
De-coupled NeuroGF for Shortest Path Distance Approximations on Large
Terrain Graphs

Samantha Chen 1 Pankaj K. Agarwal 2 Yusu Wang 3

Abstract

The ability to acquire high-resolution, large-scale
geospatial data at an unprecedented using LiDAR
and other related technologies has intensified the
need for scalable algorithms for terrain analysis,
including shortest-path-distance (SPD) queries
on large-scale terrain digital elevation models
(DEMs). In this paper, we present a neural data
structure for efficiently answering SPD queries
approximately on a large terrain DEM, which is
based on the recently proposed neural geodesic
field (NeuroGF) framework (Zhang et al., 2023)—
the state-of-the-art neural data structure for esti-
mating geodesic distance. In particular, we pro-
pose a decoupled-NeuroGF data structure com-
bined with an efficient two-stage mixed-training
strategy, which significantly reduces computa-
tional bottlenecks and enables efficient training
on terrain DEMs at a scale not feasible before. We
demonstrate the efficacy of our approach by per-
forming detailed experiments on both synthetic
and real data sets. For instance, we can train a
small model with around 70000 parameters on a
terrain DEM with 16 million nodes in a matter
of hours that can answer SPD queries with 1%
relative error in at most 10ms per query.

1. Introduction
With rapid advances in LiDAR and related technologies,
high-resolution, large-scale digital elevation models of ter-
rains are being generated and made publicly available at
an unprecedented rate. The tremendous opportunities pro-
vided by these data sets will, however, not be realized with-

*Equal contribution 1University of California - San Diego,
Department of Computer Science and Engineering 2Duke Univer-
sity, Department of Computer Science 3University of California -
San Diego, Halıcıoğlu Data Science Institute. Correspondence to:
Samantha Chen <sac003@ucsd.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

out availability of simple, scalable algorithms for various
terrain-analysis tasks. This has led to extensive work on
developing efficient algorithms for many terrain-analysis
tasks such as visibility computation, hydrology analysis,
mobility analysis, and answering proximity queries. In this
paper, we focus on answering shortest-path distance (SPD)
queries (also referred to as geodesic distance queries) on
terrains. Throughout this paper we assume that a terrain is
represented as a xy-monotone triangulated surface Σ in R3.
Many applications call for answering many SPD queries on
the same terrain, so it is desirable to pre-process the input
terrain into a data structure so that SPD queries can be an-
swered quickly. The key metrics associated with such an
approach are the trade-off between the size and the query
time of the data structure as well as the preprocessing time.

Despite a rich body of literature on this topic, the SPD
query problem on terrains is far from being solved both
from theoretical and practical perspectives. For instance,
a state-of-the-art algorithmic approach in a recent paper
by (Wei et al., 2022) takes more than 200 hours to build
a data structure of size around 1000MB for a terrain with
180K nodes to support approximate SPD queries, between
pairs of vertices on the terrain, with relative error at most
0.1 in 10ms per query. Furthermore, it is hard to scale the
current approaches to terrain DEMs with millions of nodes.

In view of the remarkable success of deep learning methods
across various domains such as vision, graphics, robotics
and GIS, it is natural to ask whether one can develop an
effective neural data structure to answer SPD-queries effi-
ciently on large-scale terrain DEMs. Precisely, given a ter-
rain DEM Σ, we ask whether we can train a neural network
that can accurately and efficiently estimate the geodesic
distance between any two points on Σ. In this paper, we
explore the design space of neural data structures for an-
swering SPD-queries and propose a method that is scalable
to large terrain DEMs.

Related work. Motivated by applications in robotics and
GIS, algorithms for computing shortest paths on polyhedral
surfaces in R3 have been studied extensively over the last
four decades. The best-known algorithm for computing
a shortest path between two given points on a terrain Σ
takes O(n2) time (Xin & Wang, 2009; Chen & Han, 1990;

1

De-coupled NeuroGF for Terrains

(a) Siamese embedding module (b) Final distance approximation

Figure 1. High level pipeline of NeuroGF (Zhang et al., 2023). Part (a): Siamese embedding module. Part (b): the distance approximation
module. We propose to decouple the training of these two stages by first training the Siamese embedding module, freezing the trained
Siamese network, and optimizing only the final distance approximation module.

Mitchell et al., 1987; 2000), where n is the number of ver-
tices on Σ. Although the running time can be improved
to O(n log n) time (Schreiber & Sharir, 2008) for convex
surfaces, no subquadratic algorithm is known for nonconvex
surfaces. This has led to faster approximation algorithms
for this problem: a subquadratic (1 + ε)-approximation al-
gorithm was proposed in (Varadarajan & Agarwal, 2000).
Subsequently, more approximation algorithms were devel-
oped in(Aleksandrov et al., 1998; Lanthier et al., 2001),
whose run time is near linear under some assumptions on
the geometry of the terrain, e.g., if the minimum angle of
any face is bounded from below by a constant. There also
has been much work in computational geometry, database,
and GIS communities on developing practical algorithms for
computing shortest paths on terrains; see (Kaul et al., 2013;
2015; Tran et al., 2020; Wei et al., 2022; 2024; Hazel et al.,
2008) and references therein. Most of these approaches
choose a large set of points on the terrain and construct a
graph G on the points so that the shortest-path distance on G
approximates the geodesic distance on the original terrain.

In machine learning, SPD queries are related to deep met-
ric learning, where given a collection of pairwise distance
between points sampled from a certain space X , one aims
to train a neural network that can accurately estimate the
metric dX : X × X → R on X (Ghojogh et al., 2022).
Metric learning is often done via a Siamese network where
given x, y ∈ X , each point is transformed by an identical
neural network N to produce high-dimensional embeddings
and the distance ∥N (x) − N (y)∥p is then returned as an
estimation for dX(x, y).

Two very recent concurrent works (Zhang et al., 2023) and
(Pang et al., 2023) have initiated the use of such metric
learning approaches to approximate geodesic distances on
meshed surfaces for graphics and vision applications. In par-
ticular, (Zhang et al., 2023) introduces a general framework,

neural geodesic field (NeuroGF), consisting of an initial
Siamese embedding module ϕ mapping input points to a
latent space, combined with a final multilayer perceptron
(MLP) ρ as the distance approximation module. See Figure
1. (Pang et al., 2023) suggests a similar network architecture
for approximating SPD on mesh surfaces but incorporates a
hierarchical pooling module within their suggested architec-
ture. Both (Zhang et al., 2023) and (Pang et al., 2023) are
state-of-the-art (SOTA) neural approaches to approximating
SP-distances for smooth meshed surfaces. However, as we
will see later, these models (especially (Pang et al., 2023))
do not yet scale to the size encountered in terrain graphs.

Our model. Terrains. Let Ω ⊂ R2 be a triangulation of a
bounded polygonal region. With a slight abuse of notation,
we also denote this region by Ω. Let V be the set of vertices
of Ω; set n = |V |. Let h : Ω → R be a height function.
We assume that the restriction of h to each triangle of Ω
is a linear map. Given Ω and h, the graph of h, called
a (polygonal) terrain and denoted by Σ = (Ω, h), is an
xy-monotone triangulated surface whose triangulation is
induced by Ω. For any point v = (x, y) ∈ R2, we define its
lift as the point v̂ = (x, y, h(x, y)) ∈ R3.

Paths and terrain graphs. Our focus is on processing high-
resolution terrain data sets, in which triangles in Ω will be
tiny. Therefore we ignore the interiors of triangles and con-
sider the terrain as a weighted graph Gh = (V,E), where
V and E are the vertices and edges of Ω, and the weight of
an edge (u, v) is ∥û− v̂∥ (the Euclidean distance between
the lifts of u and v). We refer to Gh as a terrain graph. 1

For two vertices û, v̂, we assume that a path on Σ between û
and v̂ lies along the edges of Gh, and thus the shortest path

1For example, most of the terrain data is available as grid DEM,
i.e., height function over points on a regular grid, in which case
each grid point is connected to its eight neighbors; see e.g. (Arge
et al., 2001).

2

De-coupled NeuroGF for Terrains

between û and v̂ on Σ is represented as the shortest path
between them in the graph Gh. This simplified assumption
is justified because of high-resolution data and because we
are interested in computing the geodesic distance approxi-
mately. Furthermore, most approximation algorithms also
construct a discrete graph and compute shortest paths in the
resulting graph. This assumption enables us to simplify the
problem at a small loss in accuracy and to use graph neural
network architectures (Scarselli et al., 2009).

Our contributions. This paper aims to develop an effi-
cient and compact neural data structure for the estimation
of shortest path distance (SPD) for massive terrain graphs
at an unprecedented scale. While (Pang et al., 2023) shows
promising results for SPD estimation on well-behaved tri-
angular meshes of smooth 3D geometric shapes (e.g. from
ShapeNet), terrain graphs pose a unique challenge as they
are significantly larger in size. We instead explore the use
of the conceptually simpler NeuroGF framework proposed
in (Zhang et al., 2023) to develop an effective model for
massive terrain graphs.

Our main contributions are as follows: We propose a simple
decoupled-NeuroGF framework for answering shortest path
distance queries approximately on massive terrain graphs,
which has a two stage training process. In the first stage,
only the Siamese embedding module ϕ is trained to ap-
proximate the SP-distance via the L1 distance in the latent
space, and its weights are subsequently frozen. In the sec-
ond stage, we finetune the final MLP (which refines the
distance approximation) using the fixed embeddings output
by the Siamese network. We call this MLP part the distance-
computation module. This decoupling of the two stages of
NeuroGF has several advantages:

• Better performance. As we show in Section 4, it
achieves superior performance in practice, with up to
a 10% reduction in relative error as compared to the
end-to-end NeuroGF pipeline.

• Efficient mixed-training strategies. Training the
Siamese embedding module ϕ takes significantly
longer than training the distance-computation MLP
ρ. As the size of terrain grows, training ϕ becomes
very expensive. Our decoupled-NeuroGF uses a mixed
training-strategy: We first train the embedding mod-
ule ϕ using only a coarsened terrain graph. While
keeping the coarse embedding module ϕ frozen, we
then train the distance-computation module ρ to im-
prove and refine distance estimates using the original
full-resolution terrain graph. This strategy allows us
to scale our neural model to very large terrains.

• Efficient updates for terrain changes. Unlike 3D
mesh graphs, terrains are inherently dynamic as they
are subject to uncertainty (due to measurement errors)

and continuous changes driven by natural processes.
Re-training the entire NeuroGF model whenever the
height function is modified is expensive. With our de-
coupled training approach, the previously trained ϕ
can be re-used to map nodes to an initial representation
and we re-train only the final distance-computation
module ρ using the perturbed graph with the updated
height function. Via our de-coupled training strategy,
we can efficiently update our neural DS whenever the
height function changes and maintain high quality SPD
approximations.

In Section 4, we demonstrate the utility of our decoupled-
NeuroGF and its mixed training strategy for large terrain
graphs at an unprecedented scale. Specifically, we evaluate
real-world terrains containing up to 16 million nodes, a sig-
nificant increase compared to prior algorithmic approaches.
We can train a small model with around 70000 parame-
ters on a terrain DEM with 16 million nodes in a matter of
hours in contrast to the previous best-known (non-neural)
algorithms which require several days of pre-processing
time for terrains with 180,000 nodes. Our mixed training
strategy also leads to orders of magnitude speedup in train-
ing, while still outperforming previous SOTA neural based
approaches. Our experiments also show that our decoupled-
NeuroGF supports efficient updates (retraining of only the
distance-computation MLP module) as the input terrain
graph undergoes small changes.

2. Preliminaries
Given a height function h : Ω → R, our input is a terrain
graph Gh = (V,E;Xh, w) where Xh = {(x, y, h(x, y)) :
v = (x, y) ∈ V } (the set of lifts of nodes in V w.r.t. the
height function h : V → R) and w : E → R assigns edge
weights. We often omit the subscript h from the notations
when its choice is clear. In practice, terrain data is often
given as a grid of evenly spaced measurements within a
constrained region. In this case, we simply set V to be the
set of grid vertices, and for each node (grid point) v, we
connect it to each of its 8 neighbors around it. Our goal is
to estimate the shortest path distance dGh

(u, v) w.r.t. the
terrain graph Gh.

Graph neural networks. Graph neural networks (GNNs)
are a class of deep learning model specifically designed to
work with graph structured input (Scarselli et al., 2009).
In practice, the most commonly used graph neural net-
work architecture is the message passing neural network
(Gilmer et al., 2017; Jegelka, 2022) where node features
are learned by aggregating neighboring node features. For-
mally, suppose we are given a graph G = (V,E,X), where
X = {xv ∈ RD : v ∈ V } represents the initial node fea-
tures; that is, x(0)

v := xv. Then at each ℓ of the L layers of

3

De-coupled NeuroGF for Terrains

the GNN, ℓ ∈ [1, L], we update the node features at each
node as follows:

x(ℓ)
v = fup

(
x(ℓ−1)
v , fagg

(
{x(ℓ−1)

u : u ∈ N (v)}
))

, (1)

where x
(ℓ)
v denotes the updated feature of node v ∈ V

at layer ℓ, N (v) is the set of neighbors of v , fagg aggre-
gates previous features from the neighbors (including edge
weights) in a permutation invariant manner, and fup com-
putes the updated node feature from the aggregated infor-
mation. In practice, graph convolutional networks (GCN)
(Kipf & Welling, 2016) and graph attention networks (GAT)
(Veličković et al., 2018) are among the most commonly
used variants of GNNs and have been explored for learning
algorithmic tasks (Veličković et al., 2022; Veličković et al.,
2020). We consider both GCNs and GATs in our explo-
ration of the design space of NeuroGF. See Appendix A
for exposition regarding GCNs and GATs. Once trained, a
GNN can be applied to any graph with any combinatorial
structure because the learnable parameters in the aggregate
and update functions are shared across all nodes. A single
forward pass through the GNN takes time O(|V | + |E|),
linear with respect to the number of nodes and edges.

In this paper, we also use the transformer model, which
captures global relations between nodes via self-attention
but is computationally expensive (O(|V |2)). We leave the
description of transformers in Appendix B.

3. Neural Shortest Path Data Structures
3.1. The NeuroGF pipeline (Zhang et al., 2023)

We begin by reviewing the framework of NeuroGF (Zhang
et al., 2023). Given a metric space (X , dX), the goal of the
NeuroGF framework is to approximate the target geodesic
(or SP-distance in our case) function f = dX : X ×X → R.
That is, we approximte dX (x1, x2) by ρ(ϕ(x1), ϕ(x2)),
where ϕ : X → RD and ρ : RD → R. See Figure 1 for an
illustration. To motivate this formulation, consider a tradi-
tional metric learning scenario where ρ simply represents an
Lp distance in the embedding space. In this case, NeuroGF
is simply a Siamese network that uses ϕ as an embedding
module to map input node features to a high-dimensional
latent space Z = RD. However, by using an MLP in the
place of ρ, we can approximate distance functions that are
not Lp embeddable. Thus, the entire NeuroGF framework is
intuitively an initial Siamese embedding module ϕ followed
by a final distance computation module ρ.

Recall that we represent the terrain as a graph Gh =
(V,E,X,w : E → R+) where w represents the edge
weights and X is the set of input node features, v̂ =
(x, y, h(x, y)) ∈ R3. Our training set S is made up of a
subset of pairs of vertices and their shortest path distances.
The final loss function is:

L(S,Gh, ϕ, ρ)

=
1

|S|
∑

(u,v,dGh
(u,v))∈S

(
dGh(u, v)− ρ(ϕ(û), ϕ(v̂))

)2 (2)

3.2. Instantiation of the NeuroGF

In this paper, we instantiate the embedding module ϕ with
several choices of neural network architectures: (1) a stan-
dard MLP (2) GCN (3) GAT and (4) transformer architec-
ture. The specific input for ϕ varies depending on the chosen
architecture. The instantiation of ρ will be discussed at the
end of this subsection. We describe the MLP and GNN
instantiation of ϕ, denoted as MLP and GNN respectively.
We leave the description of the transfomer to Appendix B.2.

Multilayer perceptron (MLP). The simplest approach
for instantiating the embedding module ϕ is to use an MLP.
Given a pair of nodes u, v and their initial node features
xu = û, xv = v̂, we train a neural model to predict
FMLP(xu, xv) ≈ ρ(MLP(xu),MLP(xv)). Note that FMLP

does not utilize the input graph structure and depends solely
on the input feature representations of individual nodes. It
aims to directly learn the shortest path distance function
dG : V × V → R from the train set as a general function
approximation problem. However, our dGh

is not an arbi-
trary function – it is induced by Gh. Thus, using MLPs, as
opposed to GNNs or transformers, as ϕ to process nodes
independently fails to capture relational information from
the terrain graph Gh.

Graph neural network. In general, when given a terrain
graph G and a node v and when we are using a GNN as the
initial embedding module, we write the output embedding
ϕ(v;G) = GNNG(v) to emphasize the incorporation of
graph structure as the input of ϕ. Hence the full model now
is FGNN(xu, xv;G) = ρ(GNNG(xu),GNNG(xv)). We use
GCNs and GATs as the choices for the (message passing)
graph neural network GNNG: GCNs are the specific mes-
sage passing architecture originally used in (Zhang et al.,
2023); we include GATs (Veličković et al., 2018) as they
are able to attend to more ‘important’ vertices.

For a general GNN, the output node embeddings are com-
puted as described in Equation (1). In our setup, for
each node v ∈ V , the initial input node features are
h
(0)
v = v̂ ∈ R3, and the output of ϕ(v̂) is the final node

embedding h
(L)
v , where L represents the number of layers

in the GNN. In practice, we also incorporate the terrain edge
weights in the computation of the next node features (see
details in Appendix A).

Each forward pass of the GNN is more than one forward
pass of the MLP, as it takes time O(|V |+ |E|)+O(|Strain|),
while in the case of MLP, a forward pass only linear in the
number of training set size. However, one would expect

4

De-coupled NeuroGF for Terrains

that the embedding learned by the GNN is much better than
that of MLP as with even a small number of training pairs,
the utilization of the graph structure allows the embedding
module to be aware of global relation between graph nodes.
Finally, while the GNN can incorporate the graph structure
in each node embedding output, it can only see within an
L-hop neighborhood of each node where L is the number
of layers in the GNN.

Instantiation of the distance computation module. We
explore two choices of the distance-computation module
ρ: (1) ρ is an Lp distance function or (2) parameterize ρ
as an MLP. The case that ρ is an Lp distance represents
the traditional metric-learning paradigm, where the embed-
ding module ϕ is a Siamese network. In the case where we
parameterize ρ as a final MLP (as proposed by NeuroGF
(Zhang et al., 2023)), the model more accurately approxi-
mates distance functions that may not be isometrically em-
beddable into Lp space. Given some instantiation of ϕ, the
final output is MLP([ϕ(vi)+ϕ(vj), |ϕ(vi)−ϕ(vj)|]), where
we concatenate ϕ(vi) + ϕ(vj) and the absolute difference
|ϕ(vi)− ϕ(vj)|.

3.3. De-coupled training process

We now describe our new de-coupled training process for
the NeuroGF framework which leverages the distinct roles
of the embedding module ϕ and the distance computation
module ρ; ϕ usually does not capture global information
in a highly accurate manner. For instance, if ϕ = GNN,
the receptive field is limited by the number of layers in the
GNN and restricts the ϕ from capturing the global terrain
structure. The distance-decoding stage, when implemented
via the MLP, addresses these limitations by learning how to
better combine the embeddings to produce a more accurate
approximation of the target distance. Therefore, we propose
a two-stage training process which explicitly de-couples the
process of embedding generation via ϕ and distance com-
putation via ρ. This decoupling of embedding generation
and distance computation is a novel perspective that has so
far not been explored in prior work and offers significant
practical advantages (which we will explore in Section 4).
Our new training process proceeds as follows:

• Stage 1: Training the embedding module. We train
only the embedding module ϕ on training set Strain,1

as a Siamese network to generate node embeddings and
use L1 distance between embeddings ∥ϕ(u)− ϕ(v)∥1
as the estimate of dG(u, v) to compute training loss.

• Stage 2: Training the distance-computation mod-
ule. After training ϕ, we freeze its weights and use its
output embeddings as input to train the final distance
computation module ρ = MLP using a second training
set Strain,2.

Intuitively, this de-coupled training strategy uses ϕ to gener-
ate a ‘decent’ first embedding and delegates fine-tuning to
the final distance computation module ρ = MLP to correct
any errors incurred by ϕ. De-coupling the training of ϕ and
ρ also allows us to quickly adapt to any changes to the input
terrain as we can avoid re-training ϕ and simply re-train the
final ρ, which is faster than re-training the entire NeuroGF.

Mixed coarse-to-refined de-coupled training. This de-
coupled training process can be extended to a mixed coarse-
to-refined training framework (M-CTR) to further reduce
training costs, especially when the initial embedding mod-
ule (ϕ) is implemented using computationally expensive
architectures like GNNs or transformers. In particular, each
forward pass in stage 1 takes O(|V |+ |E|+ |Strain,1|) time
if we use GNN for ϕ, or O(|V |2 + |Strain,1|) if we use
transformer. This step is the computational bottleneck, and
takes orders of magnitude longer time than just training the
MLP in the distance computation module (which takes only
O(|Strain,2|) for each forward pass).

The key idea of M-CTR training is to leverage a coars-
ened version of the input terrain to train the initial embed-
ding module ϕ in order to reduce the computational bottle-
neck. One can compute the downsampled (coarsened) ter-
rain graph via many strategies. In our experiments, since our
terrain graph Gh = (V,E,X,w) is induced by a N1 ×N2

grid, we simply produce coarsened graph by downsample
the grid to be N1

k × N1

k for some integer k. Denote the
induced downsampled terrain graph by G′

h.

Instead of training ϕ on the full graph Gh, we first train ϕ
on this coarsened version G′

h using a training set Strain,1

constructed from G′
h. Then, we freeze ϕ and train only the

distance computation module ρ using a new training set
Strain,2 from the original high-resolution terrain graph Gh.
Note that the number of training samples in Strain,2 can
be much larger than in Strain,1. This distance computation
module ρ learns to correct inaccuracies arising from the
initial coarse embedding trained on coarsened graph G′

h.

4. Experiments
We first explore the design space of the NeuroGF pipeline
(Zhang et al., 2023), both in terms of the choice of neural
networks for the embedding module ϕ, and the effect of
the distance computation MLP module ρ. We then show
the benefit of our decoupled-NeuroGF framework and our
mixed-training strategy (M-CTR) as compared to our im-
plementation of the original NeuroGF framework for real
terrains. We also compare our method to GeGNN, another
SOTA neural data structure (Pang et al., 2023). We measure
two error metrics: (1) the average relative error with respect
to the true SPD (2) accuracy, defined as the percentage of
test instances where relative error is below 2%. As we will

5

De-coupled NeuroGF for Terrains

Figure 2. Synthetic terrain surfaces of three of the synthetic terrains
(Gaussian amplitudes visualized are a ∈ {1.0, 4.0, 10.0}).

NorwayNumber of nodes: 4,000,000Resolution: 10 meters
Los Angeles, CA, USANumber of nodes: 16,000,000Resolution: 28.3 meters

Philadelphia, PA, USANumber of nodes: 1,000,000Resolution: 0.9 meters
Holland, IN, USANumber of nodes: 1,000,000Resolution: 0.5 meters

Figure 3. Visualization of each terrain’s height function. Lighter
areas correspond to more mountainous regions.

see later, our new strategies significantly improve previous
neural approaches on large scale terrains, e.g, an improve-
ment (reduction) of more than 10% of error (Table 3) as well
as even more significant improvements for weighted terrains
(Table 4) and SPD estimation in for terrains with uncertainty
(Table 5). Details regarding training, hyperparameters, etc.
are given in the Appendix C.

4.1. Experimental setup

We use two types of data: synthetic terrain DEMs of dif-
ferent “complexity”, and real terrain DEMs with up to 16
million nodes.

Synthetic terrains. To understand the performance of differ-
ent model designs, we generate a series of terrains with the
same size but different complexity. These synthetic terrain
graphs are generated using a mixture of 2D Gaussians over
[0, 10]2 and the amplitudes from {1.0, 2.0, 4.0, . . . , 18.0}.
See Figure 2 for examples. Each terrain graph is induced by
a 50× 50 grid and has 2500 nodes. To generate the down-
sampled terrain graphs for M-CTR training, we downsample
the grid to a 25× 25 grid (625 nodes).

Real terrains. We use four real-world terrain DEMs: (1)
Troms region of Norway (4M nodes) (2) Los Angeles (LA),

a kX De-coupled GAT + L1

1.0 4.1 0.52 ± 0.61 0.61 ± 0.88
4.0 4.4 1.32 ± 1.84 1.66 ± 3.19

10.0 4.7 1.86 ± 3.48 3.29 ± 6.76

Table 1. Approximate doubling dimension (denoted by kX) com-
pared again the average relative error (%, ↓) for the Siamese model
and the de-coupled training procedure on synthetic terrains. We
also include the maximum amplitude of the Gaussians in the syn-
thetic terrain and denote it as a. Notice that the de-coupled training
procedure can help mitigate the errors introduced by the Siamese
embedding.

California, USA (16M nodes) (3) Holland, Indiana, USA
(1M nodes), and (4) Philadelphia (Phil.), Pennsylvania, USA
(1M nodes). See Figure 3 for illustrations. We point out
the unique complexities of the LA and Norway terrains: the
LA dataset is the largest, with 16 million nodes, while the
Norway dataset represents a highly mountainous region.

Design space and experimental setup. The framework
of NeuroGF (Zhang et al., 2023) consists of an embedding
module ϕ and a distance-computation module ρ. We instan-
tiate the embedding module ϕ by (1) a MLP, (2) GCN (Kipf
& Welling, 2016), (3) GAT (Veličković et al., 2018), and (4)
a transformer (Vaswani et al., 2017). In what follows, we
use X + Y, X ∈ { MLP, GCN, GAT, Transformer } and Y
∈ {Lp, MLP } to represent all these model designs. The
original NeuroGF of (Zhang et al., 2023) corresponds to
the setup X + MLP with X ∈ {MLP, GCN, Transformer}.
For our de-coupled NeuroGF (indicated by ‘de-coupled’),
we first train GAT + L1, freeze its weights, and then train
an MLP for the distance-computation module.

4.2. Design space of NeuroGF and de-coupled NeuroGF

Design space of NeuroGF. First, we test the relative error
w.r.t. SP-distances by different model designs (including
GeGNN of (Pang et al., 2023)) for synthetic terrains. We
leave a detailed figure and results in Appendix C.3, and
only list the key observations here: (1) GCN and GAT far
outperform MLP or transformer based instantiation of the
embedding module ϕ (cf. Appendix C.3, Figure 5) . (2)
GeGNN (Pang et al., 2023) performs much worse than the
original NeuroGF (Zhang et al., 2023) with any instantiation
of the embedding module (X+MLP in our setup). (3) Using
only X+L1 consistently outperforms X+MLP (the original
NeuroGF). Interestingly, using L1 in the latent space out-
performs using L2 in the latent space as well; that is, X+L1

is (sometimes much) better than X+L2 for any choice of X
(cf. Appendix C.3, Figure 5). From these observations, we
narrow our architectural explorations and exclude the MLP
and Transformer architectures, as well as X+L2 from our
further experiments.

6

De-coupled NeuroGF for Terrains

Figure 4. Average relative error (y-axis) of each GNN based model against the the amplitude of the Gaussians (‘complexity’) in an
synthetic terrain. Each plot corresponds to a different latent space dimension for the embedding module ϕ.

Model Relative Error (%, ↓) Accuracy (%, ↑) Training Time (min, ↓)
GAT+L1 0.92± 0.95 91.5 153
GAT+MLP 1.32± 2.03 89.4 155
GeGNN 13.10± 2.10 34.5 127
Decoupled (ours) 0.84 ± 1.66 92.3 200

Table 2. Results for a downsampled 250x250 version of Norway-250. The GAT+MLP is the same as the NeuroGF framework. Note that
the training time for the de-coupled version of NeuroGF includes both the time for training GAT+L1 as well as the time to finetune the
final MLP distance computation module (which takes approximately 1hr). Best results are highlighted in red.

Effectiveness of de-coupled NeuroGF. In Figure 4, we
compare our de-coupled NeuroGF framework with the orig-
inal NeuroGF with a GNN instantiation (i.e, GAT+MLP
and GCN+MLP), as well as with two baseline Siamese
architectures, GAT+L1 and GCN+L1, over a series of syn-
thetic terrains. We include a comparison with the mixed
coarse-to-refined training approach, M-CTR(625 → 2500),
where we train the initial embedding module ϕ on a coarse
version of each synthetic terrain with 625 nodes, then freeze
ϕ, and train only the distance-computation module ρ on the
refined version of the terrain with 2500 nodes. We plot the
average relative error in y-axis against the ‘complexity’ (the
maximum amplitutude of Gaussians) of terrains in x-axis.

As we can see in Figure 4, our de-coupled NeuroGF frame-
work consistently outperforms both the original NeuroGF
and the Siamese baselines. We note that our mixed-training
strategy M-CTR performs comparable or better than the
two NeuroGF instantiations (GAT+MLP and GCN+MLP),
even though its embedding module is trained on a much
coarser terrain graph (and thus faster). This improvement
is consistently observed across all output embedding sizes,
further emphasizing the robustness of the de-coupled Neu-
roGF approach. Finally, using GAT as the initial embedding
module outperforms GCN, so we will use GAT as the initial
embedding module for real terrain experiments below. An
expanded version of Figure 4 for a larger set of embedding
sizes is in Appendix C.

Effect of terrain complexity. In Figure 4, we note that
as the maximum amplitude of the Gaussians in the syn-
thetic terrain increases, the performance gap between the

de-coupled framework and the Siamese baseline becomes
even more pronounced. The de-coupled training of the
MLP-based distance computation module proves crucial in
synthetic terrains where the shortest path contour deviates
substantially from the Euclidean (L2) distance contour.

Overall, we believe that the approximation quality of each
neural method depends on the intrinsic “complexity” of the
terrain graph metric, which we quantify as the doubling
dimension of the terrain (denoted by kX). A metric space X
has doubling constant k if for all r > 0, every r-ball (radius
r-neighborhood around any point in X) can be covered by at
most k r

2 -balls and and the doubling dimension of X is the
base-2 logarithm of the doubling constant (kX = log2(k)).
The relationship between doubling dimension and approx-
imation quality is theoretically motivated by Theorem 2.1
of (Naor & Neiman, 2012), which states that every metric
space can be approximately embedded into Euclidean space
with distortion dependent on the doubling dimension of the
space. In Table 1, we compare the approximate doubling
dimension against the relative error of GAT + L1 as well
as our de-coupled neural method. We observe that as dou-
bling dimension increases, the relative error incurred by the
Siamese embedding approach GAT+L1 also increases. Ad-
ditionally, our de-coupled training approach seems to help
adjust the errors from the Siamese embedding approach.
The relative error of the de-coupled approach also seems to
increase at a lower rate than that of GAT+L1.

7

De-coupled NeuroGF for Terrains

Dataset Model Relative Error (%, ↓) Accuracy (%, ↑) Training Time (min, ↓)

Norway
(4M nodes)

Full-GAT+L1 0.94± 0.95 90.5 683
Coarse-GAT+L1 1.05± 0.99 89.2 150

M-CTR (ours) 0.90± 1.49 91.1 183
Our improvement -14.2 % +1.9% -

LA
(16M nodes)

Full-GAT+L1 - - 2733
Coarse-GAT+L1 1.04± 1.09 85.51 137

M-CTR (ours) 0.88± 3.47 94.41 183
Our improvement -15.4 % +8.9% -

Philadelphia
(1M nodes)

Full-GAT+L1 0.21 ± 0.29 99.6 147
Coarse-GAT+L1 2.07± 1.47 30.1 31

M-CTR (ours) 0.51± 0.71 94.4 83
Our improvement -75.4% +64.3% -

Holland
(1M nodes)

Full-GAT+L1 0.11 ± 0.12 99.9 123
Coarse-GAT+L1 2.06± 1.54 65.1 32

M-CTR (ours) 0.86± 2.29 90.8 95
Our improvement -58.3% +25.7 % -

Table 3. Results for LA (16M nodes), Norway (4M nodes), Philadelphia (1M nodes), and Holland (1M nodes). Our M-CTR and
Coarse-GAT+L1 have similar training time, however, our M-CTR has much better performance (best performance marked in red). In the
last row for each dataset we list our improvement (of M-CTR) over Coarse-GAT+L1): note that for relative error, we reduce error (thus
the ‘-’ sign), while for accuracy, we improve (thus the ‘+’ sign). While the full GAT + L1 has better performance for Philadelphia and
Holland than our M-CTR, we note that it takes much longer to train. For both Philadelphia and Holland, our M-CTR model has much
better performance than Coarse-GAT+L1. For Norway, our model has slightly better performance than Full-GAT+L1, but is much faster.
We extrapolate the training time for Full-GAT +L1 on LA (which did not finish after 30+ hours) from the training time for Norway under
the assumption that training time is linear to input graph size.

4.3. Decoupled-NeuroGF on massive real terrains

For all terrains, the time NeuroGF (and all variants, includ-
ing the Siamese network) needs to complete a SPD query
at inference time is at most 10 ms. See Appendix C for
a table of the time needed to compute embeddings. We
use a downsampled 250x250 version of Norway as a case
study to demonstrate the utility of the de-coupled NeuroGF
training procedure compared to the entire end-to-end Neu-
roGF pipeline, the Siamese network approach, and the other
SOTA model GeGNN. The downsampled graph is used be-
cause GeGNN cannot be trained on terrain graphs exceeding
62,500 nodes due to memory limitations. See Table 2 for our
results. Similar to what we observed for synthetic terrains,
we see that our de-coupled approach has the best perfor-
mance as compared to all tested baselines. Interestingly,
GAT+L1 outperforms both GeGNN and NeuroGF (which
is denoted as GAT+MLP).

We evaluate our de-coupled training pipeline, in particu-
lar, our mixed coarse-to-refined strategy M-CTR, to full
resolution Los Angeles (16M nodes), Norway (4M nodes),
Holland (1M nodes), and Philadelphia (1M nodes). In par-
ticular, terrains at the size of Los Angeles and Norway have
not previously been explored. For our M-CTR, on all ter-
rains, we first train the embedding network ϕ on a (coarse)
downsampled version of each terrain (250x250 for Norway
and LA, 50x50 for Philadelphia and Holland. We then fine-
tune the final distance computation MLP ρ on train instances
over the full-resolution terrain. We compare our M-CTR

with two approaches: (a) the GAT+L1 on the full-resolution
terrain, represented by Full-GAT+L1 in Table 3; and (b)
the Coarse-GAT+L1, where we simply apply the coarse
embedding network ϕ trained over the same downsampled
version, then use L1 distance in the latent space.

As seen in Table 3, our M-CTR has much better relative er-
ror and accuracy than Coarse-GAT+L1, while the training
times are very similar. In particular, the improvements for
the LA, Philadelphia, and Holland are notable for both error
and accuracy – about 10% for both on LA and over 20% for
both on Philadelphia and Holland. For Philadelphia and Hol-
land, the Full-GAT+L1 has better performance than M-CTR
but our M-CTR is much faster. Interestingly, our M-CTR
has better performance than the Full-GAT+L1 on Norway as
well while it is much faster (only takes a quarter of the time
needed by the full model). The training of Full-GAT+L1 on
the 16M LA model is prohibitively expensive in both time
and memory, taking 30+ hours without completion. Note
that if the training time scales linearly, the training time for
Full-GAT+L1 is expected to be approximately four times
that of training Full-GAT+L1 on the Norway dataset.

Weighted terrains. The improvement of our M-CTR
is even more significant when the input terrain graph is
weighted. Following usual practices in GIS, we assign each
edge (u, v) by (1 + θ)∥ũ − ṽ∥2 where θ is the absolute
value of the angle of elevation. In Table 4, we compare our
M-CTR with the Coarse-GAT+L1. Note that our improve-
ment for the larger LA dataset is significant: the relative

8

De-coupled NeuroGF for Terrains

Datasets Models Rel. Err. (%, ↓) Acc. (%, ↑)

Norway
Coarse-GAT+L1 2.30± 2.96 62.14

M-CTR (ours) 2.04± 3.53 68.06
Our improvement -11.3% +5.9%

LA
Coarse-GAT+L1 3.55± 2.76 27.53

M-CTR (ours) 1.91± 4.66 69.42
Our improvement -46.2% +41.89%

Phil.
Coarse-GAT+L1 2.43 ± 4.62 61.4

M-CTR (ours) 1.32 ± 2.96 83.9
Our improvement -45.7% +22.5%

Holland
Coarse-GAT+L1 2.48 ± 6.20 61.9

M-CTR (ours) 0.82 ± 1.69 93.3
Our improvement -66.9% +31.4%

Table 4. Weighted terrains results. The improvement has ‘-’ sign
for error as we reduce it and ‘+’ for accuracy as we increase it.
We note that our M-CTR approach far out-performs the Coarse-
GAT+L1 approach for all weighted terrains.

error for Coarse-GAT+L1 almost doubles that of our M-
CTR, while its accuracy is only half of ours.

4.4. Dynamic terrain changes

Our de-coupled pipeline allows us to efficiently handle up-
dates to the terrain. We illustrate this advantage when con-
sidering the presence of uncertainty in terrain measurements.
See Appendix C for the improvement by our approaches for
a synthetic scenario where there are edge-weight updates to
the terrain.

DEMs can have inherent uncertainties from measurement
errors or incomplete data (Banerjee et al., 2003; Zhang et al.,
2015). For example, (Zhang et al., 2015) treats terrain height
as a random variable within a range (instead of a fixed value):
the height of any vertex v lies in [h(v)− 0.05, h(v) + 0.05]
for a height function h : Ω → R. Then one can sample mul-
tiple potential terrain height maps, and estimate SPD as the
average shortest path distance across these multiple samples.
Specifically, we randomly sample K terrain instantiations,
{Gh1 , . . . , GhK

}, each with unique shortest path distances.
The ground truth shortest path between vertices u and v is
computed as 1

K

∑K
i=1 dGhi

(u, v).

If we use a neural data structure to estimate the SPD, in
general, one would need to re-train K models, one for each
terrain instantiation Ghi

. However, with our decoupled
training procedure, we only need to train an embedding
map once, and retrain only the much cheaper distance com-
putation MLPs K times. This improves the time needed
to estimate average SPDs by a factor proportional to K.
To test, we carry out this model on downsampled Holland,
Philadelphia, Norway and LA terrains (250x250 for Norway
and LA, 50x50 for Holland and Philadelphia). For K = 50,
our entire retraining takes around 12 hours, while retrain-
ing GAT+L1 50 times would take 100 hours. In Table 5,
we compare the SPD estimation accuracy of the estimate

Datasets Models Rel. Err. (%, ↓) Acc. (%, ↑)

Norway
GAT + L1 19.4± 3.04 0.078

Decoupled (ours) 1.76± 2.30 70.0
Our improvement -90.9% +69.9%

LA
GAT + L1 2.27± 2.06 34.6

Decoupled (ours) 0.77± 1.04 94.1
Our improvement -66.0% +59.5%

Phil.
GAT + L1 29.8± 6.84 0.048

Decoupled (ours) 6.14 ± 7.88 26.4
Our improvement -79.4% +26.3%

Holland
GAT + L1 48.79± 7.08 0.092

Decoupled (ours) 9.35 ± 13.2 17.3
Our improvement -81.0% +17.2%

Table 5. Results for uncertainty models. Improvement has ‘-’ sign
for error as we reduce it and ‘+’ for accuracy as we increase it. For
each terrain, our de-coupled approach outperforms GAT+L1.

by averaging the output of our retrained decoupled models
(indicated as ‘Decoupled (ours)’ in the table) and the esti-
mate of a single GAT+L1 (which has comparable training
time as ours). Notice that Holland and Philadelphia have
much larger errors as compared to Norway and LA, possibly
because a ±0.05 perturbation in vertex height represents a
far more significant relative change on those comparatively
flatter terrains. Overall, our approach achieves dramatically
better performance with comparable training time.

5. Conclusion
We demonstrate the effectiveness of neural data struc-
tures in approximating SPD on large-scale terrain graphs.
By leveraging learned embeddings and efficient distance-
computation modules, our de-coupled NeuroGF is scalable
and allows for more efficient updates with dynamic terrain
changes. Our decoupled NeuroGF offers a promising al-
ternative to traditional data structure for SPD queries for
massive terrains. This opens more venues for exploring
neural data structures that can summarize input data in a
succinct manner yet support efficient queries.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
Work by Pankaj K. Agarwal was partially supported by NSF
grants CCF-20-07556, CCF-22-23870, and IIS-24-02823,
and by the Binational Science Foundation Grant 2022131.
Work by Samantha Chen and Yusu Wang is additionally
supported by NSF grants CCF-2112665 and CCF-2310411.

9

De-coupled NeuroGF for Terrains

References
Aleksandrov, L., Lanthier, M., Maheshwari, A., and Sack,

J. R. An ε—approximation algorithm for weighted short-
est paths on polyhedral surfaces. In Algorithm The-
ory—SWAT’98: 6th Scandinavian Workshop on Algo-
rithm Theory Stockholm, Sweden, July 8–10, 1998 Pro-
ceedings 6, pp. 11–22. Springer, 1998.

Arge, L., Toma, L., and Vitter, J. S. I/o-efficient algorithms
for problems on grid-based terrains. ACM J. Exp. Algo-
rithmics, 6:1, 2001. doi: 10.1145/945394.945395. URL
https://doi.org/10.1145/945394.945395.

Banerjee, S., Carlin, B. P., and Gelfand, A. E. Hierarchical
modeling and analysis for spatial data. Chapman and
Hall/CRC, 2003.

Chen, J. and Han, Y. Shortest paths on a polyhedron. In
Proceedings of the sixth annual symposium on Computa-
tional geometry, pp. 360–369, 1990.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. An image is worth
16x16 words: Transformers for image recognition at scale.
International Conference on Learning Representations
(ICLR), 2021.

Dwivedi, V. P. and Bresson, X. A generalization
of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

Ghojogh, B., Ghodsi, A., Karray, F., and Crowley, M. Spec-
tral, probabilistic, and deep metric learning: Tutorial
and survey, 2022. URL https://arxiv.org/abs/
2201.09267.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning (ICML), pp. 1263–1272. PMLR,
2017.

Hazel, T., Toma, L., Vahrenhold, J., and Wickremesinghe,
R. Terracost: Computing least-cost-path surfaces
for massive grid terrains. ACM J. Exp. Algorith-
mics, 12:1.9:1–1.9:31, 2008. doi: 10.1145/1227161.
1370600. URL https://doi.org/10.1145/
1227161.1370600.

Jegelka, S. Theory of graph neural networks: Representa-
tion and learning. In Proc. of the International Congress
of Mathematicians (ICM), 2022. Also see arXiv at
2204.07697.

Kaul, M., Wong, R. C., Yang, B., and Jensen, C. S. Finding
shortest paths on terrains by killing two birds with one

stone. Proc. VLDB Endow., 7(1):73–84, 2013. doi: 10.
14778/2732219.2732226. URL http://www.vldb.
org/pvldb/vol7/p73-kaul.pdf.

Kaul, M., Wong, R. C., and Jensen, C. S. New lower and
upper bounds for shortest distance queries on terrains.
Proc. VLDB Endow., 9(3):168–179, 2015. doi: 10.14778/
2850583.2850591. URL http://www.vldb.org/
pvldb/vol9/p168-kaul.pdf.

Kim, J., Nguyen, D., Min, S., Cho, S., Lee, M., Lee, H., and
Hong, S. Pure transformers are powerful graph learners.
Advances in Neural Information Processing Systems, 35:
14582–14595, 2022.

Kipf, T. and Welling, M. Semi-supervised classification
with graph convolutional networks, 2016.

Lanthier, M., Maheshwari, A., and R. Sack, J. Approxi-
mating shortest paths on weighted polyhedral surfaces.
Algorithmica, 30:527–562, 2001.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 10012–10022, 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In 7th International Conference on Learning
Representations (ICLR), 2019.

Mitchell, J. S., Mount, D. M., and Papadimitriou, C. H. The
discrete geodesic problem. SIAM Journal on Computing,
16(4):647–668, 1987.

Mitchell, J. S. et al. Geometric shortest paths and network
optimization. Handbook of computational geometry, 334:
633–702, 2000.

Naor, A. and Neiman, O. Assouad’s theorem with dimension
independent of the snowflaking. Revista Matematica
Iberoamericana, 28(4):1123–1142, 2012.

Pang, B., Zheng, Z., Wang, G., et al. Learning the geodesic
embedding with graph neural networks. ACM Transac-
tions on Graphics (SIGGRAPH Asia), 42(6), 2023.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.
doi: 10.1109/TNN.2008.2005605.

Schreiber, Y. and Sharir, M. An optimal-time algorithm for
shortest paths on a convex polytope in three dimensions.
Discret. Comput. Geom., 39(1-3):500–579, 2008. doi: 10.
1007/S00454-007-9031-0. URL https://doi.org/
10.1007/s00454-007-9031-0.

10

https://doi.org/10.1145/945394.945395
https://arxiv.org/abs/2201.09267
https://arxiv.org/abs/2201.09267
https://doi.org/10.1145/1227161.1370600
https://doi.org/10.1145/1227161.1370600
http://www.vldb.org/pvldb/vol7/p73-kaul.pdf
http://www.vldb.org/pvldb/vol7/p73-kaul.pdf
http://www.vldb.org/pvldb/vol9/p168-kaul.pdf
http://www.vldb.org/pvldb/vol9/p168-kaul.pdf
https://doi.org/10.1007/s00454-007-9031-0
https://doi.org/10.1007/s00454-007-9031-0

De-coupled NeuroGF for Terrains

Tran, N., Dinneen, M. J., and Linz, S. Close weighted
shortest paths on 3d terrain surfaces. In Lu, C., Wang, F.,
Trajcevski, G., Huang, Y., Newsam, S. D., and Xiong, L.
(eds.), SIGSPATIAL ’20: 28th International Conference
on Advances in Geographic Information Systems, Seattle,
WA, USA, November 3-6, 2020, pp. 597–607. ACM, 2020.
doi: 10.1145/3397536.3422216. URL https://doi.
org/10.1145/3397536.3422216.

Varadarajan, K. R. and Agarwal, P. K. Approximat-
ing shortest paths on a nonconvex polyhedron. SIAM
J. Comput., 30(4):1321–1340, 2000. doi: 10.1137/
S0097539799352759. URL https://doi.org/10.
1137/S0097539799352759.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

Veličković, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms. In Pro-
ceedings of the 8th International Conference on Learning
Representations (ICLR 2020), 2020.

Veličković, P., Badia, A. P., Budden, D., Pascanu, R.,
Banino, A., Dashevskiy, M., Hadsell, R., and Blundell,
C. The clrs algorithmic reasoning benchmark. In Pro-
ceedings of the 39th International Conference on Ma-
chine Learning (ICML 2022), pp. 22084–22102. PMLR,
2022. URL https://proceedings.mlr.press/
v162/velickovic22a.html.

Wei, V. J., Wong, R. C.-W., Long, C., Mount, D., and
Samet, H. Proximity queries on terrain surface. ACM
Transactions on Database Systems, 47(4):1–59, 2022.

Wei, V. J., Wong, R. C.-W., Long, C., and Mount, D. M.
On efficient shortest path computation on terrain surfaces:
A direction-oriented approach. IEEE Transactions on
Knowledge and Data Engineering (TKDE), xx(xx):xx–
xx, 2024. doi: xxx.

Xin, S.-Q. and Wang, G.-J. Improving chen and han’s
algorithm on the discrete geodesic problem. ACM Trans-
actions on Graphics (TOG), 28(4):1–8, 2009.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. What can neural networks reason about?
arXiv preprint arXiv:1905.13211, 2019.

Zhang, Q., Hou, J., Adikusuma, Y. Y., Wang, W., and He,
Y. Neurogf: A neural representation for fast geodesic
distance and path queries. In Advances in Neural Infor-
mation Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023,
2023.

Zhang, W., Agarwal, P. K., and Mukherjee, S. Contour
trees of uncertain terrains. In Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 1–10, 2015.

11

https://doi.org/10.1145/3397536.3422216
https://doi.org/10.1145/3397536.3422216
https://doi.org/10.1137/S0097539799352759
https://doi.org/10.1137/S0097539799352759
https://proceedings.mlr.press/v162/velickovic22a.html
https://proceedings.mlr.press/v162/velickovic22a.html

De-coupled NeuroGF for Terrains

A. Graph Neural Networks
We provide exposition regarding different message passing GNN architectures architectures. Recall that the general form
of the a message passing GNN was given in Equation (1). Most popular architectures, such as GCN or GAT, follow the
general format in Equation (1) with differences between architectures arising from the implementation of the aggregation
and update functions. A GCN uses normalized mean pooling as the update and aggregation function so at each layer ℓ the
node is updated as

x(ℓ)
v = σ

 ∑
u∈N (v)∪{v}

w(u, v)√
deg(v) deg(u)

W (ℓ)x(ℓ−1)
u

 (3)

where W (ℓ) represents the learnable weights at layer ℓ and w(u, v) is the weight of an edge (u, v). Note that if there are no
edge weights in the input graph, w(u, v) = 1. In contrast, graph attention networks (GATs) use sum-pooling to aggregate
neighboring node features along with attention mechanisms within the aggregation function in order to assign levels of
importance to node neighbors. At each layer ℓ, GATs update node features as

x(ℓ)
v = σ

 ∑
u∈N (v)

αvuW
(ℓ)x(ℓ−1)

u

 , (4)

where αvu is a learnable attention coefficient. Edge features for this network are incorporated when computing the attention
mechanism αvu by concatenating the edge feature with the node feature before applying/computing the attention mechanism.
Note that in our case, our input node features are the lift x(0)

v = v̂ for each v ∈ V and input edge features, given an edge
(u, v), is the Euclidean distance between the lifts of u and v.

B. Transformers
B.1. Transformer architecture

Transformers have become the state-of-the-art architecture for handling tasks in natural language processing and computer
vision (Vaswani et al., 2017; Dosovitskiy et al., 2021; Liu et al., 2021). Each layer of the transformer is a sequence-
to-sequence permutation equivariant function 2 and consists of a transformer block. Each transformer block includes a
multi-head self-attention mechanism and a position-wise feed-forward neural network. Given a sequence X ∈ Rn×D, the
output of a single attention head Attn : Rn×D → Rn×D is computed as

Attn(X) = softmax(XWQ(XWK)T)

where WQ,WK ∈ RD×D. The output of this attention mechanism is then passed through an MLP which then computes
the updated feature for each token independently so the final output is MLP(X + Attn(X)XWV) where WV ∈ RD×D.
Intuitively, the N ×N matrix XWQ(XWK)T computes self-similarity of any two elements in X (although after linear
transformations by WQ and WK . Using the softmax normalizes the self-similarity values across each row, and therefore
records, for each element in X , the “influence” (“attention”) of any other element, and the multiplication with XWV then
integrates such influences to update each element in X .

Since transformer parameters are shared across all elements of the input sequence, once the transformer is trained it can be
applied to an input sequence of any size. While there have been several works adapting transformers for graph structured
input (Dwivedi & Bresson, 2020), one can also directly apply standard transformers directly to graphs (Kim et al., 2022). In
fact, one can view a transformer as a graph neural network over a complete graph where we compute an additional edge
feature which captures the relative importance of pairs of nodes. However, the transformer takes quadratic time O(|V |2)
whereas the standard message passing GNN is linear with respect to the size of the input graph O(|V |+ |E|).

B.2. Intialization of embedding module with transformer

We also explore the use of a transformer as the initial embedding module ϕ. In this approach, the entire graph is tokenized
and presented as an input sequence, as described earlier in Section 2. The transformer treats the terrain graph as a global

2A sequence of N elements, each being a D-dimensional vector, can be represented by a point X ∈ RND . Intuitively, X is a N ×D

matrix, where each of the N rows is a D-dimensional vector. A function f : RND → RND′
is permutation equivariant if its output

respects the permutation of the rows of the input. In other words, for any N ×N permutation matrix Π, we have that f(ΠX) = Πf(X).

12

De-coupled NeuroGF for Terrains

Latent embedding dimension
a 4 16 32 64 128

2.0 3.63 ± 2.84 1.32 ± 1.11 1.04 ± 1.16 0.82 ± 1.19 1.27 ± 1.70
4.0 6.46 ± 4.98 2.93 ± 3.34 1.69 ± 2.50 1.95 ± 3.09 1.96 ± 3.33

10.0 9.41 ± 8.57 3.72 ± 4.59 2.77 ± 3.81 2.86 ± 6.11 2.87 ± 7.16

Table 6. Relative error (%, ↓) versus latent embedding dimension for GAT + L1 for the synthetic dataset with Gaussian amplitude
a ∈ {2.0, 4.0, 10.0}. We see that relative error is mostly stable after embedding in R64.

information, where information from all nodes are simultaneously accessible during the embedding computation. Unlike
when the GNN is used as the ϕ, which explicitly leverages local connectivity to compute embeddings, the transformer
operates on a global scale and can capture long-range dependencies. In short, transformers excel at incorporating global
context at the cost of not necessarily being able to explicitly leverage local graph structure, whereas GNNs are more naturally
suited for encoding local connectivity patterns but may struggle to capture long-range dependencies effectively, as mentioned
previously.

While our discussion focuses on the single-terrain case, it is important to note that both the GNN and transformer-based
approaches can naturally extend to cross-terrain settings. These models take the terrain graph as input, allowing them to
generalize to multiple terrains without requiring a separate model for each. In contrast, the MLP-based approach is limited
in this regard. Since the MLP processes input features independently and lacks any inherent mechanism to incorporate graph
structure, a single MLP model is specific to a single function. Applying an MLP to cross-terrain settings would require
retraining or maintaining a separate model for each terrain.

C. Additional experimental details
C.1. Training details

We train all models using PyTorch and 8 NVidia A1000 GPUs. As a note on hyperparameter tuning: in general, we
tuned the depth (between {2, 3, 4} layers) and output latent embedding of the initial embedding module ϕ (between
{4, 16, 32, 64, 128}) on the small synthetic datasets. The best hyperparameters are then used to training the networks on
the real-world terrain datasets. We focus on tuning the hyperparameters for Siamese embedding module and fix the final
distance computation MLP hyperparameters at two layers and 256 hidden units. We make a special note of the dimension
of the latent embedding for the Siamese GNN module as this is likely to affect the final quality of the Siamese network
approaches and report the relative error for the Siamese network approach (GAT + L1) on various synthetic terrains as
the latent embedding dimension increases in Table 6. We note that more detailed results showing the relative error of all
approaches with different latent embedding dimensions can be seen in Appendix C.3, Figure 5. Observe that the error
incurred by the Siamese network stabilizes after embedding to R64. Therefore, for each GNN-based model, we utilize
an embedding module with three GNN layers each with 128 hidden units and an output embedding dimension of 64. An
exception is when training the full GAT+L1 model on the Norway dataset where resource constraints necessitate training a
smaller embedding module model configured with an output embedding dimension of 16 and 32 hidden units per layer. We
use the same configuration for MLP and Transformer-based models and use two attention heads for the Transformer-based
model. Note that in the case of M-CTR training on Norway, we first train on a downsampled terrain, which allows us to
maintain the original configuration with a 64-dimensional output embedding. Each neural network is trained using the
AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of 0.001. Finally, each model is trained for 500 epochs
except for GAT+L1 trained on the full Norway, Holland, and Philadelphia datasets, which are trained on 100 epochs because
of time considerations. In the final finetuning of the distance computation module (in our de-coupled/M-CTR training
approach), we train the final MLP for 1000 epochs.

C.1.1. DATASET DETAILS

A complete table of train and test set sizes is provided in Table 7. As described in Section 3, Strain,1 serves as the initial
training set in our decoupled approach, used to train the embedding module ϕ, while Strain,2 is used to fine-tune the final
distance computation MLP.

Since the artificial terrains are significantly smaller, we construct both Strain,1 and Strain,2 by randomly sampling 50K

13

De-coupled NeuroGF for Terrains

source and target nodes along with their shortest path lengths. However, generating 50K random source-target pairs is
computationally expensive for real terrains, even in their downsampled versions. To address this, we sample 1000 random
source points per real terrain. For Strain,1, we select 500 targets per source, and for Strain,2, we sample 3500 targets. For
the experiments with terrain uncertainty models, we reduce |Strain,2| to accelerate training to ensuring that finetuning all 50
MLPs was computationally feasible. Specifically, we sample 500 targets per source for these models.

For the artificial terrains, we generate the test sets by sampling 1000 sources and taking their shortest path distances to every
other node in the terrain. For the real terrains, we generate test sets by sampling 1000 source points and then sampling
500,000 targets across the terrains.

|Strain,1| |Strain,2| Test
Artificial 5× 104 5× 104 2.5× 105

Norway-250 5× 104 3.5× 105 5× 108

Norway 5× 104 3.5× 105 5× 108

LA 5× 104 3.5× 105 5× 108

Holland 5× 104 3.5× 105 5× 108

Philadelphia 5× 104 3.5× 105 5× 108

Uncertainty models 5× 104 5× 104 5× 108

Table 7. Dataset sizes for all terrains. Note that Norway-250 refers to the downsampled 250x250 version of Norway used in Section 4
Table 2 for comparison with GeGNN.

C.2. Time to generate initial embeddings

In addition to the time required for SP-distance approximation at inference, we also measure the time needed to compute
each embedding for the GNN-based module in Table 8 (as GNNs were shown to have the best performance among all
tested models). Since a single GNN pass scales linearly with the number of nodes and edges, O(|V |+ |E|), the embedding
computation time increases with terrain graph size, as expected. However, once computed, embeddings can be stored and
reused for distance queries, offering significant time savings—especially compared to the non-neural SOTA approach, which
required several days of pre-processing time to construct a data structure for a terrain with 180,000 nodes (Wei et al., 2024).

of nodes 625 2500 62500 4M 16M
Time (s) 0.001 0.5 2 21 107

Table 8. Time required to generate embeddings using a GAT with the specified hyperparameters above for input graphs of varying sizes.
As the number of nodes increases, the embedding computation time scales accordingly.

C.3. More results on exploring the design space on artificial terrains

In Figure 5, we show the average relative error of different model designs over the test sets for artificial terrains. We plot
the average relative error (y-axis) against the ‘complexity’ (the maximum amplitude of the Gaussians) of each artificial
terrain in the x-axis. We observe that GNN-based embedding modules consistently outperform MLP and transformer-based
modules by a significant margin. This result is expected as MLP-based embedding methods, as discussed in Section 3, rely
solely on pointwise information for training and cannot incorporate the terrain structure. Additionally, while transformers
can encode global terrain information via the initial position encoding (of coordinates) as well as global self-attention
operations, the self-attention mechanism does not appear to be as effective as GNN message-passing in retrieving path
information. Indeed, it have been previously observed that GNNs naturally align with classical shortest-path algorithms like
Bellman-Ford and Dijkstra, enabling them to better capture and propagate graph structure in a way that facilitates accurate
SP-distance estimation (Xu et al., 2019; Veličković et al., 2020). We also note that transformers require Θ(|V |2) time to
compute self-attention, while GCNs and GATs are linear O(|V |+ |E|) to the size of input graph.

Furthermore, among the GNN choices, we observe that the GAT consistently performs better than the GCN. This again
might not be surprising as GAT allows attending to different neighbors differently when aggregating messages at a graph
node. We also note that GeGNN of (Pang et al., 2023) is worse than GCN+MLP (which can be viewed as the original

14

De-coupled NeuroGF for Terrains

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Amplitude of Gaussians

10 1

100
Av

er
ag

e
re

la
tiv

e
er

ro
r

Embedding module output dimension=4

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Amplitude of Gaussians

10 2

10 1

Av
er

ag
e

re
la

tiv
e

er
ro

r

Embedding module output dimension=16

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Amplitude of Gaussians

10 2

10 1

Av
er

ag
e

re
la

tiv
e

er
ro

r

Embedding module output dimension=32

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Amplitude of Gaussians

10 2

10 1

Av
er

ag
e

re
la

tiv
e

er
ro

r

Embedding module output dimension=64

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Amplitude of Gaussians

10 2

10 1

Av
er

ag
e

re
la

tiv
e

er
ro

r

Embedding module output dimension=128

GAT+L1
GAT+L2
GAT+MLP
MLP+L2
MLP+L1
MLP+MLP
Transformer+L1
Transformer+MLP
GCN+L1
GCN+L2
GCN+MLP
GeGNN

Figure 5. Average relative error for each model on artificial terrains. Each plot corresponds to a different output embedding size for ϕ.
The x-axis of each plot corresponds to the amplitude of the Gaussians in a given artificial terrain and the y-axis corresponds to the average
relative error.

NeuroGF (Zhang et al., 2023)). Most interestingly, we note that using only X+L1 consistently outperforms X+MLP as well
as X+L2. From these observations, we narrow down our architectural explorations and exclude MLP and Transformer based
architectures from our further experiments.

C.4. Synthetic perturbations to terrain edge weights

We artificially perturb the terrain graphs of downsampled versions of Norway and Los Angeles (each of them 250x250
terrains) and introduce perturbations by scaling each edge weight by some value sampled from N (1.0, 1.0). Instead of
retraining the GAT + L1 embedding module, which is expensive, we can simply use our de-coupled training approach and
re-train the final distance computation module according to the new weighted terrain. The relative error of the previously
trained GAT + L1 and the de-coupled approach is shown in Table 9. This updated de-coupled model achieves significantly
lower error compared to directly using the previously trained model. While the original model cannot approximate shortest
paths at all on the perturbed terrain, retraining just the distance computation module yields accurate shortest path estimates
with minimal computational overhead.

Norway Los Angeles
GAT +L1 132% 186%

updated-de-coupled 3.46% 4.36%

Table 9. Average relative error on perturbed versions of 250 × 250 downsampled version of each node. We compare the decoupled
training approach, where ϕ is first trained on a downsampled version of the terrain and then a final distance adjustment MLP is re-trained
on the new terrain, against original ϕ, which directly uses the L1 distance between embeddings as the final estimate.

15

De-coupled NeuroGF for Terrains

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Amplitude of Gaussians

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

re
la

tiv
e

er
ro

r

Embedding module output dimension=4

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Amplitude of Gaussians

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

re
la

tiv
e

er
ro

r

Embedding module output dimension=16

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Amplitude of Gaussians

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

re
la

tiv
e

er
ro

r

Embedding module output dimension=32

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Amplitude of Gaussians

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

re
la

tiv
e

er
ro

r

Embedding module output dimension=64

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Amplitude of Gaussians

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

re
la

tiv
e

er
ro

r

Embedding module output dimension=128

De-coupled
M-CTR
GAT+L1
GAT+MLP
GCN+L1
GCN+MLP

Figure 6. Expanded version of Figure 5 for GNN-based approaches only. We plot the average relative error (y-axis) of each GNN based
model against the the amplitude of the Gaussians (‘complexity’) in an artificial terrain. Each plot corresponds to a different latent space
dimension for the embedding module ϕ.

16

