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ABSTRACT

Recent studies have explored the application of weight sparsity to enhance the
training efficiency of DNNs in terms of test accuracy w.r.t training FLOPs. These
studies have focused on reducing training FLOPs, but training with sparse weights
often results in accuracy degradation or necessitates prolonged training schedules to
attain performance similar to the original dense models; making the actual training
efficiency gains less evident. In contrast, our work emphasizes leveraging sparsity
to increase accuracy while maintaining the same FLOPs as the dense model, thereby
demonstrating improved training efficiency through higher accuracy. We introduce
Sparse-IFT, a family of Sparse Iso-FLOP Transformations that serve as drop-in
replacements for dense layers, enhancing their representational capacity and FLOP
efficiency. Each transformation is parameterized by a single hyperparameter (i.e.,
sparsity level), offering a broader search space for identifying optimal sparse
masks. Substituting dense layers with Sparse-IFT, without altering any training
hyperparameters, yields substantial improvements across a range of computer
vision and natural language processing tasks; ResNet-18 on ImageNet (+3.5%) and
GPT-3 Small on WikiText-103 (-0.4 PPL), both matching larger dense models that
use 2x or more FLOPs. To our knowledge, this is the first work to demonstrate the
use of sparsity for improving the accuracy of dense models, all while maintaining
consistent training FLOPs budgets via a simple set of sparse transformations.

1 INTRODUCTION

Increases in model size and training data have led to many breakthroughs in deep learning (e.g.,
AlexNet (Krizhevsky et al., 2012), ResNet (He et al., 2016), Transformers (Vaswani et al., 2017),
GPT (Radford et al., 2018; 2019), AlphaGo (Silver et al., 2017), etc.). Consequently, computational
and memory demands for training and deploying deep neural networks (DNNs) have surged dramati-
cally. To enable the deployment of large models, multiple techniques (e.g., distillation (Hinton et al.,
2015), quantization (Han et al., 2015a), pruning (Han et al., 2015b)) have been introduced to reduce
inference FLOPs and memory requirements. While these techniques improve inference efficiency
(test accuracy w.r.t inference FLOPs), the associated training costs are still prohibitive. In this work,
we focus on improving the training efficiency (test-accuracy w.r.t training FLOPs) of DNNs.

Recent works (Evci et al., 2020; Jayakumar et al., 2020) have explored using weight sparsity to
reduce the FLOPs spent in training. Frankle & Carbin (2018) demonstrate that sparse subnet-
works (termed “lottery tickets”) exist at initialization and can be trained to match the accuracy
of their original dense network. Inspired by this result, various dynamic sparse training (DST)
methods (Ma et al., 2022; Evci et al., 2020; Liu et al., 2021b; Jayakumar et al., 2020) attempt
to find optimal sparse subnetworks within a training run. While these methods primarily aim to
improve training efficiency by reaching dense accuracy with fewer FLOPs, they often perform
worse than their dense baselines or rely on longer training schedules (up to 2-5⇥ training itera-
tions) to close the gap (Yuan et al., 2021; Tai et al., 2022; Liu et al., 2021a). As a result, these
techniques can sometimes even require more FLOPs than training the dense model (Ma et al.,
2022; Evci et al., 2020; Jayakumar et al., 2020). Our aim is to highlight our unique contribu-
tion in utilizing sparsity to enhance standard dense model accuracy, distinguishing our work from
previous research. While past studies focused on pruning techniques to improve accuracy of pre-
trained dense models (Han et al., 2015b; Liu et al., 2017; Molchanov et al., 2017), our innovation
lies in demonstrating sparsity’s impact on accuracy when training from scratch within the same
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training FLOP budget as dense models. Specifically, we introduce a family of Sparse Iso-FLOP
Transformations (Sparse-IFT) that can be used as drop-in replacements for dense layers in DNNs.

Figure 1: Accuracy vs. Training FLOPs for different
variants of ResNet on ImageNet. Sparse-IFT provides
significant accuracy gains across different models and
sparsity levels while using the same FLOP budget as
its dense counterpart.

These transformations increase the repre-
sentational capacity of layers and facilitate
the discovery of optimal sparse subnetworks
without changing the layer’s underlying train-
ing and inference FLOPs (i.e., Iso-FLOP).
For example, making a layer wider but
sparser increases dimensionality while still
maintaining FLOPs due to sparsity. All
Sparse-IFT members are parameterized by a
single hyperparameter, the sparsity level. Fig-
ure 1 summarizes the ImageNet performance
with ResNet models, where our Sparse Wide
IFT variants significantly increase the accu-
racy of matching Iso-FLOP dense models. In
particular, Sparse Wide ResNet-18 at 90%
sparsity improves the top-1 accuracy from
70.9% to 74.4% (+3.5%), and outperforms
a dense ResNet-34 (74.2%) while using 2x
fewer FLOPs. We emphasize that these gains
were obtained by replacing dense layers with
transformations from the Sparse-IFT family
and required no changes to training hyperpa-
rameters. The main contributions of our work are:

1. We introduce Sparse Iso-FLOP Transformations (Sparse-IFTs), a family of techniques aimed
at enhancing DNN training efficiency. These transformations boost accuracy while main-
taining a constant FLOP count. Sparse-IFTs are characterized by a single hyperparameter,
sparsity level, and can be seamlessly used as drop-in replacements for dense layers.

2. In the CV domain, using Sparse-IFT increases the top-1 accuracy of ResNet-18 and ResNet-
34 by 3.5% and 2.6% respectively on ImageNet. Finetuning these pre-trained models for
object detection (MS COCO) and segmentation (CityScapes) leads to an improvement of
5.2% mAP and 2.4% mIoU, respectively.

3. In the NLP domain, using Sparse-IFT with GPT-3 Small leads to a 0.4 perplexity improve-
ment on the WikiText-103 language modeling task, and matches the PPL of a dense GPT-3
Medium while using 2.4x fewer training FLOPs.

2 METHOD

In this section, we present our method to improve training efficiency. We first explain our intuition
and hypotheses, followed by our methodology.

2.1 TRAINING WITH DENSE MATRICES IS FLOP INEFFICIENT

Prior research indicates that modern DNNs are overparameterized, and they exhibit sparsity in
both features and weights across layers. The Lottery Ticket Hypothesis (LTH) Frankle & Carbin
(2018) demonstrates that sparse DNNs can achieve the same accuracy as dense counterparts when
initialized with an effective sparsity mask (“lottery ticket”). These findings emphasize the advantage
of sparse weight configurations over dense matrices during training. While sparse training methods
are theoretically more efficient, their practical application often results in lower accuracy compared to
dense baselines. This discrepancy may be attributed to the challenges of identifying “lottery tickets”
within a single training run. While sparse models reduce the FLOPs needed per step, we hypothesize
that existing sparse training methods make sub-optimal use of these computational savings. For
example, state-of-the-art sparse training methods Jayakumar et al. (2020); Evci et al. (2020); Yuan
et al. (2021); Tai et al. (2022); Liu et al. (2021a) invest these FLOP savings into longer training
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Figure 2: Different members of the Sparse-IFT family. Transformation of all members is parameter-
ized by a single hyperparameter (i.e., sparsity level (s)). Black and white squares denote sparse and
active weights, respectively. Green block indicates a non-linear activation function (e.g., BatchNorm,
ReLU, LayerNorm). All transformations are derived with sparsity set to 50% as an example, are
Iso-FLOP to the dense feedforward function f✓l , and hence can be used as a drop-in replacement of
f✓l . See Section 2.4 for more details about each member.

schedules to close the accuracy gap and compensate for the inability to discover an optimal mask
earlier in training. This setup is inefficient since it ultimately requires more training FLOPs than
the dense baseline to reach the same target accuracy. In our work, we take an orthogonal approach
and invest these FLOP savings into (a) increasing the representational capacity of a layer and (b)
increasing its search space, which we hypothesize can facilitate the discovery of an optimal sparse
mask Ramanujan et al. (2020); Stosic & Stosic (2021). While utilizing larger sparsity-enabled
models has exhibited accuracy improvement potential, the challenge lies in designing an appropriate
architecture. For instance, when aiming to surpass the ResNet-18 performance on ImageNet, finding
the right sparsity and larger network design is crucial. Many studies explore diverse combinations to
balance sparsity and network size for outperforming dense models. However, these methods often
lack FLOP efficiency, requiring multiple iterations for optimal settings and hyperparameter tuning.
Therefore, we propose replacing dense transformations with FLOP-equivalent sparse transformations.
We denote these transformations as the Sparse Iso-FLOP Transformation (Sparse-IFT) family.

2.2 SETUP

For clarity, we will explain our method for a fully connected neural network. In Appendix A.1,
we detail the straightforward extension of our method to convolutional layers. Let N denote a L
layered DNN parameterized by ⇥N . Let ⇥N 2 {✓1, ..., ✓L} denote the parameters of the DNN.
The output of the l-th layer is defined as: zl = �(f✓l(zl�1)) for some activation function � (e.g.,
ReLU Nair & Hinton (2010)) and feedforward function f✓l . Specifically, let f✓l(zl�1) = ✓Tl zl�1,
where ✓l 2 RDin⇥Dout , zl�1 2 RDin⇥B and B, Din, Dout denote the batch-size, input, and output
dimensionality of features respectively. The total FLOPs needed for f✓l are given by B·Din·Dout.

2.3 SPARSE ISO-FLOP TRANSFORMATIONS

In the standard setup, the feedforward function f✓l computes the output features as a linear transfor-
mation of input features. From a theoretical perspective, the feedforward function can make use of
arbitrary non-linear transformations. However, in practice, most transformations are expressed as
dense matrix multiplications due to widespread support on GPUs (Nvidia, 2023). As stated before,
we are interested in improving the training efficiency of DNNs, by enhancing the representational
capacity of the feedforward function. Naively increasing the representational capacity by stacking
more layers Lin et al. (2014a), increasing width Zagoruyko & Komodakis (2016), mixture of ex-
perts Shazeer et al. (2016), etc. increases the computational FLOPs. In our work, we use unstructured
sparsity in weight matrices and ensure that the FLOPs of the transformation are the same as that of a
dense feedforward function. Let  l denote the set of Sparse Iso-FLOP Transformations (Sparse-IFT)
for a particular layer l:

 l : { l(s), 0  s < 1, g( l) ⇡ g(f✓l)},
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where  l is a transformation, s represents the sparsity level, and g(·) returns the computational FLOPs.
Each transformation in this set satisfies the following properties: (1) the computational FLOPs of
the transformation  l are same as that of dense transformation f✓l , and (2) the transformation is
parameterized by a single hyperparameter - the sparsity level. Since these transformations are Iso-
FLOP to the dense feedforward function, we can use them as drop-in replacements without affecting
the FLOPs of a layer. While there may be other FLOP-invariant transformations, in this work, we
detail four different members: Sparse Wide, Sparse Parallel, Sparse Factorized, and Sparse Doped.

2.4 MEMBERS OF SPARSE-IFT

Sparse Wide The sparse wide transformation augments the representational capacity of a layer by
increasing the number of output features while keeping s fraction of weights sparse. When using
this transformation, we widen the input and output features for all the L layers of the network with
the same widening factor, ksw, to avoid a mismatch in feature dimensionality across layers. Let
✓swl 2 Rksw·Din⇥ksw·Dout denote the transformation matrix, with s fraction of weights being sparse.
Since the fraction of non-sparse weights is given by 1� s, the FLOPs required by this transformation
are B·(ksw·Din)·(ksw·Dout)·(1 � s). Setting these equal to the FLOPs of the original dense f✓l ,
we obtain the widening factor ksw =

q
1

(1�s) . If we set the sparsity s to 0, we obtain ksw as 1 and
recover the original dense feedforward function.

Sparse Parallel The sparse parallel transformation replaces the feedforward function with a sum of
ksp non-linear functions. Let ✓spl 2 {✓sp,1l , ..., ✓

sp,ksp

l } denote the parameters of this transformation,
where ✓sp,jl 2 RDin⇥Dout denotes the transformation matrix of jth function, where s fraction of
weights are sparse. The sparse parallel transformation in this case is  sp

l =
Pksp

j=1 �((✓
sp,j
l )T zl),

where � is a non linear function. In practice,  sp
l is implemented as a layer with ksp parallel branches.

The computational FLOPs of this transformation is ksp·B·Din·Dout·(1� s). Setting these FLOPs
equal to FLOPs of f✓, we obtain ksp = 1

(1�s) . Note, at s = 0, the number of parallel branches ksp is
1. If we replace the non-linear function � with Identity, we can recover the original dense feedforward
transformation.

Sparse Factorized The transformation matrix of the feedforward function f✓l is denoted by
✓l 2 RDin⇥Dout . Multiple works have explored matrix factorization techniques to express the
transformation matrix ✓l as a product of two matrices ✓l = UV T , where U 2 RDin⇥d, V 2
RDout⇥d. Khodak et al. (2020); Tai et al. (2016) and Chen et al. (2021b) have explored low-rank
factorization (d << Dout) as a form of structured sparsity to improve training and inference efficiency,
while Arora et al. (2018) and Guo et al. (2020a) have explored overparameterized factorizations
for better generalization and faster convergence. In contrast, we use factorization to augment
the representational capacity without decreasing or increasing the FLOPs. More precisely, let
✓sfl 2 {Ul, Vl} denote the parameters of this transformation, where Ul 2 RDin⇥dsf , Vl 2 Rdsf⇥Dout

are sparse matrices with s fraction of their weights being sparse. The functional transformation in
this case is  sf

l = V T
l �(U

T
l zl). The computational FLOPs of this transformation is dsf ·B·(Din +

Dout)·(1� s). Setting these FLOPs equal to FLOPs of f✓l , we obtain dsf = Din·Dout
(Din+Dout)·(1�s) . Note,

setting sparsity s = 0, we recover a non-linear low-rank factorization with dense matrices.

Sparse Doped family of transformation is inspired by works Chen et al. (2021a); Thakker et al.
(2021); Udell & Townsend (2019); Candès et al. (2011) which approximate a dense matrix with a
combination of low-rank factorization and sparse matrix. In our work, we replace the feedforward
function with low-rank factorization (with rank dsd) and an unstructured sparse weight matrix (with
sparsity s). Let Ul 2 RDin⇥dsd , Vl 2 Rdsd⇥Dout denote the low-rank matrices, and ✓sdl 2 RDin⇥Dout

denote the matrix with unstructured sparsity. The functional transformation, in this case, is given by
 sd
l = V T

l (UT
l zl) + �((✓sdl )T zl). The computational FLOPs associated with this transformation are

B·dsd·(Din +Dout) + (1� s)·B·Din·Dout. Setting these FLOPs equal to FLOPs of f✓l , we obtain
dsd = s·Din·Dout

(Din+Dout)
. Note, as s ! 0 and dsd ! 0, the low-rank component of the transformation

disappears, and we can recover the dense feedforward function as a special case by setting � to
Identity.
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2.5 CARDINALITY OF SEARCH SPACE

One of our hypotheses is that increasing the search space of the sparsity mask via Sparse-IFT
can make training more efficient. Results from past work support this hypothesis. Ramanujan
et al. (2020) demonstrate that the odds of finding a lottery ticket in a randomly initialized network
increase with the width of a network. Liu et al. (2022b) and Stosic & Stosic (2021) show that
increasing the search space by increasing width or depth improves accuracy. In our work, we define
the cardinality of a search space as the number of weights a sparse training method can explore.
Table 1 characterizes the cardinality of search space for each member of the Sparse-IFT family.

Table 1: Cardinality of search space of
sparsity mask for different members of
the Sparse-IFT family.

Transformation Cardinality of
Search Space

Sparse Wide (ksw)
2·(Din·Dout)

Sparse Parallel ksp·(Din·Dout)
Sparse Factorized dsf ·(Din +Dout)

Sparse Doped Din·Dout

The search space for Sparse Wide, Sparse Parallel, and
Sparse Factorized transformations increase proportional
to the width scaling factor, number of parallel branches,
and size of intermediate hidden dimension, respectively.
Sparse Doped transformation splits its computational
FLOPs between low-rank factorization and unstructured
sparse weight matrix. The size of the unstructured weight
matrix is invariant to sparsity; thus cardinality of search
space for this transformation is constant.

3 EXPERIMENTS

In this section, we demonstrate how transformations from the Sparse-IFT Family lead to improvements
across a variety of different tasks in the CV and NLP domains. First, in Section 3.2, we describe the
experimental setups and validate the design choices through multiple ablation studies on CIFAR-
100 Krizhevsky et al. (2009), followed by results on ImageNet Krizhevsky et al. (2012). Then, in
Section 3.5, we highlight the advantages of pre-training with Sparse-IFT through gains on downstream
tasks. Next, we present the benefits of Sparse-IFT in the NLP domain by demonstrating results on
GPT Brown et al. (2020) in Section 3.6. Unless stated otherwise, the results presented below are
obtained by replacing all dense layers with a given transformation from the Sparse-IFT family while
only tuning the sparsity level. All sparse models are trained using a uniform sparsity distribution (i.e.,
all layers have the same sparsity level). We adopt the default hyperparameters from RigL Evci et al.
(2020) for dynamic sparsity. More details about the setup can be found in Appendix B.2.

3.1 IMPLEMENTATION DETAILS

Computer Vision We evaluate our method on CIFAR-100 and ImageNet using CNNs and hybrid
Vision Transformer (ViT) networks. We follow published training settings for CIFAR-100 DeVries &
Taylor (2017) and ImageNet Nvidia (2019b). For both datasets, we follow the standard evaluation
procedures and report the top-1 accuracy. Details for model architectures, datasets, and training
hyperparameters are given in Appendix B.2. All standard deviation was reported over 3 random
seeds. However, for a select few computationally expensive experiments, we report results from a
single run due to limited computational budget.

Natural Language Processing We evaluate Sparse-IFT by training GPT-3 Small (Brown et al.,
2020) from scratch on the WikiText-103 (Merity et al., 2017) language modeling task, a commonly
used NLP benchmark dataset. The compute cost and resources for training quickly become prohibitive
when transforming GPT models with Sparse-IFT. Hence, we train our GPT models on the Cerebras
CS-2 (Lie, 2022a;b) and leverage its ability to accelerate training with unstructured sparsity.

3.2 RESULTS AND ABLATIONS ON CIFAR-100

In this section, we conduct various ablations to validate our design choices. Unless stated otherwise,
all experiments below are with ResNet-18 architecture on CIFAR-100.

Importance of Dynamic Sparsity All members of the Sparse-IFT family utilize transformations
with unstructured sparsity. This study investigates the importance of the sparse training method when
training different configurations of Sparse-IFT architectures. For this analysis, we focus on the Sparse
Wide IFT and evaluate it with transformations obtained with sparsity 2 {50%, 75%, 90%} using three
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sparse training methods: static sparsity, SET Mocanu et al. (2018) and RigL Evci et al. (2020). RigL
and SET are dynamic sparse training methods in which the sparsity mask evolves during training.

Table 2: Sparse Wide IFT using various sparse training methods
with ResNet-18 on CIFAR-100 across different levels of sparsity
(columns). Best accuracy for each sparse training method is high-
lighted in bold.

Dense Sparse Method 0.50 0.75 0.90

77.0 ± 0.2
Static 78.5 ± 0.3 78.3 ± 0.1 78.2 ± 0.3
SET 78.8 ± 0.1 79.2 ± 0.2 79.8 ± 0.2

RigL 79.1 ± 0.2 79.5 ± 0.1 80.1 ± 0.2

The key difference is that
RigL updates the mask based
on gradient information,
whereas SET updates the
mask randomly. Results of
our ablation are documented
in Table 2. Here, the follow-
ing trends can be observed:
1) the Sparse Wide IFT
outperforms dense baselines
across all operating points
(sparsity and sparse training
method), 2) dynamic sparse training methods (RigL and SET) obtain higher accuracies compared to
training with static sparsity, and 3) gains with static sparsity plateau at lower levels of sparsity, while
dynamic sparse training methods gain accuracy at higher sparsities. As mentioned in Section 2.5,
Sparse-IFT transformations increase the search space / sparsity. Dynamic sparse training methods
can explore and exploit this increased search space Stosic & Stosic (2021) and therefore outperform
training with static sparsity. Out of the two dynamic sparse training methods evaluated in our study,
RigL consistently outperforms SET. Therefore, we use RigL as our sparse training method for all the
experiments reported below.

Importance of Using Non-Linear Activations Some members of the Sparse-IFT family are
inspired by recent works which overparameterize the feedforward function during training and fold it
back into a single dense matrix post training Ding et al. (2021b;a); Guo et al. (2020a); Ding et al.
(2019). Although these works show the benefits of linear overparameterization, this comes at the cost
of a significant increase in training FLOPs. In contrast, while we also increase the representational
capacity of the feedforward function, we do so with an Iso-FLOP transformation. Since we remain
Iso-FLOP to the original dense model, we do not require post-training modifications to collapse
weight matrices for inference efficiency. This uniquely allows us to use non-linearities (e.g., ReLU)
in members of the Sparse-IFT family to enhance the representational capacity of the network further.
We validate the importance of this design choice by training ResNet-18 with Sparse Factorized IFT
with and without non-linearities, and observe significant accuracy gains across all sparsity levels
when using non-linear activations. For example, at 90% Sparse Factorized, using non-linearity, we
see a 1.8% gain in test accuracy over the ResNet-18 CIFAR-100 dense baseline, compared to a drop
of 0.5% without it. These findings hold for other members of the Sparse-IFT family as well (see
Appendix B.1 for more details).

Table 3: Sparse-IFT families on CIFAR-100 with ResNet-18 model
across different levels of sparsity (columns). Best accuracy of each
transformation is highlighted in bold.

Dense Transformation 0.50 0.75 0.90

77.0 ± 0.2

Sparse Wide 79.1 ± 0.2 79.5 ± 0.1 80.1 ± 0.2

Sparse Factorized 77.8 ± 0.2 78.4 ± 0.5 78.9 ± 0.5

Sparse Parallel 77.9 ± 0.4 79.1 ± 0.2 78.2 ± 0.2
Sparse Doped 78.2 ± 0.1 77.8 ± 0.1 76.9 ± 0.2

Sparse-IFT ResNet-18

Here, we evaluate different
members of the Sparse-IFT
family on ResNet-18 and
CIFAR-100 across different
sparsity levels. Table 3
highlights the best accuracy
achieved by each member
of the Sparse-IFT family.
Compared to the accuracy
of the dense baseline (77%), all Sparse-IFT members obtain significant accuracy improvements
using the same FLOPs as the dense model. We note that the Sparse Doped transformation is the
only member of the Sparse-IFT family which does not gain accuracy at higher levels of sparsity. We
hypothesize that this phenomenon occurs due to two reasons: (a) cardinality of the search space
of the sparsity mask does not increase with sparsity level (see Table 1), and (b) the number of
active weights in the unstructured matrix decreases / sparsity. In Appendix B.3.1, we compare
Sparse-IFT against other baselines obtained with sparse training methods (e.g., RigL and SET) under
the same training efficiency setup. Specifically, we train ResNet-18 model on CIFAR-100 at sparsity
levels 2 {50%, 75%, 90%}, and ensure that these runs use the same FLOPs as the dense baseline by
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extending the training iterations. Our results show that Sparse-IFT outperforms these competitive
baselines by a significant margin.

Sparse-IFT vs. Dense Overparametrization The success of Sparse-IFT members can be attributed
to efficient exploration of large search space with sparsity. Training this large search space in a
dense manner leads to consumption of more training FLOPs than the dense baseline, but provides
us with the upperbound (in terms of accuracy) for a sparse subnetwork. In this section, we will
characetrize this gap between the Sparse-IFT members and their dense counterpart. In Table 4,
we compare the sparse and dense counterparts of the two best performing Sparse-IFT members.

Table 4: Sparse-IFTs trained in a sparse and dense manner on
CIFAR-100 with ResNet-18 for different levels of sparsity.

Transformation Train
Method 0.50 0.75 0.90

Sparse Wide Sparse 79.1 ± 0.2 79.5 ± 0.1 80.1 ± 0.2

Dense 78.9 ± 0.2 79.7 ± 0.1 80.2 ± 0.3

Sparse Parallel Sparse 77.9 ± 0.4 79.1 ± 0.2 78.2 ± 0.2
Dense 78.1 ± 0.2 78.9 ± 0.1 78.1 ± 0.1

For both members, training in
dense or sparse manner, leads to
similar accuracy across all spar-
sity levels. This result demon-
strates that training with spar-
sity allows for efficient explo-
ration and exploitation of over-
parameterized space without in-
curring the computational cost
of dense training of large neural
networks. For example, dense runs (with transformations achieved with 90% sparsity) consume 10x
more FLOPs compared to sparse runs.

Table 5: Sparse Wide IFT with unstructured and
structured sparsity across different levels of sparsity
(columns) on CIFAR-100 with ResNet-18.

Dense Sparsity Pattern 0.50 0.75 0.90

77.0 ± 0.2 Unstructured 79.1 79.5 80.1

N:M Block Sparse 77.1 78.4 78.1

Unstructured vs. Structured Sparsity

We compare unstructured sparsity to struc-
tured sparsity with Sparse-IFT. In theory,
for a fixed number of non-zero elements in a
sparse mask, the use of unstructured sparsity
can search over all the possible variations
of the mask. However, since most hardware
accelerators are not able to accelerate com-
putations with unstructured sparsity, multiple works have investigated training with structured sparsity
(e.g., low-rank and block-sparse matrices) to obtain wall-clock speed-ups Khodak et al. (2020); Tai
et al. (2016); Chen et al. (2021b); Hubara et al. (2021); Dao et al. (2022); Chen et al. (2022a). We
study structured sparsity by deriving Iso-FLOP configurations using low-rank and block sparsity
with Sparse Wide IFT. We use the method proposed in Hubara et al. (2021) to search N:M trans-
posable sparsity, which can accelerate training on GPUs with Tensor Cores. In our evaluation, the
low-rank factorization results were worse than block sparsity (see more details in Appendix B.3.3).
Table 5 compares unstructured sparsity to block sparsity. Although using Sparse-IFT with block
sparse matrices lead to improvements over the dense baseline, unstructured sparsity achieves the
highest gains. This result can be explained by the fact that block-sparse matrices have reduced mask
diversity (Hubara et al., 2021) compared to unstructured sparse matrices.

3.3 RESULTS WITH EFFICIENT ARCHITECTURES Table 6: Sparse Wide IFT with various ef-
ficient architectures on CIFAR-100 across
different levels of sparsity (columns).

Model Dense 0.50 0.75

MobileNetV2 72.4 ± 0.2 73.4 73.7

MobileViT-S 73.5 ± 0.1 74.6 74.8

BotNet-50 79.8 ± 0.2 80.3 80.6

To further understand the robustness of Sparse-IFT
across different model families, we evaluate Sparse-
IFT on architectures that are optimized for efficient
inference (MobileNetV2 (Sandler et al., 2018) and
MobileViT (Mehta & Rastegari, 2021)) and efficient
training (BotNet (Srinivas et al., 2021)). We transform
the dense layers in these architectures with Sparse
Wide IFT and evaluate them at different sparsity levels. We observe a noticeable increase in test
accuracy across all architectures (see Table 6). In addition, we demonstrate the robustness of the
Sparse-IFT family by also applying the Sparse Parallel transformation and show consistent improve-
ment across all architectures (see Appendix B.3.2). We evaluate the best performing architecture
(BotNet-50) on ImageNet (see Section 3.4). The details of the experimental setup can be found in
Appendix B.2.
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3.4 RESULTS ON IMAGENET Table 7: Sparse-IFT on ImageNet. Best result for each transfor-
mation and architecture is highlighted in bold.

Model Dense Transformation Sparsity
0.50 0.75 0.90

ResNet-18 70.9 ± 0.1 Sparse Wide 72.7 73.8 74.4

Sparse Parallel 72.7 73.2 74.0

ResNet-34 74.2 ± 0.1 Sparse Wide 75.6 76.4 76.8

BotNet-50 77.5 ± 0.1 Sparse Wide 77.9 78.3 78.5

We take the best performing
Sparse-IFT transformations (i.e.,
Sparse Wide IFT and Sparse Par-
allel IFT) on CIFAR-100, and
evaluate them on ImageNet us-
ing ResNet-18. Both families of
Sparse-IFT obtain significantly
higher accuracy compared to the
dense baseline (refer to Table 7).
Note, Sparse Wide IFT ResNet-18 at 90% sparsity improves over the dense baseline by 3.5%, and
is able to match accuracy of dense ResNet-34 with 2⇥ fewer training FLOPs (see Figure 1). We
take the best performing transformation (Sparse Wide IFT) and apply it to ResNet-34 and BotNet-50.
Increasing sparsity leads to a consistent increase in accuracy, indicating improved training efficiency
at higher sparsities. On BotNet-50, a hybrid ViT model, we see a 1% improvement at 90% sparsity.

3.5 TRANSFER LEARNING WITH SPARSE-IFT

Table 8: Sparse-IFT variants of ResNet-18 as back-
bones on downstream tasks : (a) Object detec-
tion on MS COCO, (b) Semantic segmentation on
Cityscapes.

Metric Dense Sparsity
0.50 0.75 0.90

MS COCO
AP 29.3 31.3 32.8 34.5

AP50 46.2 49.0 51.0 53.5

AP75 30.9 33.0 34.8 36.5

CityScapes mIoU 76.7 77.9 78.9 79.1

mAcc 84.4 85.1 85.7 86.0

To show the effectiveness of pre-training our
Sparse-IFT classification backbones, we eval-
uate them on 1) object detection on MS
COCO 2017 Lin et al. (2014b), and 2) seman-
tic segmentation on CityScapes Cordts et al.
(2016). For object detection, we adopt the
RetinaNet Lin et al. (2017b) framework from
the MMDetection open-source toolbox Chen
et al. (2019) and report results in the stan-
dardized training setting. For semantic seg-
mentation, we utilize DeepLabV3+ Chen
et al. (2018) in the MMSegmenation open-
source toolbox Contributors (2020). We eval-
uate ResNet-18 with Sparse Wide IFT (best-
performing transformation on ImageNet). To ensure FLOP-equivalent comparisons with the dense
backbone, the Sparse-IFT backbones remain sparse during fine-tuning. Appendix B.3.4 provides
more details regarding the training setup. We summarize our findings in Table 8, where using
Sparse Wide IFT ResNet-18 backbone leads to significant accuracy gains across all metrics on both
downstream tasks.

3.6 RESULTS ON GPT END-TO-END TRAINING

Table 9: Sparse-IFT for pre-training GPT-3
Small from scratch on WikiText-103 and re-
port the test perplexity (lower is better).

Dense 0.50 0.75

GPT-3 Small 20.8 ± 0.3 20.4 22.1

We train the Sparse Wide IFT GPT-3 Small models
at 50% and 75% sparsity levels, and compare against
the standard dense GPT-3 Small and GPT-3 Medium
models. Following Dao et al. (2022), we train all
models from scratch on the WikiText-103 dataset and
report the average test perplexity (PPL) over 3 ran-
dom seeds in Table 9. We show that Sparse Wide IFT
GPT-3 Small at 50% sparsity improves the perplexity
by 0.4 over its dense counterpart. We also note that the Sparse Wide IFT GPT-3 Small model performs
comparable to a dense GPT-3 Medium (20.5 ± 0.2 PPL) while using 2.4x fewer training FLOPs. In
Appendix C.1, we provide details on the hyperparameters and how the total training FLOPs for the
models in Table 9 were calculated.

GPT Pre-training and Fine-tuning While not the primary focus of our method, we note that
Sparse-IFT can also be applied in a fine-tuning setup for NLP models. After pre-training sparse, the
Sparse-IFT model can be fine-tuned as-is (i.e., remains sparse) or after densifying (i.e., allow the
zeroed weights to learn) using a technique such as SPDF (Thangarasa et al., 2023). We perform some
preliminary fine-tuning studies on BERT and GPT and those results can be found in Appendix C.2.
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4 RELATED WORK

Our work is similar to the body of work studying the role of overparameterization and sparsity for
training DNNs. The modeling capacity needed to learn a task is often unknown. Hence, we often
solve this by training overparameterized models to fully exploit the learning capability and then
compress them into a smaller subnetwork.

Overparameterization Nakkiran et al. (2021) show that DNNs benefit from overparameterization.
Following this, there have been many works that leverage overparameterization by scaling the size of
models Rae et al. (2021); Goyal et al. (2022) and augmenting existing DNNs to increase modeling
capacity and the accuracy of trained networks Guo et al. (2020b); Ding et al. (2019; 2021b); Cao
et al. (2022); Vasu et al. (2022); Liu et al. (2022a). These methods use linear parameterizations of the
model, making them highly inefficient to train, and are focused on improving inference throughput
(reduced latency). In contrast, our work is focused on improving the modeling capacity using sparse
non-linear parameterizations, which do not increase training FLOPs compared to the baseline model.
While both approaches have the same inference FLOPs, our approach improves accuracy without
increasing the training FLOPs.

Sparse Training LTH (Frankle & Carbin, 2018; Frankle et al., 2020) shows that accurate sparse
subnetworks exist in overparameterized dense networks but require training a dense baseline to find.
Other approaches have proposed frameworks for identifying lottery tickets (Zhou et al., 2019; Ma
et al., 2022) but still require a lot of compute resources. Following this, various attempts have been
made to find the optimal sparse subnetwork in a single training run. These methods either try to find
the subnetworks at initialization Tanaka et al. (2020); Wang et al. (2020a); de Jorge et al. (2020);
Lee et al. (2018) or dynamically during training Mocanu et al. (2018); Evci et al. (2020); Jayakumar
et al. (2020); Raihan & Aamodt (2020). However, given a fixed model capacity, these methods
tradeoff accuracy relative to the dense baseline to save training FLOPs. Stosic & Stosic (2021)
and Ramanujan et al. (2020) increase the search space during sparse training to retain accuracy;
however, do not guarantee FLOPs savings. In contrast to these methods, our work introduces a set of
non-linear sparse transformations, which increase the representational capacity of the network. Our
approach does not entail the introduction of a novel sparse training algorithm. Instead, it enhances
the search space of existing methods, resulting in improved generalization without compromising
training efficiency.

Iso-Parameter vs. Iso-FLOP Recent sparsity literature is focused on improving generalization at
high sparsity levels. Hence, layer-wise sparsity distributions such as the Erdös-Rényi-Kernel Evci
et al. (2020), Ideal Gas Quota Chen et al. (2022b), and parameter leveling Golubeva et al. (2021) are
often used with sparse training to boost accuracies. However, these works target the setting where
the models being compared have a fixed parameter budget (i.e., Iso-Parameter), which does not
translate to similar training FLOPs to the original dense model (especially in CNNs). As a result,
training models with these distributions often require different memory or computational resources
per layer. Our approach does not focus on this Iso-Parameter setting but instead adopts the uniform
sparsity distribution (i.e., every layer gets the same sparsity level), ensuring uniform FLOP reductions
across the network. We also ensure the same computational FLOPs of a dense network by leveraging
sparsity along with our Iso-FLOP transformations.

5 CONCLUSION

We introduce a new family of Sparse Iso-FLOP Transformations (Sparse-IFT) to improve the training
efficiency of DNNs. These transformations can be used as drop-in replacements for dense layers
and increase the representational capacity while using sparsity to maintain training FLOPs. This
increase in capacity also translates to a larger search space allowing sparse training methods to explore
better and identify optimal sparse subnetworks. For the same computational cost as the original
dense model, Sparse-IFT improves the training efficiency (test accuracy w.r.t training FLOPS) across
multiple model families in the CV and NLP domains for various tasks. We hope our work will open
new investigations into improving the accuracy of DNNs by leveraging sparsity, particularly in light
of advancements in hardware accelerators that offer improved support for weight sparsity during the
training process.
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