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Abstract

The fairness in machine learning is getting increasing attention, as its applications1

in different fields continue to expand and diversify. To mitigate the discriminated2

model behaviors between different demographic groups, we introduce a novel post-3

processing method to optimize over multiple fairness constraints through group-4

aware threshold adaptation. We propose to learn adaptive classification thresholds5

for each demographic group by optimizing the confusion matrix estimated from6

the probability distribution of a classification model output. As we only need7

an estimated probability distribution of model output instead of the classification8

model structure, our post-processing model can be applied to a wide range of9

classification models and improve fairness in a model-agnostic manner to ensure10

privacy. This even allows us to post-process existing fairness methods to further11

improve the trade-off between accuracy and fairness. Moreover, our model is12

efficient with low computational cost by alternating optimization and flexible with13

the optimization over multiple fairness constraints. We provide Pareto frontier to14

characterize fairness-accuracy trade-off. Also, we provide a theoretical analysis15

of the optimal thresholds obtained from our model in terms of both accuracy16

and fairness in classification. Experimental results demonstrate that our method17

outperforms state-of-the-art methods and obtains the result that is closest to the18

theoretical accuracy-fairness trade-off boundary.19

1 Introduction20

Machine learning is broadening its impact in various fields including autonomous driving, credit21

analysis, and job application screening. As a consequence, the role and importance of fairness in22

machine learning are emerging. However, recent models have been found to behave differently23

between demographic groups in favorable predictions. For example, it has been discovered that24

COMPAS, the criminal risk assessment software currently used to help pretrial release decisions,25

has biases between different races [4]. Specifically, blacks got higher risk scores predicted from the26

model than whites with similar profiles. Therefore, discrimination truly exists and resolving it in27

machine learning is very important and urgent because its direct and potential impact is growing28

tremendously.29

However, obtaining fairness is not a trivial problem, because the data set itself will be biased when it30

is accumulated artificially. Simply removing or manipulating sensitive features (such as race, gender)31

from the data does not solve the bias, because there is indirect discrimination [19] or disparate32

treatment [1] due to the feature redundancy and relevance, which means sensitive information can be33

inferred from other features.34

In order to alleviate discrimination from different perspectives, various quantitative measurements35

of group equity [7, 11, 2, 13] have been proposed. It has been proven that the pursuit of fairness is36
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subject to a trade-off between fairness and accuracy [14, 10], i.e., if we want to improve fairness, we37

need to sacrifice accuracy.38

Moreover, Pleiss et al. [20] studied the trade-offs between fairness notions that cannot be satisfied39

at the same time. Therefore, recent works usually target at a certain fairness notion in different40

approaches such as pre-processing [6], in-processing [24], and post-processing [7] methods. However,41

these approaches suffer from the lack of flexibility, since it is difficult to adapt a fair model that42

is trained w.r.t. one certain fairness criterion so as to optimize over other fairness measures. If43

the fairness constraints change under some circumstances, traditional fairness models need to be44

re-trained from scratch, which is computationally demanding and sometimes inapplicable due to45

model settings. To overcome the limitations above, we propose a novel post-processing method to46

improve fairness in a model-agnostic manner. Our GSTAR (Group Specific Threshold Adaptation47

for faiR classification) model learns adaptive classification thresholds for each demographic group48

in classification task for improving the trade-off between fairness and accuracy. Given an existing49

classification model, GSTAR approximates the probability distribution of the model output via50

maximum likelihood estimation and utilizes confusion matrix to quantify accuracy and fairness w.r.t.51

the group-aware classification thresholds. This allows us to: 1) prevent from burdening additional52

complexity or deteriorate the stability of the training process of the classifier; 2) integrate different53

fairness notions into one unified objective function; 3) easily adapt one pre-trained model to other54

fairness constraints. We summarize our contributions of this paper as follows:55

1. We propose a novel post-processing method, GSTAR, which can learn group-aware thresh-56

olds to optimize the trade-off between fairness and accuracy in classification. We derive57

rigorous theoretical analysis on the trade-off in our model, and empirically show that GSTAR58

outperforms state-of-the-art methods.59

2. With GSTAR, we can simultaneously optimize over multiple fairness constraints with a low60

computational cost. GSTAR does not require multiple iterations over data, instead, it takes61

at most one pass of data in training for fast computation.62

3. GSTAR can be adapted to a wide range of classification models in a model-agnostic manner63

and can adapt an existing classification model from one fairness criterion to another without64

re-training the classifier.65

4. We derive Pareto frontiers of our model for the fairness-accuracy trade-offs that contextualize66

the quality of fair classification.67

2 Related Works68

In order to achieve group fairness, which quantifies the discrimination among different sensitive69

groups, a diverse notion of fairness has been introduced. Equalized odds [7] enforce equality of true70

positive rates and false positive rates between different demographic groups. Pleiss et al. [20] relaxed71

equalized odds to satisfy the calibration. Demographic parity or disparate impact [1] suggests that a72

model is unbiased if the model prediction is independent of the protected attribute.73

Among different fairness methods, post-processing techniques propose to improve fairness by mod-74

ifying the output of a black-box classifier. Hardt et al. [7] propose to ensure equalized odds by75

constraining the model output. Kamiran et al. [9] propose to give a favorable outcome to unprivileged76

and an unfavorable outcome to the privileged group when the confidence of the prediction is beyond a77

certain range. However, such static confidence window keeps the same regardless of the demographic78

group and is determined by grid search, so it is less efficient.79

Threshold adjustment (a.k.a. thresholding) was introduced to improve the performance of static80

thresholds. In the literature, Menon et al. [18] prove that instance-dependent thresholding of the81

predictive probability function is the optimal classifier in cost-sensitive fairness measures. Also,82

when considering immediate utility, Corbett-Davies et al. [3] show that optimal algorithm is achieved83

from group-specific threshold which is determined by group statistics. However, to the best of our84

knowledge, the threshold adjustment approach has not been deeply studied that neither encompasses85

broad group fairness metrics nor describes an explicit method to achieve the threshold.86

Trade-off between fairness and accuracy exists when we impose fairness constraint to a model. Recent87

studies [2, 25] prove that models targeting at such fairness notions conform to an information theoretic88
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lower bound on the joint error across different sensitive groups. Therefore, our work presents a89

practical upper bound of the best achievable accuracy given the fairness constraints.90

Moreover, trade-offs between different fairness notions also exist if one has to consider multiple91

fairness criteria. Some of them are theoretically proven to be incompatible [6, 18, 14]. To express92

and formulate fairness, recent work [10] utilize confusion matrix and propose least-square accuracy-93

fairness optimization problem on multiple fairness notions, and categorize the trade-offs between the94

fairness notions.95

Here, our work is the most related to the post-processing methods [7, 10]. Hardt et al. [7] propose96

a post-processing method that utilizes the mixing rate to meet the equalized odds. Ours is similar97

to Hardt et al. [7] in the manner that achieving group-wise threshold from the feasible region that98

is geometrically generated by the intersection between the receiver operating characteristic (ROC)99

curves conditioned on sensitive feature. Ours differ from [7] by generalizing the concept beyond100

equalized odds to other multiple fairness constraints into consideration. FACT [10] utilizes a single101

point (static) from the classifier to be post-processed as a reference which does not fully utilize the102

classifier for the post-processing. In contrast, by approximating the distribution of the continuous103

predicted logits, our GSTAR model enables a larger feasible region than [10] with a better fairness-104

accuracy trade-off. We validate the improvement in trade-off via both theoretical and empical results.105

It is notable that these related methods [7, 10] can be considered as a special case of GSTAR.106

3 GSTAR for Fair Classification107

3.1 Motivation108

Consider a binary classification problem with a binary sensitive feature, such that the sensitive feature109

A ∈ {0, 1} and label Y ∈ {0, 1}. In general, for a given data X , a binary classification model110

outputs an unnormalized logit h(X) ∈ R with the class label probability p(X) = σ(h(X)) ∈ [0, 1],111

where σ is an activation function (sigmoid function in logistic regression and neural network). It is112

not necessary to calculate p in a classification model, e.g. support vector machines directly use the113

positiveness/negativeness of logit h(X) to determine classification outcome. For traditional models,114

we use a cut-off threshold θh = 0 for h(X) (i.e., θp = σ(0) = 0.5 for p(X)) in classification, such115

that the predicted label is determined by Ŷ = I{h(X) ≥ θh}. In the following context, unless116

otherwise mentioned, we use θ to refer to the threshold θh on logit h since it is applicable to a117

wider range of classification models, and the corresponding threshold on label probability θp can be118

easily inferred from the threshold on logit h. Traditional models use the same cut-off threshold θ for119

different demographic groups. However, since the distribution of logits h in different demographic120

groups can be different, using the same threshold θ brings biased classification.121

In Figure 1, we show a real-world example of image classification on CelebA dataset with122

ResNet50 [8] to show that the default setting of classification thresholds affects both accuracy123

and fairness in classification. The goal of this classification example is to predict the image of a124

person is whether attractive or not, and consider sensitive attribute as gender. This can be generalized125

to different sensitive attributes such as age or race [22, 16]. We can observe an obvious difference in126

the distribution of logit h between two gender groups. In this case, if we use a unified classification127

threshold θ1 = θ0 = 0, it naturally brings a difference in the true positive rate and true negative128

rate between two gender groups, thus renders bias in classification. Instead, we observe that the129

optimal group-specific threshold obtained from GSTAR (θ∗1 > θ1, and θ∗0 < θ0) can adapt to such130

discrepancy in distribution between two demographic groups to improve both fairness and accuracy.131

3.2 Group-Aware Classification Thresholds132

Given an existing classification model and a sensitive attribute a, we can denote true positive rate133

(TPa), false positive rate (FPa), true negative rate (TNa), and false negative rate (FNa) in the confusion134

matrix. Most fairness notions can be represented with entries in the confusion matrix. For instance,135

Equal Opportunity (EOp) [7] requires TP0 = TP1, and Demographic Parity (DP) [1] requires136

TP1n11 + FP1n01

N1
=
TP0n10 + FP0n00

N0
,

where nya denotes the number of samples in the subset {Y = y,A = a}, Na =
∑
y nya denotes the137

number of samples in {Y = y}, and N =
∑
y,a nya is the total number of samples.138
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Figure 1: Histograms of logit h distribution from logistic regression on CelebA data, where logit h is
used to determine the predicted label Ŷ = I{h(X) ≥ θ}, and θ is the classification threshold. The
top plot is for positive samples (Y = 1, attractive), and the bottom plot for negative samples (Y = 0,
unattractive). In each plot, yellow/green bars represent the distribution of logit h in different sensitive
groups, and blue/red curves are estimated probability density functions of logit h in different sensitive
groups. θ0 = θ1 = 0 (black dashed line) are the default classification thresholds, that are identical for
A = 0 and A = 1 groups. The default thresholds result in biased prediction towards the unprivileged
group A = 0 due to the different logit h distributions in different sensitive groups. θ∗0 (red dashed
line), θ∗1 (blue dashed line) are group-aware thresholds from GSTAR for each sensitive group.

Consider the group-aware classification threshold θ = (θ1, θ0)T, where θa is the classification139

threshold for sensitive group A = a. We can formulate the entries in the confusion matrix w.r.t. θ as140

below:141

TPa(θa) ≈ 1−
∫ θa

−∞
f1a(x)dx, FNa(θa) ≈

∫ θa

−∞
f1a(x)dx,

FPa(θa) ≈ 1−
∫ θa

−∞
f0a(x)dx, TNa(θa) ≈

∫ θa

−∞
f0a(x)dx,

(1)

where fya(x) is an estimated parametric probability density function of the distribution of output142

logit h in the subset {Y = y,A = a}. Here, we consider gamma, Student’s t, and normal distribution143

as the candidates for the estimated distribution, and select the one that has the maximum likelihood144

with the output distribution. Without loss of generality, this can be generalized with other parametric145

probability density function based on the needs or prior knowledge.146

Then, we formulate the fairness-constrained classification problem with the objective of minimizing147

classification error into a least-squared optimization problem. We denote our objective function148

as L(θ) which consists of the performance loss Lper(θ) and fairness loss Lfair(θ). Lper(θ) and149

Lfair(θ) measures the error in performance and fairness respectively that are represented with the150

entries of the confusion matrix. In other words, our goal is to minimize the objective function L(θ)151

as below:152

L(θ) = Lper(θ) + λLfair(θ), (2)
where λ is a hyperparameter that determines how much fairness is enforced in the optimization.153

The performance error Lper(θ) can be written as154

Lper(θ) =
(n01

N
FP1(θ1) +

n11

N
FN1(θ1) +

n00

N
FP0(θ0) +

n10

N
FN0(θ0)

)2

. (3)
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As forLfair(θ), it can be formulated to any fairness metrics that are expressible with confusion matrix.155

For instance, when we impose EOp (TP1 = TP0) and predictive equality (PE) (FP1 = FP0) [2], we156

can get the corresponding Lfair(θ) by summing over the least squared form of each constraint. Also,157

satisfying EOp and PP is equivalent to satisfying Equalized Odds (EOd) [7], This can be formulated158

in our Lfair as159

LEOdfair (θ) = LEOpfair (θ) + LPPfair(θ)

=
(
TP1(θ1)− TP0(θ0)

)2
+
(
FP1(θ1)− FP0(θ0)

)2
.

(4)

Note that a lower Lfair value indicates a fairer threshold. When LEODfair (θ) = 0, we can interpret as160

the θ satisfies the perfect EOd fairness.161

Similar to (4), we can enforce multiple fairness constraints by summing over the least squared of162

each metric with different weight constant λ to each fairness constraints if needed.163

Also, it is notable that compared to the recent paper [10] that enforces fairness through confusion164

tensor, our formulation of fairness in Lfair(θ) represents a direct notion of fairness metrics and165

improves the measures that allows us to achieve better performance and Pareto frontiers that is shown166

in Section 4.2 and Figure 2. For example,AEOd in the paper is calculated as M1EOp +M0PE, where167

My = ny0 +ny1, such that EOd is a weighted sum of EOp and PE with weights being the number of168

samples in each class. In this expression, the imbalance between the two fairness criteria will grow as169

the degree of imbalance in the data increases. In contrast, our formulation expresses the constraints170

as the exact notion of each metric that is not biased by the statistics of the datset and we observe171

improved Pareto frontier as in Figure 2.172

We propose to optimize our threshold θ with alternating optimization method. Here we take EOp173

constraint as an example to show the alternating optimization steps, then Lfair(θ) can be written as174

LEOpfair (θ) = (TP1(θ1)− TP0(θ0))
2
. (5)

The first step is to fix θ0 and update θ1. We can approximate the terms that are related to θ1 (e.g.,175

TP1,FP1,TN1,FN1) in (1) with first-order Taylor expansion at θτ−1
1 . For example,176

TP1(θ1) ≈ TP1(θτ−1
1 ) +

∂TP1

∂θ1

∣∣∣
θ1=θτ−1

1

(θ1 − θτ−1
1 ) (6)

From (1), we can easily derive that177

TP1(θτ−1
1 ) = 1−

∫ θτ−1
1

−∞
f11(x)dx,

∂TP1

∂θ1
= − f11(θτ−1

1 ).

(7)

Similarly, we can find the first order Taylor expansion of FP1,FN1, and TN1. Then, the update of θ1178

w.r.t. (2) can be approximated with the following minimization problem w.r.t. ∆1179

∆τ
1 := argmin

∆1

(ητ + ατ∆1)2 + λ(ετ + βτ∆1)2, (8)

where ∆1 = θ1 − θτ−1
1 and180

ατ1 =
n11

N
f11(θτ−1

1 )− n01

N
f01(θτ−1

1 ),

βτ1 =− f11(θτ−1
1 ),

ητ1 =

∫ θτ−1
1

−∞

(n11

N
f11(x) +

n01

N
(1− f01(x)

)
dx+

∫ θτ−1
0

−∞

(n10

N
f10(x) +

n00

N
(1− f00(x)

)
dx,

ετ1 =

∫ θτ−1
1

∞
f11(x)dx−

∫ θτ−1
0

∞
f01(x)dx.

(9)

Taking the derivative of (8) w.r.t. ∆1 and setting it to 0, we can easily obtain the closed-form solution181

of ∆τ
1 as182

∆τ
1 = − ατητ + λβτ ετ

(ατ )2 + λ(βτ )2
. (10)
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Algorithm 1 Optimization Algorithm of GSTAR Model

Input dataset X ×A× Y = {(xi, ai, yi)}ni=1, classification model h(X), hyperparameter λ.
Output Group-specific threshold θ = (θ1, θ0).
Initialize θ = (θ1, θ0) = (0, 0).
1. Given a classifier H(x), estimate probability density function fya, y, a ∈ {0, 1} by maximum
likelihood estimation.
while not converge do

2. Calculate the optimal step ∆1 as ∆1 = −α1η1+λβ1ε1
α2

1+λβ2
1

, with α1, β1, η1, ε1 values shown in (9);
3. Update the threshold: θ1 ← θ1 + ∆1;
4. Calculate the optimal step ∆0 as ∆0 = −α0η0+λβ0ε0

α2
0+λβ2

0
with α0, β0, η0, ε0 values calculated in

a similar way as in (9):
5. Update the threshold:θ0 ← θ0 + ∆0.

end while

The second step is to fix θ1 and update θ0, and this can be achieved in a similar way of updating θ1.183

Then we can finalize the alternating optimization as:184

θτ0 = θτ−1
0 + ∆τ

0 ,

θτ1 = θτ−1
1 + ∆τ

1 .
(11)

It is notable that in each iteration we derive the optimal update step θ, which eliminates the burden185

of tuning hyperparameter (such as learning rate) in iterative algorithm. The optimization step is186

summarized in Algorithm 1. The above algorithm can easily extend to multiple fairness constraints187

by adding corresponding squared-loss fairness terms to (2).188

Time Complexity: The alternating optimization of GSTAR model is of low computational cost. We189

take at most one pass of the data for learning the estimated probability density functions fya in (1)190

(we do not even need to traverse the data if the parameters (such mean and variance in Gaussian191

distribution) for the estimated probability density functions fya can be provided). The optimization192

of θ with alternating optimization is efficient since we only need fya as we have seen in (9) and (10).193

θ ∈ R2 is a vector with fixed small size. Therefore, we need a constant time for each update. Overall,194

the time complexity of GSTAR is O(n+ T ), where n is the number of samples, and T is the number195

of iterations in alternating optimization.196

We further derive the theoretical analysis of our GSTAR model on the balance between fairness197

and accuracy, which indicates that the optimal solution provides guarantees on model accuracy198

under the optimal fairness constraint. Details of the theoretical analysis is in the Supplementary199

material. Besides, if a unified threshold is necessary [3], i.e., θ1 = θ0, the optimization algorithm200

also applies and we only have one scalar variable in (2). When we have a unified threshold, we do not201

require sensitive information in the testing phase that we can conform more strict privacy regulations202

than group-aware thresholding. However, we have to sacrifice both fairness and accuracy as the203

thresholding is less flexible.204

4 Experiments205

In this section, we validate GSTAR model on four well-known fairness datasets and compare with206

other state-of-the-art methods. First, we plot Pareto frontiers of ours and FACT (MS) [10] to207

demonstrate the trade-offs between fairness and accuracy. Second, we evaluate the models with208

different fairness metrics and validate that our model is highly adaptive to any fairness metrics that209

are expressible with confusion matrix [7, 11, 2, 1]. Third, we use our model as a post-processing210

method to existing fair models and show that our model further improves existing fair models in an211

efficient and model-agnostic manner.212

4.1 Experimental Setup213

We compare with multiple fairness approaches in the experiments. For clear demonstration of results,214

we use different shapes of marker for each comparing methods in Figure 2 and Figure 4. The compar-215

ing methods include: Learning fair representations for kernel models (abbreviated as FGP) [23],216
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Figure 2: Model-specific Pareto frontiers of equalized odds to show the upper bound of best achievable
accuracy under different fairness constraints. Upper right region under the boundary shows better
fairness and higher accuracy. We plot three variations of GSTAR (star-shaped) with different fairness
objectives. GSTAR is the closest to the Pareto frontier which indicates the best trade-offs.

Fairness confusion tensor (abbreviated as FACT) [10], Disparate impact remover (abbreviated217

as DIR) [6], Adversarial de-biasing (abbreviated as AdvDeb) [24], Calibrated equalized odds218

post-processing (abbreviated as CEOPost) [20], Equality of opportunity in supervised learning219

(abbreviated as Odds) [7], Learning adversarially fair and transferable representations (abbrevi-220

ated as LAFTR) [17], and Baseline: For CelebA dataset, we use ResNet50 [8] as a reference, and221

logistic regression for all other datasets. Our method is optimized with λ in the range of [10−1, 104]222

with alternating optimization method. All experiments are implemented with Pytorch framework on223

i9-9960X CPU and a Quadro RTX 6000 GPU.224

We choose broadly used fairness metrics in evaluation including: equal opportunity difference and225

equalized odds difference (abbreviated as EOp, and EOd respectively) [7] ; 1-disparate impact226

(abbreviated as 1-DIMP) [1]; balanced accuracy difference (abbreviated as BD).227

We evaluate the methods on four fairness datasets: CelebA image dataset1 [15], Adult dataset from228

the UCI repository [12], COMPAS2 (Correctional Offender Management Profiling for Alternative229

Sanctions) dataset, and German credit dataset from the UCI repository [5]. All data is split as 70%230

for training and 30% for testing. More details of the comparing methods, evaluation metrics, and231

datasets are provided in the Supplementary material.232

4.2 Performance and Fairness-Accuracy Trade-Offs233

In this subsection, we look into the performance evaluation of GSTAR comparing with other state-of-234

the-art methods. We consider Pareto frontier to visualize the trade-offs between fairness and accuracy235

to demonstrate the measure of performance.236

In Figure 2, we plot Pareto frontier, which is the upper bound for the accuracy-fairness trade-offs,237

desired output locates at the upper right region under the boundary which corresponds to higher238

values in accuracy and lower values in fairness discrepancy. With the same fairness constraints239

are given, we achieve a better frontier than the FACT [10] as we equally weigh on demographic240

statistics and have a better feasible region. To obtain our results (star points), we first estimate the241

logit distribution from the output of the baseline model, and then we get optimal adaptive thresholds242

with corresponding fairness metric by updating w.r.t. the objective function in (2). Here we have three243

combinations of fairness imposed to GSTAR: demographic parity (DP), equalized odds (EOd), and244

1http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
2https://github.com/propublica/compas-analysis

7

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/propublica/compas-analysis


Baseline
AdvDeb

Eq.Odds
CEOPost

LAFTR FACT
GSTAR(DP)

GSTAR(EOd)

GSTAR(DP+EOd)

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Fa
irn

es
s

Fair

Bias

0.65

0.68

0.70

0.72

0.75

0.78

0.80

0.82

0.85

Perform
ance

Bad

Good
EOp
EOd
BD
1-DIMP
BA
ACC

(a) CelebA Dataset

Baseline
AdvDeb

Eq.Odds
CEOPost

LAFTR FACT
GSTAR(DP)

GSTAR(EOd)

GSTAR(DP+EOd)

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Fa
irn

es
s

Fair

Bias

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Perform
ance

Bad

Good
EOp
EOd
BD
1-DIMP
BA
ACC

(b) Adult Dataset

Baseline
AdvDeb

Eq.Odds
CEOPost

LAFTR FACT
GSTAR(DP)

GSTAR(EOd)

GSTAR(DP+EOd)

0.10

0.20

0.30

0.40

0.50

0.60

Fa
irn

es
s

Fair

Bias

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

Perform
ance

Bad

Good
EOp
EOd
BD
1-DIMP
BA
ACC

(c) Compas Dataset

Baseline
AdvDeb

Eq.Odds
CEOPost

LAFTR FACT
GSTAR(DP)

GSTAR(EOd)

GSTAR(DP+EOd)

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Fa
irn

es
s

Fair

Bias

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Perform
ance

Bad

Good
EOp
EOd
BD
1-DIMP
BA
ACC

(d) German Dataset

Figure 3: Quantitative evaluation on fairness and performance metrics. The bar plots indicate
fairness measures (EOp, EOd, BD, 1-DISP) of each model. Lower fairness values in the left y-axis
shows better fairness. The line plots indicate the performance measure (balanced accuracy (BA)
and accuracy (ACC) of each model. Higher performance values in the right y-axis shows better
classifcation performance. We consider three variations of GSTAR models (DP, EOd, DP+EOd).

with both constraints (DP+EOd). By post-processing on a simple baseline, we achieved significantly245

better fairness with small or no sacrifice in accuracy. In all datasets, GSATR got competitive or better246

results than other state-of-the-art methods on both fairness and accuracy.247

For example, we got θ∗EOd = (0.640,−0.627)T for the CelebA dataset. This shows that we have248

a higher threshold for the privileged group and a lower threshold for the unprivileged group. This249

optimal thresholding from GSTAR allows more samples from the privileged group to be correctly250

predicted as unattractive that would compensate for the discrimination of the original model. In other251

words, this improves predictive equality [2] with a huge amount from 0.235 to 0.014. Also, true252

positive rate difference (also known as equality of opportunity [7]) got reduced from 0.282 to 0.018.253

It is notable that GSTAR only sacrificed 2.2% of accuracy to bring the big improvement in fairness.254

Since the objective function of our model is independent to data dimensionality, our model is much255

more efficient especially for high dimensional data. We mostly outperform the computational cost256

comparing to the other methods. The comparison of computational time on the datasets can be found257

in the Supplementary material.258

4.3 Flexibility and Multiple Fairness Constraints259

Since each fairness metric has different interests, it has been theoretically proven that they cannot be260

perfectly satisfied all together [20, 2, 11]. Because of this inherent trade-offs between fairness metrics,261

most of the recent works focus on a single metric at a time to achieve fairness. However with GSTAR,262

we have the flexibility to optimize on multiple fairness constraints that can be represented in the263

confusion matrix format. Moreover, given the estimated distribution fya of a black-box classification264

model, we can adjust the optimal θ based on the needs by accommodating different fairness criteria.265

Figure 3 demonstrates the result of the methods with fairness metrics and accuracy trade-off eval-266

uations. Overall, the variations of GSTAR achieve the best fairness on each target fairness while267

preserving the performance. For example in Figure 3(a), GSTAR with EOd constraint has outstanding268

performance in most fairness metrics with comparable accuracy (80.3%). Comparing with GSTAR269

(EOd), when we introduce EOd and DP together (DP+EOd), we achieve significantly better w.r.t. DP270

fairness with sacrificing a small amount of accuracy and EOd.271
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Figure 4: Illustration of post-processing (magenta colored points) on existing fairness models (blue
colored points). Given the outputs of each model, we efficiently improve existing fairness models
with optimized group-aware thresholds from GSTAR.

In general, by sacrificing individual fairness performance, we could introduce multiple constraints.272

Also, we implicitly observe that the more fairness constraints are introduced, the more accuracy is273

sacrificed. We empirically found that in some cases (e.g. Figure 3(c)), introducing multiple fairness274

is complementary to each other that improves both conditions.275

4.4 Post-Processing on an Existing Fair Model276

For a binary classifier that has a single fixed classification threshold (0 for out logit, and 0.5 for277

label probability), we can improve the trade-off between fairness and accuracy via GSTAR post-278

processing. Given the logit/probability of the dataset from a black-box model, we can improve the279

fairness as illustrated in Figure 4. In most cases, we observe improvement in fairness after GSTAR280

post-processing. It is also interesting to note that by optimizing the different thresholds for each281

protected group, we even obtain better performance on both fairness and accuracy, which indicates282

that the threshold optimization can not only improve fairness but also accuracy.283

However, when the distribution of the logits/probability is highly extreme (such as the results of using284

GSTAR to post-process CEOPost), it is difficult to estimate the distribution and thus causes erroneous285

optimization in GSTAR. We empirically found that when the dataset is extremely imbalanced such286

that we do not have enough samples to estimate the logit/probability distribution, or black-box model287

is too certain to the prediction that samples are concentrated to certain output, this problem arises.288

5 Conclusion and Discussion289

In this paper, we propose a group-aware threshold adaptation method (GSTAR) to post-process a black-290

box model and optimize over multiple fairness constraints.We directly optimize the classification291

threshold for each demographic group w.r.t. the classification error and multiple fairness constraints292

in a unified objective function, such that we can practically achieve an optimal trade-off between293

accuracy and fairness in fair classification. Our method is applicable to diverse notions of group294

fairness as the majority of fairness notions can be expressed as a linear or quadratic equation through295

confusion matrix. We empirically show that GSTAR is flexible with fairness regularization, efficient296

with low computational cost. We also notice that the adaptive thresholds benefit accuracy in some297

cases. GSTAR agrees to protect privacy such as article 17 of EU’s GDPR [21] with model-agnostic298

post-processing. We only require the estimated distribution of the output from a black-box model299

i.e., our post-processing method is oblivious to features. Thus training data is no longer needed and300

allowed to be discarded after training the black-box model.301

Further, we empirically find that GSTAR is not applicable to post-process some classification models302

in the following situations: 1) the model does not provide logit/probability as the outcome; 2) The303

model provides an extreme distribution of the output logit/probability. For example, when the model304

is too certain about its prediction, it will be difficult to perform probability density estimation. In our305

future work, we will study possible strategies to solve the above limitations, and extend GSTAR to306

multi-class, multi-sensitive group problems and improve the fairness-accuracy trade-off in a more307

general scheme.308
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