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Abstract
Multi-modal machine translation (MMT) is001
the research field that aims to improve neu-002
ral machine translation (NMT) models with vi-003
sual knowledge. While existing MMT systems004
achieve promising performance over text-only005
NMT methods, they typically require paired006
text and image as input, which limits their007
applicability to general translation tasks. To008
benefit general translation with visual knowl-009
edge, we propose VisDNMT, which distills vi-010
sual knowledge from a pre-trained multilingual011
visual-language model to help translation. In012
particular, we train a transformer-based model013
jointly with a standard cross-entropy loss for014
translation and a knowledge distillation (KD)015
objective that aligns its language embedding016
with vision contextualized language embedding017
of the teacher model. VisDNMT achieves con-018
sistently higher gains over text-only NMT base-019
lines, compared to state-of-art methods on rich020
and sparse visually grounded text.021

1 Introduction022

Existing multi-modal machine translation research023

explores improving translation with an auxiliary024

image input. However, the need for images limits025

their real-world application. This has motivated026

recent work on improving translation with visual027

knowledge by retrieving relevant images as an alter-028

native image input for MMT models. (Zhang et al.,029

2020; Fang and Feng, 2023). While the retrieval-030

based MMT demonstrate improved performance031

over text-only methods, the overall advantages of032

these approaches are still marginal due to the re-033

quirement of an image database for retrieval. For034

instance, sentence-level image retrieval approach035

in (Zhang et al., 2020; Tang et al., 2022) suffers036

from poorly matched images when visual context037

in source text is sparse. The fine-grained noun-038

phrase to image-region retrieval approach in (Fang039

and Feng, 2022) ignores other potential visual-040

language interactions like activity-based scene and041

verbs. Lastly, existing retrieval-based methods fo- 042

cus on capturing connection between source text 043

and visual knowledge, but ignore visual-knowledge 044

grounding during translated text generation. 045

To address these limitations, we propose a sim- 046

ple framework, VisDNMT, which dynamically in- 047

corporates visual knowledge into translation by 048

distilling visually grounded language representa- 049

tion from a pre-trained model as shown in fig- 050

ure 1. We jointly optimize a transformer architec- 051

ture with two objectives: (1) translating text from 052

source to target language. (2) distilling from a 053

pre-trained multi-modal model to enrich language 054

representations with visual knowledge. We use 055

MCLIP(Chen et al., 2023), a multilingual variant of 056

CLIP(Radford et al., 2021a), as the teacher model 057

for KD. As CLIP learns cross-modal alignment 058

from image-text pairs via contrastive learning, it 059

captures enriched visual-language interactions for 060

a large vocabulary. We also introduce a simple 061

bi-directional translation (BT) training curriculum 062

to enhance visual grounding of the target language 063

representation. Unlike conventional translation that 064

only translate from source to target, we optimize 065

the model to translate the sentence in both direc- 066

tions (i.e source→target) along with the KD ob- 067

jective. Experiments on both caption(rich visual 068

grounding) and news text translation(sparse visual 069

grounding) corpus show that VisDMT achieves 070

consistently higher gains over the text-only NMT 071

compared to the previous methods. 072

2 Related Work 073

Multi-modal Machine Translation Multi- 074

modal machine translation (MMT) research aims 075

to enhance NMT models with additional visual 076

knowledge (Bahdanau et al., 2015; Huang et al., 077

2016; Caglayan et al., 2017; Calixto and Liu, 078

2017; Zhou et al., 2018; Yao and Wan, 2020; 079

Yin et al., 2020; Caglayan et al., 2021). The 080
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majority of existing MMT systems require an081

image as the auxiliary input, restricting their082

ability to benefit general translation tasks when083

tte paired image is not available. To overcome084

this bottleneck, Zhang et al. (2020); Tang et al.085

(2022) propose to retrieve images for the source086

sentence to provide related visual context based087

on the topic words. (Fang and Feng, 2022) further088

improve the quality of retrieved visual context by089

mapping noun phrases in source text to image090

region features. However, the retrieval based091

methods are prune by the limited cross-modal092

grounding that mainly focuses on the alignment of093

noun-phrases to objects. We propose enhancing094

NMT models via knowledge distillation from a095

large pre-trained vision-language model, where096

the teacher model has learnt dynamic interactions097

between modalities.098

Knowledge Distillation Knowledge Distillation099

(KD) is the process of transferring knowledge from100

a teacher model to a student model, which has been101

studied in a wide range of research topics (Kim102

and Rush, 2016; He et al., 2019; Chebotar and103

Waters, 2016). Our work is highly related to the104

KD research that aims to transfer knowledge across105

different modalities (Tang et al., 2021; Tuong Do,106

2019; Tian et al., 2020). We transfer knowledge of107

a multilingual vision-language pretrained teacher108

model to student model for machine translation.109

3 VisDNMT110

VisDNMT is jointly optimized for two tasks: (1)111

translating text {xi}Ni=1 in language X to target text112

{yi}Ni=1 in language Y . (2) Distilling the language113

representation of xi and yi from the pre-trained114

multilingual vision language model. Figure 1 illus-115

trates the overall architecture of our approach.116

3.1 Teacher Model117

For the teacher model, we use large pre-trained mul-118

timodal MCLIP (Carlsson et al., 2022). MCLIP ex-119

tends the CLIP architecture (Radford et al., 2021b)120

to train a shared embedding space between a multi-121

lingual text-encoder and a visual encoder via con-122

trastive learning objective among large scale image-123

text pairs in various languages. The text-encoder of124

MCLIP is initialized from the weights of MBERT,125

a multilingual variant of the BERT language model126

(Devlin et al., 2019). Multilingual CLIP is trained127

on 40k sentences for each language from the com-128

bined descriptions of GCC (Sharma et al., 2018)129

+ MSCOCO (Lin et al., 2014) + VizWiz datasets 130

(Gurari et al., 2020; Simons et al., 2020) and their 131

translations in 69 languages. After pre-training, 132

MCLIP obtains visual knowledge enriched text rep- 133

resentation for all languages. 134

3.2 Student Model 135

For the student model, we adopt a transformer 136

based encoder-decoder architecture for translation. 137

Unlike the conventional bilingual translation model 138

that adopts different embedding layer for various 139

languages, we use a pre-trained shared embedding 140

initialized from the embedding layer of M-BERT 141

(Devlin et al., 2019) to extract language feature for 142

all languages. The student model is then optimized 143

with a weighted sum of translation loss and the 144

knowledge distillation loss. 145

L = Ltrans + w ∗ LKD (1) 146

3.3 Knowledge Distillation Objectives 147

To distill knowledge from MCLIP, we align the vi- 148

sually grounded text representations from MCLIP 149

with text representations from the student model. 150

This is done using the knowledge distillation objec- 151

tive: Neuron Selectivity Transfer (NST) (Huang 152

and Wang, 2017). The NST objective is used to 153

align the activation patterns of teacher and student 154

neurons using squared maximum mean discrep- 155

ancy (MMD2) between the student and teacher 156

neurons. This mimics the neuron selectivity pat- 157

terns of the teacher model to the student model 158

whose architecture could be much smaller than the 159

teacher. 160

The LKD KD loss is given as MMD2 between 161

the student and teacher probability distribution cal- 162

culated using the following equation with kernel 163

trick as in Tang et al. (2021): 164

LKD =
1

d2

d∑
i=1

d∑
i′=1

k(si, si′)−
2

d2

d∑
i=1

d∑
j=1

k(si, tj) 165

+
1

d2

d∑
j=1

d∑
j′=1

k(tj, tj′) 166

where d is the dimension of the student and teacher 167

neurons, k is the kernel function, ti is the teacher 168

sj is the student neuron distribution. We use poly- 169

nomial kernel as provided in Tang et al. (2021)’s 170

implementation k(s, t) = (s⊤t+c)d; c = 0; d = 2 171
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Figure 1: An overview of the architecture of VisDNMT. The student NMT model is jointly optimized with two training objectives:
(1) Knowledge distilling from a frozen teacher model M-CLIP. (2) Translating between source and target languages. We also
practice bi-directional translation where we translate both source to target language and vice-versa.

3.4 Bi-Direction Translation172

To enrich language representation of both source173

text xi and the target text yi, for each step we op-174

timize the student model to translate from xi to yi175

and yi back to xi. So the final loss function is:176

L = Ltrans(xi, yi) + w ∗ LKD(xi)177

+Ltrans(yi, xi) + w ∗ LKD(yi)178

4 Experimental Setting179

4.1 Datasets180

Multi30k: a multi-lingual image captioning181

dataset (Elliott et al., 2016a) to study how vi-182

sual knowledge would benefit the caption trans-183

lation which has a good amount of content visually184

grounded on the paired images. We only use the185

EN-DE (Elliott et al., 2016b) and EN-FR (Elliott186

et al., 2017) language pairs without images for our187

analysis. We report results on both test2016 and188

test2017 splits.189

WMT’16: A news translation benchmark1 to190

understand the effect of visual knowledge to benefit191

translation of the text where the visually grounding192

context is sparse. Following Tang et al. (2022),193

we sample 100k bilingual pairs from 4.5 million194

from WMT’16 EN-DE training split to focus on195

studying the effect of visual information when the196

training data scale is limited. We use newstest2016197

as the test and newstest2014 as the validation set.198

4.2 Baselines199

We compare VisDNMT to image-retrieval based200

MMT systems that aim to generalize MMT sys-201

tem for translation setting when the image pair is202

not available, including PL-UVR (Fang and Feng,203

2022), UVR-NMT (Zhang et al., 2020), and IR-204

NMT (Tang et al., 2022). The details of these205

methods is covered in section 2. For each of206

these baselines, we also show the performance207

1https://www.statmt.org/wmt16/

of their text-only backbone (Trans) to understand 208

the benefits of retrieved visual content on transla- 209

tion. To understand the effectiveness of VisDNMT, 210

we show results of our text-only backbone grad- 211

ually adding knowledge distillation with MCLIP 212

and bi-directional translation. As the text-encoder 213

of MCLIP is initialized from MBERT, we also 214

add one more ablation experiment where knowl- 215

edge distillation is conducted between the student 216

model and MBERT to further understand how vi- 217

sual knowledge from MCLIP can help translation. 218

4.3 Implementation Details 219

We use the MCLIP tokenizer for both the stu- 220

dent model and MCLIP to ensure token alignment. 221

We use the M-BERT-Base-ViT-B checkpoint for 222

MCLIP. The embedding size of the student trans- 223

former model is 512. The weights of MCLIP are 224

frozen during training. Based on validation, we 225

use 6 layers for base transformer and KD weight 226

2.0 for Multi30k. For WMT’16, we use 3 layers 227

for base transformer and KD weight 1.25. We use 228

early stopping on BLEU score for validation set 229

with patience 5. VisDNMT is trained on a single 230

NVIDIA-TITAN RTX GPU using a learning rate 231

of 0.0001 with Adam optimizer (Kingma and Ba, 232

2014) and 0.1 label smoothing. 233

5 Results & Analysis 234

We compare the BLEU scores of each method with 235

their own text-only backbone in table 1. 236

Results on Multi30K On Multi30K, PLUVR 237

dominates on both English to German and En- 238

glish to French over all other methods. The ad- 239

vantage of PLUVR is largely credited to a strong 240

text-only backbone, which outperforms other back- 241

bones by a large margin. Comparing every method 242

to its text-only backbone, VisDNMT achieves the 243

most significant gain with a minimum boost of 1.8 244

BLEU on EN-DE and 2.6 BLEU on EN-FR. We 245

think the statistically significant gain achieved by 246

3
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System Architecture
Multi30k WMT’16

EN-DE EN-FR EN-DE
test2016 test2017 test2016 test2017 100k

UVR-NMT
Trans 35.59 26.31 57.88 48.55 -
+VR 35.72+0.13 26.87+0.56 58.32+0.44 48.69+0.14 -

PLUVR
Trans 39.87 31.78 60.51 52.44 -
+VR 40.30+0.43 33.45+1.67** 61.31+0.8* 53.15+0.71* -

IR-NMT
LSTM 37.77 - - - 7.99
+VR 38.43+0.66 - - - 8.41+0.42

Ours
Trans 36.00 27.0 53.99 45.58 7.36
+MBERT KD 37.1+1.1** 28.16+1.16** 54.44+0.45 48.56+2.98* 8.17+0.81*
+KD 37.51+1.51** 28.77+1.77** 56.58+2.59* 48.72+3.14* 8.32+0.96*
+KD +BT 38.45+2.45** 28.83+1.83** 56.63+2.64* 48.83+3.25* 8.48+1.12*

Table 1: Results of VisDNMT in comparison to baselines. * means that the BLEU scores between the transformer baseline
without KD and with KD are statiscally significant with p<0.05; ** is for p<0.01.

Figure 2: Qualitative comparison between the translation from VisDNMT and the Text-only Backbone. Text-only backbone
highlighted in red misses the context of the bicycle while VisDNMT correct captures it (highlighted green).

VisDNMT over the text-only backbone is mainly247

due to the following reasons. First, the visually248

grounded language representations distilled from249

MCLIP have more accurate cross-modal ground-250

ing than retrieved images and image regions. Sec-251

ond, grounding both source and target language on252

shared visual concepts aligns the two languages us-253

ing vision as the pivot. We observe that translation254

performance improves slightly using MBERT as255

the teacher model, which shows that the pre-trained256

multilingual language encoder of MCLIP benefits257

the translation task to some extent. However, when258

the teacher model is replaced with MCLIP, the stu-259

dent model achieves consistent improvement over260

all languages in Multi30K, demonstrating the ef-261

fectiveness of the visual knowledge to benefit trans-262

lation. Adding bi-directional translation with KD263

further improves the translation quality.264

Results on WMT16 We observe similar trends265

on news translation benchmark as on Multi30K.266

Even though our text-only baseline is worse than267

that of IR-NMT, VisDNMT outperforms IR-NMT.268

This demonstrates the effectiveness of VisDNMT269

of benefitting general translation setting with visual270

knowledge even on sparse visually grounded text.271

Qualitative Analysis To further analyze how vi-272

sual knowledge impacts translation quality, we con-273

duct qualitative analysis by comparing translations274

from VisDNMT with its text-only backbone. We 275

observe some visual cues like noun phrase-verb 276

alignment are accurately captured by the model 277

with KD. For eg in Figure 2, model with KD cor- 278

rectly generates "Ein Mann repariert das Fahrrad 279

eines kleinen Mädchens" while the model without 280

KD misses the bicycle and generates "Ein Mann 281

repariert ein kleines Mädchen" (A man repairs a 282

little girl). More examples and human evaluation 283

to provide statistical evidence of better translation 284

from VisDNMT are given in Appendix A. 285

6 Conclusion 286

In this work, we propose VisDNMT that distills 287

visual knowledge from a pre-trained multi-lingual 288

vision language model to benefit general transla- 289

tion task without paired images. On both Multi30K 290

and WMT’16, we observe that our approach outper- 291

forms the backbone NMT with a consistently larger 292

margin than previous image-retrieval methods. Ab- 293

lation study also verifies the effectiveness of Vis- 294

DNMT to learn visually enriched language repre- 295

sentations and bi-directional translation to connect 296

source and target languages via the shared visual 297

ground. In the future, we plan to further investi- 298

gate the effectiveness of knowledge distillation on 299

more general translation benchmarks whose texts 300

are weakly grounded on visual concepts. 301
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Limitations302

Training NMT with knowledge distillation and bi-303

directional translation will significantly increase304

the training time and the occupied GPU memory,305

which makes it challenging evaluate them on large306

translation benchmarks. Besides, the pre-trained307

MCLIP uses machine translated sentences to learn308

visually grounded language representation, whose309

noise can also hurt the performance of the transla-310

tion model. We also only evaluate our method on311

two small scale translation benchmarks and small312

amount of languages. The current conclusion may313

not generalize to the evaluation on larger bench-314

mark or other languages. We leave this exploration315

to the future work.316

Ethics Statement317

By distilling information from pre-trained MCLIP,318

our model will capture any biases (however limited)319

that the teacher model has learnt from its training320

corpus. Therefore, we do not recommend use our321

model for any real word translation task but only322

for research purposes. To ensure the reproducibility323

of our experiment results, we provide details of the324

hyperparameter setting in our paper and will also325

publish our code later.326
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A Qualitative Analysis513

We also conduct qualitative analysis to compare the514

generated translation from VisDNMT to the trans-515

former backbone. We observe some common vi-516

sual cues being accurately translated by the model517

with KD as compared to without. For example, for518

the ground truth sentence "Ein Mann repariert das519

Fahrrad eines kleinen Mädchens"(meaning: A man520

repairs a little girl’s bicycle), model with KD gen-521

erates the correct sentence "Ein Mann repariert das522

Fahrrad eines kleinen Mädchens" while the model523

without KD misses the bicycle altogether and gen-524

erates "Ein Mann repariert ein kleines Mädchen"525

(meaning: A man repairs a little girl). Here we can526

observe that visual cues like "the bicycle" which527

needs to be repaired and not "the girl" are captured528

well by the model with KD. Another example is529

the ground truth sentence "Mehrere Frauen führen530

vor einem Gebäude einen Tanz auf"(meaning: Sev-531

eral women perform a dance in front of a build-532

ing), the model without KD don’t translate ad-533

ditional visual details like "the building" while534

the model with KD is able to translate them well.535

The model without KD generates "Mehrere Frauen536

führen einen Tanz vor"(meaning: Several women537

perform a dance) while the model with KD geen-538

rates "Mehrere Frauen führen vor einem Gebäude539

einen Tanz auf"(meaning: Several women perform540

a dance in front of a building) which is the cor-541

rect sentence. Observing various examples, it is542

evident that the model with visual knowledge distil-543

lation is able to trnaslate visual details like "where544

the task is happening" or "in what manner". The545

model without KD is not able to understand com-546

mon visual cues like "the girl" is not the thing to be547

repaired while the model with KD understands that548

it’s the cycle that the man repairs. You can refer to549

more examples in Fig 3.550

w/ KD w/o KD tie visual cues help

25 4 21 22

Table 2: Human Evaluation on 50 random generated transla-
tion from VisDNMT and the text-only model without knowl-
edge distillation from Multi30K EN-DE 2016 test split.

Human Evaluation To provide statistical evi-551

dence of the better translation from the proposed552

VisDNMT than the original NMT, we conducted553

a human evaluation on 50 random samples of EN-554

DE Multi30k test predictions from the two meth-555

ods. We ask a german speaking human evaluator to 556

compare the two generated translations against the 557

source sentence, where they need to identify which 558

one is a better translation or if the quality of both 559

translations is similar. As we can see from Table 560

2, human evaluators prefer translations with KD 561

25 times, without KD 4 times, similar quality for 562

21 times. The result demonstrates that translation 563

from VisDNMT has a significantly better quality 564

than the ones from the base NMT model. To fur- 565

ther understand whether the better translation is led 566

by the visual knowledge distilled from MCLIP, we 567

also ask the human evaluator to check if the better 568

translation of VisDNMT is due to words such as 569

nouns, verbs, adjectives that are more grounded 570

onto visual context instead of grammar, fluency, 571

and conciseness. As can be seen from the results in 572

Table 2, the majority of the better translations are 573

influenced by visual cues. 574
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Figure 3: Qualitative comparison between the translation from VisDNMT and the Text-only Backbone. Text-only backbone
highlighted in red misses the context the band (top), man "walking" while holding a drink (middle), "how to make works of art"
(bottom) while VisDNMT captures them (highlighted in green).
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