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Abstract: Humanoid robots with behavioral autonomy have consistently been re-
garded as ideal collaborators in our daily lives and promising representations of
embodied intelligence. Compared to fixed-based robotic arms, humanoid robots
offer a larger operational space while significantly increasing the difficulty of con-
trol and planning. Despite the rapid progress towards general-purpose humanoid
robots, most studies remain focused on locomotion ability with few investigations
into whole-body coordination and tasks planning, thus limiting the potential to
demonstrate long-horizon tasks involving both mobility and manipulation under
open-ended verbal instructions. In this work, we propose a novel framework that
learns, selects, and plans behaviors based on tasks in different scenarios. We com-
bine reinforcement learning (RL) with whole-body optimization to generate robot
motions and store them into a motion library. We further leverage the planning
and reasoning features of the large language model (LLM), constructing a hierar-
chical task graph that comprises a series of motion primitives to bridge lower-level
execution with higher-level planning. Experiments in simulation and real-world
using the CENTAURO robot show that the language model based planner can effi-
ciently adapt to new loco-manipulation tasks, demonstrating high autonomy from
free-text commands in unstructured scenes.
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Figure 1: Humanoid robot CENTAURO picks objects with the planning of the task graphs gen-
erated by the LLM. The ’Motion lib’ consists of various action and sensing behaviors with ’tags’
describing the semantic content of different behaviors. The VLM selects ‘Manipulation Mode’ and
‘Locomotion Mode’ based on different task scenarios.
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1 Introduction

Maintaining autonomy during the execution of a task in a real-world environment is both essential
and challenging for robots, especially when performing tasks that require interaction with surround-
ings and manipulation of objects. This involves robots being able to reason the given semantic
instructions and plan their behaviors while using multi-modality to perceive and infer affordances
and spatial geometric constraints of the environment to determine proper motions.

Recently, vibrant advances in robotics learning have made it a promising avenue for manipulation
and locomotion [1, 2, 3, 4, 5]. Learning-based methods, such as reinforcement learning (RL), have
become effective tools for task-oriented action generation [6, 7, 8] while facilitating generaliza-
tion across diverse scenarios. However, extending learning algorithms to humanoid robots remains
a challenge stemming from the exponential increase in training costs induced by high degrees of
freedom (DoF) and the difficulty of deployment on real robots under dynamic constraints. Mean-
while, the rise of large language models (LLMs) and their remarkable capabilities in robotic plan-
ning [9, 10] have made it possible to perform logical reasoning and construct hierarchical action
sequences for complex tasks. By integrating observations from different modalities, those models
can be used for extracting features of objects and environments for robot perception and decision-
making. Nevertheless, limitations to the utilization of LLM in humanoid robots exist, particularly in
complex whole-body motion control and precise coordination between body parts.

To address these issues, we first recognized that directly outputting whole-body trajectories for a
real-world multi-joint system through simulation training is inefficient and impractical. Therefore,
we adopt a decomposed training strategy that modularly selects the actuation components related to
given tasks, and project lower-dimensional space trajectory on the whole-body space with a unified
motion generator. The trained actions are stored as skill units in the motion library. We utilize
the LLM’s ability to decompose complex semantic instructions consisting of multiple sub-tasks and
design a modular user interface as model’s input. The LLM selects skills from the motion library and
arranges a sequence of actions, referred to as task graphs. Furthermore, the 3D features extracted
from captured 2D images and depth data can be integrated with the visual language model (VLM)
and robotic intrinsic characteristics, acting as a robotic motion morphology selector.

In this study, we present a language model based framework enabling task reasoning and au-
tonomous behavior planning towards humanoid loco-manipulation. We use a decomposed training
strategy that modularly selects the components needed for specific tasks and maps low-dimensional
space trajectories to the whole-body space with a unified motion generator. The trained actions are
stored as skill primitive in a motion library. We adopt the LLM to decompose complex instructions
consisting of multiple sub-tasks that select skills from the motion library and arranges a sequence of
actions, referred to as a task graph. By leveraging the interaction of distilled spatial geometry and 2D
observation with a visual language model (VLM) to ground knowledge into a motion morphology
selector to choose appropriate actions in single- or dual-arm, legged or wheeled locomotion. We fur-
ther illustrate through experiments how our framework can be learned and deployed on a high-DoF,
hybrid wheeled-leg robot, performing zero-shot online planning under human instruction.

Our summary of the main contributions of this work includes:

• We present a novel method for autonomous behavior planning in loco-manipulation tasks
through grounded language model that adapts to humanoids, quadrupeds, and mobile ma-
nipulators, extending the scope of LLMs in domains of embodied intelligence.

• Enabling robots to autonomously reason and select motion morphology in single- or dual-
arm, legged, or wheeled locomotion during tasks by leveraging the interaction between
distilled spatial geometry and 2D observations through VLMs.

• We adopt layered policy for learning humanoid motions, which involves task-specific train-
ing and synthesizing motion primitive through whole-body optimization, demonstrating
that generated actions can robustly and seamlessly perform different tasks.
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Experiments in simulation and real-world show the proposed framework can efficiently adapt to new
tasks, demonstrating high autonomy of humanoid loco-manipulation from open-set instructions.

2 Methodology

2.1 Autonomous Behavior Planning Framework

We illustrate how the proposed framework enables the humanoid robot CENTAURO [11] to au-
tonomously perform loco-manipulation guided by semantic instructions. As shown in Fig. 2, we
divide the pipeline into four main interrelated sectors that are learned and deployed sim-to-real man-
ner. The motion generation sector selects RL training configurations for specific tasks and conducts
training in parallel. The trajectory obtained from the training is provided as a reference to the op-
timizer, which ultimately generates whole-body motion skills and the skills will be stored in the
motion library. The user input sector contains a user interface as well as pre-defined basic prompts,
function options, and motion library, all of which together constitute the textual material fed to the
LLM. After receiving a command, the task planning sector generates a hierarchical task graph using
the LLM. Once the task graph is loaded, it is interpreted as a Behavior Tree to guide the robot’s
execution. When a task requires selecting the motion morphology, depth-sensing information is in-
voked and distilled into 2D images and geometric features. These data, along with the task state
and prompts, are fed to the VLM, which then selects the morphology capable of achieving the goal.
Through the coordination of these sectors, the study facilitates semantic command understanding
and zero-shot behavioral planning and action execution for CENTAURO robot.

Figure 2: Overview of the Framework. Motion generation is assigned for learning and training
whole-body motion skills for new tasks and storing them in the motion library. User input includes
received task instructions and initialization prompt sets. Task planning generates a task graph that
guides the robot’s behavior and passes action commands to the real robot. Morphology Selector is
used for motion mode determination in specific sub-tasks, selecting the appropriate morphology for
locomotion and manipulation based on spatial affordances and robot intrinsic features.

2.2 Learning Whole-body Motion Generation

In this section, we present the learning process for generating whole-body motion based on various
tasks. To reduce the action space, we separate the robot’s upper body from its legs, allowing the
floating base to be heuristically limited, ensuring feasibility and avoiding unfeasible leg motions. For
single-arm tasks, the action space consists of the right arm’s 6-DoF joint angles, 6-DoF floating base
movements, torso yaw, and gripper joint angle, while the left arm remains fixed. For dual-arm tasks,
the left arm’s 6-DoF joint angles are added. Observations include the states of the corresponding
targets and the robot’s upper body joint states. Using PPO for efficiency, the RL output is an upper
body joint position trajectory, and the skill policies are trained using a reward formulation that
balances reaching, rotation, grasping, task completion, and smoothness. The reduced robot space
from RL is mapped to the whole-body joint space by solving an optimal control problem to merge
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the upper body trajectory with the whole-body dynamics, ensuring the resulting motion is feasible.
This is achieved using a trajectory generator that optimizes for both upper body reference trajectories
and whole-body dynamic feasibility for task completion.

Figure 3: Whole-body tasks learning illustration in training, simulation and real-world settings.
After learning task-orient motion skills, we constructed a motion library to host these primitives,
which consists of attribute and functional descriptions of these actions, and the corresponding
learning-based whole-body policies. Then, the LLM can reason the attribute-function descriptions
to create sequences of actions to be executed based on different tasks and generate a task graph to
invoke the execution of each node without additional training or demonstration.

2.3 Humanoid Robot Task Planning with grounded language models

Migrating foundation models from a fixed robotic arm to a humanoid robot with a floating base
presents numerous issues and challenges. The addition of robotic components not only imposes
complex dynamic constraints, making it difficult to coordinate and control various parts. It also
requires addressing the potential for different manipulation modes inherent in human-like structures,
as well as the increased DoF for spatial mobility by the addition of wheels and legs. Due to the
construction of our motion library, the usage of the LLM for planning no longer requires additional
considerations for constraints such as self-collision or self-posture balance maintenance. This allows
more focus on the decomposition of given tasks, and the selection of the robot’s morphology.

Humans utilize common sense and learned experiences to extract the affordances of objects they
manipulate and select appropriate movement based on the estimation of geometric constraints of
the environment. Inspired by this, we leverage VLM to implement similar functionalities in robots.
First, we include descriptions of the robot’s structure and functions, and the robot’s achievable range
of motion in the prompts pV . While determining the morphology for a manipulation task Tm, the
robot utilizes 2D and depth images from its head camera. Object detection and pose estimation
algorithms [12, 13] are invoked to acquire the position and orientation of the target object vc ∈ R6,
which is then transformed into the robot’s coordinate system vR ∈ R6. The VLM V , based on the
current task state s, the scene’s 2D images Ihscene, and the target object’s 6D pose vR, generates the
robot’s manipulation morphology xm for the task scenario. For locomotion tasks, the robot uses
the depth information from its pelvis depth camera to generate the point cloud Pc, which is down-
sampled to create a voxel grid Vg . This spatial information containing the current moving path
together with the 2D image Ipscene and the task state are finally fused to select the robot’s locomotion
morphology xl using the VLM V .

xm = V(s, Ihscene,vR,pV ) (1)

xl = V(s, Ipscenep ,Vg,pV ) (2)
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Figure 4: Robotic Morphology Selector extracts spatial geometric data and 2D observations from
the physical environment upon receiving the language-conditioned task state and interacts with the
VLM incorporating the grounded robot’s affordances, so as to provide the optimal motion morphol-
ogy that meets the requirements of given task scenario during manipulation and locomotion process.

To obtain the desired response from LLM, it is necessary to impose constraints on the input. In
the user interface, we define three types of constraints. The basic prompt provides a description
of task background and characteristics of the robot, as well as interpretation of the user command
and the output format. The motion library offers a catalog of learned skills and their description.
Function option module offers specifications of the added functions developed for humanoid robot
and determines whether these predefined functions are invoked during planning. Such as, if the
morphology selection is chosen, the LLM will incorporate the morphology selector based on the task
scenario; otherwise, this function will not be considered (See the Appendix). This approach allows
for systematic construction of prompts and modular addition of constraints, thereby enhancing the
flexibility of planning. We utilize BehaviorTree (BT) [14] as an intermediate bridge to convert high-
level instructions into executable low-level skill sequences. BT provides a hierarchical structure
for guiding actions and making decisions for the robot, which is composed of nodes with different
effects. With a pre-defined motion library, LLM can generate a task graph consisting of learned
motions and BT nodes, build it in an XML file, which constructs the complete BT. Thus realizing
the robot’s behavior planning with LLM by giving verbal instruction.

2.4 Failure Detection and Recovery

In order to determine whether a task is successfully completed or deviates during execution, we try
to incorporate a failure detection and recovery mechanism into the task graph. In our work, to take
advantage of the visual language model’s capability of understanding and reasoning about images,
we utilize visual questions and answers (VQA) as perceptual behaviors to determine the current state
of the robot performing the task, such as in the task of ‘picking the box’ by giving the robot’s camera
image and asking “Is the box being held?”, the VLM will respond to the query by answering “Yes
” or “No”. Proprioceptive sensing like torque and distance has also been developed as behaviors to
detect the potential failures in specific tasks, like during the tasks requiring grasping, detecting the
torque on the gripper can be a reference of whether the object is being held.

During the execution of the behavior tree, the node will return three signals: success, failure, and
running, and the behavior tree will guide the execution of the behavior according to the returned
signals. After the action node is executed, the condition node can be added to decide whether the
current task is successful or returns the current state of the target object. For instance, in the process
of grasping and lifting an object, after the completion of grasping, a condition node IsObjectHeld
can be added to decide whether the object has been successfully grasped or not. In this scenario,
the node will activate the Grip force and Visual Q&A perception behavior, which will obtain the
torque of the gripper and ask the VLM ”Is the (Target Object) held by the gripper”. Only if there is
a torque on the gripper and the VLM answers ”Yes”, then the node will return a success signal. The
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behavior tree will continue to execute the subsequent nodes. If it returns a failure, the recovery node
is activated and the robot will try to grasp the object again.

Figure 5: (a) Failure detection using a combination of perception modals. By asking VLM, the
visual Q&A behavior can reason the state of the task, while using the torque sensor, the Grip
force will return the torque on the gripper. (b) Graphs 1, 2, and 3 show the robot’s first attempt
to pick up an object. After the perception behaviors detected that the gripper did not successfully
grasp the object in graph 3, then the robot tried again and successfully picked the object as shown in
image 4, 5, 6.

3 Experiment

We demonstrate the experiments in both simulation and real-world environment using objects that
can be commonly found in daily life. Our robot is a centaur-like humanoid robot, supported by
four legs with wheels. The robot has two arms with one claw gripper on its right arm. There are
two depth cameras, one is on the head and another is in the pelvis position. We use Xbot to achieve
real-time communication between the underlying actuators and the control commands. We use Isaac
Gym [15] as a training environment and validate the planned whole-body motion using Gazebo [16].
We access the gpt-4o model as the LLM planner and the gpt-4v model as the VLM from OpenAI
API [17].

Table 1: Comparison of different methods towards various robotic tasks. TLE(time limit exceeded)

Task
WB-MPC LLM-Planner LLM-Planner+MS

Succ ↑ Avg. Time ↓ Succ ↑ Avg. Time ↓ Succ ↑ Avg. Time ↓
Move to target 84% 25.7s ± 12.3 96% 36.8s ± 10.6 92% 40.1s ± 29.3

Approach Object 72% 24.3s ± 10.6 88% 34.9s ± 8.6 96% 39.8s ± 22.1

Open door 64% 45.6s ± 13.5 84% 35.2s ± 12.6 88% 42.5s ± 18.6

Pick object 68% 38.9s ± 24.2 80% 38.6s ± 9.6 84% 44.3s ± 22.3

Pick and place object 60% 50.2s ± 47.3 72% 49.2s ± 23.6 84% 54.7s ± 32.1

Open drawer and pick object 0% TLE 64% 105.4s ± 27.6 72% 126.3s ± 33.6

Loco-manipulation Tasks Planning We experimentally validate the efficacy of our method in be-
havior learning, planning, and decision-making by implementing the framework and evaluating its
performance on a wheel-legged humanoid robot executing long-horizon tasks in response to seman-
tic commands. we selected six loco-manipulation tasks and compared our method’s performance
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with traditional whole-body MPC control methods [18] and conducted 25 experiments for each
tasks separately, the simulation results are shown in Table 1.

The experimental results indicate that using an LLM to plan pre-trained motion primitives for exe-
cuting loco-manipulation tasks yields a higher success rate compared to WB-MPC, particularly for
complex tasks such as ’pick and place object’ and tasks requiring long-term planning such as ’open
drawer and pick object.’ However, for some simpler tasks, the time required by the LLM-Planner
is slightly longer than that of WB-MPC, attributable to the time taken for online API requests and
BT construction. Adding Morphology Selector (MS) into the task planning process results in a
modest increase in the average planning time, but it concurrently enhances the success rate of tasks,
especially those involving interaction with the surrounding environment and objects.

Figure 6: Average rate of CENTAURO robot success-
fully performing various LLM planning tasks, and fail-
ure caused by different type of errors during the tasks.

Figure 7: Success rate of the mor-
phology selector for different scenarios.
”2D” and ”SD” are image and Spatial
Data inputs.

Autonomous Behavior Planning and Failure Detection We validate the ability of LLM to plan
motion primitives for different loco-manipulation tasks. Experiments were conducted on tasks re-
quiring a combination of perceptions and actions. We recorded the success rate and the impact of
different errors of 4 representative tasks and provided quantitative evaluations in Fig.6. The results
show the LLM based planner can effectively plan for semantic instructions based on learned skills
and guide the robot to complete a variety of tasks according to the action sequences, achieving a
desired success rate (≥ 60%) on real-world robot. And adding failure detection and recovery (FR)
to the planning increases the success rate of task execution. Whereas selecting multiple functional
modules as input also increases the difficulty of planning, and execution errors mainly stem from
intricate dynamical constraints on the actions and misalignment of the floating sensing with robot
execution.

Morphology Selection Towards Different Scenarios We investigated whether a VLM can zero-
shot determine robot’s morphology based on task scenarios. We picked ten scenarios each for
manipulation and locomotion in both simulation and real-world environments. We compared the
success rate of the VLM’s morphology selection using 2D image input only versus image combined
with spatial geometric as input. Each scenario was tested 10 times under both inputs, as shown in
Fig. 7. We found the morphology selector effectively chooses the optimal mode for everyday object
manipulation and mobile environment with a high average success rate. Compared to solely im-
age input, adding spatial information improves the selector’s accuracy, particularly in determining
locomotion modes and adapting to complex scenarios (paths with obstacles of varying types and
heights), thus leveraging the robot’s affordances and leading to robust execution.

Long-horizon Task A long-horizon task refers to a task that needs to be completed over an extended
time period, typically involving the execution of multiple subtasks and decision-making across sev-
eral steps. In this study, we define long-horizon tasks based on the number of robotic actions in-
cluded in the task. When the task described by the given instructions comprises four or more robotic
actions, we classify it as a long-horizon task. Here, robotic actions refer to those included in the
action library. For example, the task ’Pick the box’ consists of three actions: < ObjectDetect >,
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Figure 8: Overall look of the long-horizon task Images above show the timelapse of roll outs
to robot motion trajectory. A. semantic navigation using AprilTag. B. object detection and pose
estimation. C. manipulation morphology selection. D. locomotion morphology selection. The
BehaviorTree below shows the details of LLM task planning.

< MoveTarget >, and < DualP ick >, and is thus categorized as a simple motion task. In
contrast, the long-horizon task described in Fig. 8 requires the robot to perform multiple actions,
including < FindObject >, < MoveTarget >, < ObjectDetect >, < SingleP ick >, and
< OpenDrawer > et., with a longer time span required for task completion.

Qualitative results including time-lapse shots of robot motion execution and a Behavior Tree mapped
out by LLM are shown in Fig.8. We demonstrate that our framework can synthesize sequences of
motion primitives based on designed user input and accurately infer the logic of semantic knowledge
while selecting robotic morphology of locomotion and manipulation according to the environment
and state of the task. We found that language-based behavior planner exhibits greater versatility and
adaptability to more complex tasks compared to existing methods.

4 Conclusion

In this work, we present a framework that enables humanoid robots to learn, select, and plan be-
haviors, integrating knowledge and robotic affordance to perform embodied tasks. We evaluate the
framework’s efficiency and versatility through real-world experiments and long-horizon tasks. De-
spite achieving expected results, there are limitations: the motion library’s size restricts the range
of task commands, and learning of new skills requires separate training optimization, hindering gen-
eralization from existing actions. Moreover, the system struggles to handle external disturbances
and collisions, lacks real-time linguistic interaction during the task and has limited capability for
re-planning in response to unexpected tasks.

Future work will focus on enriching the robot’s behavior lib, as well as improving the prompts
system, so that the LLM can better plan and optimize behavioral sequences automatically based
on the robot’s intrinsic mobility, manipulation, and perceptual strengths, thus enabling to perform
more complex mobile manipulation tasks. Another direction is to improve the dynamic planning
and multiconditional reasoning capability of the framework. This includes behavioral replanning in
response to external perturbations or the introduction of artificial subtasks during a task.
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A1 Robot System Setup

A1.1 Robot hardware

Our robot is a centaur-like robot platform. The upper body of the robot is humanoid in design and
is similar in size to the average human to adapt to both dual-arm and single-arm manipulation. The
robot’s mobility relies on its quadrupedal lower body and maintains whole-body balance to cope
with a variety of terrain conditions and perform loco-manipulation tasks. Moreover, to improve the
robot’s mobility on flat ground, wheel modules are integrated underneath each leg and can control
the direction and steering of the wheels.

The robot’s whole body consists of 38 actuatable joints. The robot’s torso is mounted on the pelvis
of the lower body via yaw joints, allowing the upper body to rotate in the transverse plane. Each arm
of the robot includes 6 DoF, where the right hand gripper contains one extra DoF that controls its
opening and closing. The robot’s legs are designed to provide an omni-directional wheeled motion
and articulated legged locomotion, with each leg containing six degrees of freedom, allowing for
positioning, orientation, and rotation of the wheeled-leg module.

The perception system of the robot consists of two on-board RealSense Depth Camera D435i, one
located in the robot’s head and the other in the robot’s pelvis, which are used to provide 2D images
and depth information of the surrounding environment and objects. The complete computing system
consists of two on-board computing units (ZOTAC-EN1070K PC, COM Express conga-TS170) for
system communication and real-time robot control and an external pilot PC (Inter Core i9-13900HX
CPU @3.90GHz, NVIDIA GeForce RTX 4090) for task planning and sensory data processing as
well as a user interface.

Figure A1: Robot hardware setup

A1.2 Robot software

We use XBotCore, a cross-platform, real-time, open-source software designed for interfacing with
low-level hardware components of robots [1]. This innovative tool enables effortless programming
and management of various robotic systems by offering a standardized interface that conceals the
intricacies of the hardware. Additionally, a proprietary CartesI/O motion controller [2] handles
higher-order motion instructions. It is capable of managing multiple responsibilities and restrictions,
prioritized according to the demands of specific situations. Through solving a series of quadratic
programming (QP) challenges, each linked to a unique priority tier, the controller ensures optimal
performance across all preceding priority stages.
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A2 Details of Robot Learning

We utilize Proximal Policy Optimization (PPO) [3] for training our tasks, employing a multi-layer
perceptron within an actor-critic framework. The network architecture for the drawer opening, door
opening, and dual-arm picking tasks consists of layers with [256, 128, 64] units while the picking
task uses layers with [256, 128, 64] units. The activation function applied across all tasks is ELU.
Below, we detail the observations, task-specific rewards (rtask), and reward parameters for each
task.

A2.1 drawer opening

First, we define the frame of the drawer handle. The x-axis of the handle points towards the robot,
while the z-axis points upwards. The handle’s inward direction is aligned negatively along the x-
axis, and the upward direction is consistent with the z-axis. The task reward is defined as

rtask = α7raround + ldrawer ∗ raround + ldrawer (A1)

where raround = 0.5 when the gripper’s top link is above the handle’s position and the bottom link
is below the handle’s position, otherwise raround = 0. ldrawer represents the length by which the
drawer has been pulled.

The observations and reward parameters for this task are listed in Tab. 1 and 2.

normalized upper body joints position
upper body joints velocity * 0.1

drawer pulled length
vector from gripper to drawer handle

Table 1: observations of drawer opening task

α1 2.0
α2 0.0
α3 0.5
α4 7.5
α5 7.5
α6 0.01
α7 0.7
β 0.04

Table 2: reward parameters of drawer open-
ing task

A2.2 door opening

The door handle has the same frame as the drawer handle. The task reward is defined as

rtask = α7raround + anglehandle ∗ raround + anglehandle + angledoor (A2)

where raround is the same setting as the drawer opening task and anglehandle represents the angle
by which the door handle has been pushed. angledoor is the angle of the opened door.

The observations and reward parameters for this task are listed in Tab. 3 and 4.

base pose
right arm joints position

door handle pose
gripper pose

door handle angle
door opened angle

Table 3: observations

α1 2.0
α2 0.0
α3 1.5
α4 7.5
α5 2.0
α6 0.01
α7 0.125
β 0.02

Table 4: parameters
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A2.3 single arm picking

We define the object’s upward direction as aligning negatively along the x-axis, and the inward
direction as aligning negatively along the z-axis. This orientation encourages the gripper to adopt a
top-to-bottom pose, facilitating a proper grasp of the object. The task reward is defined as

rtask = α7raround + h (A3)

where raround is the same setting as the previous tasks with the corresponding object frame and
h = 1 if the object is been picked up, otherwise h = 0.

The observations and reward parameters for this task are listed in Tab. 5 and 6.

base pose
right arm joints position

object pose
gripper pose

Table 5: observations

α1 7.5
α2 0.0
α3 5.0
α4 2.5
α5 7.5
α6 0.01
α7 0.7
β 0.1

Table 6: parameters

A2.4 dual arm picking

In the dual arm picking task, the distance dl and dr represents the left end-effector and right end-
effector to the left and right side of the object, respectively. The task reward is defined as

rtask = h (A4)

where h = 1 if the object is been picked up, otherwise h = 0.

The observations and reward parameters for this task are listed in Tab. 7 and 8.

base pose
two arms joints position

object pose
left end-effector pose

right end-effector pose
vector from object left side to left end-effector

vector from object right side to right end-effector

Table 7: observations

α1 2.0
α2 2.0
α3 0.0
α4 0.0
α5 7.5
α6 0.01
α7 0.0
β 0.0

Table 8: parameters

A3 Details of Whole-body Optimization

The trajectory optimization problem essentially constitutes a Nonlinear Programming (NLP) chal-
lenge characterized by a predetermined quantity of nodes and intervals. Its canonical formulation
typically adheres to Eq.(A5) 

minx(.),u(.)
∫ T

0
L(x(t),u(t), t)dt

s.t. ẋ(t) = f(x(t),u(t), t)
g1(x(t),u(t), t) = 0
g2(x(t),u(t), t) ≤ 0

(A5)
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the standard formulation necessitates conversion into a discrete programming format . Subsequently,
we discrete the state and input variable as the follow sets, N is the node number

X =

 x1

...
xN

 ;U =

 u1

...
uN

 (A6)

then the general optimization form Eq.(A5) becomes Eq.(A7)

J =

N∑
i=0

Li(xi,ui)

ẋi = f(xi,ui) , i = 0, · · ·N
Cmin ≤ C(xi,ui) ≤ Cmax, i = 0, · · ·N

(A7)

where , C(xi,ui) is the discrete form of equality and inequality constrain, Cmin is the lower limit,
Cmax is the upper limit. Specifically, in order to keep the trajectory feasible, we should shape the
constrains as:

q0 = qinit initial position
v0=0 initial velocity

qk
min ≤ qk ≤ qk

max position bounds ∀k ∈ [1, N − 1]

vk ≤ vk ≤ vk
max velocity bounds ∀k ∈ [1, N − 1]

v̇k
min ≤ v̇k ≤ v̇k

max acceleration bounds ∀k ∈ [0, N − 1]

fz,kc,i · ni > 0,
∥∥∥(fx,kc,i , f

y,k
c,i )

∥∥∥
2
≤ µi

(
fz,kc,i · ni

)
leg contact force bounds ∀k ∈ [0, N − 1]

(A8)

where fc,i = [fxc,i, f
y
c,i, f

z
c,i] is the i-th leg contact force. At the end of programming, its function of

the whole body trajectory is to realize the motion learned from RL framework, we implement the
cost as :

Li(xi,ui) = ∥qu
i − q∗

i ∥
2
+ ∥u∥2 (A9)

the term ∥qu
i − q∗

i ∥
2 is for merging the gap between RL trajectory and actually feasible trajectroy,

qu
i is the upper body trajectory from RL, q∗

i is the upper body trajectory from whole body optimiza-
tion, ∥u∥2 for reduce the energy of the whole motion.

A4 Motion Library

We constructed a motion library to house the learned whole-body skills as well as the action and
condition nodes used to construct the task graph. The motion library includes information about the
skills fed to the LLM, as well as the control code corresponding to each skill. The following Fig.
A2, A3 shows the action skills and nodes inside the motion library that LLM can choose to invoke
to construct the task graph.
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Figure A2: Action nodes in the motion library, where the blue nodes are based on learned whole-
body motion skills.

Figure A3: Condition nodes with different functions in the motion library.
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A5 Motion Morphology Selection

In this section, we show the task scenarios used for the motion morphology selection experiments.

A5.1 Manipulation Scenarios

For the robot manipulation morphology selection experiments included six simulated and four real-
world scenarios. We conducted ten morphology selections for each scenario, and before each trial,
the positions and poses of the objects in the scenarios were reset. We applied the same prompts for
all manipulation morphology selections, with the instructions for each scenario shown in Fig. A4.

A5.2 Locomotion Scenarios

The robot locomotion morphology selection experiments included six simulated and four real-world
scenarios, as shown in Fig.A5. We conducted ten morphology selections for each scenario, and
before each trial, the positions of the robot and obstacles in the scenarios were reset. We applied the
same prompts for all locomotion morphology selections.
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Figure A4: Task scenarios for manipulation morphology selection experiments.
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Figure A5: Task scenarios for locomotion morphology selection experiments.
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A5.3 VLM Prompts

The prompt words used for the motion morphology selector are shown in the figures, where the
prompt words for manipulation morphology selector will be fed into the VLM along with the re-
ceived textual task instructions from the Behavior Tree.

The motion morphology selector are packaged as one of the functions in ’User Input’ module and it
turned ’off’ by default. When it needs to be invoked in task planning, it must be enable in ’Function
Options’ or specified to be set to ’on’ when inputting the task instructions.

Figure A6: Prompts used for Manipulation Morphology Selection.

Figure A7: Prompts used for Locomotion Morphology Selection.
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A6 User Input

The ’User Input’ is the module that links the instructor to the language model and contains prede-
fined prompts for initializing the language system environment and limiting the model output, as
well as an interface for accepting task commands sent from the user side.

A6.1 Basic Prompts

Basic prompts provide a description of the task context and robot characteristics, as well as an
explanation of user commands and output formatting requirements. As shown below:

### Basic Prompts ###
"You are now a robot controller , please output a XML file for
constructing a behavior tree to control the robot under the
requirements and given task."
"The robot you control is a centaur like robot , with a humanoid
upper body and four legs , each leg has a wheel at the bottom."
"The robot has two arms , with a claw gripper on the right arm.
It can manipulate objects with two ways: single -arm manipulation
and dual -arm manipulation."
"The robot has two modes of movement: wheel motion and leg motion.
The robot default manipulation and locomotion modes are
’single arm’ and ’wheel ’."
"The robot has two depth cameras: one located on the head to view
objects , and one on the waist to view the road and terrain ahead."

A6.2 Function Options

We designed a number of functions for the robot and packaged them into condition nodes for selec-
tive invocation by the LLM during the planning of the task. These functions include: ’Manipulation
Morphology Selector’, ’Locomotion Morphology Selector’, ’Failure Detection and Recovery’. We
add the descriptions of these functions acting as ’Function Options’ inside the ’User Input’, and set
all functions to ’off’ state by default. When the instructor expects a function to be added during
a task planning, it can be manually set to ’on’ or include a declaration to use the function in the
instruction.

### Function Options ###
"The robot has the following functions , all of which are ’off’ by

default."
"When a function is ’on’, it need to be involved in planning for the

given task , and when it is ’off ’, it should not be used."
"Functions: "

"1. ’manipulation_mode_selector ’: this function allows the robot to
add the condition node <WhetherSingleArm > to the planning of
BehaviorTree , which is used to determine whether the current
manipulation task should use the ’single_arm ’ or ’dual_arm ’ type
of action."

"2. ’locomotion_mode_selector ’: this function allows the robot to add
the condition node <WhetherWheelMove > to the planning of the
behavior tree , which is used to determine whether the current
locomotion task should use the ’wheel’ or ’leg’ type of action."

"3. ’detection_recovery ’: this allows the robot to add the condition
node <IsActionSuccess >, which is used to determine whether the
previous action has been successfully completed and , if not , to
employ a recovery mechanism that repeat the action."
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A6.3 User Interface

The user interface is responsible for accepting task commands from the instructor and combining
them with pre-defined prompt for input to the LLM. The complete user input is as follows.

User Interface: hy-motion.github.io/prompt/user_input.ini

Motion Library: hy-motion.github.io/prompt/motion_library.ini

Basic Prompts: hy-motion.github.io/prompt/basic_prompt.ini

Function Options: hy-motion.github.io/prompt/Function_options.ini

A7 Task Planning with LLM

After receiving the prompts from ’User Input’, the LLM output a hierarchical task graph that con-
tains a series of nodes and actions for accomplishing the task. The task graph is saved in an .xml file
and serves as a framework for constructing the Behavior Tree that guides the robot’s actions. Below
we show the detail of experiments in ’Tasks with human instructions’ part of Sec. 4.3. For each
task, we present the task graph generated by LLM, and the Behavior Tree constructed from it.

Input: Open the drawer and pick up the drill.

Figure A8: Task planning of ’Open drawer and pick object’.

Input: Find the door and open it.

Figure A9: Task planning of ’Approach and open door’.
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Input: Pick up the cracker and put it into the box.

Figure A10: Task planning of ’Pick and place’.

Input: Pick up the box and put it on the table.
(’manipulation_mode_selector ’=on)

Figure A11: Task planning of ’Dual-arm pick place’.

A8 Long-horizon Task

Environment Setup

The AprilTag system [4], which incorporates a vision-driven algorithm, was used during the long-
horizon task to identify the relative objects’ location and direction of recognized tags. Within the ac-
tual environment, we employ AprilTags to gather task-specific observations. A single visual marker
on the door allows for the determination of the door handle’s relative position. The robot searches
for the tag if it doesn’t exit the camera’s field of view (FOV). Additionally, AprilTags enable the
identification of the drawer’s relative positions.

We performed the long-horizon shown in Fig. 1. And the task graph for the long-horizon taks
generated by LLM can be found in Fig. 7. For the full video, please refer to https://hy-motion.

github.io/
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