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Abstract: Federated Learning (FL) is a distributed machine learning paradigm that allows clients to train models on their data 

while preserving their privacy. FL algorithms, such as Federated Averaging (FedAvg) and its variants, have been shown to 

converge well in many scenarios. However, these methods require clients to upload their local updates to the server in a 

synchronous manner, which can be slow and unreliable in realistic FL settings. To address this issue, researchers have developed 

asynchronous FL methods that allow clients to continue training on their local data using a stale global model. However, most 

of these methods simply aggregate all of the received updates without considering their relative contributions, which can slow 

down convergence. In this paper, we propose a contribution-aware asynchronous FL method that takes into account the staleness 

and statistical heterogeneity of the received updates. Our method dynamically adjusts the contribution of each update based on 

these factors, which can speed up convergence compared to existing methods. 
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1. Introduction 

Over the past few years, Machine Learning has become a 

hot research topic. Federated Learning (FL) is a privacy-

preserving distributed machine learning paradigm where 

clients utilize their local private data to collaboratively train a 

global model under the coordination of a centralized server. 

Most existing FL methods are developed under a synchronous 

communication setting, in which clients can upload their local 

models to the server simultaneously. It implicitly requires the 

assumption that all selected clients can finish the local 

training steps at roughly the same time. This assumption, 

however, hardly holds in many real-world systems. The 

devices typically have different computation resources and 

communication bandwidths, making the local updates 

received by the server asynchronous. The devices that finish 

the local training and upload to the server lately are defined 

as stragglers. A naive method to compromise the scenario is 

to request the faster clients waiting for the stragglers to 

participate in the aggregation. Although this method can 

somehow balance the contributions of each device, it largely 

decays the convergence speed of the whole FL system and 

causes computation resource waste on the faster devices.  

To overcome the straggler problem in synchronous FL, 

several asynchronous FL methods have been developed to 

improve the convergence performance. In the fully 

asynchronous FL methods, the server performs a global 

model update once it receives any one local information 

without any waiting. Although this kind of fully asynchronous 

method helps increase system efficiency, it could decay the 

global model performance since the training bias is 

introduced during each global update. In addition, too 

frequent global aggregations cause a waste of server resources. 

Therefore, has proposed another line of asynchronous FL, in 

which the server updates the global model once receiving the 

gradient from the first K clients’ update while allowing the 

stragglers to continue their local training. Although this 

method achieves comparable performance with synchronous 

FL, it fails to measure the reasonable contributions of each 

local update during the aggregation step, as the server equally 

averages the received M local updates. The nature of different 

computation and communication abilities and statistical data 

heterogeneity cause the contributions of each received update 

different. In this work, we propose a systematic method to 

measure the contribution of each local update, aiming to 

address the following problems:  

Problem 1: Statistical Heterogeneity. Statistical 

Heterogeneity (Non-IID) is considered as a challenging 

problem in federated learning. This problem is even 

accumulated in asynchronous federated learning scenarios. 

As devices communicate with the server under different 

frequencies, the global model would easily be biased to the 

faster devices. For each global model update, the weights of 

devices that contain the classes of data seldom studied should 

be higher than the devices with well-studied data. 

Problem 2: Staleness. The heterogeneous computation and 

communication resources of each device create the problem 

of staleness. Without loss of the generality, assume for each 

client i which contributes to the t-th server update, the local 

update uploaded is trained with global model version t′ and 

the staleness of this client i is defined as τi(t) = t − t′. Intuitively, 

the gradients with low stale are relatively more reliable, while 

the gradients with high stale are more risky to borrow biased 

information. Thus, the existing asynchronous methods down-

weight the contribution of gradient based on the staleness(e.g.

 
Although this kind of staleness-based weighted 

aggregation somehow reduces the risk of biased information, 

it could over-deteriorate the importance of high-stale 
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gradients from two aspects. On the one hand, measuring 

contributions which depend on the delayed time to upload, 

can neglect the global model differences. For a simple 

example of a two-class classification task, we consider that 

there are two clients, which client 1 has data with class A and 

client 2 has data with class B. If client 2 last communicates 

with the server when the server has already learned enough 

information from class A and the global model has been 

approaching stable on class A, the global model would change 

little, nevertheless the staleness of client 2’s communication. 

In this case, downweighting the contribution of client 2’s 

gradient is meaningless. On the other hand, reducing the 

weight of the high-stale gradient further increases the risk of 

statistical training bias, as the slow devices could contain data 

that has been hardly studied. 

2. Related Work  

2.1. Federated Learning 

Federated Learning (FL) is a distributed machine learning 

framework that allows clients to collaboratively train a global 

model using their private data, under the coordination of a 

centralized server. Early works on FL, such as Federated 

Averaging (FedAvg) ,focused on reducing the communication 

overhead between the server and clients by using local 

stochastic gradient descent. Subsequent works have improved 

upon FedAvg by addressing the negative effects of statistical 

heterogeneity among clients. However, most of these works 

assume a synchronous communication setting, ignoring the 

system heterogeneity between clients. To address the issue of 

system heterogeneity, two types of methods have been 

proposed. One approach focuses on reducing the local 

computation workload of slower devices through partial 

model training in FL. In this paper, we focus on the other type 

of method, which allows faster and slower devices to 

communicate with the server asynchronously. This approach 

allows slower devices to continue training on their local data 

using a stale global model, without delaying the convergence 

of the overall FL system. 

2.2. Asynchronous Federated Learning 

Most existing works on asynchronous distributed learning, 

such as assume IID data distributions among the clients, 

which does not hold in the case of FL due to its inherent 

statistical heterogeneity. Other works in asynchronous 

federated learning, such as make additional assumptions, such 

as broadcasting model updates to all clients or assuming all 

clients have the same speed, to facilitate asynchronous FL. 

One recent line of research on asynchronous FL updates the 

global model as soon as it receives any local information from 

clients, known as fully asynchronous FL. Although this kind 

of fully asynchronous FL helps to increase the system 

efficiency, it could enhance the cost of the server, as too 

frequent server aggregations are required. In addition, as the 

server aggregates each client’s update, privacy could be a 

concern. 

To solve the above problem, the most recent work studies 

another line of asynchronous FL, where the server updates the 

global model once receiving the gradient from the first K 

client’s updates. However, these works equally aggregate the 

received gradient and ignore the different contributions 

among the gradients. In this work, we propose a novel FL 

method that takes into account the contributions of each 

update and adjusts them accordingly. Our method uses a 

combination of weighting based on staleness and statistical 

heterogeneity to improve convergence performance. 

3. Model and Preliminaries 

We consider a FL system with one server and N clients. The 

clients work together to train a machine learning model by 

solving a distributed optimization problem as follows: 

 

 
where fi : R

d → R is a non-convex loss function for client i 

and Fi is the estimated loss function based on a mini-batch 

data sample ζi drawn from client i’s own dataset. Denote the 

dataset size of client i as Di. 

The classic fully asynchronous FL methods update the 

global model once the server receives any local updates from 

the client. Although this kind of method shows comparable 

convergence speed with synchronous settings, it raises 

privacy concerns. Recently, proposes a new line of 

asynchronous FL, in which the server has a buffer to store the 

received local updates. The server will only update the global 

model when the buffer contains K clients’ local updates. (Note 

that the buffer size K is a hyper-parameter.) This kind of 

method is suitable to combine with the secured aggregation 

methods to prevent clients’ privacy. Thus, in this paper, we 

choose to follow the main structure of . 

Let ∆i
t be the local update uploaded by client i to participate 

in the t round global aggregation. ∆i
t is the cumulative 

gradients of M local training steps with initial model of global 

version t − τi
t. In FedBuff, once the buffer collect K local 

updates, it will aggregate the new global model xt+1 as 

following: 

 

 , (2) 

 

where ηg is the global learning rate at the server side. 

Although FedBuff performs well under moderate conditions, 

its performance could highly drop as it ignores the difference 

among the contributions of K local updates. 

4. Methodology 

The difference in contributions among K local updates 

comes from two aspects. On the first aspect, the system 

heterogeneity makes the required times to finish the M local 

training different. Typically the fast devices finish the local 

training sooner and upload timely information to the server, 

while the slow devices need more time to finish the local 

training and thus upload stale cumulative gradients to the 

server. On the other aspect, the statistical heterogeneity makes 

the different importance of clients’ local updates to the current 

round model aggregation. In the following, we propose a 

novel method to measure the contribution of each client’s 

local updates. 

4.1. Staleness Effect 

We here denote τi
t as the staleness between the model 

version in which local client i uses to start local training, and 

the model version in which client i participates in the t round 

global aggregation. Previous works down-weight stale 

updates using the function which is inversely propitiatory to 
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. (e.g., ). We measure the client i’s 

staleness degree -th global aggregation as following: 

 , (3) 

where K is the set of local clients stored in the buffer to 

participate in the current round aggregation. Note that Si
t ∈. 

The client i that starts local training with the model version 

  most similar to the current model version xt has the 

highest Si
t = 1. 

4.2. Statistical Effect 

Although the staleness effect is an important component in 

asynchronous FL scenarios, only applying staleness when 

considering the local clients’ contributions could induce more 

problems. For example, consider a slow device that contains 

the classes of data which has been rarely learned by the server, 

simply applying staleness degree   could exacerbate the 

statistical heterogeneity. Thus, when we measure the 

contribution of clients’ local updates, we should consider the 

clients’ local statistical distributions. Unfortunately, privacy 

is a serious problem in the FL setting, which makes it 

impossible to directly report the local data distribution to the 

server. Moreover, as the statistical benefit of each client’s 

local data to the server, keeps changing during each global 

model update, we require the ’fresh’ information which is 

calculated based on the current global model version to 

determine the statistical effect. Contributes that in client 

selection, selecting the client with higher local loss could 

enhance the convergence speed. We propose to utilize the 

batch loss to estimate the local training loss. Typically, the 

higher training loss represents a worse learning of the current 

global model on local data. Thus, we define the statistical 

effect of client i in t-th global aggregation as: 

  (4) 

where ζi is the mini-batch data sample randomly drawn 

from client i’s local dataset. 

Then we can update the global model as follows: 

 , (5) 

where ηg is the global learning rate at the server side. 

5. Experiment 

We conduct experiments for the image classification task 

on Fashion-MNIST [34] for non-IID data distributions. There 

are 30 clients and each client has 1500 instances for training. 

In each FL round, all clients participate. We use LeNet as the 

backbone model. 

 

Fig. 1. Performance Comparison 

The result shown in Fig. 1 validates that our proposed 

method outperforms the baseline method by a large margin. 

6. Conclusion  

In conclusion, this paper introduces a novel 

contributionaware asynchronous Federated Learning (FL) 

method that represents a significant advancement in 

distributed machine learning. By addressing the limitations of 

traditional synchronous FL methods, which often suffer from 

slow and unreliable communication in realistic settings, our 

approach offers a more efficient and practical solution. Unlike 

existing asynchronous FL methods that aggregate updates 

indiscriminately, our method considers the staleness and 

statistical heterogeneity of each update, dynamically 

adjusting their contributions to the global model. This 

nuanced approach ensures faster convergence and enhances 

the overall performance of FL systems. Our contribution-

aware method not only mitigates the challenges posed by 

asynchronous updates but also paves the way for more robust 

and scalable FL implementations. Future research could 

further refine this approach, exploring additional factors that 

influence the effectiveness of updates and extending our 

method to a wider range of applications. Through continued 

innovation in FL, we can better harness the power of 

distributed machine learning while upholding the essential 

principles of privacy and efficiency. 
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