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Abstract

We introduce RANK1, the first reranking model trained to take advantage of
test-time compute. RANK1 demonstrates the applicability within retrieval
of using a reasoning language model (i.e. OpenAI’s o1, Deepseek’s R1, etc.)
for distillation in order to rapidly improve the performance of a smaller
model. We gather and open-source a dataset of more than 600,000 examples
of R1 reasoning traces from queries and passages in MS MARCO. Models
trained on this dataset show: (1) state-of-the-art performance on advanced
reasoning and instruction following datasets; (2) work remarkably well
out of distribution due to the ability to respond to user-input prompts;
and (3) have explainable reasoning chains that can be given to users or
retrieval-augmented generation (RAG) systems. Further, we demonstrate
that quantized versions of these models retain strong performance while
using less compute/memory. Overall, RANK1 shows that test-time com-
pute allows for a fundamentally new type of explainable and performant
reranker model for search.1

1 Introduction

Reasoning language models (LMs) like OpenAI’s o1, Deepseek’s R1, and Gemini’s Flash-
Thinking have shown improved reasoning abilities through the use of test-time compute, i.e.
generating a reasoning chain of tokens that allow the model to “think" before giving the final
answer. Another benefit to these style of models is that the reasoning chain can easily be
distilled into smaller models. As shown by Deepseek (Guo et al., 2025) smaller models learn
incredibly well from simple supervised fine-tuning on the larger model’s reasoning chains.

The benefits that reasoning models bring to general text generation would also be valuable
in an information retrieval (IR) context: allowing models additional time to reason why a
passage could be relevant, while also allowing an auditable reasoning process to give to
the user or RAG system. For this approach to be maximally effective, the model must be
able to reason over both query and passage; if applied solely to the query, the reasoning
model would not know the passage context and would have to try to infer it. This would be
a form of query-expansion (Nogueira et al., 2019) and limits the model’s ability to be precise.
Thus, our work focuses on bringing test-time compute to IR in a reranking setting, where the
model needs to compute the relevance of an initial top-k candidates.

To accomplish this goal, we sample 635,000 examples of R1’s thought process on the MS
MARCO dataset (Nguyen et al., 2016). We then fine-tune a suite of LMs on these reasoning
chains and find that they show remarkable reasoning capabilities. Surprisingly, they also ex-
hibit an ability to be prompted despite training from the base LMs only (without instruction
fine-tuning) and while having no instruction-based IR training data (only MS MARCO).

1Models, code, and data are available at https://github.com/orionw/rank1
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what county is colton in

Colton, California. Colton is a city in
San Bernardino County, California,
United States...

<think> The user is asking "what county is Colton
in." ... So the first thing I notice is that the passage
directly mentions San Bernardino County as the
county where Colton is located. 

The query is specifically about the county, and the
answer is right there in the first sentence of the
passage.

But wait, maybe I should check if there's
any possibility that the passage isn't relevant. The
rest of the passage talks ... but the key information
about San Bernardino County is present ... 

So the answer should be true because the passage
answers the query directly.

</think> true

Snow leopards have long, thick fur, and
their base color varies from smoky gray to
yellowish tan, with whitish underparts ...

do snow leopards change color

<think> The user is asking if snow leopards change
color. The passage provided describes their fur color
as varying from smoky gray to yellowish tan, with
some patterns. Hmm, the key here is whether
"varies" implies that they change color over time, like
seasonally or due to some factors. 

But wait, "varies" might just mean that different
individuals have different base colors, not that a
single leopard changes its color. The passage
doesn't mention anything about changing color; it's
just describing their appearance. ... 

Therefore, the passage isn't directly relevant to the
question of whether they change color. So the
answer should be false.

</think> false

Figure 1: Example reasoning traces from R1, used to train RANK1. Note the self-inquisitory
reasoning (in blue) where the model questions if it has the correct answer.

This includes state-of-the-art performance on the BRIGHT benchmark for reasoning (Su
et al., 2024), the NevIR benchmark on complex negation understanding, and the mFol-
lowIR dataset on multilingual instruction-following in IR – despite having no non-English
reasoning training data (Weller et al., 2025a).

We also conduct a detailed analysis of performance on traditional IR benchmarks, such as
TREC DL19 (Craswell et al., 2020) and BEIR (Thakur et al., 2021). We find that these datasets
are likely model-saturated, as RANK1 surfaces an extremely large number of unjudged
documents (364% more than RankLLaMA-14B). We argue these benchmarks are no longer
helpful for distinguishing between the best performing rerankers and that focus should be
put on benchmarks that examine advanced reasoning, instruction-following, and have more
modern (e.g. post-ChatGPT) annotations.

Overall, RANK1 shows the benefits that test-time compute can bring to the field of IR:
explainable reasoning chains that can be audited by users or used by agentic RAG systems,
significantly improved reasoning performance, and adaptability from user-given prompts.

2 Model Training

2.1 Data Preparation

In order to distil from R1, we first need to gather data to use for prompting it. We use the
MS MARCO collection (Nguyen et al., 2016) due to its diversity in topics and common use
in previous work. We use kluster.ai as the API service to access R1 using their batch mode
with a temperature of 0.3 and a maximum of 1000 output tokens.2

We generate data from an equal number (25% of the data) from each of the (1) positive
examples in MS MARCO, (2) sampled negatives from Tevatron3 (gathered from BM25 and
CoCondenser), (3) rank 1-5 hard negatives from mT5-13B, and (4) rank 5-10 hard negatives
from mT5-13B. However, we found that R1 classified roughly 80% of the mT5 hard negatives
as positives. Thus we did another round of generation using only hard negatives from rank

2In our initial testing we found that all reasoning chains were shorter than 1000 tokens. As each
MS MARCO passage is typically around 100-200 token, R1 doesn’t need more than 1000 tokens to
reason over it.

3From https://huggingface.co/datasets/Tevatron/msmarco-passage-aug
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Figure 2: Distribution of word lengths of the reasoning chains generated from R1. It has a
slightly rightward skew but is generally normal shaped. Note that there is no noticeable
difference in the distribution between passages that are predicted relevant vs non-relevant.

5-10 and easy negatives from Tevatron. As the mined hard negatives from mT5 do not have
an official label, it is likely that many of them were false negatives and that R1 was correct.

After all generation was done, our dataset has 635,264 examples of R1 generations, where
R1 labeled 62.9% as relevant and 37.1% as non-relevant. We show a plot of these generation
lengths in Figure 2 where we see a fairly normal distribution. Although we thought there
may be length differences between these four subsets of data, we found that they all had the
same rough distribution.

2.2 Data Mix and Quality Filtering

Since we had a surplus of documents judged relevant, we tried various methods to arrive at
our final data mix. We initially tried using all the data, after balancing for the labels. We
found that this performed significantly worse than filtering based on the labels we were
most sure about (i.e. the positives from MS MARCO and the negatives from Tevatron).
However, even on those subsets, 15% of R1’s final prediction disagreed with the implied
labels – thus we filtered out these instances.

Beyond being labeled as positives, we found that a large number of the mT5 mined hard
negative samples were noisy.4 To alleviate this, we used a model trained on the first mix to
self-filter the data.5 This filtered another 10% of the data, mostly false negatives. Since we
still had a surplus of "relevant" labeled instances, we took all positives from the official MS
MARCO positives6 and all negatives from the self-filtered set. This left us with a training
set of 386,336 high quality training samples: 136k from the original MS MARCO positives,
154k from the Tevatron negatives, and 96k from the mT5 negatives. We note that having
more negatives than positives is standard: RankLLaMA (Ma et al., 2024) trained on a 15:1
ratio of negatives to positives for 7 million examples.

2.3 Training

We train three main models from the Qwen 2.5 family of models (Yang et al., 2024). These
models have shown improved performance on recent LM benchmarks and have a wide
range of models, allowing us to show the effects of scale. We use the 7B, 14B, and 32B
parameter models.7 We show that alternative base models are also effective in Section 4.
During initial experiments we found that the base models outperformed their instruction-
tuned variants, so all models are trained from the base version (e.g. no instruction-training).8

4See Appendix Section B where we found that 2/3rds of the mT5 negatives were actually positives.
5We used the RANK1 Mistral 24B version as it was the largest that fit on 1 GPU, filtering all instances

where the model’s prediction didn’t agree with R1’s prediction.
6From the MS MARCO small triples file.
7We show ablations on smaller Qwen 2.5 models in Section 3.8.
8This could be because instruct-versions are optimized for chat and math data, whereas we have a

large amount of reranking-specific data that doesn’t benefit from chat/math-based instructions.
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StackExchange Coding Theorem-based Avg.
Bio. Earth. Econ. Psy. Rob. Stack. Sus. Leet. Pony AoPS TheoQ. TheoT.

BM25 19.2 27.1 14.9 12.5 13.5 16.5 15.2 24.4 7.9 6.0 13.0 6.9 14.8
BM25 on GPT-4o CoT 53.6 53.6 24.3 38.6 18.8 22.7 25.9 19.3 17.7 3.9 18.9 20.2 26.5

MonoT5-3B 16.0 24.0 17.7 19.5 8.0 10.5 19.5 17.2 29.2 7.1 20.3 12.0 16.8
RankLLaMA-7B 17.5 15.5 13.1 13.6 17.9 6.9 16.9 8.4 46.8 2.2 4.5 3.5 13.9
RankLLaMA-13B 21.6 19.1 16.3 14.0 15.7 7.7 18.5 8.8 31.1 1.7 4.4 4.9 13.7
Rank1-7B 48.8 36.7 20.8 35.0 22.0 18.7 36.2 12.7 31.2 6.3 23.7 37.8 27.5
Rank1-14B 49.3 37.7 22.6 35.2 22.5 20.8 33.6 17.7 33.2 8.4 22.5 41.4 28.7
Rank1-32B 49.7 35.8 22.0 37.5 22.5 21.7 35.0 18.8 32.5 10.8 22.9 43.7 29.4

Table 1: The performance of retrieval models on BRIGHT. BM25 scores are taken from the
official BRIGHT paper. All models rerank from the BM25 on GPT-4o CoT top 100 documents,
but are not given the GPT-4o CoT. We find a large gap between similar sized rerankers
and RANK1 models (sometimes 2x). Bold indicates the best score in the reranker section.

We train the models with LoRA using LLaMA-Factory (Zheng et al., 2024) for up to two
epochs or for up to three days. We found that there was increased learning for roughly
the 1.5 epochs but then performance saturated. For more details and hyperparameters
configurations see Appendix A.

3 Experiments

We show the capabilities of the RANK1 through evaluation on advanced reasoning,
instruction-following, and semantic-understanding datasets. We also demonstrate per-
formance on traditional benchmarks. We use mteb (Muennighoff et al., 2022; Enevoldsen
et al., 2025) to run all experiments except for DL19, which uses rankllm (Pradeep et al.,
2023a). Inference is powered by vllm (Kwon et al., 2023) which makes it significantly faster
than vanilla transformers (Wolf et al., 2020).

3.1 Baselines

We use BM25 (Robertson et al., 1994; Lù, 2024) and mE5-base (Wang et al., 2024) for our first
stage models. For reranking models we focus on other pointwise reranking models (e.g.
models that output a score per document): MonoT5-3B (Nogueira et al., 2019), mT5-13B
fine-tuned on MMARCO for multilingual tasks (Jeronymo et al., 2023), and RankLLaMA
7 and 13B (Ma et al., 2024). For instruction following tasks we also include FollowIR-7B
(Weller et al., 2024a) which was trained solely for instruction-following.

We show results for listwise models when those scores are available (Pradeep et al., 2023b;
Sun et al., 2023), but note that they are not comparable – listwise models take an order
of magnitude more time at inference due to their sequential dependencies and have the
advantage of seeing all documents in their context when reranking. We show them generally
as a strong upper bound, as when state-of-the-art (SOTA) LMs (i.e. GPT-4o) are used.

3.2 Reasoning Capabilities

We show results on the reasoning intensive BRIGHT benchmark (Su et al., 2024) in Table 1.
All reranker models judge the top 100 documents found using BM25 on the query plus
GPT-4o’s Chain of Thought (CoT) reasoning, which performed significantly better than
BM25 without the query expansion (thus including more relevant documents in the top 100
to test rerankers with). However, at inference time, the rerankers are not given the CoT. We
see a large gap between RANK1 and other models: in many cases near double the nDCG@10
score (e.g. 18.7 vs 7.7 for RANK1-7B vs RankLLaMA-13B on Stackoverflow).

These results are especially notable when you consider that RANK1 models were trained on
an order of magnitude less data than models like RankLLaMA (7 million vs 600k) while
using the same training dataset (MS MARCO). We also find that performance scales with
model size, with the 32B model outperforming the smaller models. Thus, RANK1 is SOTA
when reasoning is needed.
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Persian Chinese Russian Average

Model nDCG@20 p-MRR nDCG@20 p-MRR nDCG@20 p-MRR nDCG@20 p-MRR

mE5-base 0.289 -3.9 0.316 +3.4 0.307 -2.1 0.304 -0.9

MonoT5-3B 0.118 -2.4 0.231 +5.0 0.240 +6.8 0.196 +3.1
FollowIR-7B 0.225 +1.8 0.375 +8.7 0.376 +0.4 0.325 +3.7
mT5-13B 0.453 -0.7 0.474 +2.3 0.505 -0.6 0.477 +0.4
RankLLaMA 7B 0.229 +0.8 0.272 +1.1 0.248 +0.1 0.250 +0.7
RankLLaMA 13B 0.256 +0.8 0.287 +1.8 0.320 -0.6 0.288 +0.6
Rank1-7B 0.564 +7.0 0.582 +3.1 0.511 -0.0 0.552 +3.4
Rank1-14B 0.572 +11.9 0.611 +4.6 0.516 +5.4 0.567 +7.3
Rank1-32B 0.555 +3.9 0.598 +4.9 0.521 +6.6 0.558 +5.2

Table 3: mFollowIR Cross-Lingual scores across three language subsets. Bold indicates best
score.

Persian Chinese Russian Average

Model nDCG@20 p-MRR nDCG@20 p-MRR nDCG@20 p-MRR nDCG@20 p-MRR

mE5-base 0.493 -4.2 0.441 +0.3 0.417 -3.5 0.450 -2.5

MonoT5-3B 0.130 -3.8 0.233 +1.4 0.254 +2.2 0.206 -0.1
FollowIR-7B 0.163 -0.1 0.404 +6.6 0.379 +7.7 0.315 +4.8
mT5-13B 0.498 +0.1 0.548 +4.2 0.506 +1.9 0.517 +2.0
RankLLaMA-7B 0.248 -0.9 0.397 +1.3 0.396 -0.1 0.347 +0.1
RankLLaMA-13B 0.333 -2.0 0.448 +1.0 0.484 +0.5 0.422 -0.2
Rank1-7B 0.564 +2.4 0.665 +5.9 0.528 +4.7 0.586 +4.4
Rank1-14B 0.605 +11.1 0.647 +0.8 0.530 -1.0 0.594 +3.6
Rank1-32B 0.619 +12.1 0.678 +10.2 0.535 +8.1 0.610 +10.1

Table 4: Results for mFollowIR multilingual across three language subsets (Persian, Chinese,
Russian). All models rerank the top 100 docs found from the mE5-base model. We see
a wide gap between RANK1 and other models, despite it not having any multilingual
reranking training data.

3.3 Semantic Understanding

Model Score (%)

Li
st

w
is

e RankGPT 4o-mini 64.1
RankGPT 4o 70.1
RankGPT o3-mini 77.3

Po
in

tw
is

e

RankLlama 7B 31.6
RankLlama 13B 43.2
MonoT5 base 34.9
MonoT5 3B 50.6
Rank1-7B 65.1
Rank1-14B 67.5
Rank1-32B 70.1

Table 2: Pairwise acc. on NevIR

We evaluate on NevIR which requires reasoning over
negation in Table 2. Models rerank all documents,
and we report scores for listwise models from van
Elsen et al. (2025).

We again find that RANK1 performs extremely well,
even matching GPT-4o and coming 15+ points higher
than the next closest model. We see that even o3-mini
in a listwise setup only performs 7 points higher.

3.4 Instruction-Following

We show results on the mFollowIR dataset (Weller
et al., 2025a) as it illustrates both instruction-
following and multilingual capabilities. Table 3
shows results on the cross-lingual setup (En-XX) and
Table 4 on the XX-XX task. We have all models rerank the top 100 scores of a strong but small
base model mE5-base. We find that RANK1 has much higher nDCG@20 scores (from 0.586
to 0.611 on the multilingual average) compared to the next best model (mT5-13B trained
on Multilingual MS MARCO) with 0.517. Furthermore, when considering just instruction
following metrics there is a wide gap, especially in the multilingual setting (+10.1 vs +4.8
p-MRR on the custom instruction-trained FollowIR-7B). Other models are closer on the
cross-lingual version, but there still remains a notable gap between the best RANK1 and the
closest other model (+7.3 vs +3.7 p-MRR).

We again find this notable considering that mT5-13B is a similar size and was trained on
multilingual data. RANK1 significantly outperforms it solely with English reasoning data.
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3.5 “Traditional" Benchmarks

Original Fixed
Model Judged@10 nDCG@10 nDCG@10

RankLlama 7B 96.1 76.2 76.9
RankLlama 13B 96.1 77.2 76.9
MonoT5 3B 91.2 72.0 74.8
Rank1-7B 83.5 66.1 78.6
Rank1-14B 82.3 64.8 77.6
Rank1-32B 81.9 66.0 80.1

Table 5: Results on TREC DL19

DL19 We also evaluate
DL19 scores in Table 5.
All models rerank the
top 100 passages found
using RepLLaMA. We
found that our models
performed significantly
worse on the initial rel-
evance judgments (i.e.
qrels) and our analysis
quickly showed this was
due to the number of unjudged documents that our models ranks higher. As seen in Table 5,
the top 10 lists of existing pointwise rerankers is almost entirely judged passages (i.e. 96.1%),
whereas RANK1 finds 10-15% less (down to 81.9% passages that are judged by humans).

To remedy this, we manually annotated all top 10 documents that each model (baseline
or RANK1) got wrong or were unjudged. We show examples of incorrectly or not labeled
instances in Appendix D. We found that unjudged documents were mostly relevant, e.g.
70.6% of the unjudged documents for RankLLaMA 14B were relevant and 86.8% were
relevant for Rank1-14b, etc.9 After this annotation fix10 RANK1 models are no longer
penalized for finding new documents and that performance is generally better than all other
models (e.g. 78.6 vs 76.8 nDCG for RANK1-7b vs RankLLaMA 7B).

Thus, it seems that the original DL19 benchmark is no longer suitable for discriminating
between the top performing approaches. Although this was examined for some TREC
collections in 2022 by Voorhees et al. (2022), the largest model used in their experiments was
BERT. Thus, we would encourage the community to re-evaluate old TREC collections.

BEIR We show results on BEIR as a comparison in Table 6, using the datasets with less
than 2k queries. All models rerank the top 100 documents found using BM25s (Lù, 2024). We
find comparable but worse performance with RANK1. Although out of scope for this work,
we found a large number of similar issues in BEIR datasets as we do in DL19. We discuss
datasets individually in Appendix G. It appears that traditional reranking benchmarks like
DL19 and BEIR – although extremely successful at driving the field forward and still useful
for weaker models – are no longer as useful for distinguishing between the best rerankers.

3.6 Test-Time Scaling

Given the success of reasoning language models in scaling test time compute (i.e. getting
better results with more tokens used), we also attempted several ways of using extra
test-time compute to improve performance. However, using the simple budget-forcing
method from s1 (Muennighoff et al., 2025) did not improve performance and actually hurt
performance in our limited initial experiments. We hypothesize this may be due to the lack
of difficulty in the reranking task – after all, reasoning over BRIGHT requires significantly
less reasoning than the typical AIME problems used for evaluation. Alternatively, perhaps
future work with new techniques are needed to induce the desired results.

9We release our new judged qrels in the Github above to help facilitate future work.
10We note that ideally one would re-annotate the whole dataset with new pools from many models.

This would allow for future models to be able to use the same evaluation. However, given the scale of
annotations, this would be out of scope for this work. Thus, we include this experiment mainly to
highlight the limitations of DL19 and acknowledge that better evaluations will be needed in future
work.

6



Published as a conference paper at COLM 2025

Model ArguA ClimF DBP FiQA NFCorp SciDoc SciFact Touche TrecC Avg.

BM25S 47.2 18.6 32.0 25.4 34.3 16.5 69.1 34.7 68.8 38.5

MonoT5-3B 42.5 25.4 44.5 46.5 37.8 19.3 76.1 30.7 79.6 44.7
RankLLaMA-7B 54.4 23.2 43.7 42.1 27.0 16.6 71.1 41.4 80.2 44.4
RankLLaMA-13B 49.3 24.5 44.9 44.1 28.1 18.1 72.7 39.2 80.8 44.6
Rank1-7b 42.8 15.0 38.9 39.5 36.2 17.2 77.2 22.8 81.9 40.9
Rank1-14b 45.3 16.2 37.4 37.9 35.8 17.9 77.0 27.1 78.2 41.0
Rank1-32b 57.6 15.8 40.7 41.8 36.9 19.6 76.8 19.9 81.9 41.7

Table 6: nDCG@10 on the BEIR benchmark. Models rerank the top 100 documents from
BM25S (Lù, 2024). Although not in scope for this work, we find that the way many of the
datasets in BEIR were constructed limits the ability to judge between the highest performing
systems, similar to DL19 (see Appendix G for commentary on individual datasets).

3.7 How much does the reasoning chain help?

To ablate how important the reasoning chain is for RANK1 we train an ablation on the 7B
model where the reasoning chain is omitted using the same data and base model. This
allows us to isolate the benefits that the reasoning chain itself provides.

We find that our non-reasoning model scores an average of 17.5 on BRIGHT compared to
27.5 with Rank1-7b. This is an improvement over RankLLaMA-7B (13.9) but not the 2x
improvement seen by the models with reasoning chains. Thus, we can see that the reasoning
chains are providing the expressive power that is needed for these complex reranking tasks.

0.5B 1.5B 3B 7B 14B 32B
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0

10

20

30
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g 

nD
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Figure 3: Average nDCG@10 across BRIGHT datasets for various sizes of RANK1. We see
that with our training dataset there are diminishing returns after 7B+ parameters and that
smaller models still perform very well: Rank1-0.5b scores comparably to RankLLaMA 13B
(13.9 average on BRIGHT) despite having 25x less parameters and only slightly more
than BERT-sized models.

3.8 Does this work at smaller sizes?

We have previously used 7B+ models, as it is the smallest size typically used for reasoning
models applied to other tasks (e.g. AIME, etc.). However, for reranking, is it possible to
have strong performance with smaller models?

We follow the same training recipe and train the rest of the Qwen 2.5 family of models
(0.5B, 1.5B, 3B) and show the results with the main models in Figure 3. We find that larger
models do better (albeit with dimishing returns), but even smaller models do very well
comparatively: the 13B RankLLaMA model (13.9 average) only scores slightly higher than
the 0.5B version and less than the 1.5B version.

Thus, although test-time compute is typically used with larger models, we see that – at least
for reranking – even small models show large benefits.
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Model Size (G) SciFact NevIR Biology Eng-Zho

Rank1-7B 15.2 77.2 65.1 48.8 58.2
quantized 5.6 75.4 62.0 42.8 56.3

Rank1-Llama3-8B 16.1 73.2 61.9 45.8 58.1
quantized 5.8 72.9 57.1 41.5 54.8

Rank1-14B 29.6 77.0 67.5 49.3 61.1
quantized 10.0 75.6 66.4 44.6 58.8

Rank1-Mistral-24B 47.2 75.8 67.4 51.8 59.9
quantized 14.3 72.7 64.6 47.1 59.4

Rank1-32B 65.5 76.8 70.1 49.7 59.8
quantized 19.3 77.2 69.9 52.3 59.7

Table 7: Quantization results on subsets of various tasks (SciFact from BEIR, Biology subset
from BRIGHT, Eng-Zho on mFollowIR-CrossLingual). We use AutoAWQ for the quantiza-
tion into int4. We see that models retain most of their performance while being significantly
smaller.

4 Model Releases

Alternate Base Models Our main base models use the Qwen 2.5 series due to their strong
performance and varying parameter sizes. However, to show that this approach works on
other base models, we train a version with Llama 3.1 8B (AI@Meta, 2024) and Mistral Small
2501 24B.11 Similar to the Qwen models, we start from the base versions, not the instruct
versions. We show the results on selected benchmarks in Table 7 where we can see that our
approach holds for other base models with performance generally increasing as they scale
(i.e. 24B is better than 8B). We also see that Llama 3.1 8B slightly underperforms Qwen 7B.

Quantization IR models typically require a heavier inference workload compared to many
other LLM applications due to the number of passages to rerank. However, many common
rerankers (MonoT5, RankLLaMA) do not take advantage of modern inference capabilities
such as quantization.

We quantize each of our models using AutoAWQ (Lin et al., 2023) and compare perfor-
mance before and after. We see that although performance drops slightly, the model size is
significantly smaller, enabling all models (including the 32B version) to be run on one 24GB
GPU. Despite the performance loss, quantized RANK1 models still significantly outperform
the baselines on reasoning and instruction-following while being 1/3rd of the size.

5 Related Work

5.1 Advanced Reasoning and Instruction Following in IR

In the last couple years, retrieval systems have started to move beyond simple phrase-based
semantic matching, to more complex information retrieval tasks. This has included a focus
on new benchmarks: such as reasoning in retrieval (Su et al., 2024; Zhao et al., 2024; Xiao
et al., 2024), instruction-following capabilities (Weller et al., 2024a; Oh et al., 2024), and
retrieval for RAG systems (Lawrie et al., 2024; Mayfield et al., 2024).

On the modeling side, we have seen a surge of interest in models that can understand the
meaning behind the user’s query rather than doing phrase-based matching: this includes
models like Instructor (Su et al., 2022), TART (Asai et al., 2022), GritLM (Muennighoff et al.,
2024), FollowIR (Weller et al., 2024a), Gecko (Lee et al., 2024), and Promptriever (Weller et al.,

11Mistral Small can be found at https://huggingface.co/mistralai/
Mistral-Small-24B-Base-2501
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2024b). These models typically use instruction-based data in their training data, so that
they learn to adapt to new user instructions. Other works have built multi-agent systems
with LLMs that do reasoning (Niu et al., 2024; Ji et al., 2024). However, for RANK1 we use a
single model and not provide any instruction-based training data and fine-tune from the
base (non-instruct) version of the LMs – despite this our model shows SOTA ability.

5.2 Reasoning Language Models

Reasoning language models were introduced by OpenAI with their o1 model (Jaech et al.,
2024). These models showed significantly improved performance on tasks that needed
reasoning, such as math, logic, and programming. Since their release, many others have
trained similar style models, including Google’s Gemini Flash Thinking and Deepseek’s R1.
Notably, R1 is the only reasoning model that provides reasoning chains through APIs and is
the only open-weights model.

Other than the impressive performance gains of these models, one additional feature is that
models can quickly learn to emulate stronger models through basic supervised fine-tuning,
rather than the more complex reinforcement learning pipelines that are typically used. We
take advantage of this capability to train RANK1 using a simple training process.

There have also been a flurry of works in the open-source space, both before and after o1
on reasoning language models and systems, focused on reproduction (Snell et al., 2024;
Muennighoff et al., 2025), calibration and confidence (Jurayj et al., 2025), agentic capabilities
with explainable reasoning traces (Weir et al., 2022; 2024), and much more. We expect this
line of work to continue and likely improve these models in retrieval as well.

6 Limitations and Future Work

Overthinking Like other reasoning models, RANK1 can make mistakes and it can be
surprising to see the model’s reasoning chain come close to a correct answer only to change
its mind. We also found that RANK1 can be particularly stringent in marking passages
as true. For example, on a TREC COVID query about the origins of COVID-19 it marked
every single passage as non-relevant, since none mentioned the specific wet market in
Wuhan. However, when given a prompt to assume that the user had no information about
COVID-19, it was able to adapt better (although not perfectly). We observed this tendency
to “overthink" when using the model interactively, as it would already know the answer
and was looking for a very specific phrase. We expect that this could be reduced with data
that specifically trains the model to calibrate this.

Inference Speed As a reasoning model using test-time compute RANK1 is slower than a
model with only a classification head (i.e. RankLLaMA). In practice this can be somewhat
mitigated by the usage of modern paged attention libraries like vLLM (Kwon et al., 2023)
which we use, and also quantization techniques. Nonetheless, there is no getting around
the fact that using test-time compute requires spending more compute than non-test-time
compute models. Despite this additional compute usage, we see that users are willing to
wait longer for quality search results, as illustrated by the popularity of the Deep Research
products from Google and OpenAI.12

Future Work RANK1 also brings many more exciting areas for future work (and concurrent
work (Yang et al., 2025)). As highlighted in the experiments section, it does extremely well
despite the relatively small and non-diverse training data. Some of the promising areas of
future work are:

• Fine-tuning with RL: although supervised fine-tuning works, it does not optimize
for the final answer. It is likely that RL-based approaches would be able to add
additional rewards/penalties that could better align the final prediction to the label.

12https://openai.com/index/introducing-deep-research/ and https://blog.google/products/
gemini/google-gemini-deep-research/
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• Listwise reasoning rerankers: although pointwise models are more efficient and
more parallelizable, listwise rerankers are generally more performant since they
can see many documents at once. Simply gathering new data should enable this to
be very successful.

• Multilingual and instruction-tuned versions: RANK1 was solely trained on English
and non-instruct data and still showed strong results in these settings. Training on
a more curated set of datasets will likely significantly improve the performance on
these tasks.

We expect to see many future applications of test-time compute applied to retrieval with
great success, as the recipe is both simple and effective.

7 Conclusion

We build the first reasoning reranker model that uses test-time compute, RANK1. We do
so by collecting 600k+ examples from the reasoning language model R1, fine-tuning on its
reasoning traces. Despite only using English MS MARCO data and training from base (non-
instruct-tuned) language models, RANK1 shows state of the art reasoning and instruction
following capabilities, even in multilingual settings. Overall, RANK1 introduces a new
category of reranking models that enable a wide variety of more complex IR tasks.

8 Ethics Statement

RANK1 is a more generative form of many rerankers currently used in information retrieval.
As such, it introduces the possibility of generating flawed text (just like LMs). This includes
incorrect and hallucinated information, the potential for toxic language, biased output, and
other such flaws. These same flaws may also be present in the R1-generated dataset used to
train these models.

As an improved reranker, is also increases the risk when used for illicit activities. As shown
by (BehnamGhader et al., 2025) models that are better at ranking and following instructions
can be used more effectively to retrieve information that leads to illicit purposes. However,
most of the use cases of information retrieval are positive; such is the balance when using a
dual-use technology. We would encourage users to use improved retrieval capabilities for
positive purposes.
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Prompt for Inference

Determine if the following passage is relevant to the query. Answer only with ’true’
or ’false’.

Query: query

Passage: document

<think>

Figure 4: Prompt used to generate data with R1 and also for inference with RANK1.

A Training and Hyperparameter Details

We use nodes of 4x80GB H100 machines for training. Models are trained for up to 2 epochs
or until 3 days of training (for the 32B model).

We fine-tune with LLaMA-Factory, using LoRA on all parameters with rank 32 and alpha
64. We use a learning rate of 1e-4 and an effective batch size of 128. We use early stopping
based on the Bright Biology and NevIR scores. Models use prompts for BEIR and non-
stackexchange cases so that they can understand the task (Appendix E).

Inference is done on 1 H100 80GB GPU. Baselines use default hyperparameters for max
length and fp16 (and there are no other parameters).

B Data Analysis from mT5 Negatives

We sample 20 of the instances from mT5 that were “hard negatives" and manually evaluated
them. We found that 12 of them were in fact positives and thus false negatives. This helps to
explain why filtering these out made such a large difference in the training data, as roughly
2/3rds of these mT5 negatives were actually positive, making the training process more
noisy.

C Prompt for R1

We use the following prompt (Figure 4) to generate data for R1 (and use the same template
for RANK1).

D Examples of Unjudged and Incorrect DL19 Labels

We re-annotated the top 10 passages for each model that got an incorrect or unjudged label.
This was 295 labels. We found that none of the labels changed from correct to incorrect, but
some labels went from incorrect to correct (Table 8).

We also show some examples of these cases in Table 9. The incorrect labels affected all
models roughly equally, as seen previous in Table 8 at around 6% of the top 10 documents,
while the unjudged documents were mostly found by RANK1.

E Prompts for specific datasets

Table 10 shows the data-specific prompts used for BEIR and the non-stackoverflow BRIGHT
subsets.
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Model Unjudged→Relevant Changed→Correct

MonoT5-3b 50.00% (19/38) 6.74% (29/430)
RankLLaMA-13B 70.59% (12/17) 6.28% (27/430)
RankLLAMA-7B 70.59% (12/17) 6.74% (29/430)
Rank1-7B 85.92% (61/71) 5.35% (23/430)
Rank1-14B 86.84% (66/76) 6.05% (26/430)
Rank1-32B 88.46% (69/78) 6.51% (28/430)

Table 8: Qrel changes in the DL19 annotations

Example 1

Query: what is physical description of spruce
Passage: Spruces are large trees, from about 20–60 metres (about 60–200 feet) tall when
mature, and can be distinguished by their whorled branches and conical form. The
needles, or leaves, of spruce trees are attached singly to the branches in a spiral fashion,
each needle on a small peg-like structure.
Original label: 0 (non-relevant)
New label: 3 (relevant)

Example 2

Query: causes of left ventricular hypertrophy
Passage: High blood pressure may also bring on heart failure by causing left ventricular
hypertrophy, a thickening of the heart muscle that results in less effective muscle
relaxation between heart beats. This makes it difficult for the heart to fill with enough
blood to supply the body’s organs, especially during exercise, leading your body to
hold onto fluids and your heart rate to increase.
Original label: unjudged
New label: 3 (relevant)

Example 3

Query: what are the social determinants of health
Passage: © Zoltan Balogh. The social determinants of health (SDH) are the conditions
in which people are born, grow, work, live, and age, and the wider set of forces and
systems shaping the conditions of daily life.
Original label: 1 (on topic)
New label: 3 (relevant)

Example 4

Query: example of monotonic function
Passage: Overview of the exponential function. The exponential function is one of the
most important functions in mathematics (though it would have to admit that the linear
function ranks even higher in importance). To form an exponential function, we let the
independent variable be the exponent. A simple example is the function f (x) = 2x. ...
Original label: unjudged
New label: 3 (relevant)

Table 9: Examples of incorrect labels and unjudged documents in the DL19 annotations.
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Dataset Prompt
SciFact Claim: FILL_QUERY_HERE<newline><newline>A relevant passage would

provide evidence that either **supports** or **refutes** this claim. A passage
with any information on any related subpart should be relevant.

ClimateFEVER Claim: FILL_QUERY_HERE<newline><newline>A relevant passage would
provide evidence that either **supports** or **refutes** this claim. A passage
with any information on any related subpart should be relevant.

TRECCOVID FILL_QUERY_HERE If the article answers any part of the question it is
relevant.

ArguAna I am looking to write an essay and need
to find counterarguments against this state-
ment:<newline><newline>FILL_QUERY_HERE<newline><newline>Does
this passage have any counterargument or evidence that could be used to
help me?

DBPedia I am looking to write an essay on this topic and need as
much related background information to help me. The topic
is:<newline><newline>FILL_QUERY_HERE<newline><newline>If
the passage provides any background information that could be connected
it is relevant.

FiQA2018 FILL_QUERY_HERE Find a passage that would be a good answer from
StackExchange.

NFCorpus Topic: FILL_QUERY_HERE<newline><newline>Given the above topic, I
need to learn about all aspects of it. It does not need to be directly relevant,
only tangentially informational. Please mark as relevant any passages with
even weak connections. I need to learn fast for my job, which means I need
to understand each part individually.<newline><newline>Again remember,
any connection means relevant even if indirect. So if it is not addressed,
that is okay – it does not need to be explicitly.<newline><newline>Find me
passages with any type of connection, including weak connections!!!!

Touche2020 FILL_QUERY_HERE **any** arguments for or against
SCIDOCS papers that could be cited in FILL_QUERY_HERE. Anything with even

indirect relevance should be relevant. This includes papers in the same
broader field of science

BrightRetrieval
aops

Find different but similar math problems to
FILL_QUERY_HERE<newline><newline>A document is relevant if
it uses the same class of functions and shares **any** overlapping tech-
niques.

BrightRetrieval
theoremqa
questions

Find a passage which uses the same mathematical process as this one:
FILL_QUERY_HERE

BrightRetrieval
leetcode

I am looking to find different problems that share similar data struc-
tures (of any kind) or algorithms (e.g. DFS, DP, sorting, traversals, etc.).
I am looking for problems that share one or both of these similarities
to this:<newline><newline>FILL_QUERY_HERE<newline><newline>Does
this passage share any similarities? e.g. if there was a textbook on leetcode
problems, this would be in the same book even though it could be in a differ-
ent chapter.

BrightRetrieval
pony

I will use the programming language pony. Problem:
FILL_QUERY_HERE<newline><newline>But to solve the problem
above, I need to know things about pony. A passage is relevant if it contains
docs that match any part (even basic parts) of the code I will have to write
for the above program.

BrightRetrieval Can you find background information about the concepts used to answer the
question:<newline><newline>FILL_QUERY_HERE<newline><newline>A
passage is relevant if it contains background information about a **sub-
concept** that someone might cite/link to when answering the above
question.

BrightRetrieval
theoremqa
theorems

Find a passage which uses the same mathematical process as this one:
FILL_QUERY_HERE

Table 10: Dataset-specific prompts used in the BEIR and non-StackExchange subsets of
BRIGHT.
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F Things we tried that didn’t work

We tried a few other things that didn’t work:

• We tried to calibrate the scores better by adding a ModernBERT model (Warner et al.,
2024; Weller et al., 2025b) on top of the outputs of the reasoning chain. However,
this ended up performing worse. It is possible that with better curation this would
be an effective approach however.

• We tried adding extra loss to the last token of the next token prediction loss in
LLaMA-Factory. However, this resulted in sub-par performance, likely because
predicting the last true/false token at the end of reasoning chain is fairly easy (as the
model already states beforehand “the answer is X" leaving little room for doubt).

G Noise in BEIR benchmarks

We discuss here a few of the issues with individual BEIR datasets which cause them to be
noisy and less accurate at judging between highly effective systems.

SciFact In the original SciFact work (Wadden et al., 2020) the authors have three labels:
support, refute, or not enough information (NEI). However, when incorporated into BEIR,
the NEI queries are still included. As there was not evidence to support these queries (as
determined by the original authors) these queries are effectively noise. In practice, what
it means is that tests model’s ability to find the top ranked BM25 document, which is
guaranteed to not have enough information to either refute or support the claim. The large
number of these queries add a significant amount of noise.

FiQA2018 FiQA is scraped from Financial Stackexchange (Maia et al., 2018). However,
during the original scrape the creators did not collect the post’s details. Thus, the retrieval
setup is to take the posts title and search for the top answer. Yet, in many cases the user clar-
ified important details in the post that entirely changed the meaning of the query. Without
this additional information for some queries it is impossible for someone to determine what
the best answer is as the post details asked many other questions that were different from
the title of the post.

DBPedia DBPedia has many partially relevant labels, that give credit for finding non-
relevant information. For example, the entire passage with a relevance of “1" for the query
"Eiffel Tower" is “The year 1989 in architecture involved some significant architectural
events and new buildings." However, nothing about the Eiffel Tower is connected to 1989.
After digging, the only connection is its the 100 year anniversary of it being built – but the
passage does not mention this. There are many such examples in the dataset (and more
documents judged “1" than “2"), contributing to the noise.

Touche2020 Touche2020 has been well examined by Thakur et al. (2024). They created a
much cleaner version of the data, however, it is not the “standard" evaluation set in BEIR.

Other datasets with partial relevance Many of the other datasets give credit for partial
relevance in a similar manner to DBPedia. This includes TREC COVID (which has so many
real positives that it is a non-issue for the top-10), NFCorpus, and SciDocs. For many of
these datasets, it is very difficult for even a human to match relevance: e.g. on NFCorpus
you would have to guess any potential link that had been on that website and was even
ancillary related to the title. An example is the query “How Fruits and Vegetables Can
Treat Asthma" which matches a document with the title “Effect of a single high-fat meal on
endothelial function in healthy subjects." and does not discuss asthma at all. The reranker
would have to assume that any passage discussing food or asthma separately in any context
would be relevant. Although one intuition is that these documents should rank higher than
completely non-relevant documents, for RANK1 it treats them as the same (as they are both
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equally non-relevant to the query). This may be suboptimal for some approaches, but for
today’s RAG use cases returning only actual relevant documents seems more useful.
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