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Abstract

Large Language Models (LLMs) have demonstrated immense versatility and have
been successfully adapted to tackle numerous problems in scientific domains. In
chemistry, specialized LLMs have been recently developed for molecule structure
tasks such as molecule name conversion, captioning, text-guided generation, and
property or reaction prediction. However, evaluations of chemistry-focused LLMs
remain inconsistent and often lack rigor: new models are typically assessed only
on tasks they were explicitly trained for, while compared models have been trained
on different sets of tasks. In addition, several proposed benchmarks introduce
idiosyncratic features, e.g., task-specific input or output tags, and, thus, the LLMs’
performance is highly sensitive to prompting strategies, answer formatting, and gen-
eration parameters, further complicating reproducible evaluation. To address these
shortcomings, we perform a standardized and reproducible method comparison of
chemical reasoning models on CHEMSETS, a flexible benchmark suite integrated
into lm-evaluation-harness. CHEMSETS unifies existing benchmarks with
newly designed symbolically verifiable tasks, thereby expanding both task diversity
and difficulty. Through this evaluation, we establish a fair leaderboard and provide
new insights into the limitations of recently proposed chemistry-aware LLMs.
We show that current chemistry LLMs exhibit limited generalization beyond the
specific tasks they were trained on. Remarkably, across chemical tasks, recent
open-weight non-specialist reasoning models outperform specialist models.

1 Introduction

Large language models (LLMs) have emerged as versatile multi-task systems, capable of addressing
a wide range of problems with a single model (Brown et al., 2020; Chowdhery et al., 2023; Hoffmann
et al., 2022; Touvron et al., 2023). Advances in inference scaling, particularly chain- of-thought
generation, have further improved performance on symbolic tasks such as mathematics and logic
puzzles (DeepSeek-AI et al., 2025; Yang et al., 2025). In chemistry, the rise of LLMs has led to the
development of several instruction-tuned models designed as easy-to-use tools for diverse chemical
structure tasks (Zhang et al., 2024; Fang et al., 2024; Zhao et al., 2025c; Yu et al., 2024; Xia et al.,
2025). Building on this momentum, the first chemistry-specialized reasoning models have appeared
(Narayanan et al., 2025; Zhao et al., 2025b,a), with each new chemistry LLM (cLLM) claiming
state-of-the-art performance across a range of chemical structure tasks.

Unfortunately, chemistry LLMs to date have been trained and evaluated on disparate sets of tasks,
making direct model comparisons difficult and often unfair. New models are typically assessed
on tasks included in or very similar to their own training data, while baseline models may not
have seen those tasks at all during their training. In such situations, benchmarks are effectively
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testing the "interpolation" capabilities of the new model against the "extrapolation" capabilities of the
baselines. Moreover, evaluation pipelines often include idiosyncratic conventions (e.g., input/output
tags), and performance is highly sensitive to the system prompt, decoding settings, and answer
extraction – issues widely recognized in broader LLM evaluation (Liang et al., 2022; Cobbe et al.,
2021; Hendrycks et al., 2021). Without a standardized protocol, formatting and extraction choices
can artificially inflate performance for some models while unfairly penalizing others.

In this work, we address these challenges through the following three contributions:

• We introduce CHEMSETS, a standardized evaluation pipeline with robust model-specific
answer extraction integrated into lm-evaluation-harness (Gao et al., 2024), to evaluate
LLMs on chemical structure tasks. It integrates and standardizes two existing chemistry
benchmarks, and

• introduces SymMolic, a benchmark set which solely focuses on symbolically solvable
molecule structure tasks. This evaluation set was crafted to cover both a wide range of
molecule complexities and property values for each task.

• We evaluate multiple domain-specific and general language LLMs in order to attain system-
atic insights into limitations and failure modes of current LLMs applied to chemistry.

2 CHEMSETS Benchmarks

CHEMSETS centers on molecular structure reasoning – tasks whose answers follow directly from
graph-derived properties, where the molecular structure is typically represented in SMILES format
(Weininger, 1988). By focusing on symbolically verifiable tasks, where correctness can be rigorously
determined via deterministic algorithms, we enable reproducible model comparisons and ensure that
performance reflects reasoning capability rather than artifacts.

Several existing benchmarks, while valuable, fall outside this scope of molecular structure reasoning
with symbolically verifiable tasks. ChemBench (Mirza et al., 2024) and ChemEval (Huang et al., 2024)
cover broad ranges of chemistry problems beyond reasoning on the chemical structure, including
conceptual reasoning and literature comprehension. Similarly, ChemLLMBench (Guo et al., 2023),
Mol-Instructions (Fang et al., 2024), and SMolInstruct (Yu et al., 2024) include tasks such as
molecule captioning, property prediction, and retrosynthesis, which inherently depend on reference
data or trained models for evaluation. These benchmarks are therefore not directly suited to measuring
symbolic reasoning accuracy.

Within these constraints, CHEMSETS integrates three core datasets for which the majority of tasks
are symbolically solvable: ChemIQ, ether0, and SymMolic. Table A1 outlines their task coverage,
and Figure A2 shows the distribution of molecular complexity across datasets. We group the tasks
under five categories: translation, constrained generation, feature counting, molecule comparisons,
and reaction predictions.

ChemIQ was introduced by Runcie et al. (2025) and was originally used to evaluate the chemical
reasoning capabilities of OpenAI’s o3-mini series. It consists of eight tasks (five of which can be
verified symbolically) spanning a wide range of task categories, totaling 796 open-ended questions
with diverse expected output types. Many of the tasks do not require chemistry understanding but
serve as useful sanity checks, testing whether a model can correctly parse and interpret SMILES
notation - a crucial prerequisite for more advanced molecular structure reasoning tasks.

ether0 was introduced by Narayanan et al. (2025) as the evaluation set for their ether0 model and
includes a subset of tasks the model was trained on. It comprises a total of 325 questions — spanning
open-ended tasks and multiple-choice questions (MCQs) — all of which expect a SMILES string as
the answer. The open-ended portion covers eight tasks, five of which are symbolically evaluable, with
five falling under the category of constrained generation. The MCQs cover six property categories,
none of which are symbolically evaluable.

SymMolic v0 is a dataset focused exclusively on symbolically verifiable tasks over molecular
structure. SymMolic v0 consists of 1900 questions across 19 tasks from the translation and feature
counting categories. One key design choice made for this benchmark is that, for each task, we
intentionally cover a broad range of molecular complexities. This enables evaluation of a model’s
structural reasoning ability along two axes: the variety and difficulty of tasks, and the complexity of
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Table 1: Results on CHEMSETS: For each model, average task accuracy per benchmark is reported.
Error bars indicate standard errors across tasks. R denotes reasoning models. The highest value
per column is marked in bold. Green color indicates the highest, and yellow within the standard
deviation.

Size R ChemIQ ether0 SymMolic

Chemistry LLMs

Llama-molinst (Fang et al., 2024) 8B 3.2 ± 0.6 0.6 ± 0.2 8.9 ± 0.5
ChemDFM-8B (Zhao et al., 2025c) 8B 1.1 ± 0.4 1.9 ± 0.4 3.3 ± 0.3
ChemDFM-13B (Zhao et al., 2025c) 13B 1.4 ± 0.3 0.9 ± 0.4 2.3 ± 0.2
ChemLLM-7B (Zhang et al., 2024) 7B 0.7 ± 0.3 0.4 ± 0.2 2.4 ± 0.2
LlaSMol-Mistral (Yu et al., 2024) 7B 1.6 ± 0.3 0.4 ± 0.2 3.6 ± 0.3
Txgemma-9b (Wang et al., 2025) 9B 2.6 ± 0.8 3.9 ± 0.8 0.7 ± 0.1
Txgemma-27b (Wang et al., 2025) 27B 4.0 ± 0.6 3.0 ± 0.6 3.0 ± 0.3
Ether0 (Narayanan et al., 2025) 24B ✓ 13.1 ± 1.1 45.9 ± 2.2 2.4 ± 0.3

Generalist LLMs

Qwen3-8b (Yang et al., 2025) 8B ✓ 12.0 ± 1.1 4.1 ± 0.7 19.3 ± 0.7
Qwen3-14b (Yang et al., 2025) 14B ✓ 12.2 ± 1.2 3.7 ± 0.7 24.9 ± 0.8
Qwen3-32b (Yang et al., 2025) 32B ✓ 22.6 ± 1.2 2.8 ± 0.6 28.2 ± 0.8
Qwen3-Think-30B∗ (Yang et al., 2025) 30B (A3B) ✓ 31.7 ± 1.5 4.1 ± 0.9 34.8 ± 0.9
Qwen3-Think-235B∗ (Yang et al., 2025) 235B (A22B) ✓ 65.5 ± 1.2 9.2 ± 1.3 50.1 ± 0.9
GPT-oss-20b-medium (OpenAI, 2025) 20B (A4B) ✓ 20.8 ± 1.0 10.0 ± 1.1 33.8 ± 0.8
GPT-oss-20b-high (OpenAI, 2025) 20B (A4B) ✓ 47.4 ± 1.0 13.5 ± 1.3 51.1 ± 0.8
GPT-oss-20b-high (OpenAI, 2025) 20B (A4B) ✓ 47.4 ± 1.0 13.5 ± 1.3 51.1 ± 0.8
GPT-oss-120b-medium (OpenAI, 2025) 120B (A5B) ✓ 36.9 ± 1.2 15.9 ± 1.5 43.1 ± 0.9
GPT-oss-120b-high (OpenAI, 2025) 120B (A5B) ✓ 65.6 ± 1.1 18.9 ± 1.5 57.2 ± 0.9
* version 2507

the molecules involved. Furthermore, in the case of feature-counting tasks, we also ensure a diverse
distribution of feature values. Additional details on the construction of SymMolic and the symbolic
The verifiers used for each task are provided in Appendix A.1.

3 Evaluation & Leaderboard

Usability Features. We built our benchmark on top of lm-evaluation-harness (Gao et al., 2024). This
enables a modular approach to tasks and model configurations. We provide default configurations
with sampling parameters, preprocessor, and extractors specifically tailored for each model.

Symbolic Extraction. Fair comparison hinges on precise answer extraction. Recent work (Chandak
et al., 2025; Shao et al., 2025) questions reported RLVR gains, arguing that models may learn
format-following rather than new skills. In practice, adopting stronger extractors alone can inflate
scores, while baselines without robust extraction are artificially deflated. To mitigate this, we use –
for each model family – a system prompt and a matching extractor.

Task Verifiers. Each task is evaluated using a task-specific success metric and verifier. Success
metric values range from 0 to 1, with metrics having higher values indicating better performance. For
ChemIQ and ether0, we adopt the original metrics and verifiers as defined in their respective papers
(Narayanan et al., 2025; Runcie et al., 2025). For the SymMolic tasks, the evaluation procedures are
detailed in Section A.2.

Accuracy Metrics. We report the mean of 3 rollout attempts per question (Wang et al., 2022).
Following standardized reporting practices advocated by HELM (Liang et al., 2022), we macro-
average accuracies: task-level accuracy is averaged over questions; category- and dataset-level
scores are the unweighted mean of task-level accuracies. For tasks present in multiple datasets (e.g.,
SMILES→IUPAC in ChemIQ and SymMolic), we recompute the task accuracy jointly over the union
of questions.

Living Benchmark. The full leaderboard and per-task results is hosted online at CHEMSETS
Leaderboard.
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Figure 1: Performance comparison on CHEMSETS benchmark suite. Average task accuracy for five
distinct categories of chemical reasoning tasks. Large generalist models, particularly from the Qwen3
and GPT-oss series, consistently outperform smaller, specialized chemical language models across a
majority of categories. Error bars represent standard errors across tasks.

Following the model of the Open LLM Leaderboard (Fourrier et al., 2024), We will accept submissions
of new chemistry LLMs (open weights or free API access). Authors provide (i) a config file to run
their model in lm-evaluation-harness, and (ii) a short description of training tasks.

4 Results & Discussions

We evaluated 16 models across CHEMSETS under unified extraction protocols (Table 1, Figures 1,
A3, A4, A5, and A6), and observed consistent differences between general-purpose LLMs and
chemistry-specialized models, as well as clear effects of scale, architecture, and reasoning budget.

General-purpose LLMs, despite lacking chemistry-specific training, often outperform specialized
chemistry models. On ChemIQ, GPT-oss-120b-high (65.6±1.1) and Qwen3-235B-Think (65.5±1.2)
surpass all chemistry-focused models, which remain in the single-digit or low-teen range. This
advantage holds even on SMILES-based tasks, where chemistry LLMs should excel, with general
models maintaining 10 to 50 times higher accuracy.

Performance within model families is driven by scale and reasoning budget. Accuracy increases
consistently with parameter count, MoE architectures outperform dense counterparts, and test-time
reasoning nearly doubles accuracy in some cases. Together, these factors yield the strongest results,
with Qwen3-235B-Think and GPT-oss-120b-high reaching comparable peak performance.

Among chemistry-specialized models, ether0 performs best (45.9± 2.2 on its benchmark), reflecting
its training on SMILES outputs. However, it fails to generalize beyond this narrow setting, dropping
to near-zero accuracy on tasks requiring natural language or non-SMILES outputs.

Task difficulty also varies: general LLMs achieve near-ceiling performance on simple counting
tasks but remain below 40% on translation or functional group identification. Chemistry-specialized
models perform even worse on these tasks. This suggests that while some structured reasoning tasks
are largely solved, more complex forms of chemical understanding remain open.

Conclusion. Evaluating 16 models, we find that general-purpose LLMs outperform chemistry-
specialized models on the majority of the considered tasks, while scaling, mixture-of-experts, and
reasoning-augmented variants yield the strongest results.

Our results highlight a central open question: as generalist models continue to advance, can domain-
specific LLMs keep pace, or will their utility remain confined to narrow, in-domain tasks? By
establishing a fair and reproducible evaluation suite, we hope CHEMSETS will help clarify this
trajectory.

Limitations and Outlooks Our evaluation is restricted to open-weight models; closed-source systems
(Runcie, 2025; Anthropic, 2024; DeepMind, 2025) remain untested. Although CHEMSETS introduces
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new symbolically verifiable tasks, it also integrates existing benchmarks, so data contamination
from pretraining corpora cannot be ruled out. The limited transparency about training sets raises
the risk of molecule leakage; Reaction prediction tasks based on USPTO dataset (Lowe, 2012) are
especially prone to such leakage, making generalization harder to assess. Finally, like any benchmark,
CHEMSETS is static: tasks may saturate as models improve. To address this, we envision iterative
releases with increasingly challenging symbolically verifiable tasks.
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A SymMolic v0 Details

An overview of the SymMolic task is provided in Table A1.

A.1 Dataset Creation

As all tasks in SymMolic are symbolically evaluable, data may come from any source because ground-
truth answers can be derived from the molecular graph (except for IUPAC tasks, which require a
provided ground truth). We selected PubChem (Kim et al., 2023) as it is a comprehensive and publicly
accessible chemical database that covers a broad spectrum of molecules and associated bioactivity
information (Schimunek et al., 2025). Its diversity and scale — currently over 119 million compounds
and 295 million bioactivity records (Kim et al., 2023) — make it well suited for evaluating chemistry
LLMs across heterogeneous chemical spaces. We first draw a random subset from PubChem to form
a testing pool (we do not use the full database, as we are developing a comprehensive dataset suite
with planned train/test/validation splits and reserve the remainder for future dataset releases). For this
pool, we extract the SMILES and IUPAC name of each molecule and compute its Bertz complexity
(Bertz, 1981) using RDKit (Landrum and contributors, 2006).

We argue that the difficulty of a chemistry reasoning task depends on both the question type and the
complexity of the molecule of interest. Accordingly, we bin molecules into five complexity ranges:
[0-100, 100-300, 300-600, 600-1000, 1000+], and sample molecules for each task from these bins.
For each task, we sample 100 questions (see sampling strategy per task category below). To introduce
variability in phrasing, each task has 15 question templates – a combination of manually authored
templates and LLM-generated reformulations – which are sampled uniformly at random.

Translation. For the four translation tasks, we sample 20 molecules at random from each complexity
bin once. The same set of molecules is used across all translation tasks, which allows for direct
comparison of task difficulty. The SMILES and IUPAC names are already provided in the dataset,
while for molecular formula tasks, the ground truth is computed using RDKit.

Feature counting. With the exception of functional_group – for which we adopt the exmol
definition (Wellawatte et al., 2022) to enumerate present functional groups – we compute ground-
truth feature counts for every molecule in the evaluation pools using RDKit-based symbolic solvers.
Most feature-count distributions are highly skewed toward one or a few values. To mitigate this
imbalance, rather than uniform sampling within each complexity bin, we use double inverse-frequency
sampling: each candidate is weighted by the inverse frequency of its feature value and by the inverse
frequency of its complexity bin, and sampled proportionally to the product (Algorithm 1). To avoid
pathological outliers, for each task we discard molecules whose feature value occurs fewer than 1,000
times in the evaluation pool. The resulting feature-value histograms for SymMolic are shown in
Figure A1

9



Algorithm 1 Feature Frequency-Complexity Bin Weighted Sampling

Require: Molecule dataset D with:
f : discrete feature values
c: complexity bin assignments

Require: Sample size N = 100, frequency threshold τ = 1000
1: Compute value frequencies:

nf ← count of each f in D
nc ← count of each c in D

2: for each molecule i ∈ D do
3: Wi,f ← 1/nfi if nfi > τ else 0
4: Wi,c ← 1/nci
5: Wi ←Wi,f ×Wi,c

6: end for
7: Normalize: Wi ←Wi/

∑
j Wj

8: S ← Select N molecules from D with probabilities Wi

9: return S
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Figure A1: Feature value distributions for each feature counting task in SymMolic, except Function
Groups Identification, as it’s not a distribution of integers.

A.2 Verifiers

Translation. For x2formula tasks, an answer is considered correct if the molecular composition
matches that of the reference answer, meaning the order of atom types in the formula is not important.
For smiles2iupac, we adopt the same verifier as in ChemIQ: the generated IUPAC name is
evaluated using the Open Parser for Systematic IUPAC Nomenclature (OPSIN) API (Lowe et al.,
2011). An IUPAC name is accepted as correct if it can be parsed into the intended structure. For
iupac2smiles, correctness is determined by verifying that the generated SMILES corresponds to
the same molecular structure as the reference SMILES associated with the input IUPAC name.

Feature Counting. For all feature counting tasks, except functional groups identification, the output
is an integer for which the ground truth can be deterministically obtained from the molecular structure
using RDKit. The generated answer must exactly match the reference value. For functional group
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identification the output is a set of strings, extracted from a string in the format "primary carbon,
carboxylic acid, carboxylic acid derivative", must match the reference set obtained
with adaptation of the exmol functional group definitions.
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B CHEMSETS Datasets Details

Table A1 lists all tasks included in the CHEMSETS datasets, with information on their symbolic
evaluability, task category, number of questions, and expected output type.

Table A1: Overview of tasks in each benchmark dataset. SE = Symbolically evaluable.
Task SE Categorya N Output Type

ChemIQ SMILES to IUPAC ✓ T 200 String (IUPAC)
Shortest Path ✓ FC 108 Integer
Carbon Counting ✓ FC 50 Integer
Ring Counting ✓ FC 48 Integer
NMR Elucidation ✗ CG 76 String (SMILES)
Reaction prediction ✗ R 90 String (SMILES)
Atom Mapping ✓ C 184 List of integer tuples
Free-Wilson Analysis ✓ C 40 Float

ether0 IUPAC to SMILES ✓ T 25 String (SMILES)
Solubility edit ✓ CG 25 String (SMILES)
SMILES completion ✓ CG 25 String (SMILES)
Formula to SMILES ✓ CG 15 String (SMILES)
Functional groups to SMILES ✓ CG 10 String (SMILES)
Organism Elucidation ✗ CG 25 String (SMILES)
Reaction prediction ✗ R 25 String (SMILES)
Retrosynthesis prediction ✗ R 25 String (SMILES)
Property Selectionb ✗ C 150 String (SMILES)

SymMolic SMILES to IUPAC ✓ T 100 String (IUPAC)
IUPAC to SMILES ✓ T 100 String (SMILES)
SMILES to Formula ✓ T 100 String (Formula)
IUPAC to Formula ✓ T 100 String (Formula)
Alipatic Ring Counting ✓ FC 100 Integer
Aromatic Ring Counting ✓ FC 100 Integer
Branch Point Counting ✓ FC 100 Integer
Bridgehead Counting ✓ FC 100 Integer
sp3 Carbon Counting ✓ FC 100 Integer
Fusen Ring Counting ✓ FC 100 Integer
HBA Counting ✓ FC 100 Integer
HBD Counting ✓ FC 100 Integer
Heterocycle Counting ✓ FC 100 Integer
Largest Ring Size ✓ FC 100 Integer
Longest Carbon Chain Length ✓ FC 100 Integer
Rotable Bond Counting ✓ FC 100 Integer
Spiro Atom Counting ✓ FC 100 Integer
Stereo Center Counting ✓ FC 100 Integer
Function Groups Identification ✓ FC 100 Stringc

a Categories: T: Translation, FC: Feature Counting, CG: Constrained Generation, R: Reactions,
C: Comparisons.

b MCQ across 6 different property categories.
c List of functional groups (e.g., "primary carbon, alcohol")

For each question in the CHEMSETS datasets, we compute the Bertz complexity (Bertz, 1981) for the
reference molecule. For translation and feature counting tasks, as well as retrosynthesis prediction,
the reference molecule is the molecule given in the question. For forward reaction prediction and
NMR elucidation tasks, the reference molecule is the correct answer. The constrained generation
tasks in ether0 do not have a single correct answer molecule, but for each question, the authors
provide a reference molecule that fulfills all the constraints. The only task excluded is the SMILES
completion task from ether0, as no valid reference molecule was provided. Figure A2 shows the
molecule complexity distribution for each task in CHEMSETS. SymMolic contains, on average,
more complex molecules than ether0 and ChemIQ. Each task in SymMolic spans a similar range
of molecular complexities. However, the median complexity varies substantially between tasks,
ensuring a good representation of different feature counts in each task.
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C Models

CHEMSETS is designed to benchmark modern chemistry reasoning models across diverse chemi-
cal–understanding tasks. The suite targets instruction-tuned, general-purpose LLMs that can follow
free-form prompts and produce verifiable final answers, rather than narrow sequence-to-sequence
translators.

C.1 Scientific LLMs

Many chemistry LMs have been trained primarily for molecule-text translation – captioning
(smiles2text) and text-guided generation (text2smiles) – rather than open-ended reasoning
(Edwards et al., 2022; Irwin et al., 2022; Zeng et al., 2024). Because these tasks are absent from
CHEMSETS and differ substantially from our evaluation format, such models are not well-matched
without additional instruction tuning or extraction layers. We nevertheless probed representative
systems; for example, ChemLLM (Zhang et al., 2024), trained broadly but evaluated in a strict
Q&A style, performed poorly on our open-response prompts and is among the worst performing
model on all benchmarks in CHEMSETS (table 1). Consequently, our main comparisons center on
instruction-tuned LLMs suitable for free-form reasoning , evaluated with the model-specific prompts,
preprocessors and extractors. We also exclude research prototypes without released checkpoints or
a stable inference API; for instance, Galactica (Taylor et al., 2022) is not instruction-tuned for our
prompt+extractor protocol, precluding a reproducible comparison.

C.2 Generalist LLMs

We restrict our evaluation to open-weight generalist models. Model selection was guided by the
LiveBench leaderboard as of 15/08/2025 (White et al., 2025). We include two leading model families:
(i) Qwen3, covering both the largest reasoning-optimized variant (Qwen3-235B-A22B-Thinking-
2507) as well as smaller scales (Qwen3-8B, Qwen3-32B, Qwen3-30B-A3B-Thinking-2507), and
(ii) the GPT-oss series, spanning medium- and high-reasoning variants at different parameter scales
(GPT-oss-20B, GPT-oss-120B). All models were executed on our local GPU cluster under unified
inference settings.

Closed-source systems (e.g., GPT-5, Claude 3, Gemini 2.5 Pro) were not included, as our benchmark
focuses on transparent and fully reproducible evaluation.

C.3 Model Nomenclature

For clarity and consistency throughout this work, we use abbreviated model names. Table A2 provides
a comprehensive mapping between our abbreviations, the official model names from their respective
publications, and their HuggingFace repository identifiers to ensure reproducibility.
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Table A2: Model nomenclature mapping our abbreviations to official names and HuggingFace
identifiers.

Abbreviation Used Model Name HuggingFace Identifier

Chemistry-Specialized Models

Llama-molinst Mol-Instructions zjunlp/llama3-instruct-molinst-molecule-8b
ChemDFM-8B ChemDFM OpenDFM/ChemDFM-v1.0-8B
ChemDFM-13B ChemDFM OpenDFM/ChemDFM-v1.0-13B
ChemLLM-7B ChemLLM AI4Chem/ChemLLM-7B-Chat
LlaSMol-Mistral LlaSMol osunlp/LlaSMol-Mistral-7B
Txgemma-9b TxGemma google/txgemma-9b-chat
Txgemma-27b TxGemma google/txgemma-27b-chat
Ether0 Ether0 futurehouse/ether0

General-Purpose Models

Qwen3-8b Qwen3-8B Qwen/Qwen3-8B
Qwen3-14b Qwen3-14B Qwen/Qwen3-14B
Qwen3-32b Qwen3-32B Qwen/Qwen3-32B
Qwen3-Think-30B Qwen3-30B-A3B Qwen/Qwen3-30B-A3B-Thinking-2507
Qwen3-Think-235B Qwen3-235B-A22B Qwen/Qwen3-235B-A22B-Thinking-2507
GPT-oss-20b-medium* GPT-oss-20b openai/gpt-oss-20b
GPT-oss-20b-high* GPT-oss-20b openai/gpt-oss-20b
GPT-oss-120b-medium* GPT-oss-120b openai/gpt-oss-120b
GPT-oss-120b-high* GPT-oss-120b openai/gpt-oss-120b

* Medium/high refer to reasoning effort settings, not separate models

D Extended Results

D.1 Effect of molecule complexity

Figure A3 shows the average accuracy of GPT-oss-120B-high for each task category as a function of
the molecule complexity in the question. As we suspected when designing SymMolic, the difficulty
of chemical reasoning tasks depends on both the question type and the complexity of the molecule
of interest. For each task category, the accuracy decreases with the increasing complexity of the
molecules. This demonstrates the risk of drawing conclusions about the difficulty of chemical
structure reasoning without controlling for the complexity of the molecules in the questions. It also
highlights the usefulness of SymMolic, as it was explicitly designed to cover a wide range of molecule
complexities in a balanced manner.
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Figure A3: Average accuracy of GPT-oss-120B-high across the different task categories as a function
of binned Bertz molecule complexity.
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D.2 Results per Tasks

Figures A4, A5, and A6 show the per-task performance of all models, for the ChemIQ, ether0, and
SymMolic evaluation sets, respectively.
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Figure A4: Average accuracy of all models for ChemIQ tasks.
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Figure A5: Average accuracy of all models for ether0 tasks.
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Figure A6: Average accuracy of all models for SymMolic tasks.
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