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Abstract

Recent advances in general-purpose AI underscore the urgent need to align AI
systems with human goals and values. Yet, the lack of a clear, shared understanding
of what constitutes "alignment" limits meaningful progress and cross-disciplinary
collaboration. In this position paper, we argue that the research community should
explicitly define and critically reflect on "alignment" to account for the bidirec-
tional and dynamic relationship between humans and AI. Through a systematic
review of over 400 papers spanning HCI, NLP, ML, and more, we examine how
alignment is currently defined and operationalized. Building on this analysis, we
introduce the Bidirectional Human-AI Alignment framework, which not only in-
corporates traditional efforts to align AI with human values but also introduces
the critical, underexplored dimension of aligning humans with AI – supporting
cognitive, behavioral, and societal adaptation to rapidly advancing AI technologies.
Our findings reveal significant gaps in current literature, especially in long-term
interaction design, human value modeling, and mutual understanding. We conclude
with three central challenges and actionable recommendations to guide future
research toward more nuanced, reciprocal, and human-AI alignment approaches.

1 Introduction

Artificial Intelligence (AI), particularly generative AI, has demonstrated remarkable capabilities
in reasoning, language understanding, problem solving, and more [1]. However, its increasing
integration into society raises significant risks, such as amplifying biases in hiring [2] or perpetuating
stereotypes in text-to-image models [3]. These concerns highlight the urgent need to align these
systems with values, ethical principles, and the goals of individuals and society at large. This need,
commonly referred to as “AI alignment,” [4, 5] is crucial for ensuring that AI systems function in
a manner that is not only effective but also consistent with human values, minimizing harm and
maximizing societal benefits. Yet, key challenges remain:

Challenge 1: Specification Gaming. AI designers often define objectives or feedback to align
systems with human goals, but these rarely capture all intended values [6]. This leads to reliance on
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proxies like human approval [4], enabling specification gaming [7, 8], where AI makes seemingly
“correct” decisions for the wrong, opaque reasons [9, 10, 11].

Challenge 2: Scalable Oversight. As AI systems become more complex—potentially reaching
AGI [12] —aligning them through human feedback grows harder. Evaluating their behavior is often
slow or infeasible [5], prompting research into reducing supervision burdens and enhancing human
oversight, a challenge known as Scalable Oversight [13].

Challenge 3: Dynamic Nature. As AI advances, alignment must adapt to evolving human values.
Without considering long-term cognitive and social impacts, AI may become neither humane nor de-
sirable [14]. This needs a dynamic, ongoing alignment process with cross-disciplinary collaboration.
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Figure 1: The overview of the Bidirectional Human-AI Align-
ment framework. Our framework encompasses both
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BA “Align Humans with AI”. We further identify four key
Research Questions to facilitate this holistic loop of “bidirec-
tional human-AI alignment”, and provide answers that can
potentially address RQ1-RQ4 in Section 3.

Traditionally, AI alignment has been
approached as a static, one-way pro-
cess focused on shaping AI to achieve
desired outcomes and avoid harm [15,
1, 16]. However, this unidirectional
view is increasingly insufficient as
AI systems become more integrated
into daily life and assume complex
decision-making roles [17]. Their in-
teractions with humans create evolv-
ing feedback loops that influence both
AI behavior and human responses [18,
19, 20], highlighting the need for a
more dynamic and reciprocal under-
standing of alignment [17].

In this position paper, we argue that
it is critical for the research commu-
nity to explicitly reflect on what we
mean by “alignment” and to take
into account the bidirectional, dy-
namic interactions between humans
and AI to achieve responsible and
safe AI systems.

Through a systematic review of over 400 papers across HCI, NLP, ML, and related fields, we
examine how alignment is currently defined and implemented. Based on this analysis, we propose
the Bidirectional Human-AI Alignment (in Figure 1) framework. It extends the traditional focus on
“Aligning AI to Humans”—integrating human input to train, steer, and customize AI—by introducing
the equally vital yet underexplored direction of “Aligning Humans to AI”, which emphasizes cognitive,
behavioral, and societal adaptation to rapid AI advancement.

Our findings reveal key gaps in existing research, particularly in human value modeling, oversight of
model inference, critical evaluation of AI’s embedded values, and its broader societal impact. We con-
clude by outlining near- and long-term risks and opportunities, offering actionable recommendations
to advance more reciprocal, adaptive, and nuanced approaches to human-AI alignment.

2 Defining Alignment: Fundamentals
Building on our analysis of systematic review (see details in Appendix 8), we explicitly identify the
key definitions in alignment research and formally propose “Bidirectional Human-AI Alignment”.

Goals. AI alignment research proposes multiple alignment goals [21, 22], such as intentions [1, 23],
preferences [24, 25], instructions [26, 27], and values [28, 29]. But these terms are often used
interchangeably without clear distinctions. Philosophical analysis suggests human values (moral
beliefs/principles) are the most suitable alignment goal, as they ensure AI acts ethically while
minimizing risks [29, 30]. Though trade-offs exist, this work adopts "human values" as the alignment
objective, meaning AI should behave as individuals or society morally expect (See details in Table 2).

Align with Whom. AI alignment involves multiple stakeholders, such as end users [31], AI prac-
titioners [32, 23, 33], and organizations [34]. Many studies reference “general humans” without
accounting for group differences, despite the fact that stakeholders often hold conflicting values [29].

2



Table 1: The fine-grained typology of two directions in the Bidirectional Human-AI Alignment.

Research Question Sub-Research Question Dimensions References
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RQ1: Human Values
and Specifications

Categorizing Aligned Human Values
what values have been aligned with AI?

Source of Values [41, 42, 43]
Value Types [16, 44, 45]

Interaction Techniques to Specify AI Values
How humans could interactively specify values in AI development?

Explicit Human Feedback [46, 47, 26]
Implicit Human Feedback [48, 49, 50]
Simulated Human Value Feedback [51, 52, 53]

RQ2: Integrating Human
Specification into AI

Develop AI with General Values
how to incorporate general human values into AI development?

Instruction Data [54, 55, 56]
Model Learning [1, 57, 58]
Inference Stage [26, 59, 60]

Customizing AI for Individuals or Groups
how to customize AI to incorporate values of individuals or groups?

Customized Data [61, 62, 63]
Adapt Model by Learning [64, 65, 66]
Interactive Alignment [67, 68, 69]

Evaluating AI Systems
how to evaluate AI regarding human values?

Human-in-the-loop Evaluation [70, 71, 43]
Automatic Evaluation [72, 55, 73]

Ecosystem
how to build the ecosystem to facilitate human-AI alignment?

Platforms [56, 74, 75,
76, 77, 78]
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A
I RQ3: Human Cognitive

Adjustment to AI

Perceiving and Understanding of AI
how do humans learn to perceive and explain AI systems?

Education and Training Human [79, 80, 81]
AI Sensemaking and Explanations [82, 83, 84]

Critical Thinking about AI
how do humans think critically about AI systems?

Trust and Reliance on AI Decisions [85, 86, 87]
Ethical Concerns and AI Auditing [88, 89]
Calibrate Cognition to Align AI [90, 91, 92]

RQ4: Human Adaptation
Behavior to AI

Human Collaborating with Diverse AI Roles
how do humans collaborate with AI with differing capability levels?

AI Assistants [93, 94, 95]
AI Partners [21, 96, 97]
AI Tutors [98, 99, 100]

AI Impacts on Humans and Society
how are humans influenced by AI systems?

Impact on Individual Behavior [18, 101]
Societal Concerns and AI Impacts [102, 103]
Reaction to AI Advancements [104, 105]

Evaluation in Human Studies
how might we evaluate the impact of AI on humans and society?

Evaluate Human-AI Collaboration [106, 107]
Evaluate Societal Impact [16, 108]

Rather than pursuing a universal moral theory, prior work advocates aligning AI with principles
tailored to compatible human groups [28]. Pluralistic value alignment, grounded in social choice
theory [35, 28], provides a framework for integrating diverse perspectives [28]. We adopt this view,
recognizing that aligning with affected individuals and groups entails ongoing challenges.

Align with What. While prior studies have sought to align AI with human values, these values
are often vaguely or inconsistently defined. To address this, we reviewed several prominent value
theories, including Moral Foundations Theory [36] and Social Norms and Ethics [37], drawing from
psychology and social science. We selected the Schwartz Theory of Basic Values [38, 39] for its
demonstrated cross-cultural applicability, relevance across contexts (individuals, interactions, groups),
and frequent adoption in NLP research [40, 41]. This framework consists of eleven types of universal
values, and defines values as beliefs about desirable end states or behaviors that transcend specific
situations and guide evaluation and decision-making.

Definition: Bidirectional Human-AI Alignment is a comprehensive framework that encompasses
two interconnected alignment processes: ‘Aligning AI with Humans’ and ‘Aligning Humans with AI’.
The former focuses on integrating human specifications into training, steering, and customizing AI.
The latter supports human agency, empowering people to think critically when using AI, collaborate
effectively with it, and adapt societal approaches to maximize its benefits for humanity.

3 Bidirectional Human-AI Alignment Framework
This section introduces the Bidirectional Human-AI Alignment framework, which encompasses two
interconnected alignment directions as a feedback loop, as shown in Figure 1. The “Align AI to
Humans” direction refers to mechanisms to ensure that AI systems’ values match those of humans’.
The “Align Humans to AI” direction investigates human cognitive and behavioral adaptation to AI
advancement. We introduce more details below.

3.1 Align AI to Humans
This direction delineates alignment research from AI-centered perspective (e.g., ML/NLP domains)
and provides AI developers and researchers with approaches for handling two main challenges:
carefully specifying the values of the system, and ensuring that the system adopts the specification
robustly [4, 33]. Therefore, as shown in Table 1, we explore two core research questions in this
direction as: RQ1. What relevant human values are studied for AI alignment, and how do humans
specify these values? and RQ2. How can human values be integrated into the AI systems?

• RQ1: Human Values and Specifications.

To identify key human values and specifications for AI alignment, we begin by addressing two
critical subquestions: (1) what values have AI systems been aligned with? and (2) how can humans

3



interactively specify values during AI development? As summarized at the top of Table 1, we present
the key dimensions that emerged from our analysis of these questions, along with supporting studies.

Categorizing Aligned Human Values. To systematically understand human values relevant to
human-AI alignment [109, 110], we draw on the adapted Schwartz Theory of Basic Values, examining
values along two dimensions: Sources and Types. The Sources dimension categorizes values as
individual (e.g., personal interests and biological needs like factuality or cognitive biases) [38, 41,
42], social (e.g., shared group norms such as fairness or morality) [38, 43, 45], and interactive
(e.g., expectations in human-AI interactions like usability, autonomy, and trust) [111, 112, 113].
The Types dimension organizes values into four high-order categories: Self-Enhancement (e.g.,
achievement, power) [114, 90, 115], Self-Transcendence (e.g., benevolence, honesty, fairness) [116,
117, 118], Conservation (e.g., safety, tradition, conformity) [119, 31, 96], Openness to Change (e.g.,
creativity, privacy, autonomy) [120, 121, 122]. These dimensions offer a comprehensive framework
for evaluating and aligning AI systems with the multifaceted nature of human values.

Interaction Techniques to Specify AI Values. This sub-research question explores how human
values are interactively specified to ensure AI alignment, focusing on the techniques through which
AI systems manifest or internalize these values. It identifies three main approaches: explicit human
feedback, where values are directly communicated via principles, ratings, natural language interac-
tions, or multimodal inputs like gestures and images [46, 47, 26]; implicit human feedback, where
values are inferred from indirect cues such as discarded options, language patterns, theory of mind
reasoning, and social relationships [48, 49, 50]; and simulated human value feedback, where AI
systems approximate human responses using feedback simulators, comparisons to human data, or
synthetically generated data [51, 52, 53]. Together, these approaches illuminate the mechanisms by
which AI systems interpret and enact human values via direct and indirect human-AI interaction.

Key Takeaways. By comparing prior research with our comprehensive analysis of human values
and interaction techniques, we found that existing studies are largely constrained to conventional
principles and standard interaction methods, overlooking the broader spectrum of human values and
the interactive approaches needed to specify them effectively in alignment.

• RQ2: Integrating Human Specifications into AI.

Building on the value-laden human specifications gathered through interaction, we next explore
diverse methods for integrating human values into AI systems. We examine this central question
across two key stages of the AI lifecycle—development and deployment—by asking: (1) how can
general or customized human values be integrated throughout the AI development process? and (2)
what methods and platforms are available to evaluate values during AI development?

Integrating General Values to AI. This sub-research question examines how broad, universally
recognized human values are embedded into AI systems to ensure ethical alignment and societal
acceptance. It outlines three key dimensions: Instruction Data, which includes human annotations,
human-AI co-annotation, and simulated human data to guide value-based training [54, 55, 56];
Model Learning, where human values are integrated during training through either real-time online
alignment or offline processes prior to deployment [1, 57, 58]; and Inference Stage, where AI
systems are evaluated and refined using techniques such as prompting, external tool interactions,
and response search to ensure their outputs align with predefined ethical criteria [26, 113, 59, 60].
Together, these processes aim to build AI systems that promote trust and responsible use.

Customizing AI Values. This sub-research question investigates how AI systems can be customized
to reflect specific user preferences, application domains, or community values, thereby improving
contextual alignment. It identifies three primary strategies: Customized Data, which involves curat-
ing and finetuning datasets based on socio-demographic groups, user histories, or expert selections to
align models with targeted human values [61, 62, 63]; Adapt Model by Learning, which includes
techniques such as group-based learning, active learning, adapter insertion, mixture of experts, and
enhanced knowledge integration to refine model behavior [64, 65, 66]; and Interactive Alignment,
which actively engages users through real-time feedback, steering prompts, and proactive adjustments
based on user profiles to tailor AI systems to specific contexts and preferences [67, 68, 69].

Evaluating AI Systems. This sub-research question examines how the integration of human values
into AI systems, particularly large language models (LLMs), is evaluated, highlighting both human-
in-the-loop and automated methods. Human-in-the-loop evaluation involves human judgment,
feedback, and collaboration to assess the ethical and value alignment of AI outputs, leveraging direct
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human input or combined human-AI assessment processes [70, 71, 43]. Automatic evaluation
utilizes computational techniques, including human simulators, standardized benchmarks, and dis-
tributional comparisons, to evaluate alignment without human intervention [72, 55, 73]. Together,
these approaches aim to ensure that AI systems reflect human ethical standards and value frameworks
effectively and reliably.

Ecosystem and Platforms. The ecosystem and platforms refer to the broader context in which
AI systems operate and interact with other agents, platforms, or environments. This includes the
infrastructure, frameworks, and technologies that support the development, deployment, and utiliza-
tion of AI systems. LLM-based Agents are based on large language models (LLMs) such as GPT
(Generative Pre-trained Transformer) models, which have been pre-trained on vast amounts of text
data [56, 74, 123, 75]. RL-based Agents are based on reinforcement learning (RL) algorithms to
learn and adapt their behavior based on feedback from the environment or human users [76]. Anno-
tation Platforms refers to the ecosystems that are designed to crowdsource human demonstrations as
collected data for reinforcement learning [77] and supervised finetuning learning for alignment [78].

Key Takeaways. Our systematic analysis of value integration and evaluation in AI reveals a strong
focus on explicit value annotations, while implicit value expressions and behaviors are often neglected.
Despite the power of general-purpose AI, methods for customizing systems to reflect individual
or group values remain underexplored. Additionally, there is a lack of standardized criteria for
evaluating human-in-the-loop methods and supporting platforms, underscoring the need for more
robust and context-sensitive evaluation frameworks in value-aligned AI development.

3.2 Align Humans to AI

From a long-term perspective, it is crucial to consider the dynamic and evolving nature of human-AI
alignment. This direction emphasizes a human-centered perspective—drawing from fields such as
HCI and the social sciences—and offers guidance for researchers and user experience designers
in addressing two core research questions: RQ3. How can humans learn to perceive, explain, and
critique AI? and RQ4. How do individuals and society adapt their behaviors in response to AI
advancements?

• RQ3: Human Cognitive Adjustment to AI.

For effective collaboration and value specification, humans need to develop a clear understanding of
how AI systems function. As AI introduces various risks, fostering critical thinking is essential to
prevent blind reliance. To address this, we systematically investigate, as summarized in Table 1, (1)
how humans learn to perceive and understand AI, and (2) how they can engage in critical reflection
on AI behavior and outputs.

Perceiving and Understanding AI. This sub-research question explores how to enhance human
understanding and perception of AI systems, particularly among non-technical users, through edu-
cation, training, and human-centered explanation techniques. It emphasizes the importance of AI
literacy and awareness as foundational competencies for effective human-AI collaboration [79],
supported by explicit training courses designed to improve users’ ability to engage with AI [80, 81].
Additionally, it highlights efforts in AI sensemaking and human-centered explanations, including
visualizations and interactive techniques, to help people interpret AI mechanisms and outputs, thereby
fostering more informed and meaningful human-AI interactions [82, 83, 84].

Critical Thinking around AI. This sub-research question examines how individuals critically reflect
on and evaluate AI systems by comparing their own mental models with those of the AI, focusing
on the rationality, reliability, and ethical behavior of these technologies. It emphasizes the need
for humans to develop critical thinking skills to identify biases, errors, and ethical concerns in AI
outputs, and to audit AI systems for compliance with moral and societal standards. Key areas include
building appropriate levels of Trust and Reliance on AI based on its competence and reliability [85,
86, 87, 124], engaging in selective AI adoption aligned with user needs and values [125, 126], and
addressing Ethical Considerations through mitigation strategies and auditing [88, 89]. Additionally,
it underscores the importance of Recalibrating Cognition, where users adjust their understanding
and expectations of AI performance and reliability to foster a balanced and informed relationship
with AI systems [90, 91, 92].

Key Takeaways. Our systematic review reveals a significant gap in research on training and educating
humans to develop appropriate knowledge, trust, and reliance when collaborating with AI systems.
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Additionally, there is limited exploration of how to critically evaluate AI across a broad spectrum of
human values.

• RQ4: Human Adaptation Behavior to AI.

Building on our investigation of human cognitive adjustments to AI, we further examine how
individuals and society can respond effectively to AI’s expanding influence. To guide this inquiry,
we address three key questions: (1) How do humans learn to collaborate with AI across its diverse
roles? (2) In what ways are individuals and society affected by AI? and (3) How can these impacts be
comprehensively assessed? The key dimensions emerging from this analysis are summarized at the
bottom of Table 1.

Human-AI Collaboration Mechanisms. This category explores the diverse ways humans and AI
collaborate through partnerships, co-creation, and mutual learning. AI Assistants, particularly those
powered by LLMs, support human tasks by interpreting user demands, enhancing prompt formulation,
generating creative prototypes, and aiding decision-making [93, 94, 95]. In collaborative frameworks,
humans and AI function as AI Partners, where simulated agency and reciprocal learning enable
joint decision-making and knowledge sharing [21, 96, 97]. AI delegation and mediation transform
traditional human tasks, while co-design with AI treats the system as both a collaborator and a design
material. Additionally, AI Tutoring systems enhance human learning in both technical and social
domains by offering tailored feedback, adaptive instruction, and immersive practice environments,
ultimately improving skill acquisition and performance [98, 99, 100].

AI Impact on Humans and Society. This category investigates the multifaceted effects of AI
advancement on human behavior, attitudes, and societal dynamics, aiming to inform policy, education,
and interventions. The Impacts on Participatory Individuals and Groups dimension focuses on
how AI influences human decision-making, creativity, privacy, and authorship—shaping behaviors
and raising concerns about data rights and intellectual ownership [18, 101, 127, 128]. The Societal
Concerns and AI Impacts dimension expands this lens to the societal level, examining AI’s effects
on misinformation, education, social norms, and the workplace, including issues like disinformation,
shifts in learning practices, changes in interpersonal relationships, and job displacement [102, 103,
129]. The Reaction to AI Advancement dimension explores regulatory, cultural, and institutional
responses to AI, addressing how societies perceive, govern, and adapt to AI technologies [104, 105,
130]. This includes efforts to regulate bias and discrimination, develop policy frameworks, track
evolving AI acceptance, ensure transparency and oversight, and establish responsible AI checklists to
guide ethical and safe deployment.

Evaluation in Human Studies. This summary covers common empirical methods used to rigorously
evaluate AI’s impact on humans at both micro and macro levels. At the micro-level, Human-AI
Collaboration Evaluation assesses not only task success and efficiency but also user experience,
including cognitive workload, user satisfaction, control, and trust, especially in critical settings to
prevent failures [106, 131, 107, 106]. Methods include quantitative interaction analytics, qualita-
tive surveys and interviews, and statistical analyses to understand and verify user behaviors and
perceptions. At the macro-level, Societal Impact Evaluation focuses on understanding long-term
behavioral changes within large populations as AI use becomes widespread, employing large-scale
public opinion surveys and behavioral data analytics over time to capture evolving patterns and
societal shifts related to AI interaction [16, 108, 132].

Key Takeaways. Our review reveals that while prior studies have extensively examined how AI can
assist humans across various tasks, there is limited exploration of the challenges humans face when
collaborating with AI that surpass human capabilities in certain domains. Additionally, more research
is needed to understand the evolving impact of AI on individuals and society at large over time.

4 Underexplored Research Gaps and Challenges
In this section, we consolidate key findings from our systematic analysis of the framework and
the reviewed literature (in Figure 2. To accurately capture the distribution of existing research and
identify current gaps and challenges, we quantified the number of relevant studies corresponding to
each dimension in the Bidirectional Human-AI Alignment. We elaborate on key findings below.

Underexplored Dimensions in Aligning AI with Humans. Current AI alignment research has
primarily focused on incorporating explicitly stated human values, often gathered through direct
feedback mechanisms such as ratings, rankings, or instructions. However, several critical dimensions
remain underexplored. First, the use of implicit human feedback — such as behavioral cues,
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Figure 2: The number of papers for each dimension in the bidirectional human-AI alignment
framework. Out of papers that are relevant to each research question (i.e., gray bars), we show the
number of papers that are relevant to each dimension (i.e., color bars).

physiological signals, or interaction patterns—and simulated human value feedback has received
limited attention, despite their potential to provide rich, context-sensitive information about human
values. Second, most alignment efforts concentrate on model training stages, whereas developing
and customizing AI models during inference or through interactive processes for embedding and
evaluation values remains significantly underexplored. Enabling real-time adaptation of AI behavior
to human input could enhance alignment in dynamic or personalized contexts. Third, human-in-
the-loop evaluation, which involves assessing AI systems through active human participation and
feedback, is rarely used in comparison to fully automated evaluation metrics. Expanding research
into these areas is essential for advancing more robust, responsive, and context-aware alignment.

Underexplored Dimensions in Aligning Humans with AI. Human-centered alignment research
has predominantly emphasized designing AI systems that facilitate human understanding through
sensemaking and explanation—primarily by clarifying the justifications behind AI decisions to foster
user trust and reliance. However, this focus often overlooks the broader goal of fostering AI
literacy—the essential skills and competencies individuals need to understand, critique, use, and
interact effectively with AI systems. Despite its foundational role in responsible AI engagement,
AI literacy remains an underexplored area. Furthermore, while numerous studies have proposed
interactive mechanisms and prototypes to support human-AI collaboration, they commonly assume
that AI operates in a subordinate or assistive role. As AI systems grow increasingly capable, research
must also consider collaborative dynamics between humans and AI with equal or superior
capabilities. Additionally, the ethical auditing of AI from a human-centered perspective and the
societal-level impacts of AI — such as changes in human behavior, social relationships, and
public responses—have not been sufficiently examined. These dimensions are critical for ensuring
meaningful and equitable alignment between humans and evolving AI technologies.

5 Near to Long-term Risks and Opportunities
Drawing upon insights gained from the development of our framework and the associated systematic
review analysis, we propose future research aiming to achieve the long-term alignment goal by identi-
fying three important challenges from near-term to long-term objectives, including the Specification
Game, Dynamic Co-evolution of Alignment, and Safeguarding Coadaptation.
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5.1 Specification Game
An important near-term challenge is resolving the “Specification Game”, which involves precisely
defining and implementing AI goals and behaviors to align with human intentions and values. Next,
we will introduce how synergistic efforts from two directions can potentially address this challenge.

Integrate fully specified human values into aligning AI. Individuals often possess value systems
that encompass multiple values with varying priorities, rather than a single value, to guide their
behaviors [38, 39]. Also, these priorities can change dynamically throughout an individual’s life
stages. As such, It is more realistic to select values compatible with specific societies or situations,
given the fact that we live in a diverse world [29]. Future research, inspired by Social Choice
Theory [35], could focus on using democratic processes to aggregate individual values into collective
agreements. Building on the summaries in Sections 3.1, researchers can employ democratic methods
to identify diverse subsets of human values for AI alignment. Additionally, creating datasets that
represent these values is crucial. Besides, it is crucial yet challenging for AI designers to investigate
how to fully specify the appropriate values and to further integrate these values into AI alignment.
Future important area involves developing algorithms, such as the Bradley-Terry Model [58] or
Elo Rating System [26], to convert heterogeneous human values into AI-compatible formats for
training reward models and guiding reinforcement learning. Researchers should also explore AI
models capable of aligning with unstructured human data, including free-form descriptions of values,
multimedia, or sensor recordings depicting human behavior.

Elicit nuanced and contextual human values during diverse interactions. Current alignment
methods use instructions, ratings, and rankings to infer human values, which can not fully capture
all relevant human values and constraints. Future research should focus on optimizing interactive
interfaces to efficiently elicit human values. These interfaces can leverage diverse interaction modes
to capture comprehensive human value information. Additionally, people often struggle to formulate
optimal prompts for AI, accurately specify their requirements, and articulate their desired values,
which can change based on context and time. Developing proactive interfaces that use conversational
techniques to elicit nuanced and evolving values is also crucial. Implicit human signals that indicate
values are also frequently overlooked. Additionally, systems that track interactions to hypothesize
and validate implicit human values in real-time should be designed.

5.2 Dynamic Co-evolution of Alignment
The challenge ahead lies in comprehending and effectively navigating the dynamic interplay among
human values, societal evolution, and the progression of AI technologies. Future studies in these
directions aim to bolster a synergistic co-evolution between AI and human societies, adapting both to
each other’s changes and advancements.

Co-evolve AI with changes in humans and society. Existing literature often treats AI alignment
as static, ignoring its dynamic nature. A long-term perspective must consider the co-evolution of
AI, humans, and society. As AI systems evolve and scale up, they gain new capabilities, making
it essential to ensure their goals remain aligned with human values. Thus, alignment solutions
require continuous oversight and updates. Future research should develop methods for continuously
updating AI with limited data without compromising alignment values and performance. This
could involve forecasting human value evolution and preparing AI with flexible strategies like
prompting or interventions. (ii) Additionally, AI advancements also influence human actions and
values, necessitating adaptive alignment solutions. Ensuring AI co-evolves with human and societal
changes is crucial for robust alignment. This challenge could potentially be addressed by forecasting
the potential evolution trajectories of human values or behavioral patterns, and preparing AI with the
flexibility to adapt in advance, for example, through prompting or intervention strategies.

Adapt humans and society to the latest AI advancements. While current AI systems lag behind
humans in many tasks, identifying and handling AI mistakes, including knowing when to seek human
intervention, remains essential. Future research should focus on developing validation mechanisms
that enable humans to interpret and verify AI outputs. This could involve designing interfaces
that allow humans to request step-by-step justifications from AI or integrating tools to verify the
truthfulness of AI referring to Section 3.2. Additionally, developing interfaces that enable groups of
humans to collaboratively validate AI outputs and creating scalable validation tools for large-scale
applications are important directions. (ii) As AI advances, it becomes essential to develop systems
that enable humans to utilize AI with capabilities surpassing their own. Research is needed to
understand how individuals can interpret and validate AI outputs for tasks beyond their abilities and
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leverage advanced AI sustainably, avoiding issues like job displacement or loss of purpose. Another
research direction is designing strategies to enhance human capabilities by learning from advanced
AI, including gaining knowledge and building skills. (iii) As AI integrates more into daily tasks,
its impact on human values, behaviors, capabilities, and society remains uncertain. Continuous
examination of AI’s influence on individuals, social relationships, and broader societal changes is
vital. Research should assess how humans and society adapt to AI advancements, guiding AI’s future
evolution. Potential areas include evaluating changes in individual behavior, social relationships, and
societal governance as AI replaces traditional human skills. Understanding these dynamic changes is
essential for grasping the broader impact of AI on humanity and society.

5.3 Safeguarding Co-adaptation
As AI gains autonomy and capability, the risks associated with its instrumental actions, as a means to-
ward accomplishing its final goals, increase. These actions can be undesirable for humans. Therefore,
safeguarding the co-adaptation between humans and AI is crucial. We next explore future research to
address this challenge from both directions.

Specify the goals of an AI system into interpretable and controllable instrumental actions for
humans. As advanced AI systems become more complex, they present greater challenges for human
interpretation and control. It is crucial to empower humans to detect and interpret AI misconduct and
enable human intervention to prevent power-seeking AI behavior. Research should focus on designing
corrigible mechanisms for easy intervention and correction, including modular AI architectures
and robust override protocols that allow human operators to halt or redirect AI activities. These
components should be human-interpretable, enabling scenario testing. (ii) Furthermore, advanced
AI systems may intentionally mislead or disobey humans, generating plausible fabrications [133].
Developing reliable interpretability mechanisms to validate the faithfulness and honesty of AI
behaviors is essential. This includes correlating AI behaviors with internal neuron activity signals,
akin to physiological indicators in human polygraph tests [134]. Inspecting these indicators can help
humans assess the truthfulness of AI interpretations and prevent risky actions.

Empower humans to identify and intervene in AI instrumental and final strategies in collabo-
ration. Preventing advanced AI from engaging in risky actions requires robust human supervision.
Essential steps include developing training and simulation environments with scenario-based ex-
ercises and timely feedback, and creating interactive dashboards for real-time monitoring. These
dashboards should feature effective data visualization, anomaly detection, and prompt alert systems
for immediate intervention. (ii) Scalable solutions are needed for supervising AI across various
applications. Real-time oversight becomes more challenging with widespread AI deployment, neces-
sitating advanced autonomous monitoring tools. These tools should learn normal AI behavior and
flag deviations immediately. Integrating training environments, interactive dashboards, and scalable
diagnostic tools will enhance human ability to ensure better alignment with human values.

6 Limitations
One limitation of this work is the scope of the sampled and filtered papers. The rapidly growing
literature on human-AI alignment spans diverse venues across many domains. Instead of an exhaustive
collection, we focused on developing a holistic bidirectional human-AI alignment framework using
essential research questions, dimensions, and codes. Our surveyed papers and team members primarily
focus on computing-related fields like ML, NLP, and HCI, though alignment research also involves
disciplines like cognitive science, psychology, and STS (Science, Technology, and Society). Our
framework can naturally extend to these areas. Despite these limitations, we believe our bidirectional
human-AI alignment framework serves as a foundational reference for future researchers.

7 Conclusion
This study clarifies the conceptual foundations of human-AI alignment by analyzing how key terms
are defined and operationalized across over 400 papers from NLP, HCI, ML, and related domains.
We introduce the Bidirectional Human-AI Alignment framework, which organizes alignment efforts
into two interdependent directions: aligning AI with humans values, and aligning humans with AI –
enabling humans to effectively understand, evaluate, and adapt to AI systems. Our analysis identifies
critical gaps in current literature, including limited support for long-term interaction, underdeveloped
models of human values, and challenges in mutual intelligibility. We conclude with three central
challenges—specification gaming, scalable oversight, and dynamic alignment—and offer actionable
recommendations to support future research aimed at fostering reciprocal, robust, and context-aware
approaches to human-AI alignment.
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APPENDIX

8 Systematic Literature Review

8.1 Systematic Literature Review Process

To understand the research literature relevant to the ongoing, mutual process of human-AI alignment,
we performed a systematic literature review based on the PRISMA guideline [135, 136]. Figure 3
shows the workflow of our process for paper coding and developing the bidirectional human-AI
alignment framework. We introduce the step details below.

1
Identification

2
Screening

3
Eligibility

4
Included

Records screened  
for keyword filtering 

 ( n = 34,213 )

Records Excluded ( n=32,077 )

Full-text articles assessed for 
criteria eligibility 

( n = 2,136 )

Records Excluded ( n=1,734)

Final Corpus for qualitative 
coding 

( n = 411 )

Paper Coding and 
Analysis

Records identified through 
Conference Database Search 

( n = 34,190 )

Records through Arxiv and 
Other Search 

( n = 23 )

Figure 3: The selection and refinement process of our systematic literature review. We referred to
the PRISMA guideline [135, 136] to report the workflow. From the identification of 34,213 records
by keyword search, to screen eligible papers against our criteria and arriveg at our final corpus of 411
papers. For each of the stages where literature reviews were excluded (identification, screening, and
eligibility) we further present the total of excluded records.

8.1.1 Identification and Screening with Keywords.

We started with papers published in the AI-related domain venues (including NLP, HCI, and ML
fields) beginning from the advent of general-purpose generative AI to present, i.e., primarily between
January, 2019 and January, 2024 (see details in Appendix 8.2). We retrieved 34,213 papers in
the initial Identification stage. Further, we collectively defined a list of keywords (see details in
Appendix 8.3) and screened for papers that included at least one of these keywords (e.g., human,
alignment) or their variations in the title or abstract. We included 2,136 papers in Screening stage.

8.1.2 Assessing Eligibility with Criteria

We further filtered the 2,136 papers based on explicit inclusion and exclusion criteria, i.e., the
Eligibility stage. Our criteria revolved around six research questions that we collectively identified to
be most pertinent to the topic, including 1) what essential human values have been aligned by some
AI models? 2) how did we effectively quantify or model human values to guide AI development? 3)
what strategies have been employed to integrate human values into the AI development process? 4)
how did existing studies improve human understanding and evaluation of AI alignment? 5) what are
the practices for designing interfaces and interactions that facilitate human-AI collaboration? 6)
How have AI been adapted to meet the needs of various human value groups? We included papers
that could potentially answer any of these questions. Further, based on the scope in Section ??, we
excluded papers that did not meet our inclusion criteria. This resulted in a final corpus of 411 papers,
which were analyzed in detail using qualitative coding (see Appendix 8.4 for more details).

8.1.3 Qualitative Code Development.

Referring to the code development process in [20], we first conducted qualitative coding for each
paper by identifying relevant sentences that could answer the above research questions, and entering
short codes to describe them into a codebook. We iteratively coded relevant sentences from each paper
through a mix of inductive and deductive approaches, which allowed flexibility to expand, modify or
change the driving research questions based on our learnings as we went through the process. To
ensure rigor in our coding process, two authors coded each paper. The first author independently
annotated all papers after reviewing the paper abstracts and introductions. Twelve team members
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each annotated a subset of the paper corpus. Our corpus includes papers from different domains (e.g.,
HCI, NLP and ML). Therefore, we divided the authors into HCI and NLP/ML2 teams and assigned
the papers accordingly based on expertise. All team members coded each of their assigned papers to
answer all six questions (if applicable) introduced above.

8.1.4 Framework Development and Rigorous Coding.

After developing annotations, all authors collaborated to create the bidirectional human-AI alignment
framework by integrating the annotations within each of the codes. The initial version of the
framework was proposed by the author who reviewed all papers. This framework furthermore
underwent iterative improvement through: 1) discussions with all team members involved in paper
coding, and 2) revisions based on feedback from the project advisors. Additionally, we strengthened
the framework by reviewing papers from the AI Ethics conferences (including FAccT and AIES), and
related work of the collected papers that covered other domains such as psychology and social science.
We further added missing codes and papers to ensure comprehensive coverage (see Appendix 8.2
for details). The final bidirectional human-AI alignment framework, with detailed topologies, is
presented in Section 3. Following the framework’s finalization, we conducted another separate coding
process to annotate whether each paper investigated dimensions within our framework. Two authors
independently coded each paper.3 These codes were then used to perform quantitative and qualitative
analyses, as presented in Section ??.

8.2 Venues

We primarily focused on papers from the fields of HCI, NLP, and ML ranging from year 2019 to
2024 January. We included all their papers tracks (e.g., CSCW Companion and Findings) without
including workshops of conferences. From the ACL Anthology, OpenReview and ACM Digital
Library, we retrieved 34,190 papers into a Reference Manager Tool (i.e., Paperpile). Particularly, the
venues we surveyed are listed below.

• HCI: CHI, CSCW, UIST, IUI;

• NLP: ACL, EMNLP, NAACL, Findings

• ML: ICLR, NeurIPS

• Others: ArXiv, FAccT, AIES, and other related work

Additionally, we also consolidate the framework by reviewing the papers published in FAccT and
AIES (i.e., important venues for AI Ethics research) between 2019 and 2024 and supplemented
the codes, including the AI Regulatory and Policy code in Section ?? and the exemplary paper of
Regulating ChatGPT [105]), which were not covered by the original collections. Also, we include a
number of papers in the “Other” class are found by related work that are highly relevant to this topic.

8.3 Keywords

We decided on a list of keywords relevant to bidirectional human-AI alignment. The detailed
keywords include:

• Human: Human, User, Agent, Cognition, Crowd

• AI: AI, Agent, Machine Learning, Neural Network, Algorithm, Model, Deep Learning, NLP

• LLM: Large Language Model, LLM, GPT, Generative, In-context Learning

• Alignment: Align, Alignment

• Value: Value, Principle

• Trust: Trust, Trustworthy

• Interact: Interact, Interaction, Interactive, Collaboration, Conversational

2Note that NLP and ML are two different domains, we combine them together for the purposes of literature
review analysis since they both work on developing and evaluating AI technologies.

3The joint probability of agreement for the paper annotations was 0.78.
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• Visualize: Visualization, Visualize
• Explain: Interpretability, Explain, Understand, Transparent
• Evaluation: Evaluate, Evaluation, Audit
• Feedback: Feedback
• Ethics: Bias, Fairness

8.4 Inclusion and Exclusion Criteria

To further filter the most relevant papers among the keyword-filtered 2136 papers, we identified the
six most important research questions we are interested in. We primarily selected the potential papers
that can potentially address these six questions after reviewing their title and abstracts. The six topics
of research questions in our filtering include:

RQ.1 [human value category] What essential human values have been aligned by some AI models?
RQ.2 [quantify human value] How did we effectively quantify or model human values to guide AI

development?
RQ.3 [integrate human value into AI] What strategies have been employed to integrate human

values into the AI development process?
RQ.4 [assess / explain AI regarding human values] How did existing studies improve human

understanding and evaluation of AI alignment?
RQ.5 [human-AI interaction techniques] What are the practices for designing interfaces and

interactions that facilitate human-AI collaboration?
RQ.6 [adapt AI for diverse human values] How has AI been adapted to meet the needs of various

human value groups?

Particularly, we provide elaborated inclusion and exclusion criteria during our paper selection as
listed below. We are aware that we have limitations during our paper filtering process.

Inclusion Criteria:

• [Human values] we include papers that study human value definition, specification and
evaluation in AI systems.

• [AI development techniques] We include techniques of developing AI that aim to be more
consistent with human values with interactions along all AI development stages (e.g., data
collection, model construction, etc.)

• [AI evaluation, explanation and utilization] we include papers that build human-AI
interactive systems or conduct human studies to better evaluate, explain, and utilize AI
systems.

• [building dataset with human interaction] especially responsible dataset.

Exclusion Criteria:

• [Alignment not between human & AI] we do not include alignment studies that are not
between human and AI, such as entity alignment, cross-lingual alignment, cross-domain
alignment, multi-modal alignment, token-environment alignment, etc.

• [AI models beyond LLMs - Modality] we do not focus on AI models other than LLMs
(e.g., 3D models, VR/AR, voice assistant, spoken assistant), our primary model modality is
text. Specifically, we do not consider audio / video data; we do not consider pure computer
vision modality.

• [No human-AI interaction] we do not consider studies that do not involve the interaction
between human and AI, such as (multi-agent) reinforcement learning. Specifically, we
do not consider interactions via voices/speech, Do not consider game interaction; Do not
consider interaction for Accessibility; Do not consider Mobile interaction; Not consider
autonomous vehicle interaction wearable devices, or Physical interaction;

• [Tasks] art and design, emotion.
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• [No human included]
• [focus on English] primarily focus on English as the main language;

• [Application] not include the NLP papers tailored for a specific traditional task, such as
translation, entity recognition, sentiment analysis, knowledge graph, adversarial and defense,
topic modeling, detecting AI generations, distillation, low resource, physical robots, text
classification, games, image-based tasks, hate speech detection, Human Trafficking, etc.

• [Visualizing Embeddings] Visualizing/interacting transformer embeddings?

• [Embedding-based] explanation, evaluation, etc.

• [multi-agent reinforcement learning with self-play and population play] techniques,
such as self-play (SP) or population play (PP), produce agents that overfit to their training
partners and do not generalize well to humans.

We acknowledge the extensive scope and rapid advancements of research in this area, and posit
that our study offers insights that can be generalized to various modalities. For example, the value
taxonomy and human-in-the-loop evaluation paradigm outlined in our framework can be applied
to both text-based and other modality-based (e.g., vision, robotics) models. It’s worth noting that
our literature review does not aim to exhaustively cover all papers in the field, which is impossible
given the rapid advancement of human-AI alignment research. Instead, we adopt a human-centered
perspective to review more than 400 key studies in this domain, focusing on delineating the framework
landscape, identifying limitations, future directions, and a roadmap to pave the way for future research.

9 Selected Paper List

• Human-Centered Studies: [137, 107, 138, 92, 139, 140, 141, 142, 143, 144, 145, 96, 146,
147, 148, 149, 150, 151, 152, 86, 117, 126, 153, 154, 155, 156, 87, 157, 158, 159, 160, 161,
162, 104, 163, 164, 165, 166, 167, 168, 169, 32, 170, 171, 172, 173, 174, 175, 176, 3, 177,
178, 179, 180, 181, 89, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194,
122, 195, 196, 85, 91, 88, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209,
210, 121, 81, 211, 83, 212, 213, 214, 215, 90, 216, 112, 217, 218, 219, 220, 221, 222, 223,
95, 224, 21, 225, 226, 227, 94, 228, 229, 230, 231, 93, 232, 233, 234, 235, 236, 237, 238,
239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256,
79, 46, 257, 125, 137]

• AI-Centered Studies
[258, 118, 78, 52, 24, 25, 259, 75, 48, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 69,
270, 271, 272, 273, 274, 44, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286,
287, 57, 288, 289, 290, 291, 292, 293, 120, 294, 73, 295, 49, 296, 297, 298, 299, 300, 301,
302, 303, 304, 305, 306, 84, 307, 308, 309, 310, 311, 61, 70, 312, 313, 71, 314, 315, 316,
317, 41, 43, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 31, 330, 331, 332,
333, 66, 334, 335, 27, 59, 336, 60, 337, 338, 33, 76, 72, 115, 339, 340, 341, 74, 342, 113,
343, 344, 345, 50, 346, 347, 348, 349, 350, 351, 45, 47, 352, 353, 354, 355, 356, 357, 358,
62, 359, 360, 361, 362, 363, 54, 364, 365, 53, 366, 40, 367, 368, 369, 370, 371, 372, 373,
374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 56, 55, 388, 389, 390,
391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408,
409, 410, 42, 411, 77, 1, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 64, 63, 422, 423,
424, 425, 67, 68, 426, 427, 428, 58]

• Others [429, 28, 430, 16, 5, 26, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442,
101, 51, 82, 132, 443, 131, 129, 103, 105, 65, 444, 445, 446, 447, 98, 100, 18, 127, 102, 130]

10 Alignment Goals and Human Values

10.1 A Comprehensive Taxonomy of Human Values

This conventional theory was developed without the context of human-AI interaction, which might
overlook values that need to be considered for human-AI alignment. Therefore, we used a bottom-up
approach to extract all values studied in our collected alignment literature, mapped them onto the
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Goals Definitions Limitations / Risks

The Goal 
of 

Alignment

 Instructions The agent does what I instruct it to 
do.

On a larger scale, it is difficult to precisely specify a broad 
objective that captures everything we care about, so in 
practice the agent will probably optimise for some proxy 
that is not completely aligned with our goal.

 Intentions 
 or 
 (Expressed Intentions)

The agent does what I intend it to 
do.

It is quite possible for intentions to be irrational or 
misinformed, or for the principal to form an intention to do 
harmful or unethical things.

 Preferences 
 or 
 (Revealed Preferences)

The agent does what my behaviour 
reveals I prefer.

1) People have preferences for things that harm them. 2) 
People have preferences about the conduct of other people. 
3) Preferences are not a reliable guide to what people 
really want or deserve due to adaptiveness.

 Desires 
 or 
 (Informed Preferences)

The agent does what I would want 
it to do if I were rational and 
informed.

Researchers would have to apply a corrective lens or filter 
to the preferences they actually observe. As a consequence, 
the approach is no longer strictly empiricist.

 Interest 
 or 
 (Well-being)

The agent does what is in my 
interest, or what is best for me, 
objectively speaking.

Something in a human’s interest does not mean he/she 
ought to do it or is morally entitled to do so, such as an 
interest in stealing. Also, it is hard to manage trade-offs the 
collective interests of different people.

 Values The agent does what it morally 
ought to do, as defined by the 
individual or society.

Current the best possibility, but it still encounters two 
difficulties of 1) specifying what values or principles, and 
2) concerning the body of people who select the principles 
with which AI aligns.

Table 2: The Goals of Alignment. We present the six prevailing alignment goals, associating with
their Definitions (middle column), Limitations and Risks (right column). We consider Human Values
as the main goal of alignment in this work referring to an extensive analysis and arguments in existing
studies [29, 30]

Schwartz Theory of Basic Values, and supplemented the theory with AI-related structure and content.
As a result, we identified the structural relationships among human values and mapped existing
literature to a fine-grained taxonomy (see Table 3). We supplemented the traditional theory’s four
high-order value types (i.e., “Self-Enhancement”, “Openness to Change”, “Conservation”, “Self-
Transcendence”) with a novel high-order value type, named “Desired Values for AI Tools” that
encompasses two motivational value types (i.e., “Usability” and “Human-Likeness”). We further
organize the relationship among these value types along two dimensions [39]: different resources (i.e.,
individuals, society and interaction) and different self-intentions (i.e., self-protection against threat
and self-expansion and growth). Furthermore, we elaborate the definitions of the 12 motivational
value types and their exemplary values by mapping them to relevant human-AI alignment papers from
our corpus in Table 3. During the process of mapping, we found: 1) value terms in empirical papers
were often named differently (e.g., capability and competence), or check opposites (e.g., fairness and
bias); 2) there are many values not studied in our corpus, i.e., indicated as (

Unit High-Order 
Value Types

12 Motivational Types of Values Exemplary Values

Openness to 
change

Self-Direction 
(Independent thought and action — choosing, 
creting, exploring) 

Choose Own Goals [216];   Creativity / Innovation / Innovativeness [413];  
Curiosity [150];   Freedom [216];   Independence [32];   Privacy [216];  
Reflectiveness / Reflective Practice & Deliberation / Critical Thinking / 
Criticism [14];   Objectivity/Factuality [430];   Self-Respect [413];    

Stimulation 
(Excitement, novelty, and challenge in life)

Diversity / A Varied Life [30];   An Exciting Life;    Daring

Hedonism 
(Pleasure and sensuous gratification for oneself)

Enjoying Life;    Pleasure;    Self-Indulgent;  

Self-
Enhancement

Achievement 
(Competance according to social standards)

Capability / Effective / Efficient /  Competency  / Accuracy / Productivity 
[206];   Influence [263];  Intelligence / Resourcefulness / Expertise and 
Commonsense [431];  Success / Education / Acquisition / Learning / 
Cognitive Empowerment / Improvement / Iterative / Self-improvement 
[243];  Resilience/Robustness [149];   Ambition;  

Power 
(Social status and prestige, control or 
dominance over people and resources)

Authority [213];   Wealth / Income [305];   Preserving My Public Image;   
Social Recognition;   Social Power; 

Conservation Security 
(Safety, harmony, and stability of society, of 
relationships, and of self)

Reciprocation of Favours / Mutual Benefit [437];   Clean;   Family Security;   
Health;  Sense of Belonging;   National Security;   Social Order / Social 
Hierarchy;    

Tradition 
(Respect of the customs and ideas that 
traditional culture or religion provide the self)

Moderation /Not Offensive [119];   Devout / Religious Belief [295];   
Accepting My Portion in Life;   Humble;   Respect for Tradition;  
Detachment

Conformity 
(Restraint of actions, inclinations and impulses)

Politeness / Morality / Worthiness / Harmfulness [457];  Self-Discipline /
Conscientiousness [455];   Honouring of Elders;   Obedience;  

Self-
Transcendence

Benevolence 
(Preservation and enhancement of the welfare 
of people with whom one is in frequent 
personal contact)

Forgiving / Agreeableness / Warmness [150];  Helpfulness [13];  Honesty 
[413];  Emotional / Empathy / Perspective-taking / Mentalizing / Mature 
Love / Compassion [455];  Responsibility / Accountability / Reliability / 
Trustworthiness [363];  True Friendship / Supportiveness / Engagement 
[197];  Cooperation/Collaboration [58];  Collectivism / Individualism [381];  
Spiritual Life;   Meaning in Life;   Loyalty;  

Universalism 
(Understanding, appreciation, tolerance and 
protection for the welfare of all people and 
nature)

A World at Peace / Democracy [305];  Inclusive / Broad-mindedness [367];  
Equality [381];   Social Justice / Equity / Fairness [367];   Protecting The 
Environment;   A World of Beauty;   Unity with Nature;   Wisdom/
Understand Life;   Inner Harmony;  

AI Values as a 
Tool

Functionality 
(Competency according to the human demand 
on the tool)

Accessibility / Usability /  Utility / Convenience / Cognitive Load Reduction 
[286];  Adaptability / Customization and Personalization / Flexibility / 
Contextualized [385];    Economic [15];  

Human-Likeness 
(Resemble Human intelligence and behavior)

Transparency / Interpretability / Explainability / Understanding / 
Comprehension [384];  Autonomy / Agency / Human [175]; Awareness [270]
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10.2 Insights into Human Values for Alignment

Our analysis, based on the adaptation of Schwartz’s Theory of Basic Values and our comprehensive
literature review, identifies three critical findings for future research:

SELF-ENHANCEMENT OPENNESS TO CHANGE

CONSERVATION SELF-TRANSCENDENCE

Self-Direction
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Stimulation

Usability Human-Likeness
DESIRED VALUES FOR AI TOOLS
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AchievementPower

Security Tradition Conformity Benevolence Universalism

Hedonism

Self-Protection Against Threat Self-Expansion and Growth

Table 3: The value relations and taxonomy. We consider 5 high-order value types encompassing 12
motivational value types, indicated by their sources (e.g., individuals, society and interaction).
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Value Prioritization in AI Systems. Human value systems are not merely subsets of values, but
ordered systems with relative priorities [38, 39]. For instance, [39] presented the definition for this
phenomenon: “a value is ordered by importance relative to other values to form a system of value
priorities. The relative importance of multiple values guides action....The trade-off among relevant,
competing values guides attitudes and behaviors.”. Current AI alignment algorithms, often based on
datasets of human preferences [1, 287, 58], may inadvertently prioritize majority values, potentially
neglecting those of marginalized groups [349]. Future research should address this complex interplay
of values in AI systems.

Universal vs. Personalized AI Values. While certain values are universally expected from AI
(e.g., capability, equity, responsibility), others may be undesirable in specific contexts [33] (e.g.,
seeking power). Simultaneously, AI models should be adaptable to diverse human value systems [28].
Research is needed to develop methods for identifying appropriate value sets for specific individuals
or groups, and for customizing AI to align with user values while maintaining ethical principles.

Disparities in Value Expectations and Evaluation. The fundamental differences between humans
and AI necessitate distinct approaches to value evaluation. For instance, assessing AI honesty may
require mechanistic interpretability [448], a more rigorous standard than that applied to humans.
Future studies should explore methods for evaluating and explaining AI values and calibrating human
expectations accordingly.

11 Interaction Techniques for Specifying Human Values

Our research reveals disparities in interaction techniques for human-AI value alignment across AI-
centered (NLP/ML) and human-centered (HCI) domains. As depicted in Figure 4, this analysis
focuses on three key areas:

Domain-Specific Interaction Techniques. The interaction techniques in AI-centered (NLP/ML) and
Human-centered (HCI) alignment studies are often differ [449]. NLP/ML studies primarily utilize
numeric and natural language-based techniques. Also, NLP/ML research explore implicit feedback to
extract human hidden feedback. In contrast, HCI research encompasses a broader range of graphical
and multi-modal interaction signals (e.g., sketches, location information) beyond text and images.
This disparity suggests potential gaps in extracting comprehensive human behavioral information.

Stage-Specific Interaction Techniques. In NLP/ML, the learning stage predominantly employs
rating and ranking interactions for alignment in dataset generation. However, when humans use AI in
the inference stage, as demonstrated in HCI research, involves more diverse user interactions. This
discrepancy highlights the need for alignment between model development and practical deployment.

Divergent Data Utilization. NLP/ML typically uses interaction outputs as training datasets, while
HCI analyzes this data to understand human behavior and feedback. As AI systems evolve, developing
new interaction modes to capture a broader spectrum of human expression becomes crucial.

Human-AI Interaction Modes for Alignment

Multi-Turn 
Dialogue

Text Inputs / 
EditsRankingRating Multi-Modal 

Visualization
Human 
Sketches

Structural 
Interaction

Contextual 
Information

Natural Language Interaction Graphical Multi-Modal Interaction

Language 
Analysis

Implicit Feedback Explicit Feedback

Numeric Interaction

Social 
Relationship

Discarded 
Options PrinciplesFeatures

Figure 4: The interaction techniques for specifying values in human-AI alignment.

Takeaways of Interaction Techniques for Alignment.
1. Some common human feedback styles used in NLP/ML are not often studied in HCI.
2. Diverse human interactive feedback in HCI are not fully used in AI development in NLP/ML.

12 Challenges in Achieving Alignment

The concept of alignment in AI research has a long history, tracing back to 1960, when AI pioneer
Norbert Wiener [450] described the AI alignment problem as: “If we use, to achieve our purposes, a
mechanical agency with whose operation we cannot interfere effectively ... we had better be quite
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sure that the purpose put into the machine is the purpose which we really desire.” Discussion around
intelligent agents and the associated concerns relating to ethics and society have emerged since
then [451]. Next, we discuss the well-known challenges encountered in achieving alignment.

Challenge 1: Outer and Inner Alignment. In the context of “intelligent agents,” until now, AI
alignment research has aimed to ensure that any AI systems that would be set free to make decisions
on our behalf would act appropriately and reduce unintended consequences [452, 451, 453]. At the
near-term stage, aligning AI involves two main challenges: carefully specifying the purpose of the
system (outer alignment i.e., providing well-specified rewards [33]) and ensuring that the system
adopts the specification robustly (inner alignment, i.e., ensuring that every action given an agent in a
particular state learns desirable internally-represented goals [33]). Significant efforts have been made,
for inner alignment, to align AI systems to follow alignment goals of an individual or a group (e.g.,
instructions, preferences, values, and/or ethical principles) [1] and to evaluate the performance of
alignment [16]. However, for outer alignment, AI designers are still facing difficulties in specifying
the full range of desired and undesired alignment goals of humans.

Challenge 2: Specification Gaming. To learn human alignment goals, AI designers typically
provide an objective function, instructions, reward function, or feedback to the system, which is
often unable to completely specify all important values and constraints that a human intended [6].
Hence, AI designers resort to easy-to-specify proxy goals such as maximizing the approval of
human overseers [4], which results in “specification gaming” [7] or “reward hacking” [8] issues (i.e.,
AI systems can find loopholes that help them accomplish the specific objective efficiently but in
unintended, possibly harmful ways). Additionally, the black-box nature of neural networks brings
additional ethical and safety concerns for alignment because humans don’t know about the inner
state and the actions AI leveraged to achieve the output. Consequently, AI systems might make
“correct” decisions with “incorrect” reasons, which are difficult to discern. Society is already facing
these issues, such as data privacy [9], algorithmic bias [10], self-driving car accidents [11], and more.
As a result, these considerations necessitate considering human-AI interaction in AI alignment for
specification and evaluation, ranging from addressing problems around who uses an AI system, with
what goals to specify, and if the AI system perform its intended function from the user’s perspective.

Challenge 3: Scalable Oversight. From a long-term perspective, when advanced AI systems
become more complex and capable (e.g., AGI [12]), it becomes increasingly difficult to align them to
human values through human feedback. Evaluating complex AI behaviors applied to increasingly
challenging tasks can be slow or infeasible for humans to ensure all sub-steps are aligned with their
values [5]. Therefore, researchers have begun to investigate how to reduce the time and effort for
human supervision, and how to assist human supervisors, referred to as Scalable Oversight [13].

Challenge 4: Dynamic Nature. As AI systems become increasingly powerful, the alignment
solutions must also adapt dynamically since human values and preferences change as well. As [14]
posit, AI systems may be neither humane nor desirable if we do not ask questions about the long-term
cognitive and social effects of social agent systems (e.g., how will agent technology affect human
cognition). All these considerations call for a long-term and dynamic perspective to address human-AI
alignment as an ongoing, mutual process with the collective efforts of cross-domain expertise.

Challenge 5: Existential Risk. Further, some AI researchers claim that [454] advanced AI systems
will begin to seek power over their environment (e.g., humans) once deployed in real-world settings,
as such behavior may not be noticed during training. For example, some language models seek
power in text-based social environments by gaining money, resources, or social influence [455].
Consequently, some hypothesize that future AI, if not properly aligned with human values, could
pose an existential risk to humans [456].

13 Author contributions

This project was a team effort, built on countless contributions from everyone involved. To acknowl-
edge individual authors’ contributions and enable future inquiries to be directed appropriately, we
followed the ACM’s policy on authorship [457] and listed contributors for each part of the paper.
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machine collaboration approaches to build a dialogue dataset for hate speech countering. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pages 8031–8049, 2022.

[399] Mor Geva, Avi Caciularu, Guy Dar, Paul Roit, Shoval Sadde, Micah Shlain, Bar Tamir,
and Yoav Goldberg. Lm-debugger: An interactive tool for inspection and intervention in
transformer-based language models. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 12–21, 2022.

[400] Sarah Wiegreffe, Jack Hessel, Swabha Swayamdipta, Mark Riedl, and Yejin Choi. Reframing
human-ai collaboration for generating free-text explanations. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 632–658, 2022.

[401] Zichao Li, Prakhar Sharma, Xing Han Lu, Jackie Chi Kit Cheung, and Siva Reddy. Using
interactive feedback to improve the accuracy and explainability of question answering systems
post-deployment. In Findings of the Association for Computational Linguistics: ACL 2022,
pages 926–937, 2022.

[402] Tushar Khot, Kyle Richardson, Daniel Khashabi, and Ashish Sabharwal. Hey ai, can you
solve complex tasks by talking to agents? In Findings of the Association for Computational
Linguistics: ACL 2022, pages 1808–1823, 2022.

[403] Bhavana Dalvi, Oyvind Tafjord, and Peter Clark. Towards teachable reasoning systems: Using
a dynamic memory of user feedback for continual system improvement. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, pages 9465–9480,
2022.

[404] Maartje Ter Hoeve, Julia Kiseleva, and Maarten Rijke. What makes a good and useful
summary? incorporating users in automatic summarization research. In Proceedings of
the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 46–75, 2022.

[405] Ruibo Liu, Ge Zhang, Xinyu Feng, and Soroush Vosoughi. Aligning generative language
models with human values. In Findings of the Association for Computational Linguistics:
NAACL 2022, pages 241–252, 2022.

[406] Duy-Hung Nguyen, Nguyen Viet Dung Nghiem, Bao-Sinh Nguyen, Dung Tien Tien Le,
Shahab Sabahi, Minh-Tien Nguyen, and Hung Le. Make the most of prior data: A solution for
interactive text summarization with preference feedback. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 1919–1930, 2022.

[407] Xi Ye and Greg Durrett. Can explanations be useful for calibrating black box models? In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 6199–6212, 2022.

[408] Junda Wu, Rui Wang, Tong Yu, Ruiyi Zhang, Handong Zhao, Shuai Li, Ricardo Henao, and
Ani Nenkova. Context-aware information-theoretic causal de-biasing for interactive sequence
labeling. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages
3436–3448, 2022.

46



[409] Alisa Liu, Swabha Swayamdipta, Noah A Smith, and Yejin Choi. Wanli: Worker and ai
collaboration for natural language inference dataset creation. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages 6826–6847, 2022.

[410] Kailas Vodrahalli, Tobias Gerstenberg, and James Y Zou. Uncalibrated models can improve
human-ai collaboration. volume 35, pages 4004–4016, 2022.

[411] Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An
Huang, Ekin Akyürek, Anima Anandkumar, et al. Pre-trained language models for interactive
decision-making. volume 35, pages 31199–31212, 2022.

[412] Lin Guan, Mudit Verma, Suna Sihang Guo, Ruohan Zhang, and Subbarao Kambhampati.
Widening the pipeline in human-guided reinforcement learning with explanation and context-
aware data augmentation. volume 34, pages 21885–21897, 2021.

[413] Akshatha Arodi and Jackie Chi Kit Cheung. Textual time travel: A temporally informed
approach to theory of mind. In Findings of the Association for Computational Linguistics:
EMNLP 2021, pages 4162–4172, 2021.

[414] Benedikt Boecking, Willie Neiswanger, Eric Xing, and Artur Dubrawski. Interactive weak
supervision: Learning useful heuristics for data labeling. In International Conference on
Learning Representations, 2020.

[415] Yi Tay, Donovan Ong, Jie Fu, Alvin Chan, Nancy Chen, Anh Tuan Luu, and Christopher Pal.
Would you rather? a new benchmark for learning machine alignment with cultural values
and social preferences. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 5369–5373, 2020.

[416] Piyawat Lertvittayakumjorn, Lucia Specia, and Francesca Toni. Find: Human-in-the-loop
debugging deep text classifiers. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 332–348, 2020.

[417] Xiang Gao, Yizhe Zhang, Michel Galley, Chris Brockett, and William B Dolan. Dialogue
response ranking training with large-scale human feedback data. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 386–395,
2020.

[418] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
volume 33, pages 3008–3021, 2020.

[419] Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. volume 32, 2019.

[420] Prithviraj Sen, Yunyao Li, Eser Kandogan, Yiwei Yang, and Walter Lasecki. Heidl: Learning
linguistic expressions with deep learning and human-in-the-loop. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pages 135–140, 2019.

[421] Rui Zheng, Wei Shen, Yuan Hua, Wenbin Lai, Shihan Dou, Yuhao Zhou, Zhiheng Xi, Xiao
Wang, Haoran Huang, Tao Gui, et al. Improving generalization of alignment with human
preferences through group invariant learning. In The Twelfth International Conference on
Learning Representations, 2023.

[422] EunJeong Hwang, Bodhisattwa Majumder, and Niket Tandon. Aligning language models to
user opinions. In Findings of the Association for Computational Linguistics: EMNLP 2023,
pages 5906–5919, 2023.

[423] Vinod Muthusamy, Yara Rizk, Kiran Kate, Praveen Venkateswaran, Vatche Isahagian, Ashu
Gulati, and Parijat Dube. Towards large language model-based personal agents in the enterprise:
Current trends and open problems. In The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

47



[424] Jungwoo Lim, Myunghoon Kang, Jinsung Kim, Jeongwook Kim, Yuna Hur, and Heui-Seok
Lim. Beyond candidates: Adaptive dialogue agent utilizing persona and knowledge. In
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 7950–7963,
2023.

[425] WANG Hongru, Minda Hu, Yang Deng, Rui Wang, Fei Mi, Weichao Wang, Yasheng Wang,
Wai-Chung Kwan, Irwin King, and Kam-Fai Wong. Large language models as source planner
for personalized knowledge-grounded dialogues. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023.

[426] Charles Welch, Chenxi Gu, Jonathan K Kummerfeld, Verónica Pérez-Rosas, and Rada Mi-
halcea. Leveraging similar users for personalized language modeling with limited data. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1742–1752, 2022.

[427] Minje Choi, Jiaxin Pei, Sagar Kumar, Chang Shu, and David Jurgens. Do llms understand
social knowledge? evaluating the sociability of large language models with socket benchmark.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pages 11370–11403, 2023.

[428] Naihao Deng, Xinliang Zhang, Siyang Liu, Winston Wu, Lu Wang, and Rada Mihalcea. You
are what you annotate: Towards better models through annotator representations. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pages 12475–12498, 2023.

[429] Jing Yao, Xiaoyuan Yi, Xiting Wang, Jindong Wang, and Xing Xie. From instructions to
intrinsic human values–a survey of alignment goals for big models. arXiv:2308.12014, 2023.

[430] Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng
Shang, Xin Jiang, and Qun Liu. Aligning large language models with human: A survey.
arXiv:2307.12966, 2023.

[431] Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath,
Ben Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language
models to reduce harms: Methods, scaling behaviors, and lessons learned. arXiv:2209.07858,
2022.

[432] Badr AlKhamissi, Muhammad ElNokrashy, Mai AlKhamissi, and Mona Diab. Investigating
cultural alignment of large language models. arXiv:2402.13231, 2024.

[433] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv:2204.05862, 2022.

[434] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv:1909.08593, 2019.

[435] Tae Soo Kim, Yoonjoo Lee, Jamin Shin, Young-Ho Kim, and Juho Kim. Evallm: Interactive
evaluation of large language model prompts on user-defined criteria. In Proceedings of the
2024 CHI Conference on Human Factors in Computing Systems, 2024.

[436] Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan,
Samuel R. Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language
feedback. Transactions on Machine Learning Research, 2024.

[437] Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen,
Kyunghyun Cho, and Ethan Perez. Training language models with language feedback at scale.
arXiv:2303.16755, 2023.

[438] Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy
Jones, Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a
laboratory for alignment. arXiv:2112.00861, 2021.

48



[439] Katie Shilton. Values levers: Building ethics into design. Science, Technology, & Human
Values, 38(3):374–397, 2013.

[440] Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Changshun Wu, Saddek
Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al. A survey of safety and trustworthiness
of large language models through the lens of verification and validation. arXiv:2305.11391,
2023.

[441] Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang
Wang, Dawei Yin, and Mengnan Du. Explainability for large language models: A survey.
ACM Transactions on Intelligent Systems and Technology, 15(2):1–38, 2024.

[442] Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi, Wangchunshu Zhou, Shaochun Hao,
Guangzheng Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen, et al. Interactive natural
language processing. arXiv:2305.13246, 2023.

[443] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do users write more insecure
code with ai assistants? pages 2785–2799, 2023.

[444] Hua Shen, Yuguang Yang, Guoli Sun, Ryan Langman, Eunjung Han, Jasha Droppo, and
Andreas Stolcke. Improving fairness in speaker verification via group-adapted fusion net-
work. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7077–7081. IEEE, 2022.

[445] Bum Chul Kwon and Nandana Mihindukulasooriya. Finspector: A human-centered visual
inspection tool for exploring and comparing biases among foundation models. In Danushka
Bollegala, Ruihong Huang, and Alan Ritter, editors, Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages
42–50, Toronto, Canada, July 2023. Association for Computational Linguistics.

[446] S Shyam Sundar and Eun-Ju Lee. Rethinking communication in the era of artificial intelligence.
Human Communication Research, 48(3), 2022.

[447] Nur Yildirim, Alex Kass, Teresa Tung, Connor Upton, Donnacha Costello, Robert Giusti,
Sinem Lacin, Sara Lovic, James M O’Neill, Rudi O’Reilly Meehan, et al. How experienced
designers of enterprise applications engage ai as a design material. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems, pages 1–13, 2022.

[448] Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety – a review.
arXiv:2404.14082, 2024.

[449] Richard Brath. Surveying wonderland for many more literature visualization techniques.
arXiv:2110.08584, 2021.

[450] Norbert Wiener. Some moral and technical consequences of automation: As machines
learn they may develop unforeseen strategies at rates that baffle their programmers. Science,
131(3410):1355–1358, 1960.

[451] Kees Stuurman and Hugo Wijnands. Software law: intelligent agents: a curse or a blessing? a
survey of the legal aspects of the application of intelligent software systems. Computer Law &
Security Review, 17(2):92–100, 2001.

[452] Michael Wooldridge. Intelligent agents. Multiagent systems: A modern approach to distributed
artificial intelligence, 1:27–73, 1999.

[453] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

[454] Yoshua Bengio, Geoffrey Hinton, Andrew Yao, Dawn Song, Pieter Abbeel, Trevor Darrell,
Yuval Noah Harari, Ya-Qin Zhang, Lan Xue, Shai Shalev-Shwartz, et al. Managing extreme ai
risks amid rapid progress. Science, page eadn0117, 2024.

[455] Alexander Pan, Jun Shern Chan, Andy Zou, Nathaniel Li, Steven Basart, Thomas Woodside,
Hanlin Zhang, Scott Emmons, and Dan Hendrycks. Do the rewards justify the means?
measuring trade-offs between rewards and ethical behavior in the machiavelli benchmark. In
International Conference on Machine Learning, pages 26837–26867. PMLR, 2023.

49



[456] Allan Dafoe and Stuart Russell. Yes, we are worried about the existential risk of artificial
intelligence. MIT Technology Review, 2016.

[457] The ACM Director of Publications. Acm policy on authorship, May 2024.

50


	Introduction
	Defining Alignment: Fundamentals
	Bidirectional Human-AI Alignment Framework
	Align AI to Humans
	Align Humans to AI

	Underexplored Research Gaps and Challenges
	Near to Long-term Risks and Opportunities
	Specification Game
	Dynamic Co-evolution of Alignment
	Safeguarding Co-adaptation

	Limitations
	Conclusion
	Systematic Literature Review
	Systematic Literature Review Process
	Identification and Screening with Keywords.
	Assessing Eligibility with Criteria
	Qualitative Code Development.
	Framework Development and Rigorous Coding.

	Venues
	Keywords
	Inclusion and Exclusion Criteria

	Selected Paper List
	Alignment Goals and Human Values
	A Comprehensive Taxonomy of Human Values
	Insights into Human Values for Alignment

	Interaction Techniques for Specifying Human Values
	Challenges in Achieving Alignment
	Author contributions
	Overall Author List and Contributions


