et al., 2023) have demonstrated that the causal approaches can
be applied into the more specific computer vision areas with more sophisticated theories.

However, one of the challenges of applying causal inference to computer vision tasks is the explicit
definition of confounding variables and the full control of them. Accordingly, we utilize frontdoor
adjustment (Pearl, 1995) which can identify causal effects without the requirement of observed
confounders, but relatively less explored in the context of computer vision tasks (Yang et al., 2021b;a).
Inspired by recent developments in discrete representation learning (Van Den Oord et al., 2017; Esser
et al., 2021), we proactively build a discretized concept representation and serve it as an informative
mediator, allowing us to establish criteria for identifying positive and negative samples for a given
query pixel representation. Consequently, this approach facilitates the integration of discretized
representation and self-supervised learning into the process of unsupervised semantic segmentation.

B DETAILED IMPLEMENTAION OF CAUSE

We present a detailed description of a concrete implementation for CAUSE, expanding upon the
algorithms outlined in the method section and providing additional implementation details not covered
in the experiment section. To validate identifiable and reproducible performance described in the
experiment section, one can access the trained parameters of CAUSE-MLP and CAUSE-TR, as well
as their visual quality, through the code document available in the supplementary material.
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B.1 MAXIMIZING MODULARITY

When generating a mediator to design the concept cluster book, we need to compute a cluster assign-
ment matrix C ∈ Rhw×k as described in Algorithm 1 in our manuscript. However, a computational
issue arises when k becomes large, such as the value of 2048 selected for the main experiments,
thus computing the measure of ModularityH becomes computationally expensive. To address this
issue, we utilize the trace property of exchanging the inner multiplication terms, thereby reducing the
computational burden, which can be written as follows:

H =
1

2e
Tr

C(T,M)T
[
A− ddT

2e

]
C(T,M)︸ ︷︷ ︸

Rk×k

 =
1

2e
Tr

C(T,M)C(T,M)T︸ ︷︷ ︸
Rhw×hw

[
A− ddT

2e

] . (5)

However, directly calculating the above formulation can lead to very small Modularity due to
multiplying very small two values from C(T,M)C(T,M)T, rendering it ineffective optimization. To
overcome this, we use the hyperbolic tangent and temperature term, which can be written as:

H ≈ 1

2e
Tr

(
tanh

(
C(T,M)C(T,M)T

τ

)[
A− ddT

2e

])
, (6)

in order to scale up this value while it can maintain the possible range of the multiplication
C(T,M)C(T,M)T from the following range:

0 ≤ tanh

(
C(T,M)C(T,M)T

τ

)
< 1, (7)

such that it satisfies 0 ≤ C(T,M)C(T,M)T ≤ 1 originated from the definition of the clustering
assignment: 0 ≤ C(T,M) = max(0, cos(T,M)) ≤ 1.

B.2 TRANSFORMER-BASED SEGMENTATION HEAD

We use a single layer transformer decoder inspired by Vaswani et al. (2017); Carion et al. (2020) to
build segmentation head with self-attention (SA), cross-attention (CA), and feed forward network
(FFN) with its 2048 inner-dimension by default hyper-parameter (Vaswani et al., 2017), where a single
head attention is used on its enough performance. To explain the detailed propagation procedure for
CAUSE-TR, we first show vector-quantization mechanism for the pre-trained feature representation
T = {t ∈ Rc}hw by replacing each patch feature point t with each of the most closest concept
features in M as follows:

Q = {q ∈ Rc | q = arg max
m∈M

cos(t,m)}hw. (8)

Next, Q is first propagated in SA, and Q and T are considered as query and key/value, respectively in
CA, and the output of CA is propagated in FFN. Note that, learnable positional embedding is used
in both query/key of SA and query of CA as Carion et al. (2020) have carried out. One different
structure is to adopt additional two MLP layers in order to reduce the dimension from c (ViT-S:384,
ViT-B:768) to r (90) for segmentation head output Y . This is because Koenig et al. (2023) empirically
demonstrate that higher dimension r over 100 brings in gradual collapse of clustering performance
derived from the curse of dimensionality (Assent, 2012).

B.3 ANCHOR SELECTION

In line 5 of Algorithm 2, we describe that we sample anchor patch feature point y in Y = {y ∈ Rr}hw.
In reality, it is extremely inefficient to select all number hw of the patch feature points in Y to perform
anchor points in self-supervised learning, because of the limitation of the resource-constrained
hardware. Therefore, we use a high-computation-reduced technique of stochastic sampling only
6.25% points ( 14

2 × 100(%)) among the number hw points in Y , where we randomly select one
feature point whenever a window having kernel size 4× 4 and stride 4 is sliding along with Y .

17



Under review as a conference paper at ICLR 2024

B.4 POSITIVE & NEGATIVE CONCEPT SELECTION

In line 6 of Algorithm 2, we either describe that we sample positive and negative concept features
y+, y− in the set of Yema and Ybank for the given anchor patch feature point y: it expresses y+, y− ∼
{Yema, Ybank | y}. First, we find the patch feature point t corresponding to y and then search the most
closest concept q = argmaxm∈M cos(t,m) and its index idq. Next, we filter the positive y+ and
negative y− concept features satisfying each condition on DM [idq, :] > ϕ+ and DM [idq, :] < ϕ−.
Then, we sample all of the positive and negative concept features in the set of Yema and Ybank. Note
that, there are a few case that the row vector in DM has a minimum value over zero, thus we
technically set hard negative relaxation to 0.1, instead of 0.

B.5 CONCEPT BANK

In line 10 of Algorithm 2, the concept bank Ybank follows a specific rule: not all of the segmentation
features Yema are collected, but they are instead 50% re-sampled based on the most closest concept
indices individually, where the concept bank collects a maximum of 100 features per concept
prototype. Before re-sampling, 50% of Ybank is randomly discarded. Considering that we have
the number 2048 of concept prototypes, the concept bank stores total number 100 × 2048 of the
segmentation features. This ensures that the concept bank contains a comprehensive collection of
treatment candidates T ′, providing the diversity of selecting positive and negative concept features.

B.6 IMAGE RESOLUTION AND AUGMENTATION

For COCO-Stuff and Cityscapes, we equally follow data-augmentation method of STEGO (Hamilton
et al., 2022) and HP (Seong et al., 2023) which employ five-crop with crop ratio of 0.5 in full image
resolution and resizes the cropped images to 224 × 224 for CAUSE-MLP in training phase. For
inference phase, images are resized to 320×320 along the minor axis followed by center crops of each
validation image. For CAUSE-TR, 320× 320 image resolution is used to train segmentation head of
a single layer transformer, because the same number of queries and learnable positional embeddings
is used in training and inference phase. For Pascal VOC 2012, COCO-81, and COCO-171, we
follow data-augmentation method of TransFGU (Yin et al., 2022) which employs multiple-crop with
multiple ratio. A significant different point is that STEGO, HP, and TransFGU employ additional
data-augmentation techniques, including Horizontal Flip, Color-Jittering, Gray-scaling, and Gaussian-
Blurring as geometric and photometric transforms, but CAUSE utilizes Horizontal Flip only.

C ADDITIONAL EXPERIMENTS

Due to page limitations, we are unable to include a comprehensive set of visual results for unsuper-
vised semantic segmentation on multiple datasets in the main manuscript. In this additional section,
we provide various examples primarily from four datasets and show the comparison results with
baseline methods.

C.1 ADDITIONAL QUALITATIVE RESULTS

To provide further evidence of unsupervised semantic segmentation results, we include additional
qualitative visual results in Fig.6 and Fig.8 for COCO-Stuff and Cityscapes, respectively. The entire
experimental setup remains consistent with the main manuscript, and we compare our proposed
method with recent unsupervised semantic segmentation baselines (Hamilton et al., 2022; Seong et al.,
2023; Shin et al., 2022) that also utilize pre-trained DINO (Caron et al., 2021) feature representations.

Additionally, we present qualitative results for object-centric semantic segmentation by providing
visualizations for the PASCAL VOC, COCO-81 and COCO-171 in Fig. 9 and Fig. 7, respectively.
All of these datasets include an additional background class. While the negative relaxation is set to
the same value of 0.1, we have adjusted the positive relaxation to 0.2, 0.4, and 0.55 for PASCAL
VOC, COCO-81, and COCO-171 datasets, respectively. This modification is primarily due to account
for the coarsely merged background class, as it aids in distinguishing the intricate integration of the
background concepts.
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C.2 FAILURE CASES

Unsupervised semantic segmentation is considered fundamentally challenging due to the combination
of the absence of supervision and the need for dense pixel-level predictions. Even if we successfully
achieve competitive unsupervised segmentation performance, there are some failure cases in which
CAUSE may produce inadequate segmentation quality.

In Fig. 10, we present failed segmentation with other baselines. One of the observations is the
existence of noisy segmentation outcomes, especially in complex scenes. A straightforward solution
is to adjust the larger number k when constructing the concept clusterbook M . However, we have
observed a trade-off between handling complex scenes and dealing with relatively easier examples. To
fundamentally address this issue in future directions, we expect to explore pre-processing techniques
and incorporate multi-scale feature extraction methods, as demonstrated in previous works such
as Kirillov et al. (2019); Kim et al. (2023a); Ranftl et al. (2021). These approaches aim to enhance
the precision of detailed dense prediction.

Additionally, we have observed instances where the cluster assignments were incorrectly predicted
for certain object instances. We believe that these failures can primarily be attributed to two factors:
(i) the inherent limitations of leveraging pre-trained self-supervised frameworks originally designed
for image-level prediction tasks, and (ii) the possibility of incompleteness in the employed clustering
methods. As part of our future work, we believe it is essential to utilize foundation networks
specifically designed for dense prediction tasks and clustering algorithms that can operate in an
unsupervised manner. This approach will likely lead to more robust performance for unsupervised
semantic segmentation.

C.3 CONCEPT ANALYSIS IN CLUSTERBOOK

In the proposed causal approach in unsupervised semantic segmentation, we define discretized
representation as a mediator (concept clusterbook) and leverage the advantages of discretization to
facilitate concept-wise self-supervised learning through frontdoor adjustment. A natural question
would be: What is included in the clusterbook within the representation space? To address the
question, we conduct additional experiments that focused on retrieving concepts using the shared
index of clusterbook. Firstly, we select an anchor index from the total 2048 concepts in clusterbook.
Then, we retrieve image regions that corresponds to the same cluster index as the anchor. Furthermore,
to merge more wider image regions considering pixel-level clusterbook indices, we employ the
concept distance matrix as explained in Section 3.3. Specifically, we merge image regions based on
their discretized index when the concept distance with the anchor index exceeds positive relaxation
of softly 0.3. The retrieved results can be found in Fig. 11.

D DISCUSSIONS AND LIMITATIONS

Bootstrapping Pre-trained Models. It is significantly challenging to handle fine-grained and
complex scenes when dealing with unsupervised semantic segmentation using pre-trained feature
representation. Based on the fact that the pre-trained features are designed to capture high-level
semantic information, STEGO (Hamilton et al., 2022), HP (Seong et al., 2023), and ReCo+ (Shin
et al., 2022) struggle yet fail to precisely segment intricate details within images, especially in
scenarios with densely packed objects, complex backgrounds, or small objects as observed in Fig. 6-9.
This is because the pre-trained models, originally designed for tasks like image classification or
object detection, are not perfectly matched to understand the different level of granularity required for
fine-grained segmentation. In contrast, our novel framework, CAUSE, bootstraps the knowledge of
high-level pre-trained feature representation to achieve semantic grouping at pixel-level by bridging a
causal approach combining the discrete concept representation with concept-wise self-supervised
learning.

Heuristically Static Hyper-Parameter. CAUSE carefully assembles the concept clusterbook M ,
in advance, considering which concept features should be amalgamated or distinguished based on
the intricate concept-wise distance matrix DM . One of nuisances involves heuristically establishing
selection criterion for positive ϕ+ and negative ϕ− relaxation, allowing for the construction of
different level of granularity within the semantic groups Y . However, tailoring these criterion to
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the specifics of a dataset can be a challenging endeavor. Grid-search, ranging ambitiously from 0.1
to 0.7, is employed in the quest to find optimal relaxation values, but such task demands heuristic
efforts. Moreover, in the realm of image processing, adapting to dynamic environmental contexts
within images, encompassing scenarios such as the presence of small objects or intricate scenes, is
imperative. In future direction, it requires more dynamical process of selecting criterion, particularly
for such specialized and complex contexts.
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Img GT STEGO HP ReCo+ Ours Img GT STEGO HP ReCo+ Ours

Figure 6: Additional qualitative results of unsupervised semantic segmentation for Coco-Stuff. Please
look up the object color maps in the main manuscripts.

Img GT CAUSE Img GT CAUSE Img GT CAUSE Img GT CAUSE

Figure 7: Qualitative results of unsupervised semantic segmentation for COCO-171, which is
specialized for object-centric semantic segmentation with 171 categories.
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Img GT STEGO HP ReCo+ Ours Img GT STEGO HP ReCo+ Ours

Figure 8: Additional qualitative results of unsupervised semantic segmentation for Cityscapes. Please
look up the object color maps in the main manuscripts.

Img GT CAUSE Img GT CAUSE Img GT CAUSE Img GT CAUSE

(a) PASCAL VOC (b) COCO-81

Figure 9: Qualitative results of unsupervised semantic segmentation for PASCAL VOC and COCO-
81, both of which are specialized for object-centric semantic segmentation.
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Figure 10: Failure cases of CAUSE and comparison results with other baselines.

   

Person

Anchor 𝑴𝑴 index: 412

Anchor 𝑴𝑴 index: 1708 Predicted 𝒀𝒀

Predicted 𝒀𝒀Animal

Figure 11: Retrieval results of the concept with respect to the shared index on clusterBook. We select
Person and Animal categories and CAUSE prediction results on COCO-Stuff.
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