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Abstract
The success of Transformer-based language
models in NLP has sparked debate about their
ability to simulate human language learning.
Chomsky contends that these models indiscrim-
inately acquire both natural and “impossible”
languages. While recent studies have chal-
lenged this claim, the capacity of Transformers
to handle unconventional linguistic structures
remains underexplored. Inspired by natural
and speculative languages with circular struc-
tural properties, this study examines the ability
of GPT-2 to learn languages featuring circu-
lar schemes. We synthesize such circular lan-
guages by mapping original sequences onto
textual circles and then relinearize them us-
ing parametric, mathematically invertible pro-
cedures that “unwrap” the circles into linear
sequences. We train GPT-2 models on these re-
linearized corpora and assess the impact of lin-
earization parameters by tracking structural dis-
tortion and measuring perplexity. Interestingly,
high levels of distortion relative to the origi-
nal structures do not necessarily correspond
to increased perplexity, suggesting that GPT-2
is relatively insensitive to global token order
during language acquisition. Instead, preserv-
ing local context during linearization plays a
more critical role in model learning. Further
analysis using surprisal differences reveals that
positional shifts pose greater challenges to the
model than changes in stride or direction, un-
derscoring the nuanced effects of linearization
strategies. These findings offer new insights
into the inductive biases of Transformer-based
models in acquiring unconventional linguistic
structures.

1 Introduction

“As Frodo did so, he now saw fine lines, finer than
the finest pen-strokes, running along the ring, out-
side and inside: lines of fire that seemed to form
the letters of a flowing script.” Tolkien (1954) cer-
tainly made a beautiful and vivid description of
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Figure 1: An illustration of circularization and lineariza-
tion of a text sequence at token level. Since the raw
sequence is standard English, the linearized sequences
with altered schemes (parametrized by start position,
stride and direction) become incomprehensible to hu-
man. However, they are equally valid and invertible
ways to and “unwrap” a circular sequence.

what a circularized text sequence may present. Un-
like rendered circular sequence such as the One
Ring inscription, Heptapod B—an alien language
imagined in the novella Stories of Your Life (Chi-
ang, 2002)—exemplifies an intrinsic circular lan-
guage, where structure are fundamentally circu-
lar and constituents graphic. Circular patterns are
not exclusive to fictional works. In biology, nat-
urally occurring circular genetic sequences play
essential roles in gene regulation, demonstrating
that circular structures exist even at the molecular
level of genetic information encoding (Vinograd
and Lebowitz’, 1966; Jeck and Sharpless, 2014;
Ebbesen et al., 2017). These examples indicate
that circular representation of information, whether
naturally evolved or artificially constructed, are vi-
able and meaningful systems, supporting the idea
that structurally circular languages need not remain
purely speculative.

Recent advances in neural language models
based on Transformer architectures (Vaswani et al.,
2023) have sparked discussions about whether such
models can provide meaningful insights into hu-
man language processing and cognition. Notably,
Chomsky et al. (2023) argued that, unlike humans,
large language models (LLMs) are equally capa-
ble of learning both natural and “impossible” lan-



guages, implying that their ability to acquire lan-
guage does not reflect human cognitive mecha-
nisms (Chomsky, 2014). In response to this claim,
Kallini et al. (2024); Yang et al. (2025); Xu et al.
(2025) introduced a suite of artificially synthesized
(typologically) “impossible” languages and demon-
strated that Transformer-based models learn natural
languages more effectively than those “impossi-
ble” counterparts, directly challenging Chomsky’s
assertion. This line of research aims to evaluate
whether language models share similar limits on
language learning with humans, so that the models
may potentially provide analogical explanations on
human-like intelligence.

Despite existing works considered the positional
perspective to a certain degree, many of the pro-
posed “impossible” language construction strate-
gies are bound by linear relations or nondetermin-
istic operations. Thus, it remains an open question
whether Transformers can learn languages with
rule-based non-linear—particularly circular—
schemes, as is commonly observed in natural in-
formation encoding. This special inquiry inspires
us to explore a geometrically guided approach: in-
stead of applying arbitrary positional change or
permutations, we design mathematically invertible
circularization and linearization transformations.
Circular languages generated by such process chal-
lenge linear-sequence-targeted Transformer-based
language models, yet also avoid collapsing into
over randomness or orderless bag-of-words, for it
retains certain degree of proximity.

We parameterize a circularization (and inversely
linearization) scheme by three key configurations:
start position, stride and direction. Then, we
present an anatomic analysis on their independent
impact. Prior to main experiments, we also quan-
tify the extent of distortions introduced by differ-
ent schemes. We hypothesize that higher distor-
tions in relinearized circular languages will lead to
higher perplexities (indicating more difficult learn-
ing) for GPT-2. While the observations confirm
that Transformer-based models struggle more to
learn languages with circular schemes than natu-
ral ones, contrary to our hypothesis, the results
show that greater distortions did not consistently
increase perplexity. Instead, GPT-2 preferred lin-
earization schemes preserving inter-token prox-
imity, implying a human-like favor for struc-
turally “natural’‘ sequences. Another suite of
surprisal analyses indicate a conditional negative
correlation between positional learning and dis-

tortions across most circular manipulations. How-
ever, the findings also show a directional sensitiv-
ity on precise positional learning.

This study aims to contribute to the debates
about language learnability of LLMs and provides
evidence for one of the key factors in making a lan-
guage difficult for a Transformer-based language
model: it is not the linguistic “impossibility” of a
language that makes it less unlearnable, but simply
due to its randomness in terms of information. In
other words, even though LLMs and human both
struggle with learning languages with disjoint com-
positions, their common difficulties does not imply
they learn languages in the same way. We hope our
study engage the broader debate on the relationship
between LLMs and human cognition.

2 Related Work and Background

2.1 Transformer Learning of Unnatural
Languages

The development of LLMs raises fundamental
questions about what types of sequences transform-
ers can learn, particularly regarding their ability
to acquire structured linguistic patterns (Mielke
et al., 2019; Liao et al., 2020; Strobl et al., 2024).
Sinha et al. (2021) argued that masked language
models primarily succeed by capturing high-order
word co-occurrence patterns rather than true syn-
tactic structure, as evidenced by their strong down-
stream performance even when trained on shuffled
word-order data. More recent models, such as GPT-
4, exhibit remarkable resilience—nearly perfectly
reconstructing and interpreting scrambled inputs,
often surpassing human capabilities (Cao et al.,
2023).

However, recent studies challenge the extent of
LLMs’ learning capabilities. Kallini et al. (2024)
examined GPT-2 small’s ability to acquire syntheti-
cally constructed “impossible” languages and find
that it struggles significantly compared to natural
languages. Xu et al. (2025) reinforced this finding
from a typological perspective, showing that mod-
els trained on typologically implausible languages
generalize worse than those trained on natural lan-
guages. By contrast, Yang et al. (2025) reported
mixed results, noting that some typologically im-
possible languages exhibit lower perplexity than
natural languages. They hypothesize that this may
be due to the preservation of constituency structure,
a finding consistent with Sankaranarayanan et al.
(2025), who showed that LLMs develop distinct



mechanisms for processing hierarchical versus lin-
ear grammars.

2.2 Circularity in Nature and Language

Circular structures play essential roles in na-
ture. For example, circular DNA (Vinograd and
Lebowitz’, 1966) and RNA (Jeck and Sharpless,
2014) form covalently closed loops that regulate
gene expression and exhibit distinct biological func-
tions compared to their linear counterparts (Ebbe-
sen et al., 2017). The circularization procedures
explored in this study are partly inspired by the
biological phenomenon of “circular splicing,” a
process generating closed-loop RNA molecules
(Head, 1992) that has spurred formal research into
circular splicing systems (Pixton, 1995). In human-
created symbolic systems, non-linear structures
have historically appeared across diverse cultural
and artistic traditions, such as Mayan glyphs (Ket-
tunen and Helmke, 2005) and cuneiform tablets
(Anderson and Levoy, 2002), encoding meaning in
non-linear arrangements. However, while circular
visual motifs are common, genuine circular linguis-
tic structures—where meaning itself is constructed
non-linearly—are exceedingly rare. Within linguis-
tics, the term “circular language” typically refers to
self-referential semantic phenomena (Leitgeb and
Hieke, 2004) rather than structural non-linearity. In
this study, we define circular languages as a subset
of the constructed languages (Schreyer, 2021) ex-
hibiting explicitly non-linear linguistic structures.
Unlike most natural languages, where meaning un-
folds sequentially through phonographic symbols,
circular languages simultaneously or recursively
present information, challenging the assumptions
underlying standard NLP models that rely on se-
quential input processing. We thus extend prior
research on “impossible” languages (Kallini et al.,
2024; Yang et al., 2025) by introducing a novel
class of synthetically constructed languages charac-
terized by circular structures, a concept previously
unexplored in this domain.

3 (Re)construction of Circular Languages

We distinguish between rendered circular lan-
guages, which appear circular only at the sur-
face level—such as the ring inscription described
in Tolkien (1954)—and intrinsic circular lan-
guages, where circularity is fundamentally embed-
ded within the grammar and meaning-making pro-
cesses, exemplified by Heptapod B from Chiang

(2002).

A critical distinction lies in the inherent lin-
earity preserved by rendered circular languages
derived from natural human languages, as most
human scripts are phonographic and thus inher-
ently sequential (Sampson, 2015; Coon, 2020).
For example, English is an alphabetic language,
which intrinsically encodes sounds in linear se-
quences. Although, from a computational perspec-
tive, the tokenization used by LLMs introduces
certain logographic-like behaviors—treating fre-
quent words or subwords as indivisible units –—
even constructed or “impossible” languages based
on English inevitably retain elements of linearity
and local dependencies.

In contrast, intrinsic circular languages do not
inherit sequential constraints from spoken forms
and thus represent semasiographic writing systems,
encoding meaning directly without phonetic me-
diation (Powell, 2012). Therefore, to effectively
simulate an intrinsic circular language, one would
arguably need to construct it from inherently sema-
siographic systems, such as emoji. While explor-
ing this avenue presents an intriguing direction, we
leave such investigation to future work.

Since there is no existing natural corpus of cir-
cular languages, we synthesize a suite of circu-
lar languages with circularization and linearization
schemes from a base natural language (e.g., En-
glish), as briefly illustrated in Figure 1. We define
two granularity levels to specify the transformation:
a circular span is the linguistic unit over which the
circular transformation is applied (e.g., sentences,
paragraphs), and a atomic unit is the minimal in-
divisible elements placed around the circle (e.g.,
tokens, words). In this study, we control circular
span at sentence level and the atomic unit at the
token-level.

We first implement a circularization function to
map original linear sequences into a circular struc-
ture, represented as a set of rings of tokens with
different “rotations” (or equivalently a ring of to-
kens with no fixed start point). Having obtained the
text circles, we then explore various linearization
schemes parametrized by start position p, stride
s and direction d, to translate the circular set into
linearly aligned sequences. It is noteworthy that lin-
earization and circularization processes are inverse
operations with specified parameters.



3.1 Definition

Concretely, let T = (t0, t1, . . . , tn−1) be a linear
sequence of n tokens. Then, a circularization func-
tion C(T ; p, s, d) can be defined by first construct-
ing the ordered sequence (t(p+d·s·i) mod n )n−1

i=0 ,
which is parametrized by start position p ∈
{0, 1, . . . , n − 1}, stride s ∈ N+, and traversal
direction d ∈ {−1,+1} (-1 = anticlockwise, +1
= clockwise). Since the tokens are arranged on a
circle, two sequences that differ only by a rotation
are equivalent. Thus, the circularization function is
defined as the equivalence class of all rotations of
the above sequence:

C(T ; p, s, d) =
{( t(p+d·s·i) mod n)

n−1
i=0 : k = 0, 1, . . . , n− 1}.

Thus, C(T ; p, s, d) is the equivalence class of all
rotations derived from T using parameters p, s and
d, representing a circular sequence.

We can now define an inverse linearization oper-
ation L that takes a circular sequence and produces
a unique linear sequence using the same parameters.
Formally, we write:

L(C(T ); p, s, d) = (t(p+d·s·i) mod n)
n−1
i=0 . (1)

Having established the definition, we next ex-
plore various linearization schemes with typical
specifications of those parameters. We also illus-
trate all tested schemes in Table 1.

3.2 Start Position (p)

As stated in § 3.1, it is noteworthy that p is as-
signed during the initial linearization process, that
is, “start position” here refers to the index of the
input linear sequence. Therefore, for an arbitrary
circular language without known p, one has to man-
ually define a reference point. A common practice
in bio-informatics is selecting biologically mean-
ingful anchor point (e.g., replication origin) (Zhang
et al., 2020). In following study, since we build our
circular languages on original linear ones, thus we
assume a known p. In particular, we find following
three values of start position to be most interesting.

1. ANCHOR (p = 0) We refer the first token
of the original linear sequence as “anchor”,
namely p = 0. Specially, setting p = 1, s = 1
and d = +1, the relinearized sequence be-

comes:

L(C(T ); 0, 1,+1) = (t(0+1·1·i) mod n)
n−1
i=0

= (ti mod n)
n−1
i=0

= (t0, t1, . . . , tn−1).

Under this configuration, the linearization pro-
cess is able to reconstruct the original linear
sequence input, hence we use this method our
control group.

2. ANTIPODAL POINT (p = 2/n) When
mapped onto a circle, the diametrically op-
posite of the anchor is of great interest, for
it represents the greatest circle distance with
the anchor, hence termed “Antipodal Point”.
Concretely, we define this specification as:

p =

{
n
2 , if n is even,⌊
n
2

⌋
, if n is odd.

.

3. RANDOM START (p = random index) For
each original linear sequences, the start po-
sition is randomly picked. Formally, p ∼
Uniform{0, 1, . . . , n− 1}.

3.3 Stride (s)
The stride or step size determines the rate or “speed”
of traversal around the circle. Higher stride values
introduce non-local permutations and might break
proximity and syntax dependencies, so it demon-
strate a way to test robustness. This intuition also
seen in cryptography, a well-known step encoding
that resembles this linearization process is refers as
Caesar cipher (Luciano and Prichett, 1987).

1. ONE STEP (s = 1) This is the normal rotation,
taking one-token length walk each time. Note
that on a circular sequence of length n, if we
take a stride of n+ 1 steps, then we will travel
around the full circle, return to the origin and
then take one more step. We define all strides
that behave equivalently to s = 1:

{s ∈ Z | s ≡ 1 (mod n)}
= {1 + kn | k ∈ Z}.

2. MINIMAL COPRIME (assign s to the minimal
non-1 coprime) If the step size and n had a com-
mon divisor greater than 1, some indices would
be skipped and the linearization process would
not cover all tokens. To ensure full coverage—
strides of equal step size visit all positions on a



Parameter Specification (p, s, d) Example

ANCHOR (0, 1, cw) ⟳ It didn ’t follow the pattern of human languages .
Start Position (p) ANTIPODAL POINT (0.5, 1, cw) pattern of human languages .⟳ It didn ’t follow the

RANDOM START (rand, 1, cw) ’t follow the pattern of human languages .⟳ It didn

Stride (s)
ONE STEP (0, 1, cw) ⟳ It didn ’t follow the pattern of human languages .

MINIMAL COPRIME (0, mcp, cw) ⟳ It follow of . ’t pattern languages didn the human

Direction (d)

CLOCKWISE (0, 1, cw) ⟳ It didn ’t follow the pattern of human languages .
ANTICLOCKWISE (0, 1, acw) . languages human of pattern the follow ’t didn It⟳

BIDIRECTIONAL CW (0, 1, bi_cw) ⟳ It didn . ’t languages follow human the of pattern
BIDIRECTIONAL ACW (0, 1, bi_acw) pattern the of follow human ’t languages didn . It⟳

Table 1: Tested linearization schemes with different parameter specifications and their corresponding with examples.
Example sentence are based on the circularization illustrated in Figure 1. Specification names are followed by their
detailed parameters. Tokens are colored to improve visual differentiation. ANCHOR, ONE STEP and CLOCKWISE
are essentially the same, which outputs the identical sequence as the linear sequence input. An special marker token
⟳ is placed right before the first token of the original sequence (i.e., t0).

circle of length n—stride s must be a coprime
of n, satisfying gcd(s, n) = 1. Since we already
discuss the case of s = 1, which also matches
the criteria, we exclude it and look for the small-
est coprime stride greater than 1. Concretely,

s = min {s ∈ N | 2 ≤ s < n, gcd(s, n) = 1} .

3.4 Traversal Direction (d)
The direction d ∈ {−1,+1} determines which way
one “scan” the circular or linear sequence when
taking each stride step. In addition to standard
clockwise and anticlockwise, we also introduce two
“bidirectional” methods that symmetrically travel
from a given central point.

1. CLOCKWISE (d = +1) The standard clock-
wise traversal (i.e., move “foward” around the
circle), and we match it with rightward in hori-
zontal linear sequence.

2. ANTICLOCKWISE (d = −1) Oppositely to
clockwise, traverse the tokens in anticlockwise
order (i.e., counterclockwise, backward). Simi-
larly, we also match it with leftward in horizon-
tal linear sequence.

3. BIDIRECTIONAL CLOCKWISE (bi-cw) This
method creates a mirror-symmetric traversal
centered on the start point. Unlike single-
direction traversal, it prioritizes proximity more,
gradually expanding outward. Therefore, we
term it “bidirectional-clockwise (bi-cw)”. To
achieve this, we need to slight revise our lin-
earization function to:

Lbi-cw(C(T )) = (t(p+(−1)i·s·⌈ i
2⌉) mod n)

n−1
i=0 .

4. BIDIRECTIONAL ANTICLOCKWISE (bi-acw)
This method is identical to BIDIRECTIONAL

CLOCKWISE except the first move is made coun-
terclockwise. It can be implemented by chang-
ing the power of −1 to i+ 1:

Lbi-acw(C(T )) = (t(p+(−1)i+1·s·⌈ i
2⌉) mod n)

n−1
i=0 .

4 Experiments

The experiments conducted in this study comprise
three main parts. First, we evaluate the distortion
introduced by each linearization scheme, measured
using the normalized cyclic editing distance be-
tween the original training sequences and their re-
linearized versions. Second, we investigate the in-
fluence of three critical linearization parameters by
systematically varying their configurations and an-
alyzing their correlations with distortion levels. Fi-
nally, we assess the surprisal differences produced
by the trained models for a predetermined sentence-
initial marker, aiming to determine whether the
models effectively learn to retrieve the original
sentence-initial token after undergoing cyclic trans-
formations.

Setup For comparability with existing research
targeting Transformer-based models’ learning ca-
pabilities on unnatural languages (Kallini et al.,
2024; Yang et al., 2025; Xu et al., 2025), we select
the BabyLM dataset strict-small track (Warstadt
et al., 2023) as the base for constructing circular
languages and utilize GPT-2 Small (Radford et al.,
2018) as the base model. We train GPT-2 Small
models using mostly default hyperparameters: the
context length is set to 1,024, and the batch size
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Figure 2: Distortions for linearization schemes averaged over the entire train set sentences, as measured in normalized
editing distances. Left plot shows standard editing distances, while the right plot demonstrates cyclic one. “0”
indicates prefect alignment. ANCHOR, ONE STEP and CLOCKWISE results are discarded since they share the same
parameters that yield relinearized sequences identical to the original.

to 512. As Yang et al. (2025) demonstrated that
GPT-2 begins to overfit after 1,000 steps on the
10M BabyLM training set, we follow their setup
and train for 1,200 total steps with 120 warm-up
steps. More training details can be found in § 5.

4.1 Preliminary: Measuring Distortion

To assess the sequential distortions caused by the
circularization and linearization process, we mea-
sure the normalized edit distance (Levenshtein dis-
tance) (Marzal and Vidal, 1993; Yujian and Bo,
2007) between pairs of the original linear sequence
and the relinearized one. In addition, since rota-
tional distortion is negligible in circular structure,
we are interested in normalized cyclic edit dis-
tance (Charalampopoulos et al., 2024):

NCED(C(T ), T ′)

=
1

n

n−1
min
k=0

ED
((

t(p+d·s·(i+k)) mod n

)n−1

i=0
, T ′

)
where ED is the standard edit distance func-

tion (provided in Appendix B, as well as a gen-
eral version for comparing sequences with different
lengths).

(
t(p+d·s·(i+k)) mod n

)n−1

i=0
is the k-rotated

version of the circular sequence, and the minimiza-
tion over k finds the rotation that minimizes the
edit distance.

Results Figure 2 shows the distortion measure-
ments. For standard editing distance, RANDOM

START introduces the least distortion, and MINI-
MAL COPRIME is also relatively stable. ANTIPO-
DAL POINT and ANTICLOCKWISE have the highest
distortions. For cyclic editing distance, RANDOM

START and ANTIPODAL POINT achieve perfect
alignment as anticipated, for they both are rota-
tional transforms. MINIMAL COPRIME and BIDI-
RECTIONAL CLOCKWISE produce nearly identical

values with their standard editing distances, while
their anticlockwise counterparts yield noticeably
lower (-0.07) distortion than measured on the stan-
dard editing distances.

4.2 Main Experiment 1: Investigating Impact
of Linearization Parameters

We next evaluate how specific linearization param-
eters affect GPT-2’s language acquisition as mea-
sured by perplexity (Jelinek et al., 1977), a well-
established metric for quantifying model learn-
ing progress, following previous practices (Kallini
et al., 2024; Yang et al., 2025).

Hypothesis Given equal training steps, models
trained on relinearized circular languages with
higher sequential distortions (relative to the orig-
inal linear languages) will yield higher perplexi-
ties compared to models trained on languages with
lower distortions.

Results The perplexity curves over training steps
are grouped by their linearization configurations
in Figure 3. For the start position, the control set
consistently achieves the lowest perplexity, sup-
porting the idea that the natural order is the easiest
for GPT-2 to learn. Interestingly, despite intro-
ducing the highest distortion, ANTIPODAL POINT

achieves consistently lower perplexities than RAN-
DOM START, contradicting our hypothesis.

Regarding stride, increasing the stride signifi-
cantly hinders language learning, demonstrated by
consistently higher perplexities with the MINIMAL

COPRIME stride. For directional changes, surpris-
ingly, ANTICLOCKWISE achieves perplexities sim-
ilar to CLOCKWISE. In contrast, BIDIRECTIONAL

ACW obtains noticeably lower perplexities than
its clockwise counterpart, although both bidirec-
tional schemes yield slightly higher perplexities
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Figure 3: Geometric mean perplexities on a sample of 10,000 test sentences for linearization schemes grouped by
parameter configuration. See Figure 6 for an expanded version.

than unidirectional schemes. This aligns with the
intuition that bidirectional orders impose greater
cognitive demands on memory and attention. How-
ever, this impact is less severe than the effect caused
by changing the stride.

Overall, our hypothesis is not supported. The
results suggest that higher distortions do not nec-
essarily lead to higher perplexities. Structurally
preserved schemes (ANTIPODAL POINT and RAN-
DOM START) achieve comparatively lower per-
plexities, confirming a human-like preference for
“natural” structures. More importantly, we ob-
serve that schemes that alter the start position and
traversal direction, thereby largely preserving inter-
token proximity, achieve lower perplexities com-
pared to MINIMAL COPRIME, which significantly
disrupts neighboring relations. These findings in-
dicate that maintaining stable proximity among
tokens contributes most significantly to GPT-2’s
acquisition of circular languages.

4.3 Main Experiment 2: Evaluating Anchor
Retrieval

Sentence-initial tokens hold linguistic importance,
frequently carrying syntactic cues and indicat-
ing subjects in an SVO language like English
(Dorgeloh, 2004). In our context, the first token
has geometric significance, serving as the key to
reconstructing the original or “natural” token order.
As illustrated in Table 1, we intentionally insert a
marker token ⟳ immediately before the original
first token (i.e., t0).

Surprisal (Goodkind and Bicknell, 2018; Wilcox
et al., 2018, 2023), defined as the negative log prob-
ability of a token given its preceding context, mea-
sures how unexpected a token is according to the

language model. We calculate surprisal differences
to evaluate whether the trained model learns to rec-
ognize the original sentence-initial token. Specifi-
cally, rather than using standard surprisal (see Ap-
pendix B.4), we rotate the token sequence so that
the target token is predicted using the complete
sentence context, effectively treating the sentence
as circular. The cyclic surprisal of the marker token
at position k is thus computed as:

Scyc(⟳) = − log2 p
(
⟳ | t′k+2, t

′
k+3, . . . , t

′
n−1,

t′0, t
′
1, . . . , t

′
k−1

)
.

With this method, regardless of the position of ⟳
in T ′, the model uses the entire sentence (except
⟳ and t′k+1) as context. Following Kallini et al.
(2024), we compare surprisal differences between
test sentences and minimal copies where the marker
token is removed. We deliberately exclude the to-
ken immediately following the marker (t′k+1) when
calculating the marker’s surprisal, ensuring mean-
ingful comparisons between surprisals. This setup
specifically assesses learning of positional struc-
tures rather than grammatical rules.

Scyc(t
′
k+1) = − log2 p

(
t′k+1

∣∣ t′k+2, t
′
k+3, . . . , t

′
n−1,

t′0, t
′
1, . . . , t

′
k−1

)
,

Surprisal Difference = Scyc(t
′
k+1)− Scyc(⟳).

A large surprisal difference indicates the model
has learned to expect the marker specifically before
the original sentence-initial token, signifying suc-
cessful recognition of the token that should begin
the natural linear sequence.
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Figure 4: Mean cyclic surprisal differences between the marker token (⟳) and the following token for each
linearization scheme over training steps.

Hypothesis Given that distortions directly affect
token positions, we anticipate that the mean cyclic
surprisal difference across test pairs will be larger
for linearization schemes applying less distortions
compared to those applying greater distortions.

Results As shown in Figure 4, the control set
achieves consistently the highest cyclic surprisal
differences, indicating a strong ability to pre-
dict the marker in its correct position (before the
sentence-initial token). Unsurprisingly, BIDIREC-
TIONAL CW and MINIMAL COPRIME rank sec-
ond and third, respectively, since their sentence-
initial tokens remain unchanged during circulariza-
tion. Conversely, ANTICLOCKWISE and BIDIREC-
TIONAL ACW suffer from reversed text, highlight-
ing a clear directional sensitivity.

Interestingly, ANTIPODAL POINT and RANDOM

START, despite representing the highest and lowest
distortions respectively, yield the lowest surprisal
differences. This observation indicates that the
models struggle to learn this positional relationship
and fail to reliably identify the original sentence-
initial token in these relinearized sentences, contra-
dicting our hypothesis. Furthermore, their surprisal
differences increase much more slowly over train-
ing compared to other methods.

Overall, our hypothesis is partially rejected.
While the majority of schemes (five out of seven)
show negative correlations between surprisal dif-
ference and distortion, ANTIPODAL POINT and
RANDOM START are notable exceptions. Trans-
former models demonstrate surprising resilience in
positional learning under moderate distortion levels
but fail under extreme conditions. The particularly
low surprisal differences for the exceptions further
indicate that shifting the start position challenges
the model more severely than changes in stride
or traversal direction when recovering the natu-

ral linear sequence.

5 Conclusions

We have shown that languages with circular
schemes pose distinct challenges for Transformer-
based models. Our findings suggest that the pri-
mary difficulty for GPT-2 does not stem from
distortions from the natural sequential order, but
rather from disruptions to token proximity and the
randomness introduced by different linearization
strategies. This highlights GPT-2’s greater reliance
on local contextual cues than on strict sequential or-
dering. Additional experiments on cyclic surprisal
differences reveal that GPT-2’s ability to recover
natural order depends heavily on positional accu-
racy and consistency. Most linearization schemes
exhibit a negative correlation between surprisal dif-
ferences and distortion, reinforcing the importance
of preserving local token relationships. Both sets
of results emphasize that maintaining token prox-
imity and stable local structures is crucial for effec-
tive language learning. Interestingly, this may give
language models an advantage over humans in ac-
quiring circular languages that preserve inter-token
dependencies.

Our exploration of circular language learning
underscores that while “impossible” languages are
generally more difficult to acquire for both humans
and language models, their respective learning bi-
ases may diverge. In particular, Transformer mod-
els like GPT-2 may be better suited than humans
to learn certain classes of these languages—such
as those with circular schemes. While our study
attempts to isolate the independent effects of lin-
earization parameters, future work should explore
how these parameters interact, offering a deeper
understanding of model inductive biases in uncon-
ventional language learning.



Limitations

To establish comparability with related literature
(Kallini et al., 2024; Yang et al., 2025), we con-
struct our circular languages based on English and
experiment using GPT-2 Small models. However,
we acknowledge that employing non-English lan-
guages with distinct linguistic features—such as
different writing systems (e.g., Arabic, which is
written from right to left) or languages with notable
long-distance dependencies (Futrell et al., 2015)—
as bases for constructing circular languages may
yield different findings. Exploring how linguistic
typology influences Transformers’ ability to learn
circular structures would be a valuable future di-
rection. Additionally, experimenting with models
across multiple parameter sizes or architectures
could enhance the generalizability of our findings.
We intend to expand the scope of our base language
models contingent upon resource availability. Fi-
nally, as discussed in § 3.1, we anticipate that splic-
ing textual sequences at varying granularity levels,
such as at the character or word level, could provide
insightful extensions to our analysis.

Ethics Statement

The synthetic circular languages employed in this
study are artificial constructs designed solely for
evaluating computational language models. Our
results and interpretations pertain specifically to
model performance and should not be directly ex-
trapolated to human cognitive mechanisms without
further cognitive validation. The BabyLM dataset
(Warstadt et al., 2023) is a standard, ethically vetted
NLP benchmark; nevertheless, we acknowledge the
importance of dataset diversity and limitations. All
computational experiments were conducted trans-
parently, reporting resource usage to ensure repro-
ducibility and ethical compliance. We encourage
responsible interpretation and use of our findings,
acknowledging the potential theoretical use of our
approaches in adversarial or unintended contexts.

Reproducibility Statement

The GPT-2 models were trained for 1,200 train-
ing steps, including 120 warm-up steps. This
proportion aligns with previous studies (Kallini
et al., 2024; Yang et al., 2025). Our circular lan-
guages introduce an additional special token ⟳, in-
creasing the vocabulary size to 50,258 (the default
GPT-2 vocabulary size is 50,257). Experiments
were conducted using two NVIDIA A40 GPUs

(48GB). Each pretraining experiment required ap-
proximately 9 hours per random seed, resulting in
an estimated total training time of 400 hours.

References
S.E. Anderson and M. Levoy. 2002. Unwrapping and vi-

sualizing cuneiform tablets. IEEE Computer Graph-
ics and Applications, 22(6):82–88.

Qi Cao, Takeshi Kojima, Yutaka Matsuo, and Yusuke
Iwasawa. 2023. Unnatural error correction: Gpt-4
can almost perfectly handle unnatural scrambled text.
Preprint, arXiv:2311.18805.

Panagiotis Charalampopoulos, Solon P Pissis, Jakub
Radoszewski, Wojciech Rytter, Tomasz Waleń, and
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A An Example of Another Linearization Parameter
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Figure 5: An example of flattening a two-dimension ring layout in row-major or column-major order, which can
also be interpreted as different “writing” direction (vertical first or horizontal first).

B Supplementary Equations and Figures

B.1 Normalized Cyclic Editing Distance for Comparing Sequences with Different Lengths

NCED(C(T ), T ′) =
n−1
min
k=0

ED
((

t(p+d·s·(i+k)) mod n

)n−1

i=0
, T ′

)
max{n,m}

.

B.2 Standard Editing Distance Function

ED(T, T ′) =



|T ′|, if T = ∅,

|T |, if T ′ = ∅,

min
{
ED(T [1 :], T ′) + 1,

ED(T, T ′[1 :]) + 1,

ED(T [1 :], T ′[1 :]) + δ(t0, t
′
0)
}
, otherwise.

where δ(t0, t
′
0) =

{
0, if t0 = t′0,

1, otherwise.

B.3 Perplexities Results Including NONDETERMINISTICSHUFFLE
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Figure 6: Perplexities on a sample of 10,000 test sentences for each linearized language model over training steps.
“Shuffle” results (NONDETERMINISTICSHUFFLE) are cited from (Yang et al., 2025).

B.4 Standard Surprisal Function

Sstd(⟳) = − log2 p
(
⟳ | t′0, t′1, . . . , t′k−1

)
.
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