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ABSTRACT

Identifying optimal intervention sequences from offline data to guide temporal systems
toward target outcomes is a critical challenge with profound implications for fields like
personalized medicine. While existing methods are mostly evaluated in offline settings,
practical applications demand online, adaptive strategies that can respond in real-time.
To address this, we propose Goal-conditioned Intervention via Factual-Targeted Train-
ing (GIFT), a novel framework for learning sequential intervention policies from obser-
vational data. GIFT learns a goal-conditioned policy by rescaling rewards with clipped
importance weights, stabilizing learning and steering toward the target. Under standard
assumptions, the induced operator has a unique fixed point and our procedure converges
to it. We also bound the bias from clipping and approximation via the gap to the policy’s
true value. Experiments show GIFT significantly outperforms existing methods in creating
goal-conditioned policies for online deployment.

1 INTRODUCTION

A significant challenge in personalized medicine is to leverage observational data, such as Electronic Health
Records (EHRs), to devise effective intervention strategies that steer a patient’s physiological state towards
a desired target (Figure 1a). This necessitates a shift from merely predicting counterfactual outcomes to
proactively planning a sequence of interventions to achieve the goal.

Recent research (Wang et al., 2025) has formalized this as Sequential Counterfactual Target Achievement
(SCTA), solved using counterfactual estimation (Lim et al., 2018; Bica et al., 2020; Melnychuk et al., 2022;
Wang et al., 2024) or maximizing target achievement likelihood (Wang et al., 2025). These approaches
rely on offline planning, where optimal intervention sequences are pre-computed via complex optimization
(Figure 1b). However, this paradigm lacks real-time adaptability and suffers from high inference costs.

To address offline planning’s limitations in adaptivity and efficiency, this study shifts from fixed intervention
sequences to learning a real-time reactive policy. The problem is formulated as a goal-conditioned Markov
Decision Process (MDP), with state defined by historical trajectory and goal, actions as interventions, and
rewards tied to goal attainment (Figure 1c). The objective is to learn an optimal policy from observational
data that efficiently guides the system to its target 1.

However, learning a policy for online deployment from fixed offline observational data encounters two
key obstacles, which are distributional shift and limited success signals in the data (Levine et al., 2020).
First is distributional shift, which arises when the learned policy explores state-action spaces not covered
by the dataset, leading to value estimation errors and training instability (Fujimoto et al., 2019; Kumar
et al., 2020). Second is sparse rewards, where success signals for goal achievement appear infrequently in

1“Target” and “goal” may be used interchangeably when unambiguous; in clinical contexts we prefer “target”.
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(c) GIFT: online policy

Figure 1: Conceptual comparison of intervention paradigms. (a) The problem of finding intervention se-
quences to guide a system toward a desired target. (b) The previous offline planning paradigm pre-computes
a fixed action sequence. This static plan may fail as the trajectory diverges. (c) Our Approach, GIFT, learns
a goal-conditioned online policy that dynamically adjusts actions to successfully reach the target.

the observational data, making it difficult for the model to discover useful behavioral patterns and thereby
severely hindering the training process Sutton et al. (1998).

To address the aforementioned challenges, we propose the Goal-conditioned Intervention via Factual-
Targeted Training (GIFT) approach, a novel framework specifically designed for learning goal-conditioned
intervention strategies from observational data. GIFT addresses key issues through two core mechanisms.
To tackle the sparse reward problem, GIFT incorporates the Hindsight Experience Replay (HER) mecha-
nism (Andrychowicz et al., 2017), which relabels actually achieved future states in trajectories as virtual
goals, transforming failed experiences into successful learning samples and alleviating data sparsity. To ad-
dress the distribution shift problem, GIFT designs a reward rescaling mechanism that dynamically adjusts
reward signals through bounded, clipped importance sampling weights, guiding value learning toward the
evaluation policy distribution while suppressing the high variance issues of traditional methods, achieving
a balance between bias and variance and stabilizing the offline training process. The main contributions of
this work are summarized as follows:

• To the best of our knowledge, this is the first formulation of SCTA as a goal-conditioned MDP,
highlighting its real-world significance.

• We propose the GIFT framework, which combines HER and reward rescaling mechanisms to learn
goal-conditioned policies from offline data efficiently and stably, with theoretical guarantees in-
cluding convergence proof and performance gap upper bound analysis.

• Experiments on synthetic and semi-synthetic datasets show GIFT significantly outperforms existing
baselines in effectiveness, generalization, and efficiency.

2 RELATED WORK

Offline Planning vs. Goal-Conditioned Policies. The dominant paradigm for this problem is a two-stage
“learn-then-plan” approach (Wang et al., 2025). First, a world model is trained on observational data to pre-
dict outcomes under hypothetical interventions. This line of work evolved from classical statistical methods
(Robins, 1986; Robins et al., 2000; Fitzmaurice et al., 2008; Mortimer et al., 2005) to modern deep learn-
ing models for counterfactual estimation (Lim et al., 2018; Bica et al., 2020; Melnychuk et al., 2022; Wang
et al., 2024) and likelihood maximization (Wang et al., 2025). A key innovation in this area was the use of the
Transformer architecture (Vaswani et al., 2017) to better capture long-range dependencies (Hochreiter et al.,
2001). However, all methods under this paradigm share a fundamental limitation: at inference time, they

2
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require a costly optimization search to find a static, open-loop plan. Such plans are brittle to environmental
stochasticity and ill-suited for real-time adaptation.

We frame the problem using goal-conditioned MDP to learn a reactive policy π(a | s, g). Unlike typical
robotics applications which use online simulators and methods like Hindsight Experience Replay (HER)
(Andrychowicz et al., 2017), our work learns from a fixed, offline dataset. Adapting online methods to static
data is challenging due to distributional shift (Levine et al., 2020) and sparse rewards. To our knowledge,
we are the first to formulate SCTA as an offline, goal-conditioned RL task that learns an adaptive policy
from such data. Compared with general goal-conditioned RL in robotics and vision, which often assumes
unconfounded data and focuses on success probability or shortest-path style objectives (Eysenbach et al.,
2020; Akella et al., 2023; Park et al., 2023; Zheng et al., 2024), our setting focuses on SCTA on observational
cohorts where causal identifiability and offline distribution shift are central. GIFT addresses these issues by
combining goal conditioning with HER and clipped-importance reward rescaling, yielding a modified soft
Bellman operator with contraction and explicit bias bounds.

A comprehensive review, comparing offline planning and goal-conditioned policy paradigms and discussing
distinctions from Dynamic Treatment Regimes (Murphy, 2003), is provided in the Appendix.

3 PROBLEM FORMULATION

We assume access to longitudinal observational dataset D comprising records from N subjects: D ={
{X(i)

t ,A
(i)
t ,Y

(i)
t }T

(i)

t=1 ∪ {V(i)}
}N
i=1

. Each trajectory consists of sequential measurements over T (i) time

points. At time t, Xt ∈ X represents time-varying covariates, At ∈ [0, 1]d denotes continuous intervention,
and Yt ∈ Y indicates measured outcome. Time-invariant characteristics are V ∈ V . We drop subject
indicator (i) for simplicity.

The problem is formulated as a finite-horizon MDP starting at time t. The state is Ψt = (H̄t,Ytarget), where
H̄t = (X̄t, Āt−1, Ȳt,V) is the subject’s full history. The bar notation represents sequences up to time t:
X̄t = (X1, · · · ,Xt), Ȳt = (Y1, · · · ,Yt), and Āt−1 = (A1, · · · ,At−1). Ytarget is the desired outcome.
Given target region T = {y : ∥y −Ytarget∥ ≤ δ}, the reward function penalizes each step before reaching
the target. For the k-th step into the future (at absolute time t+ k), the reward is:

rt+k =

{
0, if Yt+k+1 ∈ T and it is the first hit since time t
−1, otherwise.

(1)

A policy π = (πt, . . . , πt+τmax−1) is a sequence of decision rules for this future horizon. The value of a
policy π given the initial state ψt = (h̄t,ytarget) is the expected sum of discounted future rewards:

V π(ψt) = Eπ

[
τmax−1∑
k=0

γkrt+k | Ψt = ψt

]
, (2)

where γ ∈ (0, 1) is a discount factor. The objective is to find the optimal policy π∗ that maximizes this value
function. This policy is composed of optimal actions at each future step k ∈ [0, τmax − 1], derived from the
optimal action-value function Q∗

t+k:

π∗
t+k(ψt+k) = argmaxa∈AQ

∗
t+k(ψt+k,a). (3)

Learning this policy from observational data relies on standard causal inference assumptions, including
consistency, sequential ignorability, and positivity; see Appendix B for details.

3
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State Encoder Offline Training via Reward Rescaling

Figure 2: The overall architecture of the GIFT framework, encompassing three main stages: offline data
preprocessing, state encoding, and the SAC training loop.

4 METHODOLOGY

4.1 STATE REPRESENTATION AND POLICY NETWORK ARCHITECTURE

GIFT learns dynamic intervention strategies by combining goal-conditioning with offline reinforcement
learning (RL). The framework consists of three stages (Figure 2): (1) data augmentation using Hindsight
Experience Replay; (2) state encoding fusing patient history and goals; and (3) SAC training with reward
rescaling.

State Representation. We define the state at decision time t as Ψt = (St,Gt), where St = H̄t represents
the patient’s complete history and Gt = Ytarget represents the desired outcome. Concretely, H̄t is a variable-
length sequence composed of past outcomes Y1:t, past interventions A1:t−1 (time-aligned), static covariates
V repeated along time, and optionally vitals X1:t. We pad/pack the sequence and feed it to an LSTM to
obtain a history embedding zh,t. The goal Ytarget is mapped by a small MLP to a goal embedding zg,t, then
concatenated with zh,t and passed through a fusion MLP to produce the final state vector zt.

Policy Architecture. We employ SAC with actor network πθ mapping composite state ψt = (st,gt) to
stochastic policy parameters, and critic network Qϕ estimating soft action-value function Q(ψt,at). The
actor takes zt and outputs a continuous intervention at ∈ (0, 1)da via a sigmoid-squashed reparameterized
Gaussian (the double-Q critic consumes [zt,at]). The intended network output is this normalized treatment
vector. At prediction time, the policy is rolled out autoregressively: given the goal and current state, the
network produces the next action at+1.

4.2 HINDSIGHT EXPERIENCE REPLAY FOR OFFLINE DATA AUGMENTATION

To address the issue of sparse rewards, we adopt Hindsight Experience Replay (HER). The theoretical foun-
dation of HER relies on a strict assumption of goal-independent dynamics.

Assumption 4.1 (Decomposed Goal-Independent Dynamics). Physical state evolution depends only on the
current state and action, independent of the goal, while the goal remains constant within transitions. The
state transition probability can be decomposed as:

P ((St+1,Gt+1) = (s′,g′)|St = s,Gt = g,At = a) = P (St+1 = s′|St = s,At = a) · 1[g′ = g]

4
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Assumption 4.1 is plausible in dynamic intervention settings. In diabetes management, a patient’s blood
glucose response to insulin follows physiological laws, independent of the physician’s long-term control
objective. This independence allows us to generate new experiences by retrospectively relabeling goals.

For an observed transition (st,at, rt, st+1), we designate a hindsight goal g′ sampled from future achieved
outcomes of the same trajectory and compute r′ by recomputing the goal-conditioned reward, constructing
((st,g

′),at, r
′, (st+1,g

′)) (optionally sampling k goals per transition) for data augmentation.

4.3 OFFLINE POLICY LEARNING VIA REWARD RESCALING

Training an RL agent on a fixed observational dataset is susceptible to distributional shift Levine et al.
(2020). We employ a modified Bellman target to stabilize the learning process.

4.3.1 INTUITION OF REWARD RESCALING AS A HEURISTIC

Our core modification is to multiply the immediate reward r(ψ,a) by a clipped importance sampling ratio
ρ̄(ψ,a). Specifically, we first define the importance sampling ratio ρ(ψ,a) = πθ(a|ψ)

πb(a|ψ) and then clip it to a
predefined interval [ϵ1, ϵ2] to obtain ρ̄(ψ,a) = clip(ρ(ψ,a), ϵ1, ϵ2).

Intuitively, this operation optimizes a learning problem with a “rescaled reward” without altering environ-
ment dynamics. When the ratio exceeds 1, the actor policy prefers the action more than the behavior policy,
amplifying its reward; the opposite occurs when the ratio is below 1. This skews the Bellman update target
toward the actor policy’s action distribution, counteracting learning signal bias from distribution mismatch.

This method’s advantage is that weight adjustment within a limited range and application to single-step
rewards avoids exploding variance from trajectory-level importance sampling. The evaluation operator re-
mains a contraction, ensuring stable training. The trade-off introduces controllable approximation bias.
Therefore, reward scaling provides a low-variance, bias-controlled policy-distribution re-weighting mecha-
nism. We also consider Conservative Q-Learning (CQL (Kumar et al., 2020)) for distributional shift, which
imposes critic-side conservatism via a log-sum-exp penalty on out-of-distribution actions. This contrasts
with our clipped reward rescaling; empirical comparisons appear in Sec. 5.4.

4.3.2 FORMAL ANALYSIS AND THEORETICAL GUARANTEES

Our theoretical analysis aims to characterize the convergence and bias bounds of the algorithm under this
heuristic modification, with its validity resting on the following assumptions.
Assumption 4.2 (Bounded Function Class (Glivenko–Cantelli)). The function class Q we use to approxi-
mate the Q-function is a bounded P-Glivenko–Cantelli class.

As previously described, we use the policy-scaled reward function r̃(ψ,a) = ρ̄(ψ,a)r(ψ,a). Based on
this, we proceed with the formal analysis.
Definition 4.1 (Soft Policy Evaluation and Modified Bellman Operator). For any Q-function Q ∈ Q, we
define the following operators:

Next-state Soft Value: Υπθ (Q)(ψ′) = EA′∼πθ(·|ψ′)[Q(ψ′,A′)− α log πθ(A
′|ψ′)],

Standard Operator: (T πθQ)(ψ,a) = r(ψ,a) + γEΨ′∼P (·|ψ,a)[(1− d(Ψ′))Υπθ (Q)(Ψ′)],

Modified Operator: (Tπ̃Q)(ψ,a) = r̃(ψ,a) + γEΨ′∼P (·|ψ,a)[(1− d(Ψ′))Υπθ (Q)(Ψ′)],

where d(ψ′) = 1 if the episode terminates at state ψ′, and 0 otherwise.

To justify that our operator-based analysis is grounded in observable quantities, we first establish that the
soft Bellman operator is causally identifiable from the observational data under standard assumptions.

5
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Proposition 4.1 (Causal Identifiability of the Soft Bellman Operator). Assume Assumption 4.1 (goal-
independent dynamics) and the standard assumptions detailed in Appendix B. Then, for any boundedQ ∈ Q
and any state-action pair (ψ,a) at decision time t,

(T πθQ)(ψ,a) = r(ψ,a) + γ Edo(πθ)
Ψ′∼P (·|ψ,a)

[
(1− d(Ψ′)) Υπθ (Q)(Ψ′)

]
, (4)

= r(ψ,a) + γ EΨ′∼Pobs(·|H̄t,At=a)

[
(1− d(Ψ′)) EA′∼πb(·|Ψ′)

[
ρ(Ψ′,A′)

(
Q(Ψ′,A′)

− α log πθ(A
′ | Ψ′)

)]]
. (5)

Equation 4 is the soft Bellman evaluation operator under the interventional regime do(πθ); Equation 5
shows that this interventional quantity is identifiable from the observational distribution Pobs via one-step
importance weighting with respect to the behavior policy πb.

With identifiability established, we now analyze the modified operator’s contraction and the resulting con-
vergence and bias bounds, which quantify the effect of reward rescaling via the clipped ratio.

Theorem 4.2 (Contraction Property of the Modified Operator). Let Tπ̃ be the modified Bellman operator.
For any pair of bounded Q-functions Q1 and Q2, Tπ̃ satisfies:

∥Tπ̃Q1 − Tπ̃Q2∥∞ ≤ γ∥Q1 −Q2∥∞
Therefore, Tπ̃ is a contraction mapping with respect to the infinity norm ∥ · ∥∞ with a factor of γ.

Theorem 4.3 (Convergence and Asymptotic Performance Bound). Under Assumptions 4.1–4.2, the Q-
learning process converges to the unique fixed point Qπ̃ of the modified operator Tπ̃ (or to its projected
fixed point in the case of function approximation). The gap between this fixed point and the true soft Q-
function Qπθ of policy πθ under the original reward r is bounded as follows:

∥Qπθ −Qπ̃∥∞ ≤
1

1− γ ∥(T
πθ − Tπ̃)Qπ̃∥∞

This bound clearly indicates that the gap between the solution Qπ̃ found by our algorithm and the true Q-
value Qπθ of the actor policy is upper-bounded by the difference between the two operators evaluated at
the fixed point Qπ̃ . This difference, ∥(T πθ − Tπ̃)Qπ̃∥∞ = supψ,a |r(ψ,a)(1 − ρ̄(ψ,a))|, is precisely the
systematic bias introduced by our heuristic reward rescaling.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

This section details the datasets, baseline models, and evaluation metrics used in our experiments to provide
context for the subsequent analysis.

Datasets. We utilize two datasets for a comprehensive evaluation. The Tumor dataset is a classic simu-
lated dataset based on a pharmacokinetic-pharmacodynamic framework (Geng et al., 2017). It allows us
to control the influence of intervention history via a confounding parameter κ; larger κ means more severe
confounding, where past (including unobserved) factors jointly affect treatment and outcomes, increasing
bias and hindering counterfactual prediction and policy learning. The other is a semi-synthetic experimental
environment built upon the MIMIC-III database (Johnson et al., 2016). To construct a platform that mir-
rors real-world clinical complexity while maintaining controlled evaluation capabilities, we follow recent
works (Hatt & Feuerriegel, 2024; Kuzmanovic et al., 2021; Melnychuk et al., 2022) and synthesize multi-
dimensional outcomes and continuous interventions with complex temporal dependencies and confounding

6
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(a) Tumor Dataset (κ = 2)
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(b) Tumor Dataset (κ = 3)
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(c) Tumor Dataset (κ = 4)

Figure 3: Comparison of terminal-outcome RMSE at horizons τ ∈ 2, 3, 4 for different models on the Tumor
dataset under varying confounding levels κ. Each subplot shows mean RMSE with standard-deviation shad-
ing on the held-out test set; RMSE is computed between the terminal outcome after at most τ steps and the
τ -step target. This evaluation setting is used for all experiments unless otherwise noted.

relationships based on real ICU physiological data. This provides a robust testbed for evaluating model
performance in more realistic scenarios. Intended clinical tasks: in Tumor, drive tumor burden (volume) to
a desired target level/region; in the semi-synthetic MIMIC environment, steer a 2D clinical outcome vector
(y1, y2) toward a user-specified target Ytarget ∈ R2 within a tolerance, i.e., a goal-reaching control task over
a planning horizon.

Baselines and Decision Paradigms. We compare against RMSN (Lim et al., 2018), CRN (Bica et al.,
2020), CT (Melnychuk et al., 2022), ACTIN (Wang et al., 2024), VCIP (Wang et al., 2025), SCRL (Zheng
et al., 2024). Since some baselines do not output policies, we use VCIP’s episode-wise optimization and a
step-wise greedy scheme at test time; both search action sequences to minimize target discrepancy. Results
for episode-wise optimization are in the main text; step-wise details are in Appendix F, G. For SCRL, we
adopt the official setup with minimal adaptations to tabular/time-series inputs (goal-conditioned actor + BC
regularization, contrastive critic, large in-batch negatives, simple non-visual augmentations); tuning details
appear in Appendix. F.

Evaluation Metrics. We adopt Root Mean Square Error (RMSE) as our primary evaluation metric, measur-
ing discrepancy between the final trajectory from the model’s generated intervention policy and the target
trajectory. All reported values are mean and standard deviation over multiple independent runs. Concretely,
for each test episode and a given horizon τ , we roll out a policy for at most τ steps. Let Yterm be the
terminal outcome at step t+τ ), and let Ytarget be the goal defined by the protocol above. We compute

RMSE =

√
1
N

∑N
i=1

∥∥∥Y(i)
term −Y

(i)
target

∥∥∥2
2
, where N is the number of test episodes. This metric is defined

on the terminal outcome only and it is computed on the held-out test set. Larger τ increases difficulty
because errors compound over more transitions

5.2 COMPARATIVE EVALUATION OF INTERVENTION POLICIES

Performance with Identical Intervention Strategies. We first evaluate the performance of all models in
a standard sequential decision-making setting, where the target states are within the support of the training
data distribution. The results on the MIMIC-III synthetic dataset, presented in Table 2, show that GIFT
outperforms all baseline models as measured by RMSE. Here “identical strategies” means training and
testing targets are both induced by the behavior/original policy. We further corroborate this finding using
the Tumor dataset under varying levels of confounding (κ=2, 3, 4), as shown in Figure 3. Larger κ indicates
more severe confounding; although all methods degrade as κ increases, GIFT maintains the lowest RMSE.

7
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Table 1: Results on tumor dataset (κ = 4) with distinct intervention strategies applied to training and test
sets, reported as RMSE (mean ± std over five runs).

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

RMSN 0.32±0.04 0.53±0.08 0.69±0.09 0.85±0.14 1.01±0.19 1.15±0.21
CRN 0.41±0.15 0.71±0.28 0.92±0.39 1.10±0.46 1.26±0.50 1.40±0.51
CT 0.50±0.18 0.82±0.30 1.11±0.34 1.39±0.40 1.63±0.43 1.87±0.43
ACTIN 0.65±0.24 1.08±0.38 1.29±0.40 1.57±0.46 1.71±0.46 1.86±0.45
VCIP 0.46±0.09 0.66±0.18 0.76±0.13 0.89±0.13 0.99±0.20 1.10±0.20
SCRL 0.53±0.09 0.91±0.24 1.23±0.25 1.56±0.19 1.98±0.26 2.42±0.38

GIFT 0.24±0.04 0.32±0.04 0.38±0.05 0.43±0.08 0.45±0.07 0.46±0.08

Table 2: Results on MIMIC synthetic dataset with the same intervention strategies applied to training and
test sets, reported as RMSE (mean ± std over five runs).

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

RMSN 0.25±0.07 0.39±0.13 0.50±0.17 0.60±0.20 0.70±0.21 0.83±0.28
CRN 0.31±0.04 0.46±0.11 0.60±0.15 0.71±0.17 0.83±0.18 0.96±0.24
CT 0.62±0.17 1.06±0.32 1.42±0.47 1.72±0.60 1.98±0.73 2.20±0.83
ACTIN 0.28±0.19 0.57±0.34 0.79±0.50 0.98±0.64 1.11±0.74 1.23±0.81
VCIP 0.41±0.19 0.51±0.22 0.57±0.21 0.60±0.20 0.62±0.18 0.67±0.22
SCRL 0.37±0.18 0.47±0.21 0.56±0.26 0.59±0.28 0.63±0.30 0.65±0.30

GIFT 0.24±0.10 0.31±0.13 0.33±0.14 0.37±0.16 0.38±0.17 0.39±0.18
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Figure 4: Case study of intervention policies from GIFT and baselines. The figure shows realized outcome
trajectories for one patient on (a) MIMIC and (b) Tumor (κ = 2). ‘Goal’ is the τ -step target and is marked
by a gold star at τ = 6. ‘RMSN Prediction’ is the purple dashed line; other model trajectories are solid.

Generalization to Unseen Intervention Strategies. Next, we assess the ability to reach targets generated by
intervention rules unseen during training. “Unseen strategies” are created by overriding, with probability η at
each step, the standard assignment using actions sampled from a static Beta(α, β) distribution (Appendix C).
The results on the Tumor dataset (at κ=4), detailed in Table 1, show that GIFT achieves the lowest error,
demonstrating strong generalization.
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Figure 5: Efficiency comparison of the GIFT model with alternative models on the MIMIC-III and Tumor
(κ = 4) datasets. The comparison is conducted across four metrics: (a) number of parameters, (b) MFLOPs,
(c) training time, and (d) inference time. The results are presented as the average over multiple runs.
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Figure 6: Effect of importance-weight clipping on performance. We fix ϵ1=0.01 and vary the upper clip
ϵ2 ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 10.0, 20, 100, 200}. Curves show RMSE versus ϵ2 for (a) MIMIC and
(b) Tumor datasets across τ ∈ {1, 2, 4, 6}. For Tumor, RMSE is normalized as indicated in the figure.

5.3 QUALITATIVE AND EFFICIENCY ANALYSIS

Qualitative Analysis: A Case Study. To visually demonstrate GIFT’s effectiveness, we conduct a case
study. Figure 4 compares predicted outcome trajectories for a single patient generated by GIFT and baseline
models. The figure plots ‘Ground Truth’ and ‘Goal’ trajectories, illustrating how well each model steers
the patient toward the desired target. Counterfactual prediction models suffer performance degradation from
accumulated prediction errors; their intervention optimization relies on imperfect forecasts that fail to reflect
true outcome trends. In contrast, GIFT’s learned policy proves more robust, guiding the patient’s trajectory
more effectively toward the goal.

Computational Efficiency. Beyond efficacy, computational efficiency is crucial for practical deployment.
We compare GIFT’s computational costs against baselines across four dimensions: parameters, MFLOPs,
training time, and inference time (Figure 5). Results indicate GIFT is competitive across multiple efficiency
metrics. Most critically, because GIFT avoids iterative optimization during inference, its inference efficiency
significantly exceeds baseline methods that rely on time-consuming search procedures. This makes GIFT
well-suited for real-time online tasks demanding rapid decision-making.
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Table 3: Ablation study results for different model configurations. Lower RMSE values are better, with the
best performance in each column highlighted in bold.

MIMIC-III Tumor (κ = 2) Tumor (κ = 4)

τ = 3 τ = 6 τ = 3 τ = 6 τ = 3 τ = 6

Full Model 0.33±0.14 0.39±0.18 0.11±0.04 0.14±0.05 0.35±0.05 0.40±0.05
w/o RR 0.66±0.39 0.83±0.58 0.48±0.17 0.62±0.27 0.49±0.13 0.42±0.15
w/o Her 0.66±0.49 0.95±0.80 0.23±0.07 0.40±0.15 0.80±0.24 1.53±0.53
with CQL 0.45±0.19 0.49±0.20 0.24±0.07 0.33±0.07 0.69±0.15 1.04±0.27

5.4 SENSITIVITY AND ABLATION ANALYSIS

This section aims to dissect the internal mechanisms contributing to GIFT’s success and to explore its per-
formance under varying data conditions, thereby validating the rationale behind our model’s design.

Analysis of Importance-Weight Clipping.

We study how the clipping interval [ϵ1, ϵ2] in reward rescaling affects performance. We fix ϵ1 = 0.01 and
sweep ϵ2 ∈ {0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 10.0, 20, 100, 200}. Figure 6 shows RMSE vs. ϵ2 on MIMIC and
Tumor (κ = 3) across τ ∈ {1, 2, 4, 6}. Tight clips (ϵ2 ≤ 0.1) induce truncation bias (higher RMSE); very
loose clips (ϵ2 ≥ 20) increase variance and instability. A broad sweet spot lies in [1, 10], with ϵ2 ≈ 2
near-optimal for most τ . Larger τ raises difficulty and sensitivity.

Ablation Study of Key Model Components. To validate our proposed components, we conducted an ab-
lation study (Table 3). This compares the full model against variants without Reward Rescaling (“w/o RR”)
and without Hindsight Experience Replay (“w/o HER”). Results demonstrate that removing either com-
ponent significantly degrades performance, confirming their necessity. Comparing performance standard
deviations reveals the variance-reducing benefit of our mechanism. On MIMIC-III with τ = 3, standard
deviation increases from 0.14 to 0.39, providing strong evidence that Reward Rescaling reduces training
variance, enabling stable intervention policies. Additionally, we include a conservative offline RL control
substituting our rescaling with CQL (“with CQL”). While CQL mitigates extrapolation error relative to “w/o
RR”, it remains inferior across datasets and horizons, indicating critic-only conservatism is less aligned with
target attainment than our clipped reward re-weighting. Our full model exhibits smaller variance, especially
under stronger confounding (κ = 4).

6 CONCLUSION

This work introduces GIFT, a novel offline framework for deriving sequential intervention policies from
observational data. By formulating counterfactual target achievement as a goal-conditioned MDP, GIFT
overcomes limitations of traditional offline planning. It addresses sparse rewards and distributional shift by
integrating HER and a variance-controlled reward rescaling mechanism. Supported by convergence guaran-
tees, extensive experiments show GIFT markedly surpasses existing methods in generating effective, gen-
eralizable, and computationally efficient policies. Its superior performance, particularly low inference cost,
underscores broad suitability for real-time, adaptive decision-making in critical applications like personal-
ized medicine and other high-stakes settings.
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de-identified MIMIC-III, reducing privacy risks and avoiding identifiable personal information. Learning
policies from observational data may reflect dataset biases, unobserved confounding, and distribution shift,
affecting fairness and reliability; we analyze sensitivity to confounding and goal sparsity and discuss lim-
itations to avoid overstating clinical readiness. We note potential dual-use risks (e.g., optimizing harmful
objectives) and emphasize that real-world use should include appropriate safeguards and expert oversight.
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A EXTENDED RELATED WORK

The problem of identifying an optimal sequence of interventions from offline data to achieve a target out-
come intersects causal inference, sequential decision-making, and reinforcement learning. We group prior
work into two complementary paradigms: (i) learn-then-plan with counterfactual world models, and (ii)
goal-conditioned reinforcement learning. We also connect to the literature on Dynamic Treatment Regimes
(DTRs).

A.1 OFFLINE PLANNING FOR TARGET ACHIEVEMENT

A common workflow for target achievement is a two-stage “learn-then-plan” approach. First, a counter-
factual world model is trained on observational data to predict outcomes under hypothetical interventions.
Second, at inference time, an optimization procedure searches over prospective intervention sequences on
top of this model to reach a user-specified target. The modeling component has roots in classical methods
such as the g-formula and marginal structural models (MSMs) (Robins, 1986; Robins et al., 2000; Fitzmau-
rice et al., 2008). While these frameworks provide principled identification strategies, practical deployment
in high-dimensional, nonlinear, and long-horizon settings can be challenging, which has motivated deep
learning approaches.

Deep counterfactual sequence models focus on representation learning and deconfounding for longitudi-
nal data. Representative examples include RMSN (Lim et al., 2018), which leverages inverse-probability
weighting within a recurrent architecture; CRN (Bica et al., 2020), which learns adversarially balanced repre-
sentations; and the Causal Transformer (CT) (Melnychuk et al., 2022), which introduces Transformer-based
sequence modeling (Vaswani et al., 2017) to better capture long-range dependencies (Hochreiter et al., 2001).
Related work also explores g-computation with deep networks (Li et al., 2021) and Bayesian/nonparametric
approaches for longitudinal causal inference (Raveendran et al., 2020; Soleimani et al., 2017). In prac-
tice, these counterfactual models can be paired with a separate planning step that optimizes a target-specific
objective on the learned world model. Distinct from these modeling papers, recent planning-oriented for-
mulations explicitly cast target attainment as an optimization problem over the learned dynamics, includ-
ing dual-module architectures for temporal counterfactual estimation (Wang et al., 2024) and maximum-
likelihood-style formulations (Wang et al., 2025).

When a separate optimization is performed at inference time on top of a learned model, the resulting plans
are often open-loop and can require iterative search, which may be sensitive to model misspecification
and environmental stochasticity. Our work departs from purely open-loop planning by learning a reactive,
closed-loop policy that conditions on both the current state and the target.

A.2 GOAL-CONDITIONED REINFORCEMENT LEARNING

Goal-conditioned reinforcement learning (RL) directly learns a policy π(a | s, g) that maps a state s and
goal g to an action, thereby embedding planning into the policy itself and avoiding test-time trajectory
optimization (Levine et al., 2020). A central challenge is sparse or delayed rewards. Hindsight Experi-
ence Replay (HER) (Andrychowicz et al., 2017) addresses this by relabeling unsuccessful trajectories with
achieved goals, substantially improving sample efficiency.

Hierarchical Reinforcement Learning (HRL) is often employed for complex, goal-oriented tasks with sparse
rewards. A Causality-Driven HRL (CDHRL) framework that discovers effective subgoal hierarchy structures
has been introduced (Hu et al., 2022). This approach was evaluated in complex game environments such
as 2d-Minecraft (Sohn et al., 2018) and Eden (Chen et al., 2021). For zero-shot transfer in object-oriented
planning, Schema Networks have been developed as generative causal models that allow an agent to reason
backward through causes to achieve goals (Kansky et al., 2017).
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Many applications of these methods are found in robotics, where tasks are inherently goal-conditioned. For
instance, causal reasoning has been used to learn and transfer robot manipulation policies (Lee et al., 2021).
Tasks where a robot must reach a target location or move at a target speed have been considered (Feng et al.,
2022). Similarly, an invariant policy optimization algorithm has been developed for a challenging task where
a robot navigates to a key, opens a door, and proceeds to a final goal (Sonar et al., 2021). To facilitate research
in this area, the CausalWorld benchmark was developed to test causal structure learning and transfer learning
for robotic manipulation tasks where objects must be moved to specified goal locations (Ahmed et al., 2020).
To our knowledge, our work is the first to formulate the counterfactual target achievement problem as an
offline, goal-conditioned task.

Beyond classical formulations, recent GCRL advances emphasize learning from diverse offline or reward-
free data for long-horizon goal reaching. C-Learning reframes goal-conditioned control as density estimation
via a future versus non-future classifier, enabling off-policy prediction of a new policy’s future state distri-
bution and optimizing the probability of hitting a goal set (Eysenbach et al., 2020). Distributional Distance
Classifiers bridge the tension between maximizing success probability and minimizing expected steps by
estimating the probability of reaching the goal at different future timesteps and propose a practical Distribu-
tional NCE estimator (Akella et al., 2023). HIQL introduces a hierarchical offline GCRL method that treats
latent states as actions, decomposes distant goal reaching into subgoal selection and low-level control, and
leverages action-free data (Park et al., 2023). In robotics, Stabilizing Contrastive RL shows that contrastive
self-supervised objectives together with careful architectural and hyperparameter choices can stabilize of-
fline goal reaching and enable real-world image-based manipulation with a single goal image provided after
training (Zheng et al., 2024).

These methods target general goal reaching and typically do not address confounding in observational data.
Our setting, namely SCTA, requires learning a closed-loop policy from observational and potentially con-
founded trajectories to steer outcomes into a target region T . This demands both causal identifiability under
standard assumptions and stability under offline distribution shift between the behavior policy πb and the
learned policy πθ. Our framework (GIFT) combines goal conditioning with HER and clipped-importance
reward rescaling to obtain a modified soft Bellman operator that remains a contraction and admits explicit
bias bounds. In contrast to many GCRL systems that rely on test-time optimization or assume reward-free
yet unconfounded data, GIFT provides a theoretically grounded and offline-stable learning procedure tai-
lored to SCTA, where counterfactual identifiability and robustness to the shift from πb to πθ are primary
considerations.

A.3 DYNAMIC TREATMENT REGIMES

Dynamic Treatment Regimes (DTRs) formalize sequential decision-making via a sequence of decision rules
mapping evolving patient histories to interventions (Murphy, 2003). Reinforcement learning has been widely
adopted to optimize DTRs from observational data (Zhang & Bareinboim, 2019; Luckett et al., 2020), in-
cluding settings with continuous states and clinical constraints (Raghu et al., 2017). The standard DTR
objective is to learn a single policy that maximizes population-level expected outcomes.

In contrast, our problem is explicitly goal-conditioned: rather than maximizing an undirected cumulative
reward, we learn policies that steer individual trajectories toward a predefined target state. This goal-centric
perspective complements the DTR paradigm by emphasizing targeted control for individual endpoints, while
retaining the benefits of offline learning and robustness to confounding.
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B PROOFS

Assumption B.1 (Decomposed Goal-Independent Dynamics). Let St be the random variable for the physi-
cal state at time t, and Gt be the goal. The state transition probability can be decomposed as:

P ((St+1,Gt+1) = (s′,g′)|St = s,Gt = g,At = a) = P (St+1 = s′|St = s,At = a) · 1[g′ = g]

This implies that the evolution of the physical state, P (St+1|St,At), depends only on the current physical
state and action, and is independent of the goal Gt. Concurrently, the goal remains constant within a
single-step transition.

Assumption B.2 (Consistency). If the actual treatment decision is At = a, then the potential outcome is
consistent with the observed outcome, i.e.,

Yt+1[a] = Yt+1, rt[a] = rt.

Assumption B.3 (Sequential Overlap). The behavior policy πb is sufficiently stochastic within its support.
Specifically, for any state ψ and action a, if an action is possible under the behavior policy (i.e., πb(a|ψ) >
0), then its probability density is bounded below by a positive constant. That is, there exists a constant c > 0
such that πb(a|ψ) ≥ c.
Assumption B.4 (Sequential Ignorability). For any action a, the current treatment decision At is indepen-
dent of the future potential outcomes Yt+1[a], conditional on the past history Ψt, i.e.:

At ⊥⊥ Yt+1[a] | Ψt.

Assumption B.5 (Bounded Function Class (Glivenko–Cantelli)). The function class Q we use to approxi-
mate the Q-function is a bounded P-Glivenko–Cantelli class.

Definition B.1 (Soft Policy Evaluation and Modified Bellman Operator). For any Q-function Q ∈ Q, we
define the following operators:

Next-state Soft Value: Υπθ (Q)(ψ′) = EA′∼πθ(·|ψ′)[Q(ψ′,A′)− α log πθ(A
′|ψ′)]

Standard Operator: (T πθQ)(ψ,a) = r(ψ,a) + γEΨ′∼P (·|ψ,a)[(1− d(Ψ′))Υπθ (Q)(Ψ′)]

Modified Operator: (Tπ̃Q)(ψ,a) = r̃(ψ,a) + γEΨ′∼P (·|ψ,a)[(1− d(Ψ′))Υπθ (Q)(Ψ′)]

where d(ψ′) is an indicator function. The expectation EΨ′∼P (·|ψ,a) should be understood as an expectation
over the next physical state S′, as the goal remains unchanged during the transition.

Proposition B.1 (Causal Identifiability of the Soft Bellman Operator). Assume Assumption B.1 (goal-
independent dynamics) and the standard assumptions detailed in Appendix B. Then, for any boundedQ ∈ Q
and any state-action pair (ψ,a) at decision time t,

(T πθQ)(ψ,a) = r(ψ,a) + γ Edo(πθ)
Ψ′∼P (·|ψ,a)

[
(1− d(Ψ′)) Υπθ (Q)(Ψ′)

]
, (6)

= r(ψ,a) + γ EΨ′∼Pobs(·|H̄t,At=a)

[
(1− d(Ψ′)) EA′∼πb(·|Ψ′)

[
ρ(Ψ′,A′)

(
Q(Ψ′,A′)

− α log πθ(A
′ | Ψ′)

)]]
. (7)

Equation 6 is the soft Bellman evaluation operator under the interventional regime do(πθ); Equation 7
shows that this interventional quantity is identifiable from the observational distribution Pobs via one-step
importance weighting with respect to the behavior policy πb.

Proof. We provide a do-calculus based identification in three steps.
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Step 1: Fix the composite state Ψt = (H̄t,Ytarget) and action at = a at time t. Under the intervention
do(πθ), actions are drawn from the target policy while the environment dynamics remain unchanged. By
Definition 4.1,

(T πθQ)(ψt,a) := r(ψt,a) + γ Edo(πθ)
Ψt+1∼P (·|ψt,a)

[
(1− d(Ψt+1)) Υ

πθ (Q)(Ψt+1)
]
, (8)

where Υπθ (Q)(ψ′) = EA′∼πθ(·|ψ′)

[
Q(ψ′,A′)− α log πθ(A

′ | ψ′)
]
.

Step 2: Let the potential outcomes be Yt+1(a) and the next physical state St+1(a). Consistency implies
that whenever At = a,

Yt+1 = Yt+1(a), St+1 = St+1(a).

Sequential Ignorability (no unmeasured confounding) given H̄t implies

{Yt+1(a),St+1(a)} ⊥⊥ At | H̄t, ∀a.
By the back-door criterion (do-calculus Rule 2) or the g-formula,

P
(
St+1 ∈ ·

∣∣ do(At = a), H̄t

)
= P

(
St+1 ∈ ·

∣∣ H̄t,At = a
)
, (9)

P
(
Yt+1 ∈ ·

∣∣ do(At = a), H̄t

)
= P

(
Yt+1 ∈ ·

∣∣ H̄t,At = a
)
. (10)

Assumption 4.1 (goal-independent dynamics) guarantees that within one step the goal component in Ψt+1 =
(H̄t+1,Ytarget) remains constant and the next physical state depends only on (H̄t,At). Therefore, the
outer expectation in equation 8 can be written in terms of the observational conditional distribution Pobs(· |
H̄t,At = a), which yields equation 6.

Step 3: Conditioned on Ψ′, the inner expectation in Υπθ (Q)(Ψ′) can be expressed under the behavior
policy πb using the importance ratio ρ(Ψ′,A′) = πθ(A

′|Ψ′)
πb(A′|Ψ′) , provided Positivity holds. For any integrable

function g,

EA′∼πθ(·|Ψ′)[g(A
′)] = EA′∼πb(·|Ψ′)

[
ρ(Ψ′,A′) g(A′)

]
.

Taking g(A′) = Q(Ψ′,A′)− α log πθ(A
′ | Ψ′) gives

Υπθ (Q)(Ψ′) = EA′∼πb(·|Ψ′)

[
ρ(Ψ′,A′)

(
Q(Ψ′,A′)− α log πθ(A

′ | Ψ′)
)]
.

Substituting this back into equation 6 and using equation 9–equation 10 yields equation 7. Hence, under the
stated causal assumptions, T πθ is identifiable from the observational distribution via one-step importance
weighting.

Remark on clipping. Replacing ρ by its clipped version ρ̄ = clip(ρ, ϵ1, ϵ2) produces a controlled-bias
approximation of equation 7. The bias introduced by clipping is precisely quantified by the operator gap term
appearing in the subsequent bound, supψ,a |r(ψ,a)(1 − ρ̄(ψ,a))|/(1 − γ), thus enabling a bias–variance
trade-off while preserving the identifiable structure of the operator.

Theorem B.2 (Contraction Property of the Modified Operator). Let Tπ̃ be the modified Bellman operator
defined in Definition B.1. For any pair of bounded Q-functions Q1 and Q2, Tπ̃ satisfies:

∥Tπ̃Q1 − Tπ̃Q2∥∞ ≤ γ∥Q1 −Q2∥∞
Therefore, Tπ̃ is a contraction mapping with respect to the infinity norm ∥ · ∥∞ with a factor of γ.
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Proof. For any two Q-functions Q1, Q2 ∈ Q and any state-action pair (ψ,a), we examine the difference
after applying the operator. According to the operator’s definition, the reward term r̃ is canceled out in the
subtraction:
|(Tπ̃Q1)(ψ,a)− (Tπ̃Q2)(ψ,a)| =

∣∣γEΨ′∼P (·|ψ,a)[(1− d(Ψ′))(Υπθ (Q1)(Ψ
′)−Υπθ (Q2)(Ψ

′))]
∣∣

≤ γEΨ′∼P (·|ψ,a) [|(1− d(Ψ′))(Υπθ (Q1)(Ψ
′)−Υπθ (Q2)(Ψ

′))|]
≤ γEΨ′∼P (·|ψ,a) [|Υπθ (Q1)(Ψ

′)−Υπθ (Q2)(Ψ
′)|]

Next, we analyze the difference of the inner term. By the definition of the next-state soft value:
|Υπθ (Q1)(ψ

′)−Υπθ (Q2)(ψ
′)| =

∣∣EA′∼πθ(·|ψ′)[Q1(ψ
′,A′)−Q2(ψ

′,A′)]
∣∣

≤ EA′∼πθ(·|ψ′)[|Q1(ψ
′,A′)−Q2(ψ

′,A′)|]
≤ EA′∼πθ(·|ψ′)[ sup

ψ∗,a∗
|Q1(ψ

∗,a∗)−Q2(ψ
∗,a∗)|]

= ∥Q1 −Q2∥∞
Substituting this upper bound back into the first inequality, we obtain:

|(Tπ̃Q1)(ψ,a)− (Tπ̃Q2)(ψ,a)| ≤ γEΨ′∼P (·|ψ,a)[∥Q1 −Q2∥∞] = γ∥Q1 −Q2∥∞
Since this inequality holds for all (ψ,a), we can take the supremum over all pairs, which proves that ∥Tπ̃Q1−
Tπ̃Q2∥∞ ≤ γ∥Q1 − Q2∥∞. By the Banach fixed-point theorem, this operator has a unique fixed point
Qπ̃ .

Theorem B.3 (Convergence and Asymptotic Performance Bound). Under Assumptions B.2–B.5, the Q-
learning process converges to the unique fixed pointQπ̃ of the modified operator Tπ̃ (or to its projected fixed
point in the case of function approximation). The gap between this fixed point and the true soft Q-function
Qπθ of policy πθ under the original reward r is bounded as follows:

∥Qπθ −Qπ̃∥∞ ≤
1

1− γ ∥(T
πθ − Tπ̃)Qπ̃∥∞

Proof. Step 1: Convergence. Theorem B.2 proves that Tπ̃ is a contraction mapping, thus guaranteeing a
unique fixed point. When using function approximation, the Q-learning update can be viewed as finding
the projected fixed point of the empirical operator T̂π̃ . Assumption B.5 ensures that the empirical operator
converges uniformly to the true operator. Combined with standard theory for Fitted Q-Iteration (FQI), it can
be shown that the learned Q-function Q̂n converges to a neighborhood of the fixed point Qπ̃ .

Step 2: Performance Gap Analysis. Our goal is to bound ∥Qπθ − Qπ̃∥∞. We know that Qπθ is the
fixed point of the operator T πθ , i.e., Qπθ = T πθQπθ . We start from the target expression, use the triangle
inequality, and decompose the error by adding and subtracting T πθQπ̃:

∥Qπθ −Qπ̃∥∞ = ∥T πθQπθ −Qπ̃∥∞
≤ ∥T πθQπθ − T πθQπ̃∥∞ + ∥T πθQπ̃ −Qπ̃∥∞

For the first term, since T πθ is also a γ-contraction mapping (the proof is analogous to that of Theorem B.2),
we have:

∥T πθQπθ − T πθQπ̃∥∞ ≤ γ∥Qπθ −Qπ̃∥∞
For the second term, we use the fact that Qπ̃ is the fixed point of Tπ̃ , i.e., Qπ̃ = Tπ̃Qπ̃ , and substitute it:

∥T πθQπ̃ −Qπ̃∥∞ = ∥T πθQπ̃ − Tπ̃Qπ̃∥∞ = ∥(T πθ − Tπ̃)Qπ̃∥∞
Combining these results back into the main inequality:

∥Qπθ −Qπ̃∥∞ ≤ γ∥Qπθ −Qπ̃∥∞ + ∥(T πθ − Tπ̃)Qπ̃∥∞
Finally, moving the ∥Qπθ −Qπ̃∥∞ term to the left-hand side and rearranging yields the final bound.
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C DATASET SPECIFICATIONS

C.1 SYNTHETIC TUMOR SIMULATION ENVIRONMENT

To facilitate the development and evaluation of dynamic treatment regimes, we designed a semi-synthetic
data generation process. This process is inspired by the Tumor Growth (TG) simulator detailed in Geng et al.
(2017), which models the longitudinal progression of tumor volume. Our simulation environment generates
single-dimensional outputs representing tumor size and incorporates two primary therapeutic interventions:
radiotherapy (Ar

t ) and chemotherapy (Ac
t ). A key modification in our work is the abstraction of these

interventions as continuous values on the interval.

The core of the simulation is a dynamical system where tumor volume at time t+ 1 is a function of its prior
state and the applied treatments. The interventions are characterized by distinct temporal dynamics: radio-
therapy exhibits an immediate effect, d(t), while chemotherapy has a cumulative and prolonged influence,
C(t). The mathematical formalization of this process is given by:

Yt+1 =

(
1 + ρ log

(
K

Yt

)
− βCC(t)− (αrd(t) + βrd(t)

2) + ϵt

)
Yt, (11)

where the parameters ρ and K govern the natural growth dynamics, and ϵt represents Gaussian noise drawn
from N(0, 0.012). To capture a more realistic, nonlinear dose-response relationship, the direct effects of the
interventions, d(t) and C(t), are modeled via cubic spline transformations (ψr and ψc) of the raw treatment
assignments:

d(t) = 2ψr(A
r
t ), (12)

C(t) = 5ψc(A
c
t), (13)

To emulate the heterogeneity observed in clinical populations, patient-specific responses to treatment are
varied. This is achieved by sampling the response parameters βC , αr, βr from a three-component truncated
normal mixture distribution, where each component represents a latent patient subtype with fixed character-
istics. Further details on parameterization are available in the accompanying anonymous repository.

A critical feature of this simulation is the incorporation of time-varying confounding, where treatment de-
cisions are influenced by the patient’s history. This is implemented through a biased assignment protocol,
where the probability of receiving a given treatment is dependent on the recent trajectory of tumor growth.
Both treatment assignments are drawn from a Beta distribution:

Ar
t ,A

c
t ∼ Beta(2σt, 2− 2σt), (14)

The shape of this distribution is dynamically adjusted by σt, which is calculated as follows:

σt = σ

(
κ

Dmax

(
D̄15(Ȳt−1)−Dmax/2

))
, (15)

Here, σ(·) is a sigmoid function, D̄15(Ȳt−1) is the average tumor dimension over the last 15 days, and
Dmax is the maximum tumor size. The parameter κ explicitly controls the strength of this confounding
effect; a κ of zero results in random assignment, while larger values create a stronger dependency on patient
history.

20



940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Finally, to assess the robustness of models to policy shifts, a distinct intervention strategy is introduced
during the testing phase. With a probability of η at each step, the standard treatment assignment is overridden
by an independent policy where Ar

t ,A
c
t are drawn from a static Beta(α, β) distribution. The complete

dataset comprises 1,000 trajectories for training, 100 for validation, and 100 for testing, with individual
trajectories running for up to 60 time steps before termination due to patient outcomes. For evaluating
model performance, we adopt the normalized target distance metric, consistent with established benchmarks
(Bica et al., 2020; Melnychuk et al., 2022), calculated relative to a maximum tumor volume of Vmax = 1150
cm³.

C.2 DETAILS ON EXPERIMENTS WITH SEMI-SYNTHETIC DATA

To simulate the complexity of real-world clinical data within a controlled environment, we designed a semi-
synthetic data generation process. This process is built upon the MIMIC-III clinical database (Johnson et al.,
2016) and leverages the standardized preprocessing pipeline from MIMIC-extract (Wang et al., 2020), which
provides hourly aggregated ICU data. To ensure data quality, we imputed missing values in the time-series
using a forward and backward filling strategy, and all continuous features were subsequently standardized.
The intended clinical task in this environment is goal-conditioned control: drive a 2D outcome vector (y1, y2)
to a desired feasible target Ytarget, with a sparse goal-reaching reward (0 upon first hit, -1 otherwise) over a
fixed planning horizon.

Our feature space is composed of 25 time-varying vital signs and 3 static covariates (gender, ethnicity, and
age). To enable the model to process this categorical information, the static features were one-hot-encoded,
resulting in a final 44-dimensional input vector (dv = 44) for each timestep.

Our data generation process extends the methodology of Schulam & Saria (2017). The core principle is to
first generate untreated outcome trajectories that evolve based on both endogenous dynamics and exogenous
influences from patient covariates. After establishing these untreated paths, treatment effects are sequentially
applied to construct the final trajectories. The model assumes a sparse dependency structure, meaning that an
outcome is influenced by a limited number of covariates and treatments, and similarly, a treatment decision
is informed by a limited set of factors.

Cohort construction and sampling. We adopted a semi-synthetic benchmark grounded in realistic clinical
dynamics to evaluate our method, strictly following the experimental protocol established by Melnychuk
et al. (2022). The study cohort was constructed based on the MIMIC-III database, from which we extracted
hourly averaged physiological measurements of adult patients as the basis for simulation. To ensure a stan-
dardized evaluation environment, we implemented the following precise inclusion criteria: (1) we excluded
all records with a length of stay shorter than 60 hours to ensure that the model has sufficient historical
information for autoregressive modeling and to reduce padding artifacts; (2) using a fixed random seed
(Seed=10), we drew a balanced cohort of N = 500 independent patient trajectories to ensure reproducibil-
ity; (3) all trajectories were strictly truncated to a fixed length of 60 hours, and missing values were imputed
using forward and backward filling. The resulting state space contains 25 real-valued dynamic vital signs
(e.g., heart rate, blood glucose) and 3 static demographic features. Based on these real physiological histo-
ries, we simulated synthetic patient outcomes and treatment effects to provide ground-truth benchmarks for
causal inference. Notably, we extend the clinical abstraction of the original benchmark: while Melnychuk
et al. (2022) simulate binary treatment decisions (i.e., presence or absence of an intervention), our framework
models continuous interventions. This setting yields a more challenging control task, requiring the agent to
determine precise continuous dosage levels in order to regulate synthetic health states driven by complex,
realistic physiological dependencies.

The simulator operates through the following steps:
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First, the process begins with the construction of a patient cohort of n individuals, sampled randomly from
ICU stays lasting at least 20 hours. We enforce fixed minimum/maximum sequence lengths and use a fixed
seed for reproducibility; splits into train/val/test are also seed-controlled.

Second, we generate dy ”untreated” outcome trajectories, Ztj,(i), for each patient. These trajectories are a
composite of three distinct sources: an endogenous component modeling patient-specific trends, an exoge-
nous component capturing dependencies on covariates, and a stochastic noise term. The formal definition
is:

Zj,(i)t = αjSB-spline(t) + αjgg
j,(i)(t)︸ ︷︷ ︸ endogenous + αf jf jZ

(
Xt(i)

)
︸ ︷︷ ︸ exogenous + εt︸︷︷︸ noise (16)

where the noise εt is drawn from N(0, 0.0052), and αjS , αjg , αjf serve as weighting parameters. The B-
spline(t) component is drawn from a mixture of three cubic splines, while the patient-specific function
gj,(i)(·) is drawn from a Gaussian Process with a Matérn kernel. The covariate-dependent function f jZ(·) is
approximated using random Fourier features (RFF).

Third, we sequentially simulate da continuous treatments Alt on the interval (0,1). The assignment of these
treatments is confounded by both a subset of current time-varying covariates (through the random function
f lY (Xt)) and the historical average of previously treated outcomes over a window Tl (ĀTl

(Ȳt−1)). These
factors are integrated within a sigmoid function to yield a base probability, ptl. This probability, along with a
concentration parameter c, then defines a Beta distribution from which the final continuous treatment value,
Alt, is drawn. The process is formalized as:

plt = σ
(
∆l
AĀTl

(
Ȳt−1

)
+∆l

Xf
l
Y (Xt) + bl

)
Alt ∼ Beta

(
c · plt, c · (1− plt)

)
(17)

where σ(·) is the sigmoid activation, ∆l
A and ∆l

X are confounding parameters, bl is a fixed bias, c is the
base concentration parameter, and f lY (·) is sampled from an RFF approximation of a Gaussian process.

Fourth, we apply treatments to the untreated outcomes, initializing with Y1 = Z1. Each treatment is modeled
to have a lasting influence on specific outcomes. The maximal additive effect is determined by transforming
the sampled treatment value using a cubic spline function, denoted cs(·). This effect is applied over a time
window t − wl, . . . , t − 1 and is subject to an inverse-square-root decay. When multiple treatments are
active, their combined influence is determined by taking the minimum effect at each time step. The total
effect Ej(t) is modeled as:

Ej( t) =

t−1∑
i=t−wl

minl=1,...,da

(
cs(Ali) · βlj

)
√
t− i , (18)

where βlj represents the maximum effect size of treatment l on outcome j.

Fifth, the final outcome at each timestep is then synthesized by adding the aggregated treatment effect Ej(t)
to the untreated trajectory:

Yjt = Zjt + Ej(t). (19)

Sixth, the output of this simulation process is our final semi-synthetic dataset. Based on the generation
of three continuous treatments (da = 3) and two outcomes (dy = 2), the patient cohort is partitioned
into training, validation, and testing sets. In summary, the designed target variables are the 2D outcome
vector (y1, y2) and the task is to reach a specified clinically plausible target region. Cohort selection is
seeded and criteria-based; evaluation focuses on goal-conditioned planning performance under controlled
yet physiologically grounded dynamics, rather than disease-specific effect estimation.
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D HYPERPARAMETER TUNING

The hyperparameter settings for our proposed GIFT model are detailed in Table 4. We employed a random
grid search methodology to optimize these parameters. For all baseline models, including RMSN, CRN,
CT, ACTIN and VCIP, we adopted the hyperparameter optimization strategy and search ranges consistent
with those reported in their original studies. This ensures a fair and robust comparison across all evaluated
methods.

Table 4: Specified ranges for hyperparameter tuning of GIFT across various datasets.

Hyperparameter Range (tumor) Range (MIMIC-III)

Learning rate (SAC) l 5e-4, 1e-3, 2e-3 5e-4, 1e-3, 2e-3
Minibatch size 128, 256, 512, 1024 128, 256, 512, 1024
Hidden size 32, 72, 112 32, 72, 112
SAC Actor/Critic hidden layers [32], [64], [128] [32], [64], [128]
History Encoder hidden layers [32], [64], [128] [32], [64], [128]
Discount factor γ 0.5, 0.7, 0.9 0.5, 0.7, 0.9
HER future goals k 0, 3, 5 0, 3, 5
ϵ1, ϵ2 0.01,10 0.01,10
Target hit ratio [0.45, 0.5, ..., 0.9] [0.25, 0.3, ..., 0.75]
Number of epochs 15 30

E UTILIZATION OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were strategically employed throughout this research to enhance produc-
tivity and output quality. In the writing process, LLMs were utilized for text refinement and polishing,
improving the clarity, coherence, and academic tone of the manuscript while ensuring consistent writing
style and precise terminology. For data analysis, LLMs generated comprehensive analytical code including
data preprocessing routines, statistical analysis functions, and visualization scripts, which accelerated the
experimental result interpretation workflow. Additionally, during the initial research phase, LLMs assisted
in conducting literature surveys, synthesizing information from multiple sources, and identifying relevant
research directions.

F ADDITIONAL EXPERIMENTS

F.1 ANALYSIS OF GOAL ACHIEVEMENT SPARSITY.

In observational data, trajectories successfully reaching specific goals can be exceedingly rare, posing sig-
nificant challenges for policy learning. In our problem formulation (Section 3), the target region T is defined
by radius δ. The proportion of training trajectories within this region, termed “Hit Ratio,” correlates with
δ choice. This introduces a critical trade-off: smaller δ results in lower Hit Ratio, making reward signals
sparse and hindering learning. Conversely, overly large δ renders goals too lenient, leading models to learn
policies achieving high hit rates while remaining far from target Ytarget. Figure 7 illustrates model RMSE
versus Hit Ratio on both datasets, validating this trade-off.
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Figure 7: Performance evaluation of our model, presented as RMSE, on the (a) MIMIC and (b) Tumor
datasets. The comparison is made across varying Hit Ratios (the proportion of training data reaching a target
threshold) and for different values of the hyperparameter τ .

F.2 ANALYSIS OF OPTIMIZATION STRATEGIES

To investigate the impact of different optimization strategies, we compare our proposed model, GIFT, with
baselines trained under two distinct paradigms: step-level and episode-level optimization. The results on the
MIMIC-III and Tumor datasets are presented in Tables 5 through 8.

Step-level vs. Episode-level Optimization. For all baseline models (RMSN, CRN, CT, ACTIN, and VCIP),
a clear and consistent trend emerges across all datasets: episode-level optimization consistently outperforms
step-level optimization. The performance gap is particularly pronounced for longer prediction horizons
(τ ). For instance, in Table 5, the error for RMSN under the step-level strategy escalates to 2.13 ± 0.57 at
τ = 6, whereas the episode-level strategy maintains a much lower error of 0.83 ± 0.28. This suggests that
optimizing over the entire sequence trajectory (episode-level) is more effective for long-term forecasting
than the myopic, step-by-step approach, which is susceptible to the compounding of errors over time.

Superiority of GIFT. Our proposed model, GIFT, significantly surpasses all baseline models, regardless
of their optimization strategy. As evidenced by the bolded results in the tables, GIFT achieves the lowest
error across all prediction horizons and datasets. This performance advantage is not only substantial but also
grows as the prediction horizon τ increases. For example, on the Tumor dataset with κ = 4 (Table 8), GIFT’s
error at τ = 6 is 0.40±0.05, which is less than half that of the best-performing baseline, VCIP (0.87±0.26).
This demonstrates that GIFT’s inherent architecture and training mechanism provide a more robust solution,
effectively mitigating the challenges of long-term sequential forecasting without being constrained by the
choice between step-level and episode-level optimization. The results firmly establish the superiority of our
proposed approach.

F.3 IMPACT OF INFERENCE OPTIMIZATION STEPS

To investigate the impact of inference-time optimization, we analyzed model performance as a function of
optimization steps on both the MIMIC and Tumor datasets (Figures 8-12). The results reveal that the optimal
optimization strategy is highly dependent on the dataset’s characteristics.

On the MIMIC dataset, most models (e.g., RMSN, CRN, ACTIN) exhibit robust behavior: the RMSE
decreases with optimization and then converges to a stable plateau. This indicates that after reaching a
certain performance level, additional optimization steps do not degrade performance.
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Table 5: Performance comparison of GIFT and baseline models under various optimization strategies on the
MIMIC-III dataset.

Model Strategy τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

RMSN step 0.26±0.06 0.61±0.18 1.02±0.28 1.42±0.40 1.76±0.45 2.13±0.57
RMSN episode 0.25±0.07 0.39±0.13 0.50±0.17 0.60±0.20 0.70±0.21 0.83±0.28

CRN step 0.43±0.04 0.78±0.13 1.12±0.30 1.49±0.46 1.80±0.58 2.14±0.73
CRN episode 0.31±0.04 0.46±0.11 0.60±0.15 0.71±0.17 0.83±0.18 0.96±0.24

CT step 0.92±0.31 1.52±0.62 2.01±0.89 2.44±1.14 2.86±1.35 3.23±1.55
CT episode 0.62±0.17 1.06±0.32 1.42±0.47 1.72±0.60 1.98±0.73 2.20±0.83

ACTIN step 0.24±0.20 0.62±0.38 1.12±0.51 1.56±0.60 2.01±0.74 2.45±0.85
ACTIN episode 0.28±0.19 0.57±0.34 0.79±0.50 0.98±0.64 1.11±0.74 1.23±0.81

VCIP step 0.41±0.19 0.54±0.24 0.60±0.25 0.63±0.26 0.66±0.26 0.68±0.25
VCIP episode 0.41±0.19 0.51±0.22 0.57±0.21 0.60±0.20 0.62±0.18 0.67±0.22

GIFT 0.24±0.10 0.31±0.13 0.33±0.14 0.37±0.16 0.38±0.17 0.39±0.18

Table 6: Performance comparison of GIFT and baseline models under various optimization strategies on the
Tumor dataset (κ = 2).

Model Strategy τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

RMSN step 0.15±0.05 0.27±0.09 0.36±0.11 0.44±0.15 0.51±0.19 0.58±0.24
RMSN episode 0.09±0.03 0.14±0.05 0.18±0.06 0.21±0.07 0.25±0.09 0.28±0.12

CRN step 0.16±0.05 0.27±0.10 0.37±0.12 0.44±0.16 0.50±0.19 0.56±0.24
CRN episode 0.10±0.03 0.15±0.06 0.19±0.07 0.23±0.08 0.26±0.10 0.30±0.12

CT step 0.17±0.04 0.29±0.09 0.38±0.12 0.45±0.15 0.51±0.18 0.57±0.23
CT episode 0.11±0.03 0.17±0.06 0.21±0.07 0.25±0.09 0.29±0.11 0.34±0.16

ACTIN step 0.18±0.06 0.32±0.14 0.41±0.20 0.47±0.24 0.53±0.28 0.59±0.32
ACTIN episode 0.14±0.06 0.22±0.09 0.29±0.11 0.34±0.13 0.41±0.15 0.46±0.19

VCIP step 0.10±0.03 0.15±0.05 0.19±0.06 0.22±0.08 0.26±0.10 0.29±0.12
VCIP episode 0.10±0.03 0.16±0.05 0.18±0.05 0.21±0.07 0.25±0.10 0.28±0.13

GIFT 0.08±0.02 0.10±0.03 0.11±0.04 0.12±0.04 0.13±0.05 0.14±0.05

In stark contrast, on the Tumor dataset, the dominant trend for most models (RMSN, CRN, VCIP) is a
distinct U-shaped performance curve. The RMSE initially improves but then degrades with excessive
optimization, highlighting a significant risk of overfitting. This makes the precise number of optimization
steps a critical hyperparameter for this dataset.

A consistent finding across both datasets is the instability of the CT model, which performs poorly with
increased optimization, especially for long-term prediction. Conversely, the ACTIN model consistently
showed the most robust behavior on both datasets. In conclusion, while inference-time optimization is a
powerful technique, its application requires careful tuning tailored to the specific model and dataset to avoid
potential overfitting.
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Table 7: Performance comparison of GIFT and baseline models under various optimization strategies on the
Tumor dataset (κ = 3).

Model Strategy τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

RMSN step 0.23±0.04 0.40±0.06 0.57±0.08 0.73±0.12 0.86±0.17 0.99±0.24
RMSN episode 0.12±0.02 0.21±0.03 0.29±0.06 0.35±0.10 0.41±0.12 0.46±0.14

CRN step 0.33±0.06 0.55±0.08 0.75±0.13 0.89±0.15 1.01±0.22 1.10±0.24
CRN episode 0.18±0.05 0.28±0.07 0.39±0.10 0.48±0.11 0.56±0.15 0.63±0.16

CT step 0.34±0.08 0.59±0.12 0.80±0.19 0.94±0.21 1.07±0.28 1.15±0.30
CT episode 0.21±0.06 0.33±0.05 0.45±0.08 0.55±0.09 0.65±0.13 0.72±0.13

ACTIN step 0.29±0.04 0.45±0.09 0.59±0.09 0.68±0.10 0.76±0.11 0.84±0.14
ACTIN episode 0.29±0.04 0.39±0.03 0.51±0.03 0.61±0.04 0.71±0.07 0.78±0.09

VCIP step 0.16±0.04 0.23±0.04 0.29±0.06 0.33±0.09 0.39±0.11 0.40±0.08
VCIP episode 0.16±0.04 0.22±0.04 0.29±0.07 0.33±0.08 0.38±0.10 0.41±0.09

GIFT 0.11±0.02 0.14±0.04 0.17±0.04 0.20±0.05 0.21±0.06 0.23±0.06

Table 8: Performance comparison of GIFT and baseline models under various optimization strategies on the
Tumor dataset (κ = 4).

Model Strategy τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

RMSN step 0.59±0.09 1.04±0.19 1.39±0.18 1.69±0.19 1.93±0.20 2.10±0.22
RMSN episode 0.29±0.05 0.45±0.08 0.61±0.13 0.75±0.16 0.91±0.20 1.01±0.21

CRN step 0.62±0.20 1.09±0.27 1.42±0.30 1.70±0.30 1.94±0.28 2.11±0.27
CRN episode 0.34±0.14 0.59±0.26 0.77±0.37 0.92±0.45 1.07±0.50 1.14±0.54

CT step 0.66±0.18 1.13±0.28 1.52±0.34 1.80±0.33 2.02±0.36 2.16±0.32
CT episode 0.40±0.16 0.68±0.26 0.98±0.36 1.20±0.40 1.40±0.41 1.57±0.44

ACTIN step 0.50±0.16 0.87±0.31 1.13±0.37 1.34±0.38 1.55±0.41 1.70±0.38
ACTIN episode 0.50±0.15 0.85±0.29 1.08±0.35 1.27±0.39 1.45±0.44 1.60±0.50

VCIP step 0.34±0.07 0.48±0.12 0.60±0.18 0.69±0.19 0.78±0.23 0.87±0.26
VCIP episode 0.34±0.07 0.46±0.11 0.58±0.18 0.69±0.19 0.81±0.23 0.87±0.24

GIFT 0.25±0.05 0.32±0.08 0.35±0.05 0.38±0.04 0.39±0.04 0.40±0.05

G BASELINE DETAILS

G.1 STABLE CONTRASTIVE RL (SCRL) FOR SCTA

We adopt Stable Contrastive RL (SCRL) (Zheng et al., 2024) as a general offline GCRL baseline and in-
stantiate it for the SCTA task. The core idea is to construct a discriminative reachability score between
“history–action” and “goal,” and use this score to directly drive goal-conditioned policy learning, thereby
obtaining a closed-loop decision maker from offline data.

Concretely, a variable-length history (past outcomes, interventions, static features, and optional vitals) is
encoded into a fixed-dimensional history representation zh, and the target outcome vector is mapped to a
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Figure 8: Performance of the RMSN model with the episode-level optimization strategy as a function of
the number of inference optimization steps. The plots show the RMSE for different forecast horizons (τ ∈
{1, 2, 4, 6}) on (a) the MIMIC dataset and (b) the Tumor dataset (κ = 4).
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Figure 9: Performance of the CRN model with the episode-level optimization strategy as a function of the
number of inference optimization steps. The plots show the RMSE for different forecast horizons (τ ∈
{1, 2, 4, 6}) on (a) the MIMIC dataset and (b) the Tumor dataset (κ = 4).

goal representation zg . Two mappings, ϕ(s, a) and ψ(g), project “history–action” and “goal” into a shared
embedding space, where normalized similarity (e.g., cosine) measures reachability:

sim(ϕ, ψ) =
〈

ϕ
∥ϕ∥ ,

ψ
∥ψ∥

〉
.

The critic is trained with temperature-scaled InfoNCE/cross-entropy (positives are matched (ϕ, ψ) pairs;
negatives come from in-batch pairing and a queue-based memory bank):

Lcritic = CE
(
ϕψ⊤

η

)
,

where η is the temperature. The policy takes (zh, zg) as input and outputs continuous interventions, max-
imizing the similarity between policy-induced actions and the goal embedding while adding a behavior
cloning (BC) regularizer to suppress out-of-distribution actions in the offline setting:

Lactor-ctr = −E
[
sim

(
ϕ(zh, π(zh, zg)), ψ(zg)

)]
,

Lactor = Lactor-ctr + λBC ·
(
− E[log π(adata | zh, zg)]

)
.

27



1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Inference Optimization Steps

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
R

M
SE

τ = 1

τ = 2

τ = 4

τ = 6

(a) MIMIC Dataset

0 50 100 150 200 250 300
Inference Optimization Steps

0.5

1.0

1.5

2.0

R
M

SE
(N

or
m

al
iz

ed
)

τ = 1

τ = 2

τ = 4

τ = 6

(b) Tumor Dataset (κ = 4)

Figure 10: Performance of the CT model with the episode-level optimization strategy as a function of the
number of inference optimization steps. The plots show the RMSE for different forecast horizons (τ ∈
{1, 2, 4, 6}) on (a) the MIMIC dataset and (b) the Tumor dataset (κ = 4).
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Figure 11: Performance of the ACTIN model with the episode-level optimization strategy as a function
of the number of inference optimization steps. The plots show the RMSE for different forecast horizons
(τ ∈ {1, 2, 4, 6}) on (a) the MIMIC dataset and (b) the Tumor dataset (κ = 4).

To improve stability and generalization, following Zheng et al. (2024), we use large-batch training, layer
normalization, lightweight data augmentation, and small-range cold-start initialization.

Training proceeds as purely offline alternating optimization: first update the critic (minimize Lcritic and
maintain the negative sample queue), then update the policy (minimize Lactor). At inference time, given
“history and goal,” the policy outputs actions in a closed-loop manner, rolling the history forward with
environment/simulator feedback until reaching the goal or the planning horizon. Compared with open-loop
plans that rely on test-time search, the closed-loop policy has lower inference latency.

Regarding empirical performance, the results reported in Tables 1 and 2 show that, on the tumor dataset
(κ=4, different intervention strategies between train and test) and the semi-synthetic MIMIC dataset (same
strategy between train and test), SCRL attains higher terminal RMSE than GIFT, with the gap widening as
the planning horizon τ increases. A plausible explanation is that, in TCTA, the goal is a low-dimensional
clinical target rather than a “future observation,” so contrastive alignment tends to degenerate into static sim-
ilarity and struggles to capture the temporal signal of “dynamical reachability.” In addition, SCTA requires
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Figure 12: Performance of the VCIP model with the episode-level optimization strategy as a function of
the number of inference optimization steps. The plots show the RMSE for different forecast horizons (τ ∈
{1, 2, 4, 6}) on (a) the MIMIC dataset and (b) the Tumor dataset (κ = 4).

handling both causal identifiability and robust estimation under offline distribution shift (πb→ πθ), which
goes beyond the typical assumptions of general GCRL.

G.2 DEFINITIONS OF OPTIMIZATION STRATEGIES

As mentioned in the main text, for baseline models incapable of directly outputting decisions, we devised
two optimization strategies to find the optimal treatment sequence during the inference phase. This section
provides a detailed description of their definitions, objective functions, and algorithmic implementations.

Step-level Optimization is an online, greedy approach. At each decision-making time step, the model
employs an iterative optimization process (as shown in Algorithm 1) to determine the optimal action for the
current step. The objective is to identify the action that brings the subsequent prediction closest to the final
target.

Episode-level Optimization is an offline, global method. This strategy treats all future τ treatment actions
as a complete sequence and jointly optimizes this entire sequence via gradient descent (as detailed in Algo-
rithm 2). The goal is to discover the full sequence of actions that minimizes the discrepancy between the
final predicted outcome and the target.

G.3 OBJECTIVE FUNCTIONS

The core of both optimization strategies is the minimization of an objective function,
calculate objective, whose specific definition varies depending on the model paradigm.

For VCIP, this function computes the negative of the Evidence Lower Bound (ELBO). The optimization
goal is to maximize the conditional likelihood of achieving the target, which is equivalent to minimizing the
following objective function:

LVCIP(at,τ ) = −ELBO(Ytarget|Ht,at,τ ) (20)

For other baselines (RMSN, CRN, CT, and ACTIN), the function calculates the Mean Squared Error (MSE)
between the predicted counterfactual outcome and the target. The objective is to directly minimize the
distance between them:

LBaselines(at,τ ) = ∥Ŷ [at,τ ]− Ytarget∥22 (21)
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G.4 ALGORITHMS

Algorithm 1 Step-level Optimization Strategy for Baselines

Require: Baseline model M , initial history h̄t, target ytarget, number of decision steps τ , real environ-
ment/simulator E

Require: Optimization steps per action K, learning rate α
1: Initialize the full treatment sequence at,τ ← ∅
2: h̄current ← h̄t
3: for k = 0, . . . , τ − 1 do
4: Randomly initialize action for the current step ak
5: for step = 1 to K do ▷ Find the optimal action for the current step
6: L ← calculate objective(M, h̄current,ak,ytarget)
7: ak ← ak − α∇ak

L
8: end for
9: a∗ ← ak ▷ Obtain the optimal action for the current step

10: at,τ ← at,τ ∪ {a∗}
11: (xnext,ynext)← E .step(a∗) ▷ Execute action and get the next state from the real system
12: h̄current ← update history(h̄current,a

∗,xnext,ynext) ▷ Update history with real feedback
13: end for
14: return at,τ

Algorithm 2 Episode-level Optimization Strategy for Baselines

Require: Baseline model M , initial history h̄t, target ytarget, number of decision steps τ , learning rate α,
number of optimization steps K

1: Randomly initialize the treatment sequence at,τ
2: for step = 1 to K do
3: L ← calculate objective(M, h̄t,at,τ ,ytarget) ▷ Calculate the global objective
4: at,τ ← at,τ − α∇at,τ

L ▷ Update the entire treatment sequence via gradient descent
5: end for
6: return at,τ
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