

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 TARGET-DRIVEN POLICY OPTIMIZATION FOR SEQUENTIAL COUNTERFACTUAL OUTCOME CONTROL

Anonymous authors

Paper under double-blind review

ABSTRACT

Identifying optimal intervention sequences from offline data to guide temporal systems toward target outcomes is a critical challenge with profound implications for fields like personalized medicine. While existing methods are mostly evaluated in offline settings, practical applications demand online, adaptive strategies that can respond in real-time. To address this, we propose **Goal-conditioned Intervention via Factual-Targeted Training (GIFT)**, a novel framework for learning sequential intervention policies from observational data. GIFT learns a goal-conditioned policy by rescaling rewards with clipped importance weights, stabilizing learning and steering toward the target. Under standard assumptions, the induced operator has a unique fixed point and our procedure converges to it. We also bound the bias from clipping and approximation via the gap to the policy’s true value. Experiments show GIFT significantly outperforms existing methods in creating goal-conditioned policies for online deployment.

1 INTRODUCTION

A significant challenge in personalized medicine is to leverage observational data, such as Electronic Health Records (EHRs), to devise effective intervention strategies that steer a patient’s physiological state towards a desired target (Figure 1a). This necessitates a shift from merely predicting counterfactual outcomes to proactively planning a sequence of interventions to achieve the goal.

Recent research (Wang et al., 2025) has formalized this as **Sequential Counterfactual Target Achievement (SCTA)**, solved using counterfactual estimation (Lim et al., 2018; Bica et al., 2020; Melnychuk et al., 2022; Wang et al., 2024) or maximizing target achievement likelihood (Wang et al., 2025). These approaches rely on offline planning, where optimal intervention sequences are pre-computed via complex optimization (Figure 1b). However, this paradigm lacks real-time adaptability and suffers from high inference costs.

To address offline planning’s limitations in adaptivity and efficiency, this study shifts from fixed intervention sequences to learning a real-time reactive policy. The problem is formulated as a goal-conditioned Markov Decision Process (MDP), with state defined by historical trajectory and goal, actions as interventions, and rewards tied to goal attainment (Figure 1c). The objective is to learn an optimal policy from observational data that efficiently guides the system to its target¹.

However, learning a policy for online deployment from fixed offline observational data encounters two key obstacles, which are distributional shift and limited success signals in the data (Levine et al., 2020). First is distributional shift, which arises when the learned policy explores state-action spaces not covered by the dataset, leading to value estimation errors and training instability (Fujimoto et al., 2019; Kumar et al., 2020). Second is sparse rewards, where success signals for goal achievement appear infrequently in

¹“Target” and “goal” may be used interchangeably when unambiguous; in clinical contexts we prefer “target”.

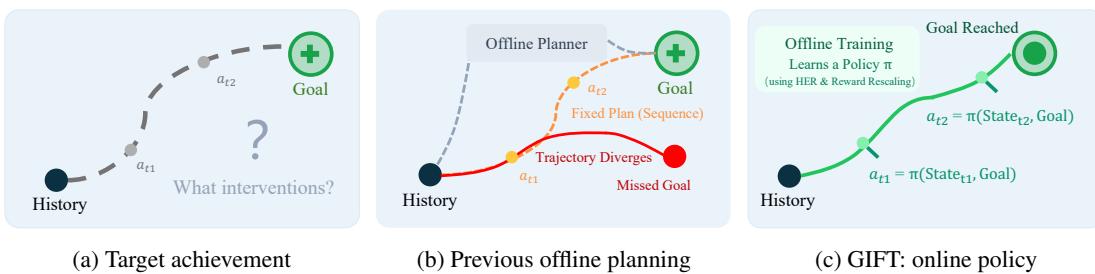


Figure 1: **Conceptual comparison of intervention paradigms.** (a) The problem of finding intervention sequences to guide a system toward a desired target. (b) The previous offline planning paradigm pre-computes a fixed action sequence. This static plan may fail as the trajectory diverges. (c) Our Approach, GIFT, learns a goal-conditioned online policy that dynamically adjusts actions to successfully reach the target.

the observational data, making it difficult for the model to discover useful behavioral patterns and thereby severely hindering the training process Sutton et al. (1998).

To address the aforementioned challenges, we propose the Goal-conditioned Intervention via Factual-Targeted Training (GIFT) approach, a novel framework specifically designed for learning goal-conditioned intervention strategies from observational data. GIFT addresses key issues through two core mechanisms. To tackle the sparse reward problem, GIFT incorporates the Hindsight Experience Replay (HER) mechanism (Andrychowicz et al., 2017), which relabels actually achieved future states in trajectories as virtual goals, transforming failed experiences into successful learning samples and alleviating data sparsity. To address the distribution shift problem, GIFT designs a reward rescaling mechanism that dynamically adjusts reward signals through bounded, clipped importance sampling weights, guiding value learning toward the evaluation policy distribution while suppressing the high variance issues of traditional methods, achieving a balance between bias and variance and stabilizing the offline training process. The main contributions of this work are summarized as follows:

- To the best of our knowledge, this is the first formulation of **SCTA** as a goal-conditioned MDP, highlighting its real-world significance.
- We propose the GIFT framework, which combines HER and reward rescaling mechanisms to learn goal-conditioned policies from offline data efficiently and stably, with theoretical guarantees including convergence proof and performance gap upper bound analysis.
- Experiments on synthetic and semi-synthetic datasets show GIFT significantly outperforms existing baselines in effectiveness, generalization, and efficiency.

2 RELATED WORK

Offline Planning vs. Goal-Conditioned Policies. The dominant paradigm for this problem is a two-stage “learn-then-plan” approach (Wang et al., 2025). First, a world model is trained on observational data to predict outcomes under hypothetical interventions. This line of work evolved from classical statistical methods (Robins, 1986; Robins et al., 2000; Fitzmaurice et al., 2008; Mortimer et al., 2005) to modern deep learning models for counterfactual estimation (Lim et al., 2018; Bica et al., 2020; Melnychuk et al., 2022; Wang et al., 2024) and likelihood maximization (Wang et al., 2025). A key innovation in this area was the use of the Transformer architecture (Vaswani et al., 2017) to better capture long-range dependencies (Hochreiter et al., 2001). However, all methods under this paradigm share a fundamental limitation: at inference time, they

094 require a costly optimization search to find a static, open-loop plan. Such plans are brittle to environmental
 095 stochasticity and ill-suited for real-time adaptation.
 096

097 We frame the problem using goal-conditioned MDP to learn a reactive policy $\pi(a | s, g)$. Unlike typical
 098 robotics applications which use online simulators and methods like Hindsight Experience Replay (HER)
 099 (Andrychowicz et al., 2017), our work learns from a fixed, offline dataset. Adapting online methods to static
 100 data is challenging due to distributional shift (Levine et al., 2020) and sparse rewards. To our knowledge,
 101 we are the first to formulate **SCTA** as an offline, goal-conditioned RL task that learns an adaptive policy
 102 from such data. **Compared with general goal-conditioned RL in robotics and vision, which often assumes
 103 unconfounded data and focuses on success probability or shortest-path style objectives (Eysenbach et al.,
 104 2020; Akella et al., 2023; Park et al., 2023; Zheng et al., 2024), our setting focuses on SCTA on observational
 105 cohorts where causal identifiability and offline distribution shift are central. GIFT addresses these issues by
 106 combining goal conditioning with HER and clipped-importance reward rescaling, yielding a modified soft
 107 Bellman operator with contraction and explicit bias bounds.**

108 A comprehensive review, comparing offline planning and goal-conditioned policy paradigms and discussing
 109 distinctions from Dynamic Treatment Regimes (Murphy, 2003), is provided in the Appendix.
 110

3 PROBLEM FORMULATION

113 We assume access to longitudinal observational dataset \mathcal{D} comprising records from N subjects: $\mathcal{D} =$
 114 $\left\{ \{\mathbf{X}_t^{(i)}, \mathbf{A}_t^{(i)}, \mathbf{Y}_t^{(i)}\}_{t=1}^{T^{(i)}} \cup \{\mathbf{V}^{(i)}\} \right\}_{i=1}^N$. Each trajectory consists of sequential measurements over $T^{(i)}$ time
 115 points. At time t , $\mathbf{X}_t \in \mathcal{X}$ represents time-varying covariates, $\mathbf{A}_t \in [0, 1]^d$ denotes continuous intervention,
 116 and $\mathbf{Y}_t \in \mathcal{Y}$ indicates measured outcome. Time-invariant characteristics are $\mathbf{V} \in \mathcal{V}$. We drop subject
 117 indicator (i) for simplicity.
 118

119 The problem is formulated as a finite-horizon MDP starting at time t . The state is $\Psi_t = (\bar{\mathbf{H}}_t, \mathbf{Y}_{\text{target}})$, where
 120 $\bar{\mathbf{H}}_t = (\bar{\mathbf{X}}_t, \bar{\mathbf{A}}_{t-1}, \bar{\mathbf{Y}}_t, \mathbf{V})$ is the subject's full history. The bar notation represents sequences up to time t :
 121 $\bar{\mathbf{X}}_t = (\mathbf{X}_1, \dots, \mathbf{X}_t)$, $\bar{\mathbf{Y}}_t = (\mathbf{Y}_1, \dots, \mathbf{Y}_t)$, and $\bar{\mathbf{A}}_{t-1} = (\mathbf{A}_1, \dots, \mathbf{A}_{t-1})$. $\mathbf{Y}_{\text{target}}$ is the desired outcome.
 122 Given target region $\mathcal{T} = \{\mathbf{y} : \|\mathbf{y} - \mathbf{Y}_{\text{target}}\| \leq \delta\}$, the reward function penalizes each step before reaching
 123 the target. For the k -th step into the future (at absolute time $t+k$), the reward is:
 124

$$r_{t+k} = \begin{cases} 0, & \text{if } \mathbf{Y}_{t+k+1} \in \mathcal{T} \text{ and it is the first hit since time } t \\ -1, & \text{otherwise.} \end{cases} \quad (1)$$

125 A policy $\pi = (\pi_t, \dots, \pi_{t+\tau_{\max}-1})$ is a sequence of decision rules for this future horizon. The value of a
 126 policy π given the initial state $\psi_t = (\bar{\mathbf{h}}_t, \mathbf{y}_{\text{target}})$ is the expected sum of discounted future rewards:
 127

$$V^\pi(\psi_t) = \mathbb{E}_\pi \left[\sum_{k=0}^{\tau_{\max}-1} \gamma^k r_{t+k} \mid \Psi_t = \psi_t \right], \quad (2)$$

128 where $\gamma \in (0, 1)$ is a discount factor. The objective is to find the optimal policy π^* that maximizes this value
 129 function. This policy is composed of optimal actions at each future step $k \in [0, \tau_{\max} - 1]$, derived from the
 130 optimal action-value function Q_{t+k}^* :
 131

$$\pi_{t+k}^*(\psi_{t+k}) = \text{argmax}_{\mathbf{a} \in \mathcal{A}} Q_{t+k}^*(\psi_{t+k}, \mathbf{a}). \quad (3)$$

132 Learning this policy from observational data relies on standard causal inference assumptions, including
 133 consistency, sequential ignorability, and positivity; see Appendix B for details.
 134

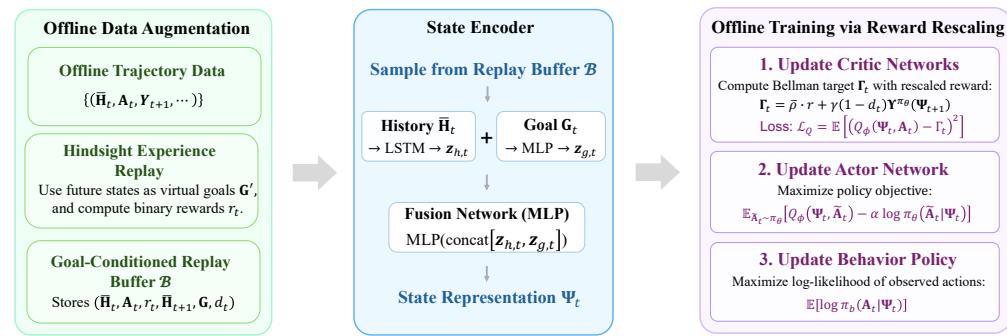


Figure 2: The overall architecture of the GIFT framework, encompassing three main stages: offline data preprocessing, state encoding, and the SAC training loop.

4 METHODOLOGY

4.1 STATE REPRESENTATION AND POLICY NETWORK ARCHITECTURE

GIFT learns dynamic intervention strategies by combining goal-conditioning with offline reinforcement learning (RL). The framework consists of three stages (Figure 2): (1) data augmentation using Hindsight Experience Replay; (2) state encoding fusing patient history and goals; and (3) SAC training with reward rescaling.

State Representation. We define the state at decision time t as $\Psi_t = (\mathbf{S}_t, \mathbf{G}_t)$, where $\mathbf{S}_t = \bar{\mathbf{H}}_t$ represents the patient’s complete history and $\mathbf{G}_t = \mathbf{Y}_{\text{target}}$ represents the desired outcome. Concretely, $\bar{\mathbf{H}}_t$ is a variable-length sequence composed of past outcomes $\mathbf{Y}_{1:t}$, past interventions $\mathbf{A}_{1:t-1}$ (time-aligned), static covariates \mathbf{V} repeated along time, and optionally vitals $\mathbf{X}_{1:t}$. We pad/pack the sequence and feed it to an LSTM to obtain a history embedding $\mathbf{z}_{h,t}$. The goal $\mathbf{Y}_{\text{target}}$ is mapped by a small MLP to a goal embedding $\mathbf{z}_{g,t}$, then concatenated with $\mathbf{z}_{h,t}$ and passed through a fusion MLP to produce the final state vector \mathbf{z}_t .

Policy Architecture. We employ SAC with actor network π_θ mapping composite state $\psi_t = (\mathbf{s}_t, \mathbf{g}_t)$ to stochastic policy parameters, and critic network $Q\phi$ estimating soft action-value function $Q(\psi_t, \mathbf{a}_t)$. The actor takes \mathbf{z}_t and outputs a continuous intervention $\mathbf{a}_t \in (0, 1)^{d_a}$ via a sigmoid-squashed reparameterized Gaussian (the double- Q critic consumes $[\mathbf{z}_t, \mathbf{a}_t]$). The intended network output is this normalized treatment vector. At prediction time, the policy is rolled out autoregressively: given the goal and current state, the network produces the next action \mathbf{a}_{t+1} .

4.2 HINDSIGHT EXPERIENCE REPLAY FOR OFFLINE DATA AUGMENTATION

To address the issue of sparse rewards, we adopt Hindsight Experience Replay (HER). The theoretical foundation of HER relies on a strict assumption of goal-independent dynamics.

Assumption 4.1 (Decomposed Goal-Independent Dynamics). *Physical state evolution depends only on the current state and action, independent of the goal, while the goal remains constant within transitions. The state transition probability can be decomposed as:*

$$P((\mathbf{S}_{t+1}, \mathbf{G}_{t+1}) = (\mathbf{s}', \mathbf{g}') | \mathbf{S}_t = \mathbf{s}, \mathbf{G}_t = \mathbf{g}, \mathbf{A}_t = \mathbf{a}) = P(\mathbf{S}_{t+1} = \mathbf{s}' | \mathbf{S}_t = \mathbf{s}, \mathbf{A}_t = \mathbf{a}) \cdot \mathbf{1}[\mathbf{g}' = \mathbf{g}]$$

188 Assumption 4.1 is plausible in dynamic intervention settings. In diabetes management, a patient’s blood
 189 glucose response to insulin follows physiological laws, independent of the physician’s long-term control
 190 objective. This independence allows us to generate new experiences by retrospectively relabeling goals.
 191

192 For an observed transition $(\mathbf{s}_t, \mathbf{a}_t, r_t, \mathbf{s}_{t+1})$, we designate a hindsight goal \mathbf{g}' sampled from future achieved
 193 outcomes of the same trajectory and compute r' by recomputing the goal-conditioned reward, constructing
 194 $((\mathbf{s}_t, \mathbf{g}'), \mathbf{a}_t, r', (\mathbf{s}_{t+1}, \mathbf{g}'))$ (optionally sampling k goals per transition) for data augmentation.
 195

196 4.3 OFFLINE POLICY LEARNING VIA REWARD RESCALING

197 Training an RL agent on a fixed observational dataset is susceptible to distributional shift Levine et al.
 198 (2020). We employ a modified Bellman target to stabilize the learning process.
 199

200 4.3.1 INTUITION OF REWARD RESCALING AS A HEURISTIC

201 Our core modification is to multiply the immediate reward $r(\psi, \mathbf{a})$ by a clipped importance sampling ratio
 202 $\bar{\rho}(\psi, \mathbf{a})$. Specifically, we first define the importance sampling ratio $\rho(\psi, \mathbf{a}) = \frac{\pi_\theta(\mathbf{a}|\psi)}{\pi_b(\mathbf{a}|\psi)}$ and then clip it to a
 203 predefined interval $[\epsilon_1, \epsilon_2]$ to obtain $\bar{\rho}(\psi, \mathbf{a}) = \text{clip}(\rho(\psi, \mathbf{a}), \epsilon_1, \epsilon_2)$.
 204

205 Intuitively, this operation optimizes a learning problem with a “rescaled reward” without altering environment
 206 dynamics. When the ratio exceeds 1, the actor policy prefers the action more than the behavior policy,
 207 amplifying its reward; the opposite occurs when the ratio is below 1. This skews the Bellman update target
 208 toward the actor policy’s action distribution, counteracting learning signal bias from distribution mismatch.
 209

210 This method’s advantage is that weight adjustment within a limited range and application to single-step
 211 rewards avoids exploding variance from trajectory-level importance sampling. The evaluation operator re-
 212 mains a contraction, ensuring stable training. The trade-off introduces controllable approximation bias.
 213 Therefore, reward scaling provides a low-variance, bias-controlled policy-distribution re-weighting mecha-
 214 nism. We also consider Conservative Q-Learning (CQL (Kumar et al., 2020)) for distributional shift, which
 215 imposes critic-side conservatism via a log-sum-exp penalty on out-of-distribution actions. This contrasts
 216 with our clipped reward rescaling; empirical comparisons appear in Sec. 5.4.

217 4.3.2 FORMAL ANALYSIS AND THEORETICAL GUARANTEES

218 Our theoretical analysis aims to characterize the convergence and bias bounds of the algorithm under this
 219 heuristic modification, with its validity resting on the following assumptions.
 220

221 **Assumption 4.2** (Bounded Function Class (Glivenko–Cantelli)). *The function class \mathcal{Q} we use to approxi-
 222 mate the Q -function is a bounded P -Glivenko–Cantelli class.*

223 As previously described, we use the policy-scaled reward function $\tilde{r}(\psi, \mathbf{a}) = \bar{\rho}(\psi, \mathbf{a})r(\psi, \mathbf{a})$. Based on
 224 this, we proceed with the formal analysis.

225 **Definition 4.1** (Soft Policy Evaluation and Modified Bellman Operator). *For any Q -function $Q \in \mathcal{Q}$, we
 226 define the following operators:*

$$227 \text{Next-state Soft Value: } \Upsilon^{\pi_\theta}(Q)(\psi') = \mathbb{E}_{\mathbf{A}' \sim \pi_\theta(\cdot|\psi')}[Q(\psi', \mathbf{A}') - \alpha \log \pi_\theta(\mathbf{A}'|\psi')],$$

$$229 \text{Standard Operator: } (\mathcal{T}^{\pi_\theta} Q)(\psi, \mathbf{a}) = r(\psi, \mathbf{a}) + \gamma \mathbb{E}_{\Psi' \sim P(\cdot|\psi, \mathbf{a})}[(1 - d(\Psi'))\Upsilon^{\pi_\theta}(Q)(\Psi')],$$

$$230 \text{Modified Operator: } (\mathcal{T}_{\tilde{\pi}} Q)(\psi, \mathbf{a}) = \tilde{r}(\psi, \mathbf{a}) + \gamma \mathbb{E}_{\Psi' \sim P(\cdot|\psi, \mathbf{a})}[(1 - d(\Psi'))\Upsilon^{\pi_\theta}(Q)(\Psi')],$$

231 where $d(\psi') = 1$ if the episode terminates at state ψ' , and 0 otherwise.
 232

233 To justify that our operator-based analysis is grounded in observable quantities, we first establish that the
 234 soft Bellman operator is causally identifiable from the observational data under standard assumptions.

235 **Proposition 4.1** (Causal Identifiability of the Soft Bellman Operator). *Assume Assumption 4.1 (goal-
236 independent dynamics) and the standard assumptions detailed in Appendix B. Then, for any bounded $Q \in \mathcal{Q}$
237 and any state-action pair (ψ, a) at decision time t ,*

$$239 \quad (\mathcal{T}^{\pi_\theta} Q)(\psi, a) = r(\psi, a) + \gamma \mathbb{E}_{\Psi' \sim P(\cdot | \psi, a)}^{do(\pi_\theta)} \left[(1 - d(\Psi')) \Upsilon^{\pi_\theta}(Q)(\Psi') \right], \quad (4)$$

$$240 \quad = r(\psi, a) + \gamma \mathbb{E}_{\Psi' \sim P_{obs}(\cdot | \tilde{\mathbf{H}}_t, \mathbf{A}_t = a)} \left[(1 - d(\Psi')) \mathbb{E}_{\mathbf{A}' \sim \pi_b(\cdot | \Psi')} [\rho(\Psi', \mathbf{A}') (Q(\Psi', \mathbf{A}')) \right. \\ 242 \quad \left. - \alpha \log \pi_\theta(\mathbf{A}' | \Psi')] \right]. \quad (5)$$

244 *Equation 4 is the soft Bellman evaluation operator under the interventional regime $do(\pi_\theta)$; Equation 5
245 shows that this interventional quantity is identifiable from the observational distribution P_{obs} via one-step
246 importance weighting with respect to the behavior policy π_b .*

247 With identifiability established, we now analyze the modified operator’s contraction and the resulting convergence and bias bounds, which quantify the effect of reward rescaling via the clipped ratio.

250 **Theorem 4.2** (Contraction Property of the Modified Operator). *Let $\mathcal{T}_{\tilde{\pi}}$ be the modified Bellman operator.
251 For any pair of bounded Q -functions Q_1 and Q_2 , $\mathcal{T}_{\tilde{\pi}}$ satisfies:*

$$252 \quad \|\mathcal{T}_{\tilde{\pi}} Q_1 - \mathcal{T}_{\tilde{\pi}} Q_2\|_\infty \leq \gamma \|Q_1 - Q_2\|_\infty$$

254 *Therefore, $\mathcal{T}_{\tilde{\pi}}$ is a contraction mapping with respect to the infinity norm $\|\cdot\|_\infty$ with a factor of γ .*

255 **Theorem 4.3** (Convergence and Asymptotic Performance Bound). *Under Assumptions 4.1–4.2, the Q -
256 learning process converges to the unique fixed point $Q^{\tilde{\pi}}$ of the modified operator $\mathcal{T}_{\tilde{\pi}}$ (or to its projected
257 fixed point in the case of function approximation). The gap between this fixed point and the true soft Q -
258 function Q^{π_θ} of policy π_θ under the original reward r is bounded as follows:*

$$259 \quad \|Q^{\pi_\theta} - Q^{\tilde{\pi}}\|_\infty \leq \frac{1}{1 - \gamma} \|(\mathcal{T}^{\pi_\theta} - \mathcal{T}_{\tilde{\pi}}) Q^{\tilde{\pi}}\|_\infty$$

262 This bound clearly indicates that the gap between the solution $Q^{\tilde{\pi}}$ found by our algorithm and the true Q -
263 value Q^{π_θ} of the actor policy is upper-bounded by the difference between the two operators evaluated at
264 the fixed point $Q^{\tilde{\pi}}$. This difference, $\|(\mathcal{T}^{\pi_\theta} - \mathcal{T}_{\tilde{\pi}}) Q^{\tilde{\pi}}\|_\infty = \sup_{\psi, a} |r(\psi, a)(1 - \rho(\psi, a))|$, is precisely the
265 systematic bias introduced by our heuristic reward rescaling.

267 5 EXPERIMENTS

268 5.1 EXPERIMENTAL SETUP

271 This section details the datasets, baseline models, and evaluation metrics used in our experiments to provide
272 context for the subsequent analysis.

273 **Datasets.** We utilize two datasets for a comprehensive evaluation. The **Tumor** dataset is a classic simulated
274 dataset based on a pharmacokinetic-pharmacodynamic framework (Geng et al., 2017). It allows us
275 to control the influence of intervention history via a confounding parameter κ ; larger κ means more severe
276 confounding, where past (including unobserved) factors jointly affect treatment and outcomes, increasing
277 bias and hindering counterfactual prediction and policy learning. The other is a semi-synthetic experimental
278 environment built upon the **MIMIC-III** database (Johnson et al., 2016). To construct a platform that mirrors
279 real-world clinical complexity while maintaining controlled evaluation capabilities, we follow recent
280 works (Hatt & Feuerriegel, 2024; Kuzmanovic et al., 2021; Melnychuk et al., 2022) and synthesize multi-
281 dimensional outcomes and continuous interventions with complex temporal dependencies and confounding

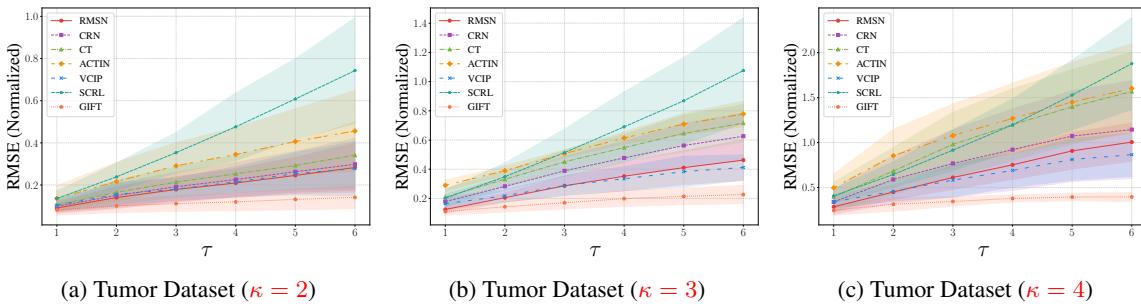


Figure 3: Comparison of terminal-outcome RMSE at horizons $\tau \in \{2, 3, 4\}$ for different models on the Tumor dataset under varying confounding levels κ . Each subplot shows mean RMSE with standard-deviation shading on the held-out test set; RMSE is computed between the terminal outcome after at most τ steps and the τ -step target. This evaluation setting is used for all experiments unless otherwise noted.

relationships based on real ICU physiological data. This provides a robust testbed for evaluating model performance in more realistic scenarios. Intended clinical tasks: in Tumor, drive tumor burden (volume) to a desired target level/region; in the semi-synthetic MIMIC environment, steer a 2D clinical outcome vector (y_1, y_2) toward a user-specified target $\mathbf{Y}_{\text{target}} \in \mathbb{R}^2$ within a tolerance, i.e., a goal-reaching control task over a planning horizon.

Baselines and Decision Paradigms. We compare against **RMSN** (Lim et al., 2018), **CRN** (Bica et al., 2020), **CT** (Melnychuk et al., 2022), **ACTIN** (Wang et al., 2024), **VCIP** (Wang et al., 2025), **SCRL** (Zheng et al., 2024). Since some baselines do not output policies, we use VCIP’s episode-wise optimization and a step-wise greedy scheme at test time; both search action sequences to minimize target discrepancy. Results for episode-wise optimization are in the main text; step-wise details are in Appendix F, G. For SCRL, we adopt the official setup with minimal adaptations to tabular/time-series inputs (goal-conditioned actor + BC regularization, contrastive critic, large in-batch negatives, simple non-visual augmentations); tuning details appear in Appendix F.

Evaluation Metrics. We adopt Root Mean Square Error (RMSE) as our primary evaluation metric, measuring discrepancy between the final trajectory from the model’s generated intervention policy and the target trajectory. All reported values are mean and standard deviation over multiple independent runs. Concretely, for each test episode and a given horizon τ , we roll out a policy for at most τ steps. Let \mathbf{Y}_{term} be the terminal outcome at step $t+\tau$, and let $\mathbf{Y}_{\text{target}}$ be the goal defined by the protocol above. We compute

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^N \left\| \mathbf{Y}_{\text{term}}^{(i)} - \mathbf{Y}_{\text{target}}^{(i)} \right\|_2^2}, \text{ where } N \text{ is the number of test episodes. This metric is defined on the terminal outcome only and it is computed on the held-out test set. Larger } \tau \text{ increases difficulty because errors compound over more transitions}$$

5.2 COMPARATIVE EVALUATION OF INTERVENTION POLICIES

Performance with Identical Intervention Strategies. We first evaluate the performance of all models in a standard sequential decision-making setting, where the target states are within the support of the training data distribution. The results on the MIMIC-III synthetic dataset, presented in Table 2, show that GIFT outperforms all baseline models as measured by RMSE. Here “identical strategies” means training and testing targets are both induced by the behavior/original policy. We further corroborate this finding using the Tumor dataset under varying levels of confounding ($\kappa=2, 3, 4$), as shown in Figure 3. Larger κ indicates more severe confounding; although all methods degrade as κ increases, GIFT maintains the lowest RMSE.

Table 1: Results on tumor dataset ($\kappa = 4$) with distinct intervention strategies applied to training and test sets, reported as RMSE (mean \pm std over five runs).

	$\tau = 1$	$\tau = 2$	$\tau = 3$	$\tau = 4$	$\tau = 5$	$\tau = 6$
RMSN	0.32 \pm 0.04	0.53 \pm 0.08	0.69 \pm 0.09	0.85 \pm 0.14	1.01 \pm 0.19	1.15 \pm 0.21
CRN	0.41 \pm 0.15	0.71 \pm 0.28	0.92 \pm 0.39	1.10 \pm 0.46	1.26 \pm 0.50	1.40 \pm 0.51
CT	0.50 \pm 0.18	0.82 \pm 0.30	1.11 \pm 0.34	1.39 \pm 0.40	1.63 \pm 0.43	1.87 \pm 0.43
ACTIN	0.65 \pm 0.24	1.08 \pm 0.38	1.29 \pm 0.40	1.57 \pm 0.46	1.71 \pm 0.46	1.86 \pm 0.45
VCIP	0.46 \pm 0.09	0.66 \pm 0.18	0.76 \pm 0.13	0.89 \pm 0.13	0.99 \pm 0.20	1.10 \pm 0.20
SCRL	0.53\pm0.09	0.91\pm0.24	1.23\pm0.25	1.56\pm0.19	1.98\pm0.26	2.42\pm0.38
GIFT	0.24\pm0.04	0.32\pm0.04	0.38\pm0.05	0.43\pm0.08	0.45\pm0.07	0.46\pm0.08

Table 2: Results on MIMIC synthetic dataset with the same intervention strategies applied to training and test sets, reported as RMSE (mean \pm std over five runs).

	$\tau = 1$	$\tau = 2$	$\tau = 3$	$\tau = 4$	$\tau = 5$	$\tau = 6$
RMSN	0.25 \pm 0.07	0.39 \pm 0.13	0.50 \pm 0.17	0.60 \pm 0.20	0.70 \pm 0.21	0.83 \pm 0.28
CRN	0.31 \pm 0.04	0.46 \pm 0.11	0.60 \pm 0.15	0.71 \pm 0.17	0.83 \pm 0.18	0.96 \pm 0.24
CT	0.62 \pm 0.17	1.06 \pm 0.32	1.42 \pm 0.47	1.72 \pm 0.60	1.98 \pm 0.73	2.20 \pm 0.83
ACTIN	0.28 \pm 0.19	0.57 \pm 0.34	0.79 \pm 0.50	0.98 \pm 0.64	1.11 \pm 0.74	1.23 \pm 0.81
VCIP	0.41 \pm 0.19	0.51 \pm 0.22	0.57 \pm 0.21	0.60 \pm 0.20	0.62 \pm 0.18	0.67 \pm 0.22
SCR	0.37\pm0.18	0.47\pm0.21	0.56\pm0.26	0.59\pm0.28	0.63\pm0.30	0.65\pm0.30
GIFT	0.24\pm0.10	0.31\pm0.13	0.33\pm0.14	0.37\pm0.16	0.38\pm0.17	0.39\pm0.18

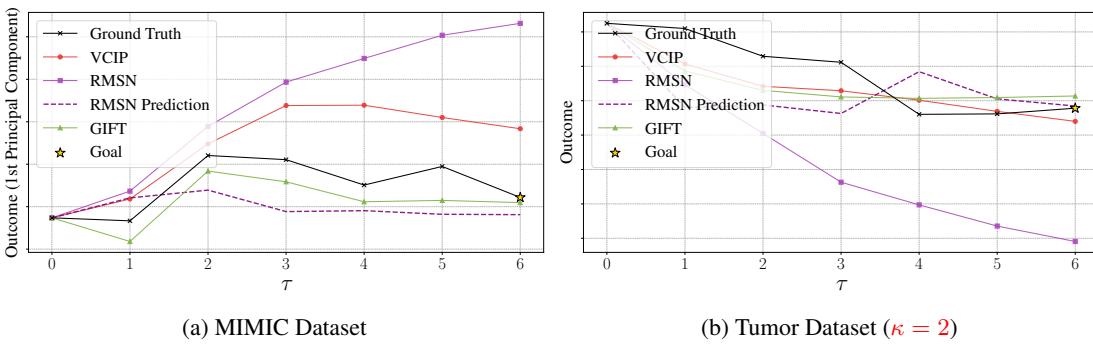
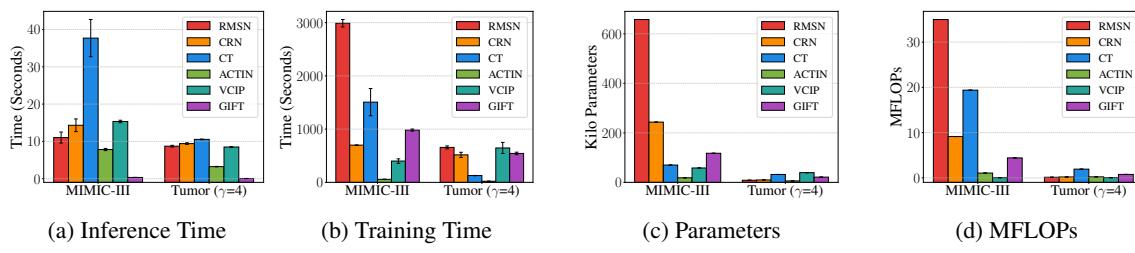
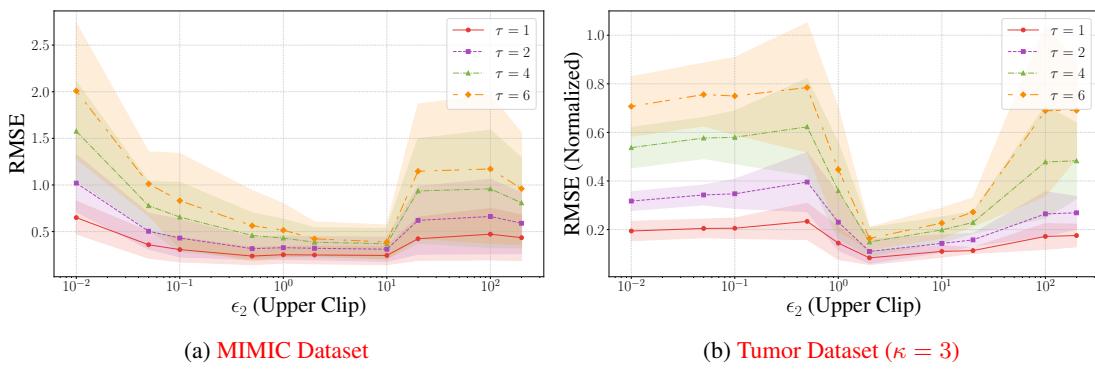


Figure 4: Case study of intervention policies from GIFT and baselines. The figure shows realized outcome trajectories for one patient on (a) MIMIC and (b) Tumor ($\kappa = 2$). ‘Goal’ is the τ -step target and is marked by a gold star at $\tau = 6$. ‘RMSN Prediction’ is the purple dashed line; other model trajectories are solid.

Generalization to Unseen Intervention Strategies. Next, we assess the ability to reach targets generated by intervention rules unseen during training. “Unseen strategies” are created by overriding, with probability η at each step, the standard assignment using actions sampled from a static Beta(α, β) distribution (Appendix C). The results on the Tumor dataset (at $\kappa=4$), detailed in Table 1, show that GIFT achieves the lowest error, demonstrating strong generalization.



5.3 QUALITATIVE AND EFFICIENCY ANALYSIS

Qualitative Analysis: A Case Study. To visually demonstrate GIFT’s effectiveness, we conduct a case study. Figure 4 compares predicted outcome trajectories for a single patient generated by GIFT and baseline models. The figure plots ‘Ground Truth’ and ‘Goal’ trajectories, illustrating how well each model steers the patient toward the desired target. Counterfactual prediction models suffer performance degradation from accumulated prediction errors; their intervention optimization relies on imperfect forecasts that fail to reflect true outcome trends. In contrast, GIFT’s learned policy proves more robust, guiding the patient’s trajectory more effectively toward the goal.

Computational Efficiency. Beyond efficacy, computational efficiency is crucial for practical deployment. We compare GIFT’s computational costs against baselines across four dimensions: parameters, MFLOPs, training time, and inference time (Figure 5). Results indicate GIFT is competitive across multiple efficiency metrics. Most critically, because GIFT avoids iterative optimization during inference, its inference efficiency significantly exceeds baseline methods that rely on time-consuming search procedures. This makes GIFT well-suited for real-time online tasks demanding rapid decision-making.

423 Table 3: Ablation study results for different model configurations. Lower RMSE values are better, with the
 424 best performance in each column highlighted in **bold**.
 425

	MIMIC-III		Tumor ($\kappa = 2$)		Tumor ($\kappa = 4$)	
	$\tau = 3$	$\tau = 6$	$\tau = 3$	$\tau = 6$	$\tau = 3$	$\tau = 6$
Full Model	0.33±0.14	0.39±0.18	0.11±0.04	0.14±0.05	0.35±0.05	0.40±0.05
w/o RR	0.66±0.39	0.83±0.58	0.48±0.17	0.62±0.27	0.49±0.13	0.42±0.15
w/o Her	0.66±0.49	0.95±0.80	0.23±0.07	0.40±0.15	0.80±0.24	1.53±0.53
with CQL	0.45±0.19	0.49±0.20	0.24±0.07	0.33±0.07	0.69±0.15	1.04±0.27

433 5.4 SENSITIVITY AND ABLATION ANALYSIS

434 This section aims to dissect the internal mechanisms contributing to GIFT’s success and to explore its performance
 435 under varying data conditions, thereby validating the rationale behind our model’s design.

436 **Analysis of Importance-Weight Clipping.**

437 We study how the clipping interval $[\epsilon_1, \epsilon_2]$ in reward rescaling affects performance. We fix $\epsilon_1 = 0.01$ and
 438 sweep $\epsilon_2 \in \{0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 10.0, 20, 100, 200\}$. Figure 6 shows RMSE vs. ϵ_2 on MIMIC and
 439 Tumor ($\kappa = 3$) across $\tau \in \{1, 2, 4, 6\}$. Tight clips ($\epsilon_2 \leq 0.1$) induce truncation bias (higher RMSE); very
 440 loose clips ($\epsilon_2 \geq 20$) increase variance and instability. A broad sweet spot lies in $[1, 10]$, with $\epsilon_2 \approx 2$
 441 near-optimal for most τ . Larger τ raises difficulty and sensitivity.

442 **Ablation Study of Key Model Components.** To validate our proposed components, we conducted an ablation
 443 study (Table 3). This compares the full model against variants without Reward Rescaling (“w/o RR”)
 444 and without Hindsight Experience Replay (“w/o HER”). Results demonstrate that removing either com-
 445 ponent significantly degrades performance, confirming their necessity. Comparing performance standard
 446 deviations reveals the variance-reducing benefit of our mechanism. On MIMIC-III with $\tau = 3$, standard
 447 deviation increases from 0.14 to 0.39, providing strong evidence that Reward Rescaling reduces training
 448 variance, enabling stable intervention policies. Additionally, we include a conservative offline RL control
 449 substituting our rescaling with CQL (“with CQL”). While CQL mitigates extrapolation error relative to “w/o
 450 RR”, it remains inferior across datasets and horizons, indicating critic-only conservatism is less aligned with
 451 target attainment than our clipped reward re-weighting. Our full model exhibits smaller variance, especially
 452 under stronger confounding ($\kappa = 4$).
 453

454 6 CONCLUSION

455 This work introduces GIFT, a novel offline framework for deriving sequential intervention policies from
 456 observational data. By formulating counterfactual target achievement as a goal-conditioned MDP, GIFT
 457 overcomes limitations of traditional offline planning. It addresses sparse rewards and distributional shift by
 458 integrating HER and a variance-controlled reward rescaling mechanism. Supported by convergence guaran-
 459 tees, extensive experiments show GIFT markedly surpasses existing methods in generating effective, gen-
 460 eralizable, and computationally efficient policies. Its superior performance, particularly low inference cost,
 461 underscores broad suitability for real-time, adaptive decision-making in critical applications like personal-
 462 ized medicine and other high-stakes settings.

470 ETHICS STATEMENT
471

472 We acknowledge the ICLR Code of Ethics. This study uses synthetic and semi-synthetic data derived from
473 de-identified MIMIC-III, reducing privacy risks and avoiding identifiable personal information. Learning
474 policies from observational data may reflect dataset biases, unobserved confounding, and distribution shift,
475 affecting fairness and reliability; we analyze sensitivity to confounding and goal sparsity and discuss lim-
476 itations to avoid overstating clinical readiness. We note potential dual-use risks (e.g., optimizing harmful
477 objectives) and emphasize that real-world use should include appropriate safeguards and expert oversight.
478 We declare no conflicts of interest and credit prior work to support transparency and research integrity.

479
480 REPRODUCIBILITY STATEMENT
481

482 We are committed to ensuring the reproducibility of our research. To this end, we have made our source
483 code and a detailed reproduction guide available in the **supplementary materials**. For a comprehensive de-
484 scription of the datasets used in our experiments, including details on data processing and splits, please refer
485 to Appendix C. Furthermore, we provide a thorough discussion of our hyperparameter tuning process and
486 the final selected values in Appendix D. We believe that these resources will enable the research community
487 to fully reproduce our results and build upon our work.

488
489 REFERENCES
490

491 Ossama Ahmed, Frederik Träuble, Anirudh Goyal, Alexander Neitz, Manuel Wuthrich, Yoshua Bengio,
492 Bernhard Schölkopf, and Stefan Bauer. Causalworld: A robotic manipulation benchmark for causal struc-
493 ture and transfer learning. In *International Conference on Learning Representations*, 2020.

494 Ravi Tej Akella, Benjamin Eysenbach, Jeff Schneider, and Ruslan Salakhutdinov. Distributional distance
495 classifiers for goal-conditioned reinforcement learning. In *ICML Workshop on New Frontiers in Learning,*
496 *Control, and Dynamical Systems*, 2023.

497 Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob Mc-
498 Grew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
499 I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
500 *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

501 Ioana Bica, Ahmed M Alaa, James Jordon, and Mihaela van der Schaar. Estimating counterfactual treat-
502 ment outcomes over time through adversarially balanced representations. In *International Conference on*
503 *Learning Representations*, 2020.

504 Ruizhi Chen, Xiaoyu Wu, Yansong Pan, Kaizhao Yuan, Ling Li, TianYun Ma, JiYuan Liang, Rui Zhang, Kai
505 Wang, Chen Zhang, et al. Eden: A unified environment framework for booming reinforcement learning
506 algorithms. *arXiv preprint arXiv:2109.01768*, 2021.

507 Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve goals via
508 recursive classification. *arXiv preprint arXiv:2011.08909*, 2020.

509 Fan Feng, Biwei Huang, Kun Zhang, and Sara Magliacane. Factored adaptation for non-stationary rein-
510 forcement learning. *Advances in Neural Information Processing Systems*, 35:31957–31971, 2022.

511 Garrett Fitzmaurice, Marie Davidian, Geert Verbeke, and Geert Molenberghs. Estimation of the causal
512 effects of time-varying exposures. In *Longitudinal data analysis*, pp. 567–614. Chapman and Hall/CRC,
513 2008.

517 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration. In *International conference on machine learning*, pp. 2052–2062. PMLR, 2019.

518

519

520 Changran Geng, Harald Paganetti, and Clemens Grassberger. Prediction of treatment response for combined
521 chemo-and radiation therapy for non-small cell lung cancer patients using a bio-mathematical model.
522 *Scientific reports*, 7(1):13542, 2017.

523 Tobias Hatt and Stefan Feuerriegel. Sequential deconfounding for causal inference with unobserved con-
524 founders. In *Causal Learning and Reasoning*, pp. 934–956. PMLR, 2024.

525

526 Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient flow in recurrent nets:
527 the difficulty of learning long-term dependencies, 2001.

528

529 Xing Hu, Rui Zhang, Ke Tang, Jiaming Guo, Qi Yi, Ruizhi Chen, Zidong Du, Ling Li, Qi Guo, Yunji
530 Chen, et al. Causality-driven hierarchical structure discovery for reinforcement learning. In A. H. Oh,
531 A. Agarwal, D. Belgrave, and K. Cho (eds.), *Advances in Neural Information Processing Systems*, 2022.

532

533 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad Ghassemi,
534 Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely accessible
535 critical care database. *Scientific data*, 3(1):1–9, 2016.

536

537 Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua Lou, Nimrod
538 Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George. Schema networks: Zero-shot transfer with
539 a generative causal model of intuitive physics. In *International conference on machine learning*, pp.
540 1809–1818. PMLR, 2017.

541

542 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline rein-
543 forcement learning. In *Advances in Neural Information Processing Systems*, pp. 1179–1191, 2020.

544

545 Milan Kuzmanovic, Tobias Hatt, and Stefan Feuerriegel. Deconfounding temporal autoencoder: estimating
546 treatment effects over time using noisy proxies. In *Machine learning for health*, pp. 143–155. PMLR,
547 2021.

548

549 Tabitha E Lee, Jialiang Alan Zhao, Amrita S Sawhney, Siddharth Girdhar, and Oliver Kroemer. Causal
550 reasoning in simulation for structure and transfer learning of robot manipulation policies. In *2021 IEEE
551 International Conference on Robotics and Automation (ICRA)*, pp. 4776–4782. IEEE, 2021.

552

553 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
554 review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

555

556 Rui Li, Stephanie Hu, Mingyu Lu, Yuria Utsumi, Prithwish Chakraborty, Daby M. Sow, Piyush Madan, Jun
557 Li, Mohamed Ghalwash, Zach Shahn, and Li-wei Lehman. G-net: a recurrent network approach to g-
558 computation for counterfactual prediction under a dynamic treatment regime. In *Proceedings of Machine
559 Learning for Health*, volume 158 of *Proceedings of Machine Learning Research*, pp. 282–299. PMLR,
560 04 Dec 2021.

561

562 Bryan Lim, Ahmed Alaa, and Mihaela van der Schaar. Forecasting treatment responses over time using
563 recurrent marginal structural networks. *Advances in neural information processing systems*, 31, 2018.

564

565 Daniel J Luckett, Eric B Laber, Anna R Kahkoska, David M Maahs, Elizabeth Mayer-Davis, and Michael R
566 Kosorok. Estimating dynamic treatment regimes in mobile health using v-learning. *Journal of the ameri-
567 can statistical association*, 2020.

568

569 Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Causal transformer for estimating counterfac-
570 tual outcomes. In *International Conference on Machine Learning*, pp. 15293–15329. PMLR, 2022.

571

564 Kathleen M Mortimer, Romain Neugebauer, Mark Van Der Laan, and Ira B Tager. An application of model-
 565 fitting procedures for marginal structural models. *American Journal of Epidemiology*, 162(4):382–388,
 566 2005.

567

568 Susan A Murphy. Optimal dynamic treatment regimes. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 65(2):331–355, 2003.

569

570 Sehong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-conditioned rl
 571 with latent states as actions. In *Advances in Neural Information Processing Systems 36 (NeurIPS 2023)*,
 572 2023.

573

574 Aniruddh Raghu, Matthieu Komorowski, Leo Anthony Celi, Peter Szolovits, and Marzyeh Ghassemi. Con-
 575 tinuous state-space models for optimal sepsis treatment: a deep reinforcement learning approach. In
 576 *Machine Learning for Healthcare Conference*, pp. 147–163. PMLR, 2017.

577

578 Rahul Raveendran, Biao Huang, and Warren Mitchell. A variational bayesian causal analysis approach for
 579 time-varying systems. *IEEE Transactions on Control Systems Technology*, 29(3):1191–1202, 2020.

580

581 James Robins. A new approach to causal inference in mortality studies with a sustained exposure pe-
 582 riod—application to control of the healthy worker survivor effect. *Mathematical modelling*, 7(9-12):
 583 1393–1512, 1986.

584

585 James M Robins, Miguel Angel Hernan, and Babette Brumback. Marginal structural models and causal
 586 inference in epidemiology, 2000.

587

588 Peter Schulam and Suchi Saria. Reliable decision support using counterfactual models. *Advances in neural
 589 information processing systems*, 30, 2017.

590

591 Sungryull Sohn, Junhyuk Oh, and Honglak Lee. Hierarchical reinforcement learning for zero-shot general-
 592 ization with subtask dependencies. In *Advances in Neural Information Processing Systems*, volume 31,
 593 2018.

594

595 Hossein Soleimani, Adarsh Subbaswamy, and Suchi Saria. Treatment-response models for counterfac-
 596 tional reasoning with continuous-time, continuous-valued interventions. *arXiv preprint arXiv:1704.02038*,
 597 2017.

598

599 Anoopkumar Sonar, Vincent Pacelli, and Anirudha Majumdar. Invariant policy optimization: Towards
 600 stronger generalization in reinforcement learning. In *Learning for Dynamics and Control*, pp. 21–33.
 601 PMLR, 2021.

602

603 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT press
 604 Cambridge, 1998.

605

606 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
 607 and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems*,
 608 volume 30, 2017.

609

610 Shirly Wang, Matthew BA McDermott, Geeticka Chauhan, Marzyeh Ghassemi, Michael C Hughes, and
 611 Tristan Naumann. Mimic-extract: A data extraction, preprocessing, and representation pipeline for mimic-
 612 iii. In *Proceedings of the ACM conference on health, inference, and learning*, pp. 222–235, 2020.

613

614 Xin Wang, Shengfei Lyu, Lishan Yang, Yibing Zhan, and Huanhuan Chen. A dual-module framework for
 615 counterfactual estimation over time. In *Forty-first International Conference on Machine Learning*, 2024.

611 Xin Wang, Shengfei Lyu, Luo Chi, Zhou Xiren, and Chen Huanhuan. Variational counterfactual intervention
612 planning to achieve target outcomes. In *Forty-second International Conference on Machine Learning*,
613 2025.

614
615 Junzhe Zhang and Elias Bareinboim. Near-optimal reinforcement learning in dynamic treatment regimes.
616 In *Advances in Neural Information Processing Systems*, volume 32, 2019.

617 Chongyi Zheng, Benjamin Eysenbach, Homer Rich Walke, Patrick Yin, Kuan Fang, Ruslan Salakhutdinov,
618 and Sergey Levine. Stabilizing contrastive rl: Techniques for robotic goal reaching from offline data. In
619 *International Conference on Learning Representations (ICLR)*, 2024.

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658 **A EXTENDED RELATED WORK**
659660 The problem of identifying an optimal sequence of interventions from offline data to achieve a target out-
661 come intersects causal inference, sequential decision-making, and reinforcement learning. We group prior
662 work into two complementary paradigms: (i) learn-then-plan with counterfactual world models, and (ii)
663 goal-conditioned reinforcement learning. We also connect to the literature on Dynamic Treatment Regimes
664 (DTRs).665 **A.1 OFFLINE PLANNING FOR TARGET ACHIEVEMENT**
666668 A common workflow for target achievement is a two-stage “learn-then-plan” approach. First, a counter-
669 factual world model is trained on observational data to predict outcomes under hypothetical interventions.
670 Second, at inference time, an optimization procedure searches over prospective intervention sequences on
671 top of this model to reach a user-specified target. The modeling component has roots in classical methods
672 such as the g-formula and marginal structural models (MSMs) (Robins, 1986; Robins et al., 2000; Fitzmaur-
673 ice et al., 2008). While these frameworks provide principled identification strategies, practical deployment
674 in high-dimensional, nonlinear, and long-horizon settings can be challenging, which has motivated deep
675 learning approaches.676 Deep counterfactual sequence models focus on representation learning and deconfounding for longitudi-
677 nal data. Representative examples include RMSN (Lim et al., 2018), which leverages inverse-probability
678 weighting within a recurrent architecture; CRN (Bica et al., 2020), which learns adversarially balanced repre-
679 sentations; and the Causal Transformer (CT) (Melnychuk et al., 2022), which introduces Transformer-based
680 sequence modeling (Vaswani et al., 2017) to better capture long-range dependencies (Hochreiter et al., 2001).
681 Related work also explores g-computation with deep networks (Li et al., 2021) and Bayesian/nonparametric
682 approaches for longitudinal causal inference (Raveendran et al., 2020; Soleimani et al., 2017). In prac-
683 tice, these counterfactual models can be paired with a separate planning step that optimizes a target-specific
684 objective on the learned world model. Distinct from these modeling papers, recent planning-oriented for-
685 mulations explicitly cast target attainment as an optimization problem over the learned dynamics, includ-
686 ing dual-module architectures for temporal counterfactual estimation (Wang et al., 2024) and maximum-
687 likelihood-style formulations (Wang et al., 2025).688 When a separate optimization is performed at inference time on top of a learned model, the resulting plans
689 are often open-loop and can require iterative search, which may be sensitive to model misspecification
690 and environmental stochasticity. Our work departs from purely open-loop planning by learning a reactive,
691 closed-loop policy that conditions on both the current state and the target.692 **A.2 GOAL-CONDITIONED REINFORCEMENT LEARNING**
693694 Goal-conditioned reinforcement learning (RL) directly learns a policy $\pi(a | s, g)$ that maps a state s and
695 goal g to an action, thereby embedding planning into the policy itself and avoiding test-time trajectory
696 optimization (Levine et al., 2020). A central challenge is sparse or delayed rewards. Hindsight Experi-
697 ence Replay (HER) (Andrychowicz et al., 2017) addresses this by relabeling unsuccessful trajectories with
698 achieved goals, substantially improving sample efficiency.699 Hierarchical Reinforcement Learning (HRL) is often employed for complex, goal-oriented tasks with sparse
700 rewards. A Causality-Driven HRL (CDHRL) framework that discovers effective subgoal hierarchy structures
701 has been introduced (Hu et al., 2022). This approach was evaluated in complex game environments such
702 as 2d-Minecraft (Sohn et al., 2018) and Eden (Chen et al., 2021). For zero-shot transfer in object-oriented
703 planning, Schema Networks have been developed as generative causal models that allow an agent to reason
704 backward through causes to achieve goals (Kansky et al., 2017).

Many applications of these methods are found in robotics, where tasks are inherently goal-conditioned. For instance, causal reasoning has been used to learn and transfer robot manipulation policies (Lee et al., 2021). Tasks where a robot must reach a target location or move at a target speed have been considered (Feng et al., 2022). Similarly, an invariant policy optimization algorithm has been developed for a challenging task where a robot navigates to a key, opens a door, and proceeds to a final goal (Sonar et al., 2021). To facilitate research in this area, the *CausalWorld* benchmark was developed to test causal structure learning and transfer learning for robotic manipulation tasks where objects must be moved to specified goal locations (Ahmed et al., 2020). To our knowledge, our work is the first to formulate the counterfactual target achievement problem as an offline, goal-conditioned task.

Beyond classical formulations, recent GCRL advances emphasize learning from diverse offline or reward-free data for long-horizon goal reaching. C-Learning reframes goal-conditioned control as density estimation via a future versus non-future classifier, enabling off-policy prediction of a new policy’s future state distribution and optimizing the probability of hitting a goal set (Eysenbach et al., 2020). Distributional Distance Classifiers bridge the tension between maximizing success probability and minimizing expected steps by estimating the probability of reaching the goal at different future timesteps and propose a practical Distributional NCE estimator (Akella et al., 2023). HIQL introduces a hierarchical offline GCRL method that treats latent states as actions, decomposes distant goal reaching into subgoal selection and low-level control, and leverages action-free data (Park et al., 2023). In robotics, Stabilizing Contrastive RL shows that contrastive self-supervised objectives together with careful architectural and hyperparameter choices can stabilize offline goal reaching and enable real-world image-based manipulation with a single goal image provided after training (Zheng et al., 2024).

These methods target general goal reaching and typically do not address confounding in observational data. Our setting, namely SCTA, requires learning a closed-loop policy from observational and potentially confounded trajectories to steer outcomes into a target region T . This demands both causal identifiability under standard assumptions and stability under offline distribution shift between the behavior policy π_b and the learned policy π_θ . Our framework (GIFT) combines goal conditioning with HER and clipped-importance reward rescaling to obtain a modified soft Bellman operator that remains a contraction and admits explicit bias bounds. In contrast to many GCRL systems that rely on test-time optimization or assume reward-free yet unconfounded data, GIFT provides a theoretically grounded and offline-stable learning procedure tailored to SCTA, where counterfactual identifiability and robustness to the shift from π_b to π_θ are primary considerations.

735 736 737 738 739 740 A.3 DYNAMIC TREATMENT REGIMES

741
742
743 Dynamic Treatment Regimes (DTRs) formalize sequential decision-making via a sequence of decision rules
744 mapping evolving patient histories to interventions (Murphy, 2003). Reinforcement learning has been widely
745 adopted to optimize DTRs from observational data (Zhang & Bareinboim, 2019; Luckett et al., 2020), in-
746 cluding settings with continuous states and clinical constraints (Raghu et al., 2017). The standard DTR
747 objective is to learn a single policy that maximizes population-level expected outcomes.

748 In contrast, our problem is explicitly goal-conditioned: rather than maximizing an undirected cumulative
749 reward, we learn policies that steer individual trajectories toward a predefined target state. This goal-centric
750 perspective complements the DTR paradigm by emphasizing targeted control for individual endpoints, while
751 retaining the benefits of offline learning and robustness to confounding.

752 **B PROOFS**

754 **Assumption B.1** (Decomposed Goal-Independent Dynamics). *Let \mathbf{S}_t be the random variable for the physi-
755 cal state at time t , and \mathbf{G}_t be the goal. The state transition probability can be decomposed as:*

756
$$P((\mathbf{S}_{t+1}, \mathbf{G}_{t+1}) = (\mathbf{s}', \mathbf{g}') | \mathbf{S}_t = \mathbf{s}, \mathbf{G}_t = \mathbf{g}, \mathbf{A}_t = \mathbf{a}) = P(\mathbf{S}_{t+1} = \mathbf{s}' | \mathbf{S}_t = \mathbf{s}, \mathbf{A}_t = \mathbf{a}) \cdot \mathbf{1}[\mathbf{g}' = \mathbf{g}]$$

757 *This implies that the evolution of the physical state, $P(\mathbf{S}_{t+1} | \mathbf{S}_t, \mathbf{A}_t)$, depends only on the current physical
758 state and action, and is independent of the goal \mathbf{G}_t . Concurrently, the goal remains constant within a
760 single-step transition.*

761 **Assumption B.2** (Consistency). *If the actual treatment decision is $\mathbf{A}_t = \mathbf{a}$, then the potential outcome is
762 consistent with the observed outcome, i.e.,*

763
$$\mathbf{Y}_{t+1}[\mathbf{a}] = \mathbf{Y}_{t+1}, \quad r_t[\mathbf{a}] = r_t.$$

764 **Assumption B.3** (Sequential Overlap). *The behavior policy π_b is sufficiently stochastic within its support.
765 Specifically, for any state ψ and action \mathbf{a} , if an action is possible under the behavior policy (i.e., $\pi_b(\mathbf{a} | \psi) >
766 0$), then its probability density is bounded below by a positive constant. That is, there exists a constant $c > 0$
767 such that $\pi_b(\mathbf{a} | \psi) \geq c$.*

768 **Assumption B.4** (Sequential Ignorability). *For any action \mathbf{a} , the current treatment decision \mathbf{A}_t is indepen-
769 dent of the future potential outcomes $\mathbf{Y}_{t+1}[\mathbf{a}]$, conditional on the past history Ψ_t , i.e.:*

770
$$\mathbf{A}_t \perp\!\!\!\perp \mathbf{Y}_{t+1}[\mathbf{a}] | \Psi_t.$$

771 **Assumption B.5** (Bounded Function Class (Glivenko–Cantelli)). *The function class \mathcal{Q} we use to approxi-
772 mate the Q -function is a bounded P -Glivenko–Cantelli class.*

773 **Definition B.1** (Soft Policy Evaluation and Modified Bellman Operator). *For any Q -function $Q \in \mathcal{Q}$, we
774 define the following operators:*

775 **Next-state Soft Value:**
$$\Upsilon^{\pi_\theta}(Q)(\psi') = \mathbb{E}_{\mathbf{A}' \sim \pi_\theta(\cdot | \psi')}[Q(\psi', \mathbf{A}') - \alpha \log \pi_\theta(\mathbf{A}' | \psi')]$$

776 **Standard Operator:**
$$(\mathcal{T}^{\pi_\theta} Q)(\psi, \mathbf{a}) = r(\psi, \mathbf{a}) + \gamma \mathbb{E}_{\Psi' \sim P(\cdot | \psi, \mathbf{a})}[(1 - d(\Psi')) \Upsilon^{\pi_\theta}(Q)(\Psi')]$$

777 **Modified Operator:**
$$(\mathcal{T}_{\tilde{\pi}} Q)(\psi, \mathbf{a}) = \tilde{r}(\psi, \mathbf{a}) + \gamma \mathbb{E}_{\Psi' \sim P(\cdot | \psi, \mathbf{a})}[(1 - d(\Psi')) \Upsilon^{\pi_\theta}(Q)(\Psi')]$$

778 where $d(\psi')$ is an indicator function. The expectation $\mathbb{E}_{\Psi' \sim P(\cdot | \psi, \mathbf{a})}$ should be understood as an expectation
779 over the next physical state \mathbf{S}' , as the goal remains unchanged during the transition.

780 **Proposition B.1** (Causal Identifiability of the Soft Bellman Operator). *Assume Assumption B.1 (goal-
781 independent dynamics) and the standard assumptions detailed in Appendix B. Then, for any bounded $Q \in \mathcal{Q}$
782 and any state-action pair (ψ, \mathbf{a}) at decision time t ,*

783
$$(\mathcal{T}^{\pi_\theta} Q)(\psi, \mathbf{a}) = r(\psi, \mathbf{a}) + \gamma \mathbb{E}_{\Psi' \sim P(\cdot | \psi, \mathbf{a})} \left[(1 - d(\Psi')) \Upsilon^{\pi_\theta}(Q)(\Psi') \right], \quad (6)$$

784
$$= r(\psi, \mathbf{a}) + \gamma \mathbb{E}_{\Psi' \sim P_{obs}(\cdot | \mathbf{H}_t, \mathbf{A}_t = \mathbf{a})} \left[(1 - d(\Psi')) \mathbb{E}_{\mathbf{A}' \sim \pi_b(\cdot | \Psi')} [\rho(\Psi', \mathbf{A}') (Q(\Psi', \mathbf{A}') - \alpha \log \pi_\theta(\mathbf{A}' | \Psi'))] \right]. \quad (7)$$

785 *Equation 6 is the soft Bellman evaluation operator under the interventional regime $do(\pi_\theta)$; Equation 7
786 shows that this interventional quantity is identifiable from the observational distribution P_{obs} via one-step
787 importance weighting with respect to the behavior policy π_b .*

788 *Proof.* We provide a do-calculus based identification in three steps.

799 **Step 1:** Fix the composite state $\Psi_t = (\bar{\mathbf{H}}_t, \mathbf{Y}_{\text{target}})$ and action $\mathbf{a}_t = \mathbf{a}$ at time t . Under the intervention
800 $do(\pi_\theta)$, actions are drawn from the target policy while the environment dynamics remain unchanged. By
801 Definition 4.1,

$$803 (\mathcal{T}^{\pi_\theta} Q)(\psi_t, \mathbf{a}) := r(\psi_t, \mathbf{a}) + \gamma \mathbb{E}_{\Psi_{t+1} \sim P(\cdot | \psi_t, \mathbf{a})}^{\text{do}(\pi_\theta)} \left[(1 - d(\Psi_{t+1})) \Upsilon^{\pi_\theta}(Q)(\Psi_{t+1}) \right], \quad (8)$$

805 where $\Upsilon^{\pi_\theta}(Q)(\psi') = \mathbb{E}_{\mathbf{A}' \sim \pi_\theta(\cdot | \psi')} [Q(\psi', \mathbf{A}') - \alpha \log \pi_\theta(\mathbf{A}' | \psi')]$.

807 **Step 2:** Let the potential outcomes be $\mathbf{Y}_{t+1}(\mathbf{a})$ and the next physical state $\mathbf{S}_{t+1}(\mathbf{a})$. Consistency implies
808 that whenever $\mathbf{A}_t = \mathbf{a}$,

$$809 \mathbf{Y}_{t+1} = \mathbf{Y}_{t+1}(\mathbf{a}), \quad \mathbf{S}_{t+1} = \mathbf{S}_{t+1}(\mathbf{a}).$$

811 Sequential Ignorability (no unmeasured confounding) given $\bar{\mathbf{H}}_t$ implies

$$812 \{\mathbf{Y}_{t+1}(\mathbf{a}), \mathbf{S}_{t+1}(\mathbf{a})\} \perp\!\!\!\perp \mathbf{A}_t \mid \bar{\mathbf{H}}_t, \quad \forall \mathbf{a}.$$

814 By the back-door criterion (do-calculus Rule 2) or the g-formula,

$$815 P(\mathbf{S}_{t+1} \in \cdot \mid do(\mathbf{A}_t = \mathbf{a}), \bar{\mathbf{H}}_t) = P(\mathbf{S}_{t+1} \in \cdot \mid \bar{\mathbf{H}}_t, \mathbf{A}_t = \mathbf{a}), \quad (9)$$

$$816 P(\mathbf{Y}_{t+1} \in \cdot \mid do(\mathbf{A}_t = \mathbf{a}), \bar{\mathbf{H}}_t) = P(\mathbf{Y}_{t+1} \in \cdot \mid \bar{\mathbf{H}}_t, \mathbf{A}_t = \mathbf{a}). \quad (10)$$

818 Assumption 4.1 (goal-independent dynamics) guarantees that within one step the goal component in $\Psi_{t+1} =$
819 $(\bar{\mathbf{H}}_{t+1}, \mathbf{Y}_{\text{target}})$ remains constant and the next physical state depends only on $(\bar{\mathbf{H}}_t, \mathbf{A}_t)$. Therefore, the
820 outer expectation in equation 8 can be written in terms of the observational conditional distribution $P_{\text{obs}}(\cdot \mid$
821 $\bar{\mathbf{H}}_t, \mathbf{A}_t = \mathbf{a})$, which yields equation 6.

822 **Step 3:** Conditioned on Ψ' , the inner expectation in $\Upsilon^{\pi_\theta}(Q)(\Psi')$ can be expressed under the behavior
823 policy π_b using the importance ratio $\rho(\Psi', \mathbf{A}') = \frac{\pi_\theta(\mathbf{A}' | \Psi')}{\pi_b(\mathbf{A}' | \Psi')}$, provided Positivity holds. For any integrable
824 function g ,

$$825 \mathbb{E}_{\mathbf{A}' \sim \pi_\theta(\cdot | \Psi')} [g(\mathbf{A}')] = \mathbb{E}_{\mathbf{A}' \sim \pi_b(\cdot | \Psi')} [\rho(\Psi', \mathbf{A}') g(\mathbf{A}')].$$

828 Taking $g(\mathbf{A}') = Q(\Psi', \mathbf{A}') - \alpha \log \pi_\theta(\mathbf{A}' | \Psi')$ gives

$$829 \Upsilon^{\pi_\theta}(Q)(\Psi') = \mathbb{E}_{\mathbf{A}' \sim \pi_b(\cdot | \Psi')} [\rho(\Psi', \mathbf{A}') (Q(\Psi', \mathbf{A}') - \alpha \log \pi_\theta(\mathbf{A}' | \Psi'))].$$

832 Substituting this back into equation 6 and using equation 9–equation 10 yields equation 7. Hence, under the
833 stated causal assumptions, \mathcal{T}^{π_θ} is identifiable from the observational distribution via one-step importance
834 weighting.

835 **Remark on clipping.** Replacing ρ by its clipped version $\bar{\rho} = \text{clip}(\rho, \epsilon_1, \epsilon_2)$ produces a controlled-bias
836 approximation of equation 7. The bias introduced by clipping is precisely quantified by the operator gap term
837 appearing in the subsequent bound, $\sup_{\psi, \mathbf{a}} |r(\psi, \mathbf{a})(1 - \bar{\rho}(\psi, \mathbf{a}))| / (1 - \gamma)$, thus enabling a bias–variance
838 trade-off while preserving the identifiable structure of the operator. \square

840 **Theorem B.2** (Contraction Property of the Modified Operator). *Let $\mathcal{T}_{\bar{\pi}}$ be the modified Bellman operator
841 defined in Definition B.1. For any pair of bounded Q-functions Q_1 and Q_2 , $\mathcal{T}_{\bar{\pi}}$ satisfies:*

$$843 \|\mathcal{T}_{\bar{\pi}} Q_1 - \mathcal{T}_{\bar{\pi}} Q_2\|_\infty \leq \gamma \|Q_1 - Q_2\|_\infty$$

845 Therefore, $\mathcal{T}_{\bar{\pi}}$ is a contraction mapping with respect to the infinity norm $\|\cdot\|_\infty$ with a factor of γ .

846 *Proof.* For any two Q-functions $Q_1, Q_2 \in \mathcal{Q}$ and any state-action pair (ψ, \mathbf{a}) , we examine the difference
 847 after applying the operator. According to the operator's definition, the reward term \tilde{r} is canceled out in the
 848 subtraction:

$$\begin{aligned} 849 \quad |(\mathcal{T}_{\tilde{\pi}} Q_1)(\psi, \mathbf{a}) - (\mathcal{T}_{\tilde{\pi}} Q_2)(\psi, \mathbf{a})| &= |\gamma \mathbb{E}_{\Psi' \sim P(\cdot|\psi, \mathbf{a})} [(1 - d(\Psi'))(\Upsilon^{\pi_\theta}(Q_1)(\Psi') - \Upsilon^{\pi_\theta}(Q_2)(\Psi'))]| \\ 850 &\leq \gamma \mathbb{E}_{\Psi' \sim P(\cdot|\psi, \mathbf{a})} [(1 - d(\Psi'))(\Upsilon^{\pi_\theta}(Q_1)(\Psi') - \Upsilon^{\pi_\theta}(Q_2)(\Psi'))] \\ 851 &\leq \gamma \mathbb{E}_{\Psi' \sim P(\cdot|\psi, \mathbf{a})} [|\Upsilon^{\pi_\theta}(Q_1)(\Psi') - \Upsilon^{\pi_\theta}(Q_2)(\Psi')|] \\ 852 \end{aligned}$$

853 Next, we analyze the difference of the inner term. By the definition of the next-state soft value:

$$\begin{aligned} 854 \quad |\Upsilon^{\pi_\theta}(Q_1)(\psi') - \Upsilon^{\pi_\theta}(Q_2)(\psi')| &= |\mathbb{E}_{\mathbf{A}' \sim \pi_\theta(\cdot|\psi')} [Q_1(\psi', \mathbf{A}') - Q_2(\psi', \mathbf{A}')]| \\ 855 &\leq \mathbb{E}_{\mathbf{A}' \sim \pi_\theta(\cdot|\psi')} [|Q_1(\psi', \mathbf{A}') - Q_2(\psi', \mathbf{A}')|] \\ 856 &\leq \mathbb{E}_{\mathbf{A}' \sim \pi_\theta(\cdot|\psi')} [\sup_{\psi^*, \mathbf{a}^*} |Q_1(\psi^*, \mathbf{a}^*) - Q_2(\psi^*, \mathbf{a}^*)|] \\ 857 &= \|Q_1 - Q_2\|_\infty \\ 858 \end{aligned}$$

859 Substituting this upper bound back into the first inequality, we obtain:

$$860 \quad |(\mathcal{T}_{\tilde{\pi}} Q_1)(\psi, \mathbf{a}) - (\mathcal{T}_{\tilde{\pi}} Q_2)(\psi, \mathbf{a})| \leq \gamma \mathbb{E}_{\Psi' \sim P(\cdot|\psi, \mathbf{a})} [\|Q_1 - Q_2\|_\infty] = \gamma \|Q_1 - Q_2\|_\infty$$

861 Since this inequality holds for all (ψ, \mathbf{a}) , we can take the supremum over all pairs, which proves that $\|\mathcal{T}_{\tilde{\pi}} Q_1 - \mathcal{T}_{\tilde{\pi}} Q_2\|_\infty \leq \gamma \|Q_1 - Q_2\|_\infty$. By the Banach fixed-point theorem, this operator has a unique fixed point $Q^{\tilde{\pi}}$. \square

862 **Theorem B.3** (Convergence and Asymptotic Performance Bound). *Under Assumptions B.2–B.5, the Q-learning process converges to the unique fixed point $Q^{\tilde{\pi}}$ of the modified operator $\mathcal{T}_{\tilde{\pi}}$ (or to its projected fixed point in the case of function approximation). The gap between this fixed point and the true soft Q-function Q^{π_θ} of policy π_θ under the original reward r is bounded as follows:*

$$863 \quad \|Q^{\pi_\theta} - Q^{\tilde{\pi}}\|_\infty \leq \frac{1}{1 - \gamma} \|(\mathcal{T}^{\pi_\theta} - \mathcal{T}_{\tilde{\pi}})Q^{\tilde{\pi}}\|_\infty$$

864 *Proof. Step 1: Convergence.* Theorem B.2 proves that $\mathcal{T}_{\tilde{\pi}}$ is a contraction mapping, thus guaranteeing a
 865 unique fixed point. When using function approximation, the Q-learning update can be viewed as finding
 866 the projected fixed point of the empirical operator $\hat{\mathcal{T}}_{\tilde{\pi}}$. Assumption B.5 ensures that the empirical operator
 867 converges uniformly to the true operator. Combined with standard theory for Fitted Q-Iteration (FQI), it can
 868 be shown that the learned Q-function \hat{Q}_n converges to a neighborhood of the fixed point $Q^{\tilde{\pi}}$.

869 **Step 2: Performance Gap Analysis.** Our goal is to bound $\|Q^{\pi_\theta} - Q^{\tilde{\pi}}\|_\infty$. We know that Q^{π_θ} is the
 870 fixed point of the operator \mathcal{T}^{π_θ} , i.e., $Q^{\pi_\theta} = \mathcal{T}^{\pi_\theta}Q^{\pi_\theta}$. We start from the target expression, use the triangle
 871 inequality, and decompose the error by adding and subtracting $\mathcal{T}^{\pi_\theta}Q^{\tilde{\pi}}$:

$$\begin{aligned} 872 \quad \|Q^{\pi_\theta} - Q^{\tilde{\pi}}\|_\infty &= \|\mathcal{T}^{\pi_\theta}Q^{\pi_\theta} - Q^{\tilde{\pi}}\|_\infty \\ 873 &\leq \|\mathcal{T}^{\pi_\theta}Q^{\pi_\theta} - \mathcal{T}^{\pi_\theta}Q^{\tilde{\pi}}\|_\infty + \|\mathcal{T}^{\pi_\theta}Q^{\tilde{\pi}} - Q^{\tilde{\pi}}\|_\infty \end{aligned}$$

874 For the first term, since \mathcal{T}^{π_θ} is also a γ -contraction mapping (the proof is analogous to that of Theorem B.2),
 875 we have:

$$876 \quad \|\mathcal{T}^{\pi_\theta}Q^{\pi_\theta} - \mathcal{T}^{\pi_\theta}Q^{\tilde{\pi}}\|_\infty \leq \gamma \|Q^{\pi_\theta} - Q^{\tilde{\pi}}\|_\infty$$

877 For the second term, we use the fact that $Q^{\tilde{\pi}}$ is the fixed point of $\mathcal{T}_{\tilde{\pi}}$, i.e., $Q^{\tilde{\pi}} = \mathcal{T}_{\tilde{\pi}}Q^{\tilde{\pi}}$, and substitute it:

$$878 \quad \|\mathcal{T}^{\pi_\theta}Q^{\tilde{\pi}} - Q^{\tilde{\pi}}\|_\infty = \|\mathcal{T}^{\pi_\theta}Q^{\tilde{\pi}} - \mathcal{T}_{\tilde{\pi}}Q^{\tilde{\pi}}\|_\infty = \|(\mathcal{T}^{\pi_\theta} - \mathcal{T}_{\tilde{\pi}})Q^{\tilde{\pi}}\|_\infty$$

879 Combining these results back into the main inequality:

$$880 \quad \|Q^{\pi_\theta} - Q^{\tilde{\pi}}\|_\infty \leq \gamma \|Q^{\pi_\theta} - Q^{\tilde{\pi}}\|_\infty + \|(\mathcal{T}^{\pi_\theta} - \mathcal{T}_{\tilde{\pi}})Q^{\tilde{\pi}}\|_\infty$$

881 Finally, moving the $\|Q^{\pi_\theta} - Q^{\tilde{\pi}}\|_\infty$ term to the left-hand side and rearranging yields the final bound. \square

893 C DATASET SPECIFICATIONS
894895 C.1 SYNTHETIC TUMOR SIMULATION ENVIRONMENT
896

897 To facilitate the development and evaluation of dynamic treatment regimes, we designed a semi-synthetic
898 data generation process. This process is inspired by the Tumor Growth (TG) simulator detailed in Geng et al.
899 (2017), which models the longitudinal progression of tumor volume. Our simulation environment generates
900 single-dimensional outputs representing tumor size and incorporates two primary therapeutic interventions:
901 radiotherapy (\mathbf{A}_t^r) and chemotherapy (\mathbf{A}_t^c). A key modification in our work is the abstraction of these
902 interventions as continuous values on the interval.

903 The core of the simulation is a dynamical system where tumor volume at time $t + 1$ is a function of its prior
904 state and the applied treatments. The interventions are characterized by distinct temporal dynamics: radio-
905 therapy exhibits an immediate effect, $d(t)$, while chemotherapy has a cumulative and prolonged influence,
906 $C(t)$. The mathematical formalization of this process is given by:

$$908 \quad \mathbf{Y}_{t+1} = \left(1 + \rho \log \left(\frac{K}{\mathbf{Y}_t} \right) - \beta_C C(t) - (\alpha_r d(t) + \beta_r d(t)^2) + \epsilon_t \right) \mathbf{Y}_t, \quad (11)$$

911 where the parameters ρ and K govern the natural growth dynamics, and ϵ_t represents Gaussian noise drawn
912 from $N(0, 0.01^2)$. To capture a more realistic, nonlinear dose-response relationship, the direct effects of the
913 interventions, $d(t)$ and $C(t)$, are modeled via cubic spline transformations (ψ_r and ψ_c) of the raw treatment
914 assignments:

$$916 \quad d(t) = 2\psi_r(\mathbf{A}_t^r), \quad (12)$$

$$918 \quad C(t) = 5\psi_c(\mathbf{A}_t^c), \quad (13)$$

920 To emulate the heterogeneity observed in clinical populations, patient-specific responses to treatment are
921 varied. This is achieved by sampling the response parameters $\beta_C, \alpha_r, \beta_r$ from a three-component truncated
922 normal mixture distribution, where each component represents a latent patient subtype with fixed character-
923 istics. Further details on parameterization are available in the accompanying anonymous repository.

924 A critical feature of this simulation is the incorporation of time-varying confounding, where treatment de-
925 cisions are influenced by the patient's history. This is implemented through a biased assignment protocol,
926 where the probability of receiving a given treatment is dependent on the recent trajectory of tumor growth.
927 Both treatment assignments are drawn from a Beta distribution:

$$929 \quad \mathbf{A}_t^r, \mathbf{A}_t^c \sim \text{Beta}(2\sigma_t, 2 - 2\sigma_t), \quad (14)$$

931 The shape of this distribution is dynamically adjusted by σ_t , which is calculated as follows:

$$933 \quad \sigma_t = \sigma \left(\frac{\kappa}{D_{max}} (\bar{D}_{15}(\bar{\mathbf{Y}}_{t-1}) - D_{max}/2) \right), \quad (15)$$

936 Here, $\sigma(\cdot)$ is a sigmoid function, $\bar{D}_{15}(\bar{\mathbf{Y}}_{t-1})$ is the average tumor dimension over the last 15 days, and
937 D_{max} is the maximum tumor size. The parameter κ explicitly controls the strength of this confounding
938 effect; a κ of zero results in random assignment, while larger values create a stronger dependency on patient
939 history.

Finally, to assess the robustness of models to policy shifts, a distinct intervention strategy is introduced during the testing phase. With a probability of η at each step, the standard treatment assignment is overridden by an independent policy where $\mathbf{A}_t^r, \mathbf{A}_t^c$ are drawn from a static $\text{Beta}(\alpha, \beta)$ distribution. The complete dataset comprises 1,000 trajectories for training, 100 for validation, and 100 for testing, with individual trajectories running for up to 60 time steps before termination due to patient outcomes. For evaluating model performance, we adopt the normalized target distance metric, consistent with established benchmarks (Bica et al., 2020; Melnychuk et al., 2022), calculated relative to a maximum tumor volume of $V_{\max} = 1150 \text{ cm}^3$.

950 C.2 DETAILS ON EXPERIMENTS WITH SEMI-SYNTHETIC DATA

To simulate the complexity of real-world clinical data within a controlled environment, we designed a semi-synthetic data generation process. This process is built upon the MIMIC-III clinical database (Johnson et al., 2016) and leverages the standardized preprocessing pipeline from MIMIC-extract (Wang et al., 2020), which provides hourly aggregated ICU data. To ensure data quality, we imputed missing values in the time-series using a forward and backward filling strategy, and all continuous features were subsequently standardized. **The intended clinical task in this environment is goal-conditioned control: drive a 2D outcome vector (y_1, y_2) to a desired feasible target $\mathbf{Y}_{\text{target}}$, with a sparse goal-reaching reward (0 upon first hit, -1 otherwise) over a fixed planning horizon.**

Our feature space is composed of 25 time-varying vital signs and 3 static covariates (gender, ethnicity, and age). To enable the model to process this categorical information, the static features were one-hot-encoded, resulting in a final 44-dimensional input vector ($d_v = 44$) for each timestep.

Our data generation process extends the methodology of Schulam & Saria (2017). The core principle is to first generate untreated outcome trajectories that evolve based on both endogenous dynamics and exogenous influences from patient covariates. After establishing these untreated paths, treatment effects are sequentially applied to construct the final trajectories. The model assumes a sparse dependency structure, meaning that an outcome is influenced by a limited number of covariates and treatments, and similarly, a treatment decision is informed by a limited set of factors.

Cohort construction and sampling. We adopted a semi-synthetic benchmark grounded in realistic clinical dynamics to evaluate our method, strictly following the experimental protocol established by Melnychuk et al. (2022). The study cohort was constructed based on the MIMIC-III database, from which we extracted hourly averaged physiological measurements of adult patients as the basis for simulation. To ensure a standardized evaluation environment, we implemented the following precise inclusion criteria: (1) we excluded all records with a length of stay shorter than 60 hours to ensure that the model has sufficient historical information for autoregressive modeling and to reduce padding artifacts; (2) using a fixed random seed (Seed=10), we drew a balanced cohort of $N = 500$ independent patient trajectories to ensure reproducibility; (3) all trajectories were strictly truncated to a fixed length of 60 hours, and missing values were imputed using forward and backward filling. The resulting state space contains 25 real-valued dynamic vital signs (e.g., heart rate, blood glucose) and 3 static demographic features. Based on these real physiological histories, we simulated synthetic patient outcomes and treatment effects to provide ground-truth benchmarks for causal inference. Notably, we extend the clinical abstraction of the original benchmark: while Melnychuk et al. (2022) simulate binary treatment decisions (i.e., presence or absence of an intervention), our framework models continuous interventions. This setting yields a more challenging control task, requiring the agent to determine precise continuous dosage levels in order to regulate synthetic health states driven by complex, realistic physiological dependencies.

The simulator operates through the following steps:

987 *First*, the process begins with the construction of a patient cohort of n individuals, sampled randomly from
 988 ICU stays lasting at least 20 hours. **We enforce fixed minimum/maximum sequence lengths and use a fixed**
 989 **seed for reproducibility; splits into train/val/test are also seed-controlled.**

990 *Second*, we generate d_y "untreated" outcome trajectories, $\mathbf{Z}^{j,(i)}$, for each patient. These trajectories are a
 991 composite of three distinct sources: an endogenous component modeling patient-specific trends, an exoge-
 992 nous component capturing dependencies on covariates, and a stochastic noise term. The formal definition
 993 is:
 994

$$995 \quad \mathbf{Z}_t^{j,(i)} = \underbrace{\alpha_S^j \text{B-spline}(t) + \alpha_g^j g^{j,(i)}(t)}_{\text{endogenous}} + \underbrace{\alpha_f^j f_Z^j(\mathbf{X}^{(i)})}_{\text{exogenous}} + \underbrace{\varepsilon_t}_{\text{noise}} \quad (16)$$

997 where the noise ε_t is drawn from $N(0, 0.005^2)$, and α_S^j , α_g^j , α_f^j serve as weighting parameters. The B-
 998 spline(t) component is drawn from a mixture of three cubic splines, while the patient-specific function
 999 $g^{j,(i)}(\cdot)$ is drawn from a Gaussian Process with a Matérn kernel. The covariate-dependent function $f_Z^j(\cdot)$ is
 1000 approximated using random Fourier features (RFF).
 1001

1002 *Third*, we sequentially simulate d_a continuous treatments \mathbf{A}_t^l on the interval (0,1). The assignment of these
 1003 treatments is confounded by both a subset of current time-varying covariates (through the random function
 1004 $f_Y^l(\mathbf{X}_t)$) and the historical average of previously treated outcomes over a window T_l ($\bar{A}_{T_l}(\bar{Y}_{t-1})$). These
 1005 factors are integrated within a sigmoid function to yield a base probability, p_t^l . This probability, along with a
 1006 concentration parameter c , then defines a Beta distribution from which the final continuous treatment value,
 1007 \mathbf{A}_t^l , is drawn. The process is formalized as:
 1008

$$1009 \quad p_t^l = \sigma(\Delta_A^l \bar{A}_{T_l}(\bar{Y}_{t-1}) + \Delta_X^l f_Y^l(\mathbf{X}_t) + b_l) \quad \mathbf{A}_t^l \sim \text{Beta}(c \cdot p_t^l, c \cdot (1 - p_t^l)) \quad (17)$$

1010 where $\sigma(\cdot)$ is the sigmoid activation, Δ_A^l and Δ_X^l are confounding parameters, b_l is a fixed bias, c is the
 1011 base concentration parameter, and $f_Y^l(\cdot)$ is sampled from an RFF approximation of a Gaussian process.
 1012

1013 *Fourth*, we apply treatments to the untreated outcomes, initializing with $\mathbf{Y}_1 = \mathbf{Z}_1$. Each treatment is modeled
 1014 to have a lasting influence on specific outcomes. The maximal additive effect is determined by transforming
 1015 the sampled treatment value using a cubic spline function, denoted $cs(\cdot)$. This effect is applied over a time
 1016 window $t - w^l, \dots, t - 1$ and is subject to an inverse-square-root decay. When multiple treatments are
 1017 active, their combined influence is determined by taking the minimum effect at each time step. The total
 1018 effect $E^j(t)$ is modeled as:
 1019

$$1020 \quad E^j(t) = \sum_{i=t-w^l}^{t-1} \frac{\min_{l=1, \dots, d_a} (cs(\mathbf{A}_i^l) \cdot \beta_{lj})}{\sqrt{t-i}}, \quad (18)$$

1023 where β_{lj} represents the maximum effect size of treatment l on outcome j .
 1024

1025 *Fifth*, the final outcome at each timestep is then synthesized by adding the aggregated treatment effect $E^j(t)$
 1026 to the untreated trajectory:
 1027

$$\mathbf{Y}_t^j = \mathbf{Z}_t^j + E^j(t). \quad (19)$$

1028 *Sixth*, the output of this simulation process is our final semi-synthetic dataset. Based on the generation
 1029 of three continuous treatments ($d_a = 3$) and two outcomes ($d_y = 2$), the patient cohort is partitioned
 1030 into training, validation, and testing sets. **In summary, the designed target variables are the 2D outcome**
 1031 **vector (y_1, y_2) and the task is to reach a specified clinically plausible target region. Cohort selection is**
 1032 **seeded and criteria-based; evaluation focuses on goal-conditioned planning performance under controlled**
 1033 **yet physiologically grounded dynamics, rather than disease-specific effect estimation.**

1034 **D HYPERPARAMETER TUNING**
10351036
1037 The hyperparameter settings for our proposed GIFT model are detailed in Table 4. We employed a random
1038 grid search methodology to optimize these parameters. For all baseline models, including RMSN, CRN,
1039 CT, ACTIN and VCIP, we adopted the hyperparameter optimization strategy and search ranges consistent
1040 with those reported in their original studies. This ensures a fair and robust comparison across all evaluated
1041 methods.
10421043 Table 4: Specified ranges for hyperparameter tuning of GIFT across various datasets.
1044

1045 Hyperparameter	1046 Range (tumor)	1047 Range (MIMIC-III)
1048 Learning rate (SAC) l	5e-4, 1e-3, 2e-3	5e-4, 1e-3, 2e-3
1049 Minibatch size	128, 256, 512, 1024	128, 256, 512, 1024
1050 Hidden size	32, 72, 112	32, 72, 112
1051 SAC Actor/Critic hidden layers	[32], [64], [128]	[32], [64], [128]
1052 History Encoder hidden layers	[32], [64], [128]	[32], [64], [128]
1053 Discount factor γ	0.5, 0.7, 0.9	0.5, 0.7, 0.9
1054 HER future goals k	0, 3, 5	0, 3, 5
ϵ_1, ϵ_2	0.01,10	0.01,10
Target hit ratio	[0.45, 0.5, ..., 0.9]	[0.25, 0.3, ..., 0.75]
Number of epochs	15	30

1055 **E UTILIZATION OF LARGE LANGUAGE MODELS**
10561057 Large Language Models (LLMs) were strategically employed throughout this research to enhance productivity
1058 and output quality. In the writing process, LLMs were utilized for text refinement and polishing,
1059 improving the clarity, coherence, and academic tone of the manuscript while ensuring consistent writing
1060 style and precise terminology. For data analysis, LLMs generated comprehensive analytical code including
1061 data preprocessing routines, statistical analysis functions, and visualization scripts, which accelerated the
1062 experimental result interpretation workflow. Additionally, during the initial research phase, LLMs assisted
1063 in conducting literature surveys, synthesizing information from multiple sources, and identifying relevant
1064 research directions.
10651066 **F ADDITIONAL EXPERIMENTS**
10671068 **F.1 ANALYSIS OF GOAL ACHIEVEMENT SPARSITY.**1069 In observational data, trajectories successfully reaching specific goals can be exceedingly rare, posing significant
1070 challenges for policy learning. In our problem formulation (Section 3), the target region \mathcal{T} is defined
1071 by radius δ . The proportion of training trajectories within this region, termed “Hit Ratio,” correlates with
1072 δ choice. This introduces a critical trade-off: smaller δ results in lower Hit Ratio, making reward signals
1073 sparse and hindering learning. Conversely, overly large δ renders goals too lenient, leading models to learn
1074 policies achieving high hit rates while remaining far from target $\mathbf{Y}_{\text{target}}$. Figure 7 illustrates model RMSE
1075 versus Hit Ratio on both datasets, validating this trade-off.
1076



Figure 7: Performance evaluation of our model, presented as RMSE, on the (a) MIMIC and (b) Tumor datasets. The comparison is made across varying Hit Ratios (the proportion of training data reaching a target threshold) and for different values of the hyperparameter τ .

F.2 ANALYSIS OF OPTIMIZATION STRATEGIES

To investigate the impact of different optimization strategies, we compare our proposed model, GIFT, with baselines trained under two distinct paradigms: step-level and episode-level optimization. The results on the MIMIC-III and Tumor datasets are presented in Tables 5 through 8.

Step-level vs. Episode-level Optimization. For all baseline models (RMSN, CRN, CT, ACTIN, and VCIP), a clear and consistent trend emerges across all datasets: episode-level optimization consistently outperforms step-level optimization. The performance gap is particularly pronounced for longer prediction horizons (τ). For instance, in Table 5, the error for RMSN under the step-level strategy escalates to 2.13 ± 0.57 at $\tau = 6$, whereas the episode-level strategy maintains a much lower error of 0.83 ± 0.28 . This suggests that optimizing over the entire sequence trajectory (episode-level) is more effective for long-term forecasting than the myopic, step-by-step approach, which is susceptible to the compounding of errors over time.

Superiority of GIFT. Our proposed model, GIFT, significantly surpasses all baseline models, regardless of their optimization strategy. As evidenced by the bolded results in the tables, GIFT achieves the lowest error across all prediction horizons and datasets. This performance advantage is not only substantial but also grows as the prediction horizon τ increases. For example, on the Tumor dataset with $\kappa = 4$ (Table 8), GIFT’s error at $\tau = 6$ is 0.40 ± 0.05 , which is less than half that of the best-performing baseline, VCIP (0.87 ± 0.26). This demonstrates that GIFT’s inherent architecture and training mechanism provide a more robust solution, effectively mitigating the challenges of long-term sequential forecasting without being constrained by the choice between step-level and episode-level optimization. The results firmly establish the superiority of our proposed approach.

F.3 IMPACT OF INFERENCE OPTIMIZATION STEPS

To investigate the impact of inference-time optimization, we analyzed model performance as a function of optimization steps on both the MIMIC and Tumor datasets (Figures 8-12). The results reveal that the optimal optimization strategy is highly dependent on the dataset’s characteristics.

On the MIMIC dataset, most models (e.g., RMSN, CRN, ACTIN) exhibit robust behavior: the RMSE decreases with optimization and then converges to a stable plateau. This indicates that after reaching a certain performance level, additional optimization steps do not degrade performance.

1128
1129 Table 5: Performance comparison of GIFT and baseline models under various optimization strategies on the
1130 MIMIC-III dataset.

Model	Strategy	$\tau = 1$	$\tau = 2$	$\tau = 3$	$\tau = 4$	$\tau = 5$	$\tau = 6$
RMSN	step	0.26±0.06	0.61±0.18	1.02±0.28	1.42±0.40	1.76±0.45	2.13±0.57
RMSN	episode	0.25±0.07	0.39±0.13	0.50±0.17	0.60±0.20	0.70±0.21	0.83±0.28
CRN	step	0.43±0.04	0.78±0.13	1.12±0.30	1.49±0.46	1.80±0.58	2.14±0.73
CRN	episode	0.31±0.04	0.46±0.11	0.60±0.15	0.71±0.17	0.83±0.18	0.96±0.24
CT	step	0.92±0.31	1.52±0.62	2.01±0.89	2.44±1.14	2.86±1.35	3.23±1.55
CT	episode	0.62±0.17	1.06±0.32	1.42±0.47	1.72±0.60	1.98±0.73	2.20±0.83
ACTIN	step	0.24±0.20	0.62±0.38	1.12±0.51	1.56±0.60	2.01±0.74	2.45±0.85
ACTIN	episode	0.28±0.19	0.57±0.34	0.79±0.50	0.98±0.64	1.11±0.74	1.23±0.81
VCIP	step	0.41±0.19	0.54±0.24	0.60±0.25	0.63±0.26	0.66±0.26	0.68±0.25
VCIP	episode	0.41±0.19	0.51±0.22	0.57±0.21	0.60±0.20	0.62±0.18	0.67±0.22
GIFT		0.24±0.10	0.31±0.13	0.33±0.14	0.37±0.16	0.38±0.17	0.39±0.18

1146
1147 Table 6: Performance comparison of GIFT and baseline models under various optimization strategies on the
1148 Tumor dataset ($\kappa = 2$).

Model	Strategy	$\tau = 1$	$\tau = 2$	$\tau = 3$	$\tau = 4$	$\tau = 5$	$\tau = 6$
RMSN	step	0.15±0.05	0.27±0.09	0.36±0.11	0.44±0.15	0.51±0.19	0.58±0.24
RMSN	episode	0.09±0.03	0.14±0.05	0.18±0.06	0.21±0.07	0.25±0.09	0.28±0.12
CRN	step	0.16±0.05	0.27±0.10	0.37±0.12	0.44±0.16	0.50±0.19	0.56±0.24
CRN	episode	0.10±0.03	0.15±0.06	0.19±0.07	0.23±0.08	0.26±0.10	0.30±0.12
CT	step	0.17±0.04	0.29±0.09	0.38±0.12	0.45±0.15	0.51±0.18	0.57±0.23
CT	episode	0.11±0.03	0.17±0.06	0.21±0.07	0.25±0.09	0.29±0.11	0.34±0.16
ACTIN	step	0.18±0.06	0.32±0.14	0.41±0.20	0.47±0.24	0.53±0.28	0.59±0.32
ACTIN	episode	0.14±0.06	0.22±0.09	0.29±0.11	0.34±0.13	0.41±0.15	0.46±0.19
VCIP	step	0.10±0.03	0.15±0.05	0.19±0.06	0.22±0.08	0.26±0.10	0.29±0.12
VCIP	episode	0.10±0.03	0.16±0.05	0.18±0.05	0.21±0.07	0.25±0.10	0.28±0.13
GIFT		0.08±0.02	0.10±0.03	0.11±0.04	0.12±0.04	0.13±0.05	0.14±0.05

1166
1167 In stark contrast, on the Tumor dataset, the dominant trend for most models (RMSN, CRN, VCIP) is a
1168 distinct **U-shaped performance curve**. The RMSE initially improves but then degrades with excessive
1169 optimization, highlighting a significant risk of overfitting. This makes the precise number of optimization
1170 steps a critical hyperparameter for this dataset.1171
1172 A consistent finding across both datasets is the instability of the CT model, which performs poorly with
1173 increased optimization, especially for long-term prediction. Conversely, the ACTIN model consistently
1174 showed the most robust behavior on both datasets. In conclusion, while inference-time optimization is a
powerful technique, its application requires careful tuning tailored to the specific model and dataset to avoid
potential overfitting.

1175 Table 7: Performance comparison of GIFT and baseline models under various optimization strategies on the
 1176 Tumor dataset ($\kappa = 3$).
 1177

Model	Strategy	$\tau = 1$	$\tau = 2$	$\tau = 3$	$\tau = 4$	$\tau = 5$	$\tau = 6$
RMSN	step	0.23 \pm 0.04	0.40 \pm 0.06	0.57 \pm 0.08	0.73 \pm 0.12	0.86 \pm 0.17	0.99 \pm 0.24
RMSN	episode	0.12 \pm 0.02	0.21 \pm 0.03	0.29 \pm 0.06	0.35 \pm 0.10	0.41 \pm 0.12	0.46 \pm 0.14
CRN	step	0.33 \pm 0.06	0.55 \pm 0.08	0.75 \pm 0.13	0.89 \pm 0.15	1.01 \pm 0.22	1.10 \pm 0.24
CRN	episode	0.18 \pm 0.05	0.28 \pm 0.07	0.39 \pm 0.10	0.48 \pm 0.11	0.56 \pm 0.15	0.63 \pm 0.16
CT	step	0.34 \pm 0.08	0.59 \pm 0.12	0.80 \pm 0.19	0.94 \pm 0.21	1.07 \pm 0.28	1.15 \pm 0.30
CT	episode	0.21 \pm 0.06	0.33 \pm 0.05	0.45 \pm 0.08	0.55 \pm 0.09	0.65 \pm 0.13	0.72 \pm 0.13
ACTIN	step	0.29 \pm 0.04	0.45 \pm 0.09	0.59 \pm 0.09	0.68 \pm 0.10	0.76 \pm 0.11	0.84 \pm 0.14
ACTIN	episode	0.29 \pm 0.04	0.39 \pm 0.03	0.51 \pm 0.03	0.61 \pm 0.04	0.71 \pm 0.07	0.78 \pm 0.09
VCIP	step	0.16 \pm 0.04	0.23 \pm 0.04	0.29 \pm 0.06	0.33 \pm 0.09	0.39 \pm 0.11	0.40 \pm 0.08
VCIP	episode	0.16 \pm 0.04	0.22 \pm 0.04	0.29 \pm 0.07	0.33 \pm 0.08	0.38 \pm 0.10	0.41 \pm 0.09
GIFT		0.11\pm0.02	0.14\pm0.04	0.17\pm0.04	0.20\pm0.05	0.21\pm0.06	0.23\pm0.06

1193 Table 8: Performance comparison of GIFT and baseline models under various optimization strategies on the
 1194 Tumor dataset ($\kappa = 4$).
 1195

Model	Strategy	$\tau = 1$	$\tau = 2$	$\tau = 3$	$\tau = 4$	$\tau = 5$	$\tau = 6$
RMSN	step	0.59 \pm 0.09	1.04 \pm 0.19	1.39 \pm 0.18	1.69 \pm 0.19	1.93 \pm 0.20	2.10 \pm 0.22
RMSN	episode	0.29 \pm 0.05	0.45 \pm 0.08	0.61 \pm 0.13	0.75 \pm 0.16	0.91 \pm 0.20	1.01 \pm 0.21
CRN	step	0.62 \pm 0.20	1.09 \pm 0.27	1.42 \pm 0.30	1.70 \pm 0.30	1.94 \pm 0.28	2.11 \pm 0.27
CRN	episode	0.34 \pm 0.14	0.59 \pm 0.26	0.77 \pm 0.37	0.92 \pm 0.45	1.07 \pm 0.50	1.14 \pm 0.54
CT	step	0.66 \pm 0.18	1.13 \pm 0.28	1.52 \pm 0.34	1.80 \pm 0.33	2.02 \pm 0.36	2.16 \pm 0.32
CT	episode	0.40 \pm 0.16	0.68 \pm 0.26	0.98 \pm 0.36	1.20 \pm 0.40	1.40 \pm 0.41	1.57 \pm 0.44
ACTIN	step	0.50 \pm 0.16	0.87 \pm 0.31	1.13 \pm 0.37	1.34 \pm 0.38	1.55 \pm 0.41	1.70 \pm 0.38
ACTIN	episode	0.50 \pm 0.15	0.85 \pm 0.29	1.08 \pm 0.35	1.27 \pm 0.39	1.45 \pm 0.44	1.60 \pm 0.50
VCIP	step	0.34 \pm 0.07	0.48 \pm 0.12	0.60 \pm 0.18	0.69 \pm 0.19	0.78 \pm 0.23	0.87 \pm 0.26
VCIP	episode	0.34 \pm 0.07	0.46 \pm 0.11	0.58 \pm 0.18	0.69 \pm 0.19	0.81 \pm 0.23	0.87 \pm 0.24
GIFT		0.25\pm0.05	0.32\pm0.08	0.35\pm0.05	0.38\pm0.04	0.39\pm0.04	0.40\pm0.05

1211 G BASELINE DETAILS

1214 G.1 STABLE CONTRASTIVE RL (SCRL) FOR SCTA

1216 We adopt Stable Contrastive RL (SCRL) (Zheng et al., 2024) as a general offline GCRL baseline and in-
 1217 instantiate it for the SCTA task. The core idea is to construct a discriminative reachability score between
 1218 “history–action” and “goal,” and use this score to directly drive goal-conditioned policy learning, thereby
 1219 obtaining a closed-loop decision maker from offline data.

1220 Concretely, a variable-length history (past outcomes, interventions, static features, and optional vitals) is
 1221 encoded into a fixed-dimensional history representation z_h , and the target outcome vector is mapped to a

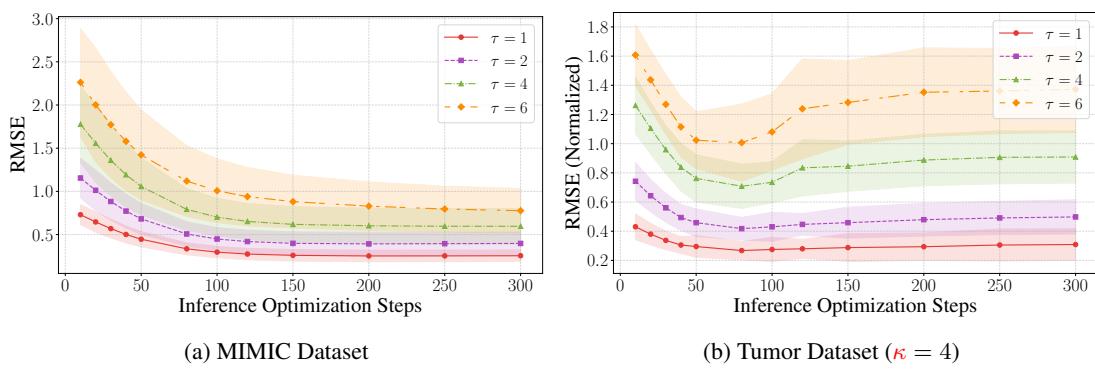


Figure 8: Performance of the RMSN model with the episode-level optimization strategy as a function of the number of inference optimization steps. The plots show the RMSE for different forecast horizons ($\tau \in \{1, 2, 4, 6\}$) on (a) the MIMIC dataset and (b) the Tumor dataset ($\kappa = 4$).

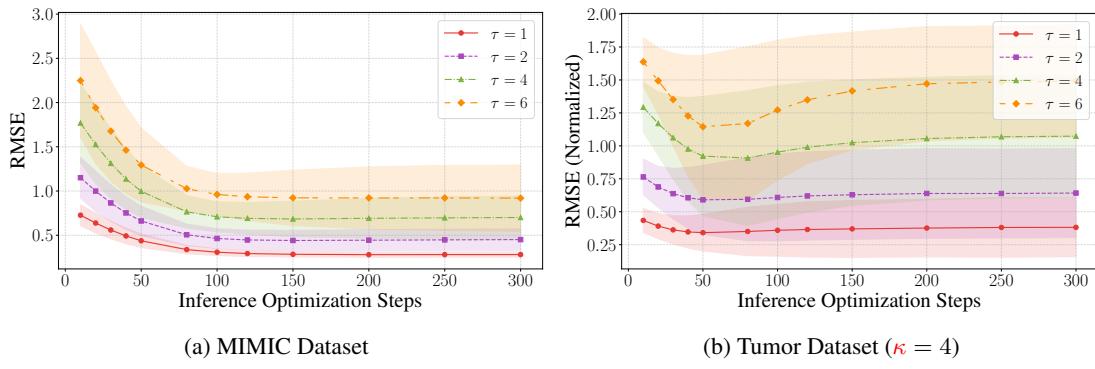


Figure 9: Performance of the CRN model with the episode-level optimization strategy as a function of the number of inference optimization steps. The plots show the RMSE for different forecast horizons ($\tau \in \{1, 2, 4, 6\}$) on (a) the MIMIC dataset and (b) the Tumor dataset ($\kappa = 4$).

goal representation z_g . Two mappings, $\phi(s, a)$ and $\psi(g)$, project “history–action” and “goal” into a shared embedding space, where normalized similarity (e.g., cosine) measures reachability:

$$\text{sim}(\phi, \psi) = \left\langle \frac{\phi}{\|\phi\|}, \frac{\psi}{\|\psi\|} \right\rangle.$$

The critic is trained with temperature-scaled InfoNCE/cross-entropy (positives are matched (ϕ, ψ) pairs; negatives come from in-batch pairing and a queue-based memory bank):

$$\mathcal{L}_{\text{critic}} = \text{CE}\left(\frac{\phi \psi^\top}{\eta}\right),$$

where η is the temperature. The policy takes (z_h, z_g) as input and outputs continuous interventions, maximizing the similarity between policy-induced actions and the goal embedding while adding a behavior cloning (BC) regularizer to suppress out-of-distribution actions in the offline setting:

$$\begin{aligned} \mathcal{L}_{\text{actor-ctr}} &= -\mathbb{E}[\text{sim}(\phi(z_h, \pi(z_h, z_g)), \psi(z_g))], \\ \mathcal{L}_{\text{actor}} &= \mathcal{L}_{\text{actor-ctr}} + \lambda_{\text{BC}} \cdot (-\mathbb{E}[\log \pi(a_{\text{data}} | z_h, z_g)]). \end{aligned}$$

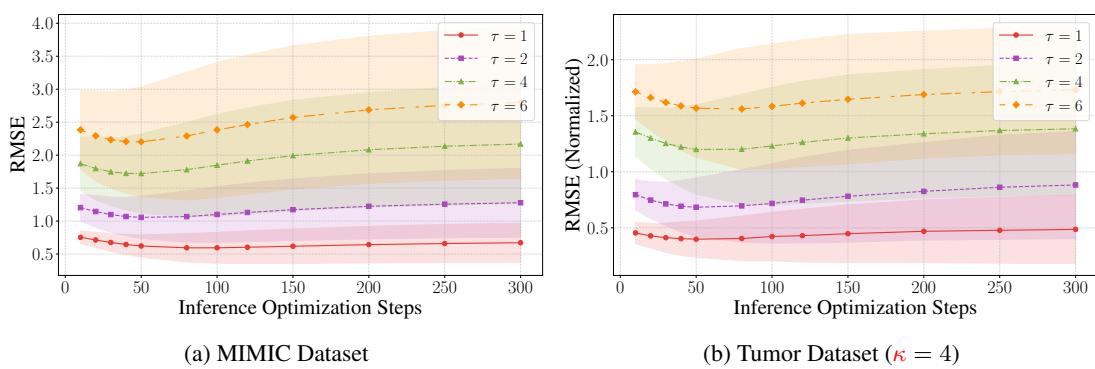


Figure 10: Performance of the CT model with the episode-level optimization strategy as a function of the number of inference optimization steps. The plots show the RMSE for different forecast horizons ($\tau \in \{1, 2, 4, 6\}$) on (a) the MIMIC dataset and (b) the Tumor dataset ($\kappa = 4$).

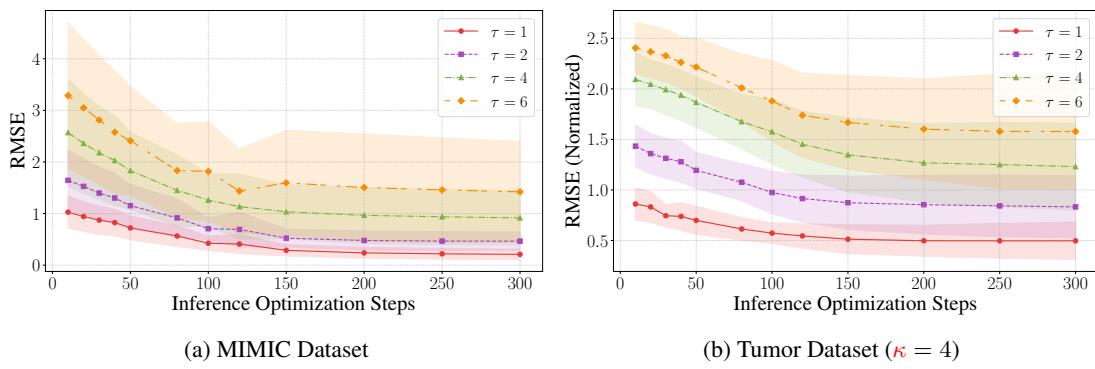


Figure 11: Performance of the ACTIN model with the episode-level optimization strategy as a function of the number of inference optimization steps. The plots show the RMSE for different forecast horizons ($\tau \in \{1, 2, 4, 6\}$) on (a) the MIMIC dataset and (b) the Tumor dataset ($\kappa = 4$).

To improve stability and generalization, following Zheng et al. (2024), we use large-batch training, layer normalization, lightweight data augmentation, and small-range cold-start initialization.

Training proceeds as purely offline alternating optimization: first update the critic (minimize $\mathcal{L}_{\text{critic}}$ and maintain the negative sample queue), then update the policy (minimize $\mathcal{L}_{\text{actor}}$). At inference time, given “history and goal,” the policy outputs actions in a closed-loop manner, rolling the history forward with environment/simulator feedback until reaching the goal or the planning horizon. Compared with open-loop plans that rely on test-time search, the closed-loop policy has lower inference latency.

Regarding empirical performance, the results reported in Tables 1 and 2 show that, on the tumor dataset ($\kappa=4$, different intervention strategies between train and test) and the semi-synthetic MIMIC dataset (same strategy between train and test), SCRL attains higher terminal RMSE than GIFT, with the gap widening as the planning horizon τ increases. A plausible explanation is that, in TCTA, the goal is a low-dimensional clinical target rather than a “future observation,” so contrastive alignment tends to degenerate into static similarity and struggles to capture the temporal signal of “dynamical reachability.” In addition, SCTA requires

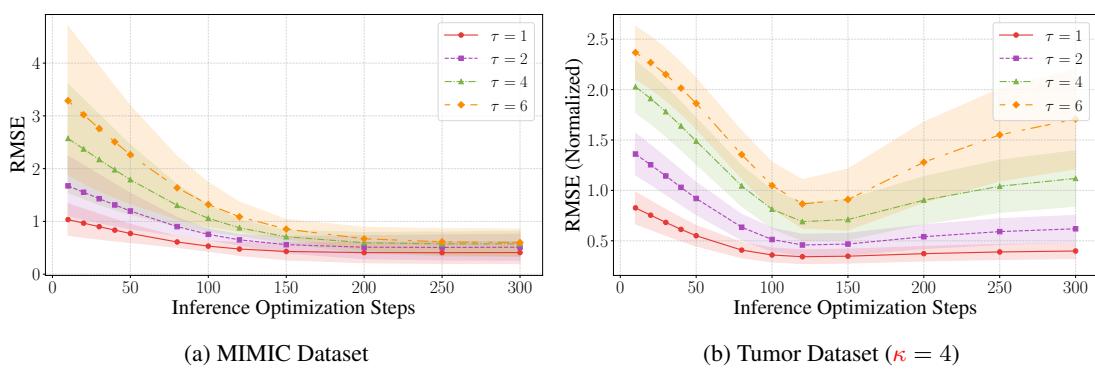


Figure 12: Performance of the VCIP model with the episode-level optimization strategy as a function of the number of inference optimization steps. The plots show the RMSE for different forecast horizons ($\tau \in \{1, 2, 4, 6\}$) on (a) the MIMIC dataset and (b) the Tumor dataset ($\kappa = 4$).

handling both causal identifiability and robust estimation under offline distribution shift ($\pi_b \rightarrow \pi_\theta$), which goes beyond the typical assumptions of general GCRL.

G.2 DEFINITIONS OF OPTIMIZATION STRATEGIES

As mentioned in the main text, for baseline models incapable of directly outputting decisions, we devised two optimization strategies to find the optimal treatment sequence during the inference phase. This section provides a detailed description of their definitions, objective functions, and algorithmic implementations.

Step-level Optimization is an online, greedy approach. At each decision-making time step, the model employs an iterative optimization process (as shown in Algorithm 1) to determine the optimal action for the current step. The objective is to identify the action that brings the subsequent prediction closest to the final target.

Episode-level Optimization is an offline, global method. This strategy treats all future τ treatment actions as a complete sequence and jointly optimizes this entire sequence via gradient descent (as detailed in Algorithm 2). The goal is to discover the full sequence of actions that minimizes the discrepancy between the final predicted outcome and the target.

G.3 OBJECTIVE FUNCTIONS

The core of both optimization strategies is the minimization of an objective function, `calculate_objective`, whose specific definition varies depending on the model paradigm.

For **VCIP**, this function computes the negative of the Evidence Lower Bound (ELBO). The optimization goal is to maximize the conditional likelihood of achieving the target, which is equivalent to minimizing the following objective function:

$$\mathcal{L}_{\text{VCIP}}(\bar{\mathbf{a}}_{t,\tau}) = -\text{ELBO}(Y_{\text{target}} | \bar{\mathbf{H}}_t, \bar{\mathbf{a}}_{t,\tau}) \quad (20)$$

For **other baselines** (RMSN, CRN, CT, and ACTIN), the function calculates the Mean Squared Error (MSE) between the predicted counterfactual outcome and the target. The objective is to directly minimize the distance between them:

$$\mathcal{L}_{\text{Baselines}}(\bar{\mathbf{a}}_{t,\tau}) = \|\hat{Y}[\bar{\mathbf{a}}_{t,\tau}] - Y_{\text{target}}\|_2^2 \quad (21)$$

1363 G.4 ALGORITHMS

1364

1365 **Algorithm 1** Step-level Optimization Strategy for Baselines

1366

1367 **Require:** Baseline model M , initial history \bar{h}_t , target y_{target} , number of decision steps τ , real environment/simulator \mathcal{E}

1368

1369 **Require:** Optimization steps per action K , learning rate α 1370 1: Initialize the full treatment sequence $\bar{a}_{t,\tau} \leftarrow \emptyset$ 1371 2: $\bar{h}_{\text{current}} \leftarrow \bar{h}_t$ 1372 3: **for** $k = 0, \dots, \tau - 1$ **do**1373 4: Randomly initialize action for the current step a_k 1374 5: **for** step = 1 to K **do** ▷ Find the optimal action for the current step1375 6: $\mathcal{L} \leftarrow \text{calculate_objective}(M, \bar{h}_{\text{current}}, a_k, y_{\text{target}})$ 1376 7: $a_k \leftarrow a_k - \alpha \nabla_{a_k} \mathcal{L}$ 1377 8: **end for**1378 9: $a^* \leftarrow a_k$ ▷ Obtain the optimal action for the current step1379 10: $\bar{a}_{t,\tau} \leftarrow \bar{a}_{t,\tau} \cup \{a^*\}$ 1380 11: $(x_{\text{next}}, y_{\text{next}}) \leftarrow \mathcal{E}.\text{step}(a^*)$ ▷ Execute action and get the next state from the real system1381 12: $\bar{h}_{\text{current}} \leftarrow \text{update_history}(\bar{h}_{\text{current}}, a^*, x_{\text{next}}, y_{\text{next}})$ ▷ Update history with real feedback1382 13: **end for**1383 14: **return** $\bar{a}_{t,\tau}$

1384

1385 **Algorithm 2** Episode-level Optimization Strategy for Baselines

1386

1387 **Require:** Baseline model M , initial history \bar{h}_t , target y_{target} , number of decision steps τ , learning rate α , number of optimization steps K 1388 1: Randomly initialize the treatment sequence $\bar{a}_{t,\tau}$ 1389 2: **for** step = 1 to K **do**1390 3: $\mathcal{L} \leftarrow \text{calculate_objective}(M, \bar{h}_t, \bar{a}_{t,\tau}, y_{\text{target}})$ ▷ Calculate the global objective1391 4: $\bar{a}_{t,\tau} \leftarrow \bar{a}_{t,\tau} - \alpha \nabla_{\bar{a}_{t,\tau}} \mathcal{L}$ ▷ Update the entire treatment sequence via gradient descent1392 5: **end for**1393 6: **return** $\bar{a}_{t,\tau}$

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409