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ABSTRACT

Proximal policy optimization (PPO) is one of the most popular state-of-the-art
on-policy algorithms that has become a standard baseline in modern reinforcement
learning with applications in numerous fields. Though it delivers stable perfor-
mance with theoretical policy improvement guarantees, high variance and high
sample complexity still remain critical challenges in on-policy algorithms. To
alleviate these issues, we propose Hybrid-Policy Proximal Policy Optimization
(HP3O), which utilizes a trajectory replay buffer to make efficient use of trajecto-
ries generated by recent policies. Particularly, the buffer applies the "first in, first
out" (FIFO) strategy so as to keep only the recent trajectories to attenuate the data
distribution drift. A batch consisting of the trajectory with the best return and other
randomly sampled ones from the buffer is used for updating the policy networks.
The strategy helps the agent to improve its capability on top of the most recent best
performance and in turn reduce variance empirically. We theoretically construct the
policy improvement guarantees for the proposed algorithm. HP3O is validated and
compared against several baseline algorithms using multiple continuous control
environments. Our code is available here.
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Figure 1: Schematic diagram of HP3O/HP3O+: (left side) the trajectory replay buffer takes a "first
in, first out" (FIFO) strategy to keep only recent trajectories; batch consisting of the trajectory with
the best return (τ∗) and other randomly sampled ones from the buffer are used for updating the
actor/critic networks (off-policy approach); (right side) model updating still follows the on-policy
PPO method, hence, hybrid-policy PPO (HP3O); for HP3O+, τ∗ is also used to update the advantage
function

1 INTRODUCTION

Model-free reinforcement learning Liu et al. (2021) has demonstrated significant success in many
different application areas, such as building energy systems Biemann et al. (2021), urban driving Toro-
manoff et al. (2020); Saxena et al. (2020), radio networks Kaur & Kumar (2020), robotics Polydoros
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& Nalpantidis (2017), and medical image analysis Hu et al. (2023). In particular, on-policy rein-
forcement learning approaches such as proximal policy optimization (PPO) Schulman et al. (2017);
Chang et al. (2023) provide stable performance along with theoretical policy improvement guarantees
that involve a lower bound Kakade & Langford (2002) on the expected performance loss which
can be approximated using the generated samples from the current policy. These guarantees are
theoretically quite attractive and mathematically elegant, but the requirement of on-policy data and
the high variance nature demands significant data to be collected between every update, inevitably
causing the issue of high sample complexity and the behavior of slow learning.

Off-policy algorithms Zanette (2023); Prudencio et al. (2023), on the other hand, alleviate some of
these issues as they can leverage a replay buffer to store samples that enable more efficient policy
updates by reusing these samples. While the off-policy approach leads to better sample efficiency,
it causes another problem called data distribution drift Zhang et al. (2020b); Lesort et al. (2021),
and most studies Lillicrap et al. (2015); Dankwa & Zheng (2019) have just overlooked this issue.
Furthermore, off-policy methods also suffer from high variance and even difficulty in convergence Lyu
et al. (2020) due to the exploration in training. Mitigating this issue Bjorck et al. (2021) still remains
challenging due to the high variations of stored samples in the traditional replay buffer design.
However, it has been receiving considerable attention in recent studies Liu et al. (2020); Xu et al.
(2019). Numerous previous attempts Zhang et al. (2021); Xu et al. (2020); Papini et al. (2018) took
inspiration from supervised learning Wang et al. (2013); Johnson & Zhang (2013) and specifically
made adjustments to the estimation of policy gradients to achieve variance reduction. However, this
involves auxiliary variables and complex estimation techniques, resulting in a more complicated
learning process. Another simple strategy to attenuate high variance is to leverage the advantage
function involving a baseline Jin et al. (2023); Mei et al. (2022); Wu et al. (2018), which can be
estimated by a parameterized model. Nevertheless, when the sampled data from the buffer has a large
distribution drift, learning the parameterized model can be defective, triggering a poor advantage
value. This naturally leads to the question:
Can we design a hybrid-policy algorithm by assimilating the low sample complexity from off-policy

algorithms into on-policy PPO for variance reduction?
Contributions. We provide an affirmative answer to the above question. In this work, we blend
off-policy and on-policy approaches to balance the trade-off between sample efficiency and training
stability. Specifically, we focus primarily on mitigating underlying issues of PPO by using a trajectory
replay buffer. In contrast with traditional buffers that keep appending all generated experiences, we
use a "first in, first out" (FIFO) strategy to keep only the recent trajectories to attenuate the data
distribution drift (as shown in Fig. 1). A batch consisting of the trajectory with the best return (a.k.a.,
best trajectory, τ∗) and other randomly sampled ones from the buffer is used for updating the policy
networks. This strategy helps the agent to improve its capability on top of the most recent ‘best
performance’ and in turn to also reduce variance. Additionally, we define a new baseline which is
estimated from the best trajectory selected from the replay buffer. Such a baseline evaluates how much
better the return is by selecting the present action than the most recent best one, which intuitively
encourages the agent to further improve the performance. More technical detail will be discussed in
Section 4. Specifically, our contributions are as follows.

• We propose a novel variant of PPO, called Hybrid-Policy PPO (HP3O), that combines the
advantageous features of on-policy and off-policy techniques to improve sample efficiency
and reduce variance. We also introduce another variant termed HP3O+ that leverages a new
baseline to enhance the model performance. Please see Table 1 for a qualitative comparison
between the proposed and existing methods.

• We theoretically construct the policy improvement lower bounds for the proposed algorithms.
HP3O provably shows a new lower bound where policies are not temporally correlated,
while HP3O+ induces a value penalty term in the lower bound, which helps reduce the
variance during training.

• We perform extensive experiments to show the effectiveness of HP3O/HP3O+ across a
few continuous control environments. Empirical evidence demonstrates that our proposed
algorithms are either comparable to or outperform on-policy baselines. Though off-policy
techniques such as soft actor-critic (SAC) may still have better final returns for most tasks,
our hybrid-policy algorithms have significantly more advantages in terms of run time
complexity.
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Table 1: Qualitative comparison with PPO and its relevant variants

Method T.B. On/off-policy T.G.
PPO-ClipJin et al. (2023) ✗ ✗ ✓
PTR-PPOLiang et al. (2021) ✓ ✓ ✗
GEPPOQueeney et al. (2021) ✗ ✓ ✓

Policy-on-off PPOFakoor et al. (2020) ✗ ✓ ✗
P3OChen et al. (2023) ✗ ✗ ✗

Off-policy PPOMeng et al. (2023) ✗ ✓ ✓
HP3O(+) (ours) ✓ ✓ ✓

T.B.: trajectory buffer; T.G.: theoretical guarantee.

2 RELATED WORKS
On-policy methods. On-policy algorithms aim at improving the policy performance monotonically
between every update. The work Kakade & Langford (2002) developing Conservative Policy
Iteration (CPI) for the first time theoretically introduced a policy improvement lower bound that
can be approximated by using samples from the present policy. In this regard, trust-region policy
optimization (TRPO) Schulman et al. (2015) and PPO have become quite popular baseline algorithms.
TRPO solves a trust-region optimization problem to approximately obtain the policy improvement
by imposing a Kullback-Leibler (KL) divergence constraint, which requires solving a quadratic
programming that may be compute-intensive. On the contrary, PPO achieves a similar objective by
adopting a clipping mechanism to constrain the latest policy not to deviate far from the previous one
during the update. Their satisfactory performance in different applications Hu et al. (2019); Lele
et al. (2020); Zhang et al. (2022); Dutta & Upreti (2022); Bahrpeyma et al. (2023); Nguyen et al.
(2024); Zhang et al. (2020a) triggers considerable interest in better understanding these methods Jin
et al. (2023) and developing new policy optimization variants Huang et al. (2021). Albeit numerous
attempts have been made in the above works, the high sample complexity due to the on-policy
behavior of PPO and its variants still obstructs efficient applications to real-world continuous control
environments, which demands the connection with off-policy methods.

Off-policy methods. To address the high sample complexity issue in on-policy methods, a common
approach is to reuse the samples generated by prior policies, which was devised in Hester et al.
(2018); Mnih et al. (2013). Favored off-policy methods such as deep deterministic policy gradient
(DDPG) Lillicrap et al. (2015), twin delayed DDPG (TD3) Fujimoto et al. (2018) and soft actor-critic
(SAC) Haarnoja et al. (2018) fulfilled this goal by employing a replay buffer to store historical data
and sampling from it for computing the policy updates. As mentioned before, such approaches
could cause data distribution drift due to the difference between the data distributions of current
and prior policies. This work will include an implementation trick to address this issue to a certain
extent. Kallus and Uehara developed a statistically efficient off-policy policy gradient (EOPPG)
method Kallus & Uehara (2020) and showed that it achieves an asymptotic lower bound that existing
off-policy policy gradient approaches failed to attain. Other works such as nonparametric Bellman
equation Tosatto et al. (2020) and state distribution correction Kallus & Uehara (2020) were also
done with off-policy policy gradient.

Combination of on- and off-policy methods. Making efficient use of on-policy and off-policy
schemes is pivotal to designing better model-free reinforcement learning approaches. An early work
merged them together to come up with the interpolated policy gradient Gu et al. (2017) for improving
sample efficiency. Another work Fakoor et al. (2020) developed Policy-on-off PPO to interleave
off-policy updates with on-policy updates, which controlled the distance between the behavior and
target policies without introducing any additional hyperparameters. Specifically, they utilized a
complex gradient estimate to account for on-policy and off-policy behaviors, which may result in
larger computational complexity in low-sample scenarios. To compensate data inefficiency, Liang et
al. Liang et al. (2021) incorporated prioritized experience replay into PPO by proposing a truncated
importance weight method to overcome the high variance and designing a policy improvement loss
function for PPO under off-policy conditions. A more recent work Chen et al. (2023) probed the
insufficiency of PPO under an off-policy measure and explored in a much larger policy space to
maximize the CPI objective. The most related work to ours is Queeney et al. (2021), where the
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authors proposed a generalized PPO with off-policy data from prior policies and derived a generalized
policy improvement lower bound. They utilized directly the past trajectories right before the present
one instead of a replay buffer, which still maintains a weakly on-policy behavior. However, their
method may suffer from poor performance in sparse reward environments.

3 PROBLEM FORMULATION AND PRELIMINARY

Markov decision process. In this context, we consider an infinite-horizon Markov Decision Process
(MDP) with discounted reward defined by the tuple M = (S,A, p, r, ρ0, γ), where S indicates the
set of states, A signifies the set of actions, p : S × A → S is the transition probability function,
r : S × A → R is the reward function, ρ0 is the initial state distribution of environment, and
γ is the discount factor. In this study, the agent’s policy is a stochastic mapping represented by
π : S → A. Reinforcement learning aims at choosing a policy that is able to maximize the
expected discounted cumulative rewards J(π) = Eτ∼π[

∑∞
t=0 γ

tr(st, at)], where τ ∼ π indicates
a trajectory sampled according to s0 ∼ ρ0, at ∼ π(·|st), and st+1 ∼ p(·|st, at). We denote by
dπ(s) a normalized discounted state visitation distribution such that dπ(s) = (1−γ)

∑∞
t=0 γ

tP(st =
s|ρ0, π, p). Hence, the corresponding normalized discounted state-action visitation distribution can be
expressed as dπ(s, a) = dπ(s)π(s, a). Additionally, we define the state value function of the policy
π as V π(s) = Eτ∼π[

∑∞
t=0]γ

tr(st, at)|s0 = s], the state-action value function, i.e., Q-function,
as Qπ(s, a) = Eτ∼π[

∑∞
t=0]γ

tr(st, at)|s0 = s, a0 = a], and the critical advantage function as
Aπ(s, a) = Qπ(s, a)− V π(s).

Policy improvement guarantee. The foundation of numerous on-policy policy optimization al-
gorithms is built upon a classic policy improvement lower bound originally established in Kakade
& Langford (2002). With different scenarios Schulman et al. (2015); Achiam et al. (2017); Dai &
Gluzman (2021), the lower bound was refined to reflect diverse policy improvements, which can be
estimated by using the samples generated from the latest policy. For completeness, we present in
Lemma 1 the policy improvement lower bound from Achiam et al. (2017).

Lemma 1. (Corollary 1 in Achiam et al. (2017)) Suppose that the current time step is k and that the
corresponding policy is πk. For any future policy π, the following relationship holds true:

J(π)− J(πk) ≥
1

1− γ
E(s,a)∼dπk [

π(a|s)
πk(a|s)

Aπk(s, a)]−
2γCπ

πk

(1− γ)2
E(s,a)∼dπk [δ(π, πk)(s)], (1)

where Cπ
πk

= maxs∈S |Ea∼π(·|s)[A
πk(s, a)]| and δ(π, πk)(s) is the total variation distance between

the distributions π(·|s) and πk(·|s).

Lemma 1 implies that the policy improvement lower bound consists of the surrogate objective loss
and the penalty term, which can be maximized by choosing a certain new policy πk+1 to guarantee
the policy improvement. However, directly maximizing such a lower bound could be computationally
intractable if the next policy πk+1 deviates far from the current one. Unless additional constraint
is imposed such as a trust region in TRPO Schulman et al. (2015), which unfortunately requires a
complex second-order method to solve the optimization problem. Hence, PPO developed a simple
yet effective heuristic for achieving this.

Proximal policy optimization. PPO has become a default baseline in a variety of applications, as
mentioned above. It is favored because of its strong performance and simple implementation with
sound theoretical motivation given by the policy improvement lower bound. Intuitively, PPO attempts
to constrain the new policy close to the present one with a clipping heuristic, which results in the
most popular variant, PPO-clip Jin et al. (2023). Particularly, the following objective is solved at
every policy update:

Lclip
k (π) = E(s,a)∼dπk [min(

π(a|s)
πk(a|s)

Aπk(s, a), clip(
π(a|s)
πk(a|s)

, 1− ϵ, 1 + ϵ)Aπk(s, a))], (2)

where clip(a, b, c) = min(max(a, b), c). The clipping function plays a critical role in this objective
as it consistently enforces the probability ratio between the current and next policies in a reasonable
range between [1− ϵ, 1+ ϵ]. The outer minimization in Eq. 2 provides the lower bound guarantee for
the surrogate loss in Eq. 1. In practice, one can set a small learning rate and a large number of time
steps to generate sufficient samples to allow PPO to perform stably and approximate Eq. 2. However,
due to its on-policy approach, high variance is a significant issue such that an extremely large number
of samples may be required in some scenarios to make sure the empirical objective is able to precisely
estimate the true objective in Eq. 2, which naturally causes the high sample complexity issue. This
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motivates us to leverage off-policy techniques to alleviate such an issue, while keeping the theoretical
policy improvement.

4 HYBRID-POLICY PPO (HP3O)
To achieve better sample efficiency of PPO, historical samples generated by previous policies are
reused for policy updates, as done in off-policy algorithms. This inevitably results in a distribution
drift between policies, which essentially disproves the policy improvement lower bound in Lemma 1.
In this context, to fix this issue, we will extend Lemma 1 to assimilate off-policy samples in a
principled manner to derive a new policy improvement lower bound that works for our proposed
algorithm, HP3O. HP3O (and its variant HP3O+) takes a hybrid approach that effectively synthesizes
on-policy trajectory-wise policy updates and off-policy trajectory replay buffers. Algorithm 1 shows

Algorithm 1 HP3O(+)

1: Input: initializations of θ0, ϕ0, and trajectory replay buffer R, the number of episodes K, the
number of time steps in each episode T , the number of epochs for updates E

2: for k = 1, 2, ...,K do
3: Run policy πθk to generate a trajectory τ = (s0, a0, r1, s1, ..., sT−1, aT−1, rT )
4: Append τ to R and discard the oldest one τ− ▷ FIFO strategy
5: Sample a random minibatch B from the trajectory replay buffer R
6: Select the best action trajectory τ∗k from the trajectory replay buffer and add it to B
7: for each trajectory j = 1, 2, ..., |B|: do
8: for t = 0, 1, ..., T − 1 do
9: Gj

t =
∑T

l=t+1 γ
l−t−1rjl

10: end for
11: end for
12: Compute advantage estimates Âπk

t = Gt − Vϕ(st) ▷ HP3O
13: Compute V τ∗

k (st) using τ∗k and advantage estimates Âπk
t = Gt − V τ∗

k (st) ▷ HP3O+
14: for each epoch e = 1, 2, ..., E do
15: Compute the clipping loss Eq. 2
16: Compute the mean square loss LV (ϕ) = − 1

T

∑T−1
t=0 (Gt − Vϕ(st))

2

17: Update πθk with ∇θLclip(θ) by Adam
18: Update Vϕk

with ∇ϕLV (ϕ) by Adam
19: end for
20: end for
21: return πθK and VϕK

the algorithm framework for HP3O and HP3O+ (blue line represents the only difference for HP3O+).
We denote the actor and critic by θ ∈ Rm and ϕ ∈ Rn respectively such that the parameterized policy
function is πθ and the parameterized value function is Vϕ = Eτ∼πϕ

[
∑T

l=t γ
l−tr(sl, al)|st]. Denote

by τ∗k = argmaxτ∈R

∑T
t=0 γ

tr(st, at) the best action trajectory selected from the replay buffer R at
the current episode k.

In most existing off-policy algorithms, the size of the replay buffer is fixed with a large number
to ensure that a diverse set of experiences is captured. With this approach, though the random
minibatch sampling allows the agent to learn from past experience, a large-size replay buffer may
cause significant data distribution drifts. Additionally, a large replay buffer means that it takes more
time for the buffer to fill up, especially in environments requiring extensive exploration. Hence,
we apply the FIFO strategy and discard old trajectories empirically to attenuate the issue (Line 4
in Algorithm 1). The recently proposed off-policy PPO Meng et al. (2023) indeed uses off-policy
data, but it does not employ a trajectory buffer as we do. In our approach, the trajectory buffer is an
essential component because it allows us to store and process complete sequences of state-action
pairs (trajectories) rather than isolated transitions. This will preserve the temporal coherence and
enhance stability. Line 5 is to sample from the trajectory replay buffer R, which is different from
the reuse of N samples generated from prior policies in Queeney et al. (2021), where the past
immediate sample trajectories were used without random sampling. We note that a replay buffer
in the proposed algorithm enhances the agent’s performance by providing access to a more diverse
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set of experiences and highlighting the most impactful trajectories. Line 6 signifies the core part
of HP3O as the best action trajectory τ∗k indicates the best return starting from state st within the
buffer. Line 7 through Line 12 calculate the rewards to go for each time step t in each trajectory
and obtain the total reward to go at each time step over all trajectories. One may wonder how to
calculate the return Gt if trajectories have varying lengths in some environments. In this work, we
store different lengths of trajectories directly in the buffer and do not pad them. This approach
preserves the natural variation in trajectory lengths that can occur in different environments. Although
the length differ, we still compare the returns of these trajectories to identify the best one while
ensuring the comparison remains consistent and fair. Particularly, line 13 is a key step in the proposed
HP3O+. V τ∗

k (st) = Eτ∗
k∼πk

[
∑T

l=t γ
l−tr(sl, al)|st] induced by the current best action trajectory τ∗k

sets the best state value among all trajectories from R. Âπk
t in Line 13 signifies how much better

the return Gt is by taking action at than the best value we have obtained most recently. Intuitively,
this "encourages" the agent to improve its performance in the next step on top of V τ∗

k (st). While
V τ∗

k (st) can be theoretically calculated as above, in practice, to make sure that there always exists
a best value for use, V τ∗

k (st) is calculated by using a norm distance between the current trajectory
and best trajectories to ensure V τk has the best return since st. If the reward to go from st in the
best trajectory is lesser, the current trajectory is used to replace the best one for V τ∗

k (st) calculation.
Please see the Appendix for more details about the data structures of the proposed algorithms.

Remark 1. We remark on the sampling method adopted in this work to obtain the trajectories apart
from the best trajectory for update. We begin by randomly sampling a set of trajectories from our
trajectory buffer. This set is specifically designed to include the best action trajectory, with the
remaining trajectories selected randomly from the buffer. From the set of trajectories obtained by
random sampling, we then apply uniform sampling. The resulting minibatch is used for training. This
approach balances leveraging high-performing trajectories while maintaining exploration across
the broader trajectory space, helping to reduce the risk of overfitting. However, we recognize
that assigning a score to trajectories based on the loss function could offer additional benefits.
Prioritizing trajectories Hou et al. (2017) that result in higher losses could help the agent focus on
challenging experiences, potentially improving learning efficiency by addressing areas where the
policy requires more refinement. This could also help in stabilizing training by emphasizing learning
from mistakes, thereby potentially reducing the variance in policy updates. In fact, integrating a
prioritized experience replay (PER) strategy could be a promising direction for future work.

5 THEORETICAL ANALYSIS

This section presents a theoretical analysis of the proposed HP3O and HP3O+. We first derive a new
policy improvement lower bound for HP3O and then present a different bound for HP3O+ to indicate
the value penalty term. All proofs are deferred to the Appendix. To incorporate prior policies in the
policy improvement lower bound, we need to extend the conclusion in Lemma 1, which quantifies
the improvement for two consecutive policies. In Queeney et al. (2021), policies prior to the present
policy πk in chronological order were used. However, in our study, this order has been broken due to
the random sampling from the replay buffer, which motivates us to derive a relationship among the
current, future, and prior policies independent of the chronological order. Before the main result, we
first present an auxiliary technical lemma.

Lemma 2. Consider a current policy πk, and any reference policy πr. For any future policy π,

J(π)− J(πk) ≥
1

1− γ
E(s,a)∼dπr [

π(a|s)
πr(a|s)

Aπk(s, a)]−
2γCπ

πk

(1− γ)2
Es∼dπr [δ(π, πr)(s)], (3)

where Cπ
πk

and δ(π, πr)(s) are defined as in Lemma 1.

Remark 2. Lemma 2 implies that now the visitation distribution, the probability ratio of the surrogate
objective, and the maximum value of the total variation distance depend on the reference policy πr,
which essentially extends Lemma 1 to a more generalized case. However, the improvement is still for
the two consecutive policies πk and π as the advantage function in the surrogate objective and Cπ

πk

rely on the latest policy πk. Lemma 2 does not necessarily require πr to be the last policy prior to
πk as in Queeney et al. (2021), which paves the way for establishing the policy improvement for |B|
prior policies sampled randomly from the replay buffer R.

Theorem 1. Consider prior policies |B| randomly sampled from the replay buffer R with indices
i = 0, 1, ..., |B| − 1. For any distribution v = [v1, v2, ..., v|B|] over the |B| prior policies, and any
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future policy π generated by HP3O in Algorithm 1, the following relationship holds true

J(π)− J(πk) ≥
1

1− γ
Ei∼v[E(s,a)∼dπi [

π(a|s)
πi(a|s)

Aπk(s, a)]]−
γCπ

πk
ϵ

(1− γ)2
, (4)

where Cπ
πk

is defined as in Lemma 1.
Remark 3. It is observed that the conclusion from Theorem 1 is similar to one of the main results
in Queeney et al. (2021). The significant difference is that πi is not the same as πk−i in Queeney et al.
(2021). It is technically attributed to Lemma 2, where the reference policy πr may not have a close
temporal relationship with πk. Also, the advantage function has not been changed yet. Empirically
speaking, for each minibatch B, we have added the best trajectory in it, which essentially expedites
the learning process. Additionally, Theorem 1 has an extra expectation operator over multiple
trajectories on the first term of the right side in Eq. 4, leading to the smaller variance, compared to
only one trajectory in Lemma 1. We would also like to point out that Theorem 1 shows the policy
improvement lower bound by sampling a mini-batch of trajectories associated with prior policies
from the buffer, which is consistent with what has been done in Algorithm 1. In HP3O+, we use it as
a baseline to replace Vϕ(s) and have surprisingly found that this leads to an extra term that penalizes
the state value to reduce the variance.

We first define Âπ(s, a) = Qπ(s, a) − V π∗
(s) and Gπ(s) = V π∗

(s) − V π(s). It is immediately
obtained that Aπ(s, a) = Âπ(s, a) + Gπ(s). Hence, if we utilize the state value induced by the
best trajectory at the moment as the baseline, there exists a value gap Gπ(s) between Aπ(s, a) and
Âπ(s, a). One may argue that the advantage Âπ(s, a) is negative all the time, which implies the
present action is not favorable such that the new policy should be changed to yield a lower probability
for the current action and state. However, this is not always true as V π∗

(s) is not the globally
optimal value, while it is approximately the optimal value up to the current time step over the last
|B| episodes. The motivation behind Âπ(s, a) is that the new baseline V π∗

(s) becomes the driving
force to facilitate the performance improvement between every update. We are now ready to state the
policy improvement lower bound with the new baseline as follows.
Lemma 3. Consider a current policy πk, and any reference policy πr. For any future policy π,

J(π)− J(πk) ≥
1

1− γ
E(s,a)∼dπr [

π(a|s)
πr(a|s)

Âπk(s, a)]−
2γĈπ

πk

(1− γ)2
Es∼dπr [δ(π, πr)(s)]

− 2γCπk

(1− γ)2
Es∼dπr [δ(π, πr)(s)],

(5)

where Ĉπ
πk

= maxs∈S |Ea∼π(·|s)[Â
πk(s, a)]|, δ(π, πr)(s) is defined as in Lemma 1, Cπk =

maxs∈S |V π∗
k(s)− V πk(s)|.

With Lemma 3 in hand, we have another main result in the following.
Theorem 2. Consider prior policies |B| randomly sampled from the replay buffer R with indices
i = 0, 1, ..., |B| − 1. For any distribution v = [v1, v2, ..., v|B|] over the |B| prior policies, and any
future policy π generated by HP3O+ in Algorithm 1, the following relationship holds true

J(π)− J(πk) ≥
1

1− γ
Ei∼v[E(s,a)∼dπi [

π(a|s)
πi(a|s)

Âπk(s, a)]]−
γĈπ

πk
ϵ

(1− γ)2
− γCπkϵ

(1− γ)2
, (6)

where Ĉπ
πk

and Cπk are defined as in Lemma 3.
Remark 4. Theorem 2 describes the policy improvement lower bound for HP3O+, which provides
the theoretical guarantees when reusing trajectories generated by prior policies rigorously. The
extra term on the right-hand side γCπk ϵ

(1−γ)2 in the above inequality is not the penalty term between two
policies, while it is a value gap between the current state value and the most recent best value. As
V π∗

k(s) is time-varying, this acts as a "guide" to the current one V πk not deviating too far away from
V π∗

k(s). Equivalently, the term γCπk ϵ
(1−γ)2 can be regarded as a regularization from the critic network,

which assists in enhancing the overall agent performance and reducing the variance. We also include
some technical discussion regarding whether our approach will cause overfitting and the adoption of
the worst trajectories in Appendix A.2 and A.3.

Remark 5. The proposed HP3O algorithm and its variant have resorted to data randomly sampled
from multiple policies in the training batch B that is prior to πk for the policy update. Thus, there
exist multiple updates compared to the vanilla PPO, which only makes one policy update from πk
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to πk+1. In this study, we aim to show how the off-policy sample reuse significantly affects the
original sample efficiency PPO has. Though the direct sample complexity improvement analysis can
be significantly beneficial to provide a solid theoretical foundation for the proposed algorithms, a
thorough investigation of this aspect is out of the scope of this study. For instance, to arrive at an
ε-optimality for policy gradient-based algorithms, a few works Zhong & Zhang (2024); Zanette et al.
(2021); Dai et al. (2023); Sherman et al. (2023) have revealed the exact complexity with respect
to ε, but only for MDPs with linear function approximation. The exact sample complexity analysis
for the off-policy PPO algorithm with nonlinear function approximation still remains extremely
challenging and requires a substantial amount of non-trivial efforts. Therefore, in this paper, we
instead disclose the impact of off-policy sample reuse on the tradeoff between sample efficiency
and learning stability. Please see Appendix A.4 for more details. Additionally, we also present a
theoretical result in Appendix A.5 to reveal that HP3O+ increases updates in the total variational
distance of the policy throughout training, given the same sample size, when it is compared to HP3O.

6 EXPERIMENTS

The experimental evaluation aims to understand how the sample complexity and stability of our
proposed algorithms compare with existing baseline on-policy and off-policy learning algorithms.
Concretely, we conduct the comparison between our methods and prior approaches across challenging
continuous control environments from the Gymnasium benchmark suite Brockman et al. (2016).
While easy control tasks can be solved by various algorithms, the more complex tasks are typically
sample intensive with on-policy algorithms Schulman et al. (2017). Additionally, the high variance
of the algorithms negatively impacts stability and convergence. Furthermore, though some off-policy
algorithms enjoy high sample efficiency, the actual run time can be impractically large, which impedes
its applications to real-world tasks. As our proposed hybrid-policy learning algorithms are developed
on top of PPO, we mainly compare our methods to PPO, another popular on-policy method A2C Peng
et al. (2018), and three other relevant off-policy PPO approaches, including P3O Chen et al. (2023) (a
modification of PPO to leverage both on- and off-policy principles), GEPPO Queeney et al. (2021),
and Off-policy PPO (abbreviated as OffPolicy) Meng et al. (2023). We acknowledge that SAC, a fully
off-policy algorithm, may achieve comparatively higher returns in most of the continuous control
problems at the expense of much longer training time and with careful hyperparameter tuning. Hence,
we also compare with SAC in terms of variance reduction and run time complexity. As shown in
Table 1, there are other off-policy versions of PPO, such as Policy-on-off PPO Fakoor et al. (2020).
However, the corresponding code base lacks a complete implementation to reproduce their results,
which is evident in their code where the actor head for Mujoco environments is not implemented.
Moreover, making the code functional for our purpose would require extensive effort, as it is built on
MXNet, a deprecated open-source project. The above limitations have prevented us from performing
head-to-head comparisons. More details about hyperparameter settings are deferred to the Appendix.

6.1 COMPARATIVE EVALUATION

Figure 2 shows the total average return during training for A2C, PPO, P3O, GEPPO, OffPolicy,
HP3O, and HP3O+. Each experiment includes five different runs with various random seeds. The
solid curves indicate the mean, while the shaded areas represent the standard deviation over the five
runs. Clearly, the results show that, overall, both HP3O+ and HP3O are comparable to or outperform
all baselines across diverse tasks with smaller variances, which supports our theoretical claims.
For instance, in the HalfCheetah environment, our methods demonstrate a sharper average slope
compared to the baseline, particularly in the later stages of training, where other baselines show a
more flattened curve. This indicates that our method continues to learn effectively with fewer samples.
In the Hopper environment, P3O performs slightly better than HP3O but at the cost of extremely large
reward variance, indicating an unstable training process. However, HP3O+ significantly dominates in
the latter phase with a much smaller variance. In the Swimmer environment, while A2C and P3O
learn slowly and make almost no progress, HP3O and HP3O+ achieve the similarly highest reward
with very low variance, as suggested by Remark 3. Notably, OffPolicy ranks second in terms of
performance, but with the cost of extremely high variance. Additionally, OffPolicy shows notably
strong performance in the Walker environment. This is primarily attributed to the adoption of a new
clipped surrogate that iteratively resorts to off-policy data to progress during training. Generally,
our proposed methods learn more stably than all baselines by dequeuing the buffer to suppress the
instability caused by data distribution drift in most environments. Overall, HP3O+ excels HP3O
in most environments, with also variance reduction particularly in the latter training phase. As the
learning trajectories are always around the best trajectory from the buffer. Essentially, the empirical
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evidence supports our theoretical results in Theorem 2 and Theorem 5, which show that HP3O+
enables larger updates in the total variational distance of the policy, given the same number of changes
to the policy. Additional results are included in the Appendix, including Table 2 to showcase rewards
at or close to the converged stage.

Figure 2: Training curves (over 1M steps) on continuous control benchmarks. HP3O+ (black)
performs consistently across all tasks and is comparable to or outperforming other baseline methods.

(a) Normalized Standard Deviation among different methods for
various environments.

(b) Runtime for HalfCheetah Environment
among different methods

Figure 3: Comparison of Normalized Standard Deviation and Runtime for 1 million steps.
6.2 ABLATION STUDY

The experimental results in the previous section imply that algorithms based on the hybrid-policy
approach can outperform the conventional on-policy methods on challenging control tasks. In this
section, we further compare all policy optimization algorithms to SAC for variance reduction and run
time complexity. We also inspect the robustness of the algorithms against variations of trajectories.

Variance. Figure 3a shows the comparison of the relative standard deviation of the ultimate average
return (at 1M steps) for different algorithms. It suggests that, on average, HP3O+ achieves the lowest
relative standard deviation (which is the ratio of the standard deviation to the average reward over five
runs at the last step). This implies that hybrid-policy algorithms have more advantages in regularizing
the learning process to maintain stability compared to typical on-policy algorithms. Intuitively, as
the policy and environment change over time, the use of replay buffers helps mitigate this issue by
providing a more stationary training dataset. The buffer contains a mix of experiences collected under
different policies, instead of the only current policy from PPO, which helps in reducing the variance
in updates. SAC attains a relatively small standard deviation according to Figure 3a (also, on average,
the maximum reward reported in the Appendix). This is not surprising since the maximum entropy
principle can significantly help meaningful exploration to achieve the highest return. However, this
comes at the cost of runtime complexity.

Run time complexity. As shown in Figure 3b, the run time for all algorithms is presented (all
methods are implemented with the same hardware). Both GEPPO and SAC require much more
run time to explore and then converge, which may impede its applications to solving real-world
problems. P3O achieves the lowest run time complexity while performing worse than HP3O and
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HP3O+. However, our proposed approaches take approximately the same training time as PPO but
with higher sample efficiency, as shown in Figure 2. Thus, HP3O/HP3O+ are able to achieve a
desirable trade-off in practice between sample efficiency and computational time. These experiments
used a local machine with an NVIDIA RTX 4090. Additional results regarding wall-clock time for
diverse methods to reach a certain reward are included in Appendix A.13.

Robustness. We also compute the explained variance LaHuis et al. (2014) for all algorithms under
consideration for evaluating robustness. Please check the Appendix A.7 for more details about this
metric. Intuitively, it quantifies how good a model is to explain the variations in the data. Therefore,
the higher the explained variance of a model, the more the model is able to explain the variations in
trajectories. Essentially, the data in this work are trajectories produced by different policies, leading to
a data distribution drift. Therefore, explained variance can, to some extent, be viewed as an indicator
of how well an algorithm is robust against the data distribution drift. Figure 4 shows the explained
variances for HP3O and PPO in the HalfCheetah environment for five different runs with different
random seeds. HP3O has the highest explained variance over all runs suggesting that it is more robust
against the variations of trajectories during learning. While for PPO, its explained variance can reach
large negative values during training, which indicates the training instability when the trajectories
vary significantly.

Figure 4: Explained Variance for HalfCheetah for PPO and HP3O

6.3 LIMITATIONS

Though theoretical and empirical results have shown that the proposed HP3O outperforms the
popular baseline PPO over diverse control tasks, some limitations need to be discussed for potential
improvement in the future. First, HP3O/HP3O+ require more hyperparameter tuning for the trajectory
replay buffer, which can impact model performance compared to PPO. It has been acknowledged that
hyperparameter tuning is critical for reinforcement learning such that for the hardest benchmarks, the
already narrow basins of effective hyperparameters may become prohibitively small for our proposed
algorithms, leading to poor performance. Second, in sparse reward environments, dequeuing the
trajectory replay buffer can result in insufficient learning. Unlike the traditional replay buffer, which
stores all experiences, our design requires the buffer to discard old trajectories so that the potential
data distribution drift can be alleviated. This may cause a problem that good trajectories may only be
learned once. Thus, the tradeoff between data distribution drift and learning frequency for the buffer
needs to be investigated more in future work. Finally, there remains substantial room for performance
improvement for the proposed algorithms compared to SAC. Further work in algorithm design is
required to ensure HP3O/HP3O+ is on par with SAC but with low variance. The current ones can be
regarded as one of the first steps toward bridging the gap between on-policy and off-policy methods.

7 CONCLUSION AND BROADER IMPACTS

In this work, we presented a novel hybrid-policy reinforcement learning algorithm by incorporating a
replay buffer into the popular PPO algorithm. Specifically, we utilized random sampling to reuse
samples generated by the prior policies to improve the sample efficiency of PPO. We developed HP3O
and theoretically derived its policy improvement lower bound. Subsequently, we designed a new
advantage function in HP3O+ and presented a modified lower bound to provide theoretical guarantees.
We investigated the stationary point convergence for HP3O and used several continuous control
environments and baselines to showcase the superiority of the proposed algorithms. Additionally, we
focused on variance reduction while maintaining high reward returns, encouraging the community to
consider both high rewards and variance reduction. The theoretical claims of higher sample efficiency
and variance reduction were empirically supported.
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A APPENDIX

In this section, we present additional analysis and experimental results as a supplement to the main
contents. To conveniently refer to the theoretical results, we repeat the statements for all lemmas and
theorems.

A.1 ADDITIONAL THEORETICAL ANALYSIS

Lemma 4. (Lemma 6.1 in Kakade & Langford (2002)) For any policies π̂ and π, we have

J(π̂)− J(π) =
1

1− γ
Es∼dπ̂

[Ea∼π̂(·|s)[A
π(s, a)]] (7)

Lemma 4 signifies the cumulative return difference between two policies, π and π̂.
Lemma 5. Consider any two policies π̂ and π. Then the total variation distance between the state
visitation distributions dπ̂ and dπ is bounded by

δ(dπ, dπ̂) ≤ γ

1− γ
Es∼dπ̂ [δ(π, π̂)(s)], (8)

where δ(π, π̂)(s) is defined in Lemma 1.

The proof follows similarly from Achiam et al. (2017). Next we present the proof for Lemma 2.

Lemma 2: Consider a present policy πk, and any reference policy πr. We then have, for any future
policy π,

J(π)− J(πk) ≥
1

1− γ
E(s,a)∼dπr [

π(a|s)
πr(a|s)

Aπk(s, a)]−
2γCπ

πk

(1− γ)2
Es∼dπr [δ(π, πr)(s)], (9)

where Cπ
πk

and δ(π, πr)(s) are defined as in Lemma 1.

Proof. The proof is similar to the proof of Lemma 7 in Queeney et al. (2021). We start from the
equality in Lemma 4 by adding and subtracting the term

1

1− γ
Es∼dπr [Ea∼π(·|s)[A

πk(s, a)]] (10)
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With this, we obtain the following relationship:

J(π)− J(πk) =
1

1− γ
Es∼dπr [Ea∼π(·|s)[A

πk(s, a)]]

+
1

1− γ
(Es∼dπ [Ea∼π(·|s)[A

πk(s, a)]]− Es∼dπr [Ea∼π(·|s)[A
πk(s, a)]])

≥ 1

1− γ
Es∼dπr [Ea∼π(·|s)[A

πk(s, a)]]

− 1

1− γ
|Es∼dπ [Ea∼π(·|s)[A

πk(s, a)]]− Es∼dπr [Ea∼π(·|s)[A
πk(s, a)]]|

(11)

The last inequality follows from the Triangle inequality. Subsequently, we can bound the second term
of the last inequality using Hölder’s inequality:

1

1− γ
|Es∼dπ [Ea∼π(·|s)[A

πk(s, a)]]− Es∼dπr [Ea∼π(·|s)[A
πk(s, a)]]|

≤ 1

1− γ
∥dπ − dπr∥1∥Ea∼π(·|s)[A

πk(s, a)]∥∞,

(12)

where dπ and dπr both signify the state visitation distributions. In light of the definition of total
variation distance and Lemma 3, the following relationship can be obtained accordingly

∥dπ − dπr∥1 = 2δ(dπ, dπr ) ≤ 2γ

1− γ
Es∼dπr [δ(π, πr)(s)]. (13)

Also note that
∥Ea∼π(·|s)[A

πk(s, a)]∥∞ = max|Ea∼π(·|s)[A
πk(s, a)]| = Cπ

πk
. (14)

Hence, substituting Eq. 13 and Eq. 14 into Eq. 12 and combining Eq. 11 yields the following
inequality:

J(π)− J(πk) ≥
1

1− γ
Es∼dπr [Ea∼π(·|s)[A

πk(s, a)]]−
2γCπ

πk

(1− γ)2
Es∼dπr [δ(π, πr)(s)]. (15)

Finally, without loss of generality, we assume that the support of π is contained in the support of πr

for all states, which is true for common policy representations used in policy optimization. We can
rewrite the first term on the right hand side of the last inequality as

1

1− γ
Es∼dπr [Ea∼π(·|s)[A

πk(s, a)]] =
1

1− γ
E(s,a)∼dπr [

π(a|s)
πr(a|s)

Aπk(s, a)], (16)

which leads to the desirable results.

Theorem 1: Consider prior policies |B| randomly sampled from the replay buffer R with indices
i = 0, 1, ..., |B| − 1. For any distribution v = [v1, v2, ..., v|B|] over the |B| prior policies, and any
future policy π generated by HP3O in Algorithm 1, the following relationship holds true

J(π)− J(πk) ≥
1

1− γ
Ei∼v[E(s,a)∼dπi [

π(a|s)
πi(a|s)

Aπk(s, a)]]−
γCπ

πk
ϵ

(1− γ)2
, (17)

where Cπ
πk

is defined as in Lemma 1.

Proof. Based on the definition of total variation distance, we have that

Es∼dπk [δ(π, πk)(s)] = E[
1

2

∫
aA

|π(a|s)− πk(a|s)|da]. (18)

We still make the assumption that the support of π is contained in the support of πk for all states,
which is true for the common policy representations used in policy optimization. Then, by multiplying
and dividing by πk(a|s), we can observe that

Es∼dπk [δ(π, πk)(s)] = E[
1

2

∫
aA

πk(a|s)|
π(a|s)
πk(a|s)

− 1|da]

=
1

2
E(s,a)∼dπk [|

π(a|s)
πk(a|s)

− 1|] ≤ ϵ

2
.

(19)

The last inequality follows from the setup of PPO. With prior policies πi, i = 0, 1, 2, ..., |B| − 1, we
assume that the support of π is contained in the support of πi for all states, which is true for common
policy representations used in policy optimization. Based on Lemma 2, we can obtain

J(π)− J(πk) ≥
1

1− γ
E(s,a)∼dπi [

π(a|s)
πi(a|s)

Aπk(s, a)]−
2γCπ

πk

(1− γ)2
Es∼dπi [δ(π, πi)(s)]. (20)

Consider policy weights v = [v1, v2, ..., v|B|] over the policies in the minibatch B. Thus, for any
choice of distribution v, the convex combination determined by v of the |B| lower bounds given by
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the last inequality yields the lower bound

J(π)− J(πk) ≥
1

1− γ
Ei∼v[E(s,a)∼dπi [

π(a|s)
πi(a|s)

Aπk(s, a)]]

−
2γCπ

πk

(1− γ)2
Ei∼v[Es∼dπi [δ(π, πi)(s)]].

(21)

Combining Eq. 19 and Eq. 21, with some mathematical manipulation, results in the desirable
conclusion. Now we’re ready to prove Lemma 3.

Lemma 3: Consider a present policy πk, and any reference policy πr. We then have, for any future
policy π,

J(π)− J(πk) ≥
1

1− γ
E(s,a)∼dπr [

π(a|s)
πr(a|s)

Âπk(s, a)]

−
2γĈπ

πk

(1− γ)2
Es∼dπr [δ(π, πr)(s)]

− 2γCπk

(1− γ)2
Es∼dπr [δ(π, πr)(s)],

(22)

where Ĉπ
πk

= maxs∈S |Ea∼π(·|s)[Â
πk(s, a)]|, δ(π, πr)(s) is defined as in Lemma 1, Cπk =

maxs∈S |V π∗
k(s)− V πk(s)|.

Proof. Due to Lemma 1, we have

J(π)− J(πk) =
1

1− γ
Es∼dπ [Ea∼π(·|s)[A

πk(s, a)]]

=
1

1− γ
Es∼dπ [Ea∼π(·|s)[Q

πk(s, a)− V πk(s)]]

=
1

1− γ
Es∼dπ [Ea∼π(·|s)[Q

πk(s, a)− V π∗
k(s) + V π∗

k(s)− V πk(s)]].

(23)

Let Âπk(s, a) = Qπk(s, a)− V π∗
k(s) and Gπk(s) = V π∗

k(s)− V πk(s) such that

J(π)− J(πk) =
1

1− γ
Es∼dπ [Ea∼π(·|s)[Â

πk(s, a)]] +
1

1− γ
Es∼dπ [Ea∼π(·|s)[G

πk(s)]]. (24)

Define ∥Gπk(s)∥∞ = maxs∈S |V π∗
k(s)−V πk(s)| = Cπk . Follow similarly the proof from Lemma 2,

we can attain the relationship as follows:

J(π)− J(πk) ≥
1

1− γ
Es∼dπr [Ea∼π(·|s)[Â

πk(s, a)]] +
1

1− γ
Es∼dπr [Gπk(s)]

−
2γĈπ

πk

(1− γ)2
Es∼dπr [δ(π, πr)(s)]

− 2γCπk

(1− γ)2
Es∼dπr [δ(π, πr)(s)].

(25)

The fact that mins∈S |V π∗
k(s)− V πk(s)| = 0 retains the desirable result.

Theorem 2: Consider prior policies |B| randomly sampled from the replay buffer R with indices
i = 0, 1, ..., |B| − 1. For any distribution v = [v1, v2, ..., v|B|] over the |B| prior policies, and any
future policy π generated by HP3O+ in Algorithm 1, the following relationship holds true

J(π)− J(πk) ≥
1

1− γ
Ei∼v[E(s,a)∼dπi [

π(a|s)
πi(a|s)

Âπk(s, a)]]−
γĈπ

πk
ϵ

(1− γ)2
− γCπkϵ

(1− γ)2
, (26)

where Ĉπ
πk

and Cπk are defined as in Lemma 3.

Proof. Following the proof techniques in Theorem 1 and combining the conclusion from Lemma 3
obtains Eq. 26.
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A.2 RISK OF OVERFITTING?

In our approach, each set of sampled trajectories includes the current best action trajectory in the
buffer, but we use a uniform distribution to sample mini-batch data points from all the trajectories
rather than only focusing on the best one. Additionally, the number of sampled trajectories is a
tunable parameter that we adjust based on the specific environment. Therefore, we ensure that the
model is exposed to a diverse set of experiences, which also helps mitigate the risk of overfitting.
Another important point is that our trajectory buffer operates on a FIFO (FirstIn-First-Out) basis.
As newer trajectories are added to the buffer, the oldest ones are replaced. This buffer maintains a
dynamic structure where trajectories are continually updated to reflect the most recent learning and
also helps to reduce distribution drift. We expect that these newer trajectories are more likely to be
better-performing as they are generated from the most current learned policy. All these techniques
are implemented in our buffer and help to balance exploration with prioritizing higher-performing
trajectories while also reducing the risk of overfitting.

A.3 INCORPORATION OF THE WORST TRAJECTORIES

In our approach, we prioritize leveraging higher-performing trajectories to optimize the agent’s
learning efficiency and to accelerate convergence toward optimal policies. This focus allows the agent
to reinforce successful behaviors more effectively. However, we understand the concern regarding
forgetting catastrophic behaviors, which could potentially lead to the agent’s catastrophic behaviors.
In practice, the FIFO buffer and uniform sampling from the sampled trajectories make sure that
a diverse range of experiences, including suboptimal or catastrophic behaviors, are preserved to
some extent within the buffer. This diversity helps the agent to maintain a broad understanding
of the environment, including both successful and unsuccessful strategies. Additionally, while we
do not explicitly prioritize the worst trajectories, our approach does not entirely discard them. By
maintaining a diverse buffer, the agent is still exposed to these behaviors, which can serve as alerting
examples. This exposure helps the agent learn to avoid repeating such catastrophic actions without
the need to focus on the worst trajectories explicitly. We believe this balance allows the agent to focus
on learning from successful strategies while still retaining an understanding of less optimal behaviors,
reducing the risk of catastrophic forgetting.

A.4 SAMPLE EFFICIENCY ANALYSIS

In this section, we present the sample efficiency analysis for the proposed HP3O algorithm, compared
to the vanilla PPO algorithm, which remains the most popular on-policy scheme so far. Though
the analysis is conducted particularly for the comparison between PPO and HP3O, the techniques
apply extensively to other on-policy policy-gradient-based algorithms whenever they satisfy the
conservative policy iteration property Kakade & Langford (2002); Achiam et al. (2017) to have
the policy improvement lower bounds. In this study, we aim to show how the off-policy sample
reuse significantly affects the original sample efficiency PPO has. We will not directly show the
exact sample complexity of HP3O and the improvement on top of PPO. For instance, to arrive at an
ε-optimality for policy gradient-based algorithms, a few works Zhong & Zhang (2024); Zanette et al.
(2021); Dai et al. (2023); Sherman et al. (2023) have revealed the exact complexity with respect to ε,
but only for MDPs with linear function approximation. The exact sample complexity analysis for
the on-policy PPO algorithm remains extremely challenging and requires a substantial amount of
non-trivial effort. Thereby, in this paper, we disclose the impact of off-policy sample reuse on the
tradeoff between sample efficiency and learning stability.

To start with the comparison between PPO and HP3O, we denote by ϵH and ϵP the clipping parameters
for HP3O and PPO. Such a clipping parameter indicates the worst-case expected performance loss of
update at every time step. We next present a lemma that shows the relationship between ϵH and ϵP .

Lemma 6. Consider prior policies |B| randomly sampled from the replay buffer R with indices
i = 0, 1, ..., |B| − 1. For any distribution v = [v1, v2, ..., v|B|] over the |B| prior policies, both HP3O
and PPO have the same worst-case expected performance loss at every update when the clipping
parameters satisfy the following condition:

ϵH =
ϵP

Ei∼v[i+ 1]
. (27)
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Proof. Recall from PPO such that
2γCπ

πk

(1− γ)2
Es∼dπk [δ(π, πk)(s)] ≤

2γCπ
πk

(1− γ)2
ϵP
2
. (28)

For HP3O, its penalty term in the policy improvement lower bound in Theorem 1 can be upper
bounded by using the Triangle inequality. Therefore, we have the following relationship

2γCπ
πk

(1− γ)2
Ei∼v[Es∼dπi [δ(π, πi)(s)]]

≤
2γCπ

πk

(1− γ)2
Ei∼v

[ i∑
j=0

Es∼dπi [δ(πj+1, πj)(s)]

]
.

(29)

The last inequality holds if the prior policies are in a chronological order based on their histories.
In practice, we do not set such an order for them, but due to the FIFO strategy we have leveraged,
they can still be set in this for the sake of analysis. Since we still resort to the clipping mecha-
nism in HP3O, each policy update approximately bounds each expected total variation distance
Es∼dπi [δ(πj+1, πj)(s)] by ϵH

2 , which follows analogously from that in PPO. With this in hand, we
are now ale to further bound Eq. 29 in the following relationship

2γCπ
πk

(1− γ)2
Ei∼v[Es∼dπi [δ(π, πi)(s)]]

≤
2γCπ

πk

(1− γ)2
Ei∼v

[
ϵH
2
(i+ 1)

]
≤

2γCπ
πk

(1− γ)2
ϵH
2
Ei∼v[i+ 1]

(30)

Comparing the bounds in Eq. 28 and Eq. 30 yields the desirable result.

Lemma 6 technically shows us that if the two clipping parameters ϵH and ϵP satisfy the condition of
ϵH = ϵP

Ei∼v [i+1] , the worst-case expected performance loss at each update remains roughly the same.
This intuitively makes sense as HP3O leverages prior policies from the replay buffer to update the
policy model, which requires it to perform smaller updates. A benefit from this is to make policy
updates more frequently, thus schematically stabilizing policy learning. In what follows, we present
more analysis about this tradeoff.

To ease the analysis, we assume that the policies in the training batch B are randomly sampled with
uniform policy weights, i.e., vi = 1

|B| , for i = 0, 1, ..., |B| − 1, for collecting data to train the network
models. However, more advanced techniques such as Prioritized Experience Replay (PER) Schaul
et al. (2015) can be applied accordingly. In each episode, we also assume that for PPO, it requires
N = Mn samples for sufficiently training the critic and actor networks, where M is the number of
mini-batch and n is the batch size. In this setting, PPO makes one episodic update upon the current
policy πk by traversing N samples generated by πk. However, for HP3O, since there exist multiple
policies prior to πk, it is able to make M updates sourced from different prior policies per N samples
collected from B, as long as |B| ≤ M . Thus, we next show that HP3O is able to increase the change
in the total variational distance of the policy throughout training, without sacrificing stability, when it
is compared to PPO.

Theorem 3. Suppose that |B| = M and that the policies in the training batch B are randomly
sampled with uniform policy weights, i.e., vi = 1

|B| , for i = 0, 1, ..., |B| − 1. Then, HP3O has a
larger frequency of change in total variation distance of the policy throughout training by a factor of
2M
M+1 compared to PPO, while using the same number of samples for each update as PPO.

Proof. Pertaining to Lemma 6 and the fact that |B| = M , we have the following relationship:

ϵH =
ϵP

1
M

∑M−1
i=0 (i+ 1)

=
2ϵP

M + 1
. (31)

PPO makes one episodic policy update after N samples are collected, say from k to k + 1, which
yields a policy change of ϵP

2 in terms of the total variation distance. While for HP3O, it resorts to
data from prior policies to obtain N samples and makes M policy updates, as mentioned before. This
results in the overall policy change of

M
ϵH
2

=
2M

M + 1

ϵP
2
. (32)
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Thus, HP3O has a larger frequency of changes in the total variation distance of the policy throughout
training by a factor of 2M

M+1 compared to PPO, with the same number of samples.

By far, we have discussed the tradeoff between learning stability and sample size that biases toward
learning stability when maintaining the same sample size as in PPO. Alternatively, we can perceive
the problem from another perspective, in which HP3O needs to increase the sample size while
maintaining the same change in total variation distance throughout training. A formal result is
summarized as follows.

Theorem 4. Suppose that |B| = 2M − 1 and that the policies in the training batch B are randomly
sampled with uniform policy weights, i.e., vi = 1

|B| , for i = 0, 1, ..., |B| − 1. Thus, HP3O increases
the sample size used for each policy update by a factor of 2M−1

M compared to PPO, simultaneously
maintaining the same change in the total variation of distance of the policy throughout training as
PPO.

Proof. As |B| = 2M − 1, HP3O uses (2M − 1)n to calculate each policy update from the prior to
the new policy, compared to Mn samples used in PPO. Hence, HP3O increases the sample size used
for each policy update by a factor of 2M−1

M compared to PPO. Immediately, based on Lemma 6, we
can obtain

ϵH =
ϵP

1
2M−1

∑2M−2
i=0 (i+ 1)

=
ϵP
M

. (33)

We have shown in Theorem 3 that PPO makes one policy update with N samples collected, while
HP3O makes M policy updates with the same number of samples collected. We then have

MϵH
2

=
ϵP
2
. (34)

This implies that the overall change in total variation distance in HP3O is the same as in PPO.

One implication from Theorem 3 and 4 is that HP3O with uniform policy weights enhances the
tradeoff between learning stability and sample efficiency in the vanilla PPO when |B| is selected
between [M, 2M − 1]. This also motivates us to set the FIFO strategy as the selected training batch
B cannot deviate too far away from the current policy. Otherwise, the negative impact of distribution
drift could be extreme.

A.5 HP3O VS. HP3O+

In the last subsection, we have shown that HP3O enables more frequent changes in the total variational
distance of the policy throughout training, with the smaller updates. Though more changes in the total
variational distance of the policy may help improve the sample efficiency, but in order to address the
distribution drift, smaller updates are the resulting outcome, possibly slowing down the convergence.
Hence, introducing the best trajectory π∗ in HP3O+ assists in mitigating this issue. Since it can
increase the update, while maintaining the same number of changes as in HP3O. Such a behavior is
empirically shown to enhance the model performance. We summarize the larger update in the total
variational distance in a formal theoretical result as follows.

Theorem 5. Denote by DH
TV and DH+

TV the updates of total variational distance of the policies for
HP3O and HP3O+, respectively, at the time step k. Then we have DH

TV ≤ DH+
TV for all k.

Proof. In light of Theorem 1 and Theorem 2, we know that DH
TV =

γCπ
πk

ϵ

(1−γ)2 and DH+
TV =

γĈπ
πk

ϵ

(1−γ)2 +
γCπk ϵ
(1−γ)2 . We next show the the latter is bounded below by the former. As Aπk(s, a) = Âπk(s, a) +

Gπk(s), Âπk(s, a) = Qπk(s, a)− V π∗
k(s), and Gπk(s) = V π∗

k(s)− V πk(s), we have the following
relationship

Aπk(s, a) = Âπk(s, a) + V π∗
k(s)− V πk(s) (35)

Taking the expectation of the action a ∼ π(·|s) on both sides yields
Ea ∼π(·|s)[A

πk(s, a)] = Ea ∼π(·|s)[Â
πk(s, a)] + V π∗

k(s)− V πk(s), (36)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

which leads to
|Ea ∼π(·|s)[A

πk(s, a)]| = |Ea ∼π(·|s)[Â
πk(s, a)] + V π∗

k(s)− V πk(s)|
≤ |Ea ∼π(·|s)[Â

πk(s, a)]|+ |V π∗
k(s)− V πk(s)|.

(37)

This last inequality is due to the Triangle inequality. Taking the maximum operator of the state s ∼ S
on both sides results in the following:

maxs∼S |Ea ∼π(·|s)[A
πk(s, a)]| ≤ maxs∼S |Ea ∼π(·|s)[Â

πk(s, a)]|+ maxs∼S |V π∗
k(s)− V πk(s)|.

(38)
Multiplying both sides in the above inequality by γϵ

(1−γ)2 yields the desirable result.

A.6 TRAINING RESULTS FOR OTHER ENVIRONMENTS

The following plot in Figure 5a presents the training curves obtained by training both the baseline
algorithms and our policy. These results further support our claim in the main paper that our policy
reduces variance while maintaining a high reward at the end.

(a) Training performance of HP3O and PPO on the Cartpole environment
over 100k steps.

(b) Training performance of HP3O and PPO on the Humanoid environ-
ment over 10 million steps.

Figure 5: Comparison of HP3O and PPO training curves across different environments. (a) shows the
performance on Cartpole, while (b) shows the performance on Humanoid.

A.7 ADDITIONAL EXPERIMENTAL RESULTS

Definition of explained variance. The explained variance (EV) measures the proportion to which
a mathematical model accounts for the variation of a given data set, which can be mathematically
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defined in the following:

EV = 1− V ar(y − ŷ)

V ar(y)
, (39)

where y is the groundtruth and ŷ is the prediction. EV values typically vary from 0 to 1. In some
scenarios, the value may be a large negative number, which indicates a poor prediction of y. Explained
variance is a well-known metric in reinforcement learning, particularly for assessing the accuracy
of value function predictions. In our experiment, explained variance was used to evaluate how
well the value function predicts actual returns. The different runs correspond to separate training
instances with different random seeds. The explained variance score is a risk metric that measures
the dispersion of errors in a dataset. A score closer to 1.0 is better, as it indicates smaller squares of
standard deviations of errors.

A.8 EXPLAINED VARIANCE FOR OTHER ENVIRONMENTS

Explained variance is a well-known metric in reinforcement learning, particularly for assessing the
accuracy of value function predictions. In our experiment, explained variance was used to evaluate
how well the value function predicts actual returns. The different runs correspond to separate training
instances with different random seeds.

(a) Hopper with HP3O (b) Hopper with PPO

Figure 6: Explained Variance for Hopper

(a) Walker with HP3O (b) Walker with PPO

Figure 7: Explained Variance for Walker

A.9 SAC TRAINING BENCHMARKS

The following plots showcase the benchmark training results obtained by using the SAC policy. In
some environments, SAC shows a relatively large variance. A notable disadvantage of SAC is that it
only works with continuous action spaces.
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(a) Swimmer with HP3O (b) Swimmer with PPO

Figure 8: Explained Variance for Swimmer

(a) Cartpole with HP3O (b) Cartpole with PPO

Figure 9: Explained Variance for Cartpole

A.10 EXPERIMENTAL CONFIGURATION

Experiments were performed on a local machine with an Intel Core i7-14700 CPU, 128 GB of RAM,
and NVIDIA RTX 4090 GPU. We provide detailed information on our algorithms’ hyperparameters
for all environments in our GitHub repository, which will be released once the paper is published.

A.11 DATA STORAGE FOR RL TRAINING

• Trajectory Buffer: Stores complete trajectories τ as sequences of (st, at, rt, st+1).
– Data Types: Arrays of states, actions, rewards, and next states.
– Dimensions:

* States st: Typically Rn where n is the dimension of the state space.
* Actions at: Depends on the action space, usually Rm where m is the dimension of

the action space.
* Rewards rt: Scalar values.
* Next states st+1: Same as states st.

A.12 CONVERGED REWARD

In this subsection, we present the converged reward at the last time step. In some environments,
the training curves do not fully converge, which may make it challenging to assess the ultimate
performance. However, for consistency across all algorithms, we maintained the same number of
training time steps for each experiment. This allows for a fair comparison of sample efficiency across
different methods, even if the algorithms did not always fully converge within the given time frame.
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(a) LunarLander with HP3O (b) LunarLander with PPO

Figure 10: Explained Variance for LunarLander

Additionally, in some environments, we do present converged training curves, demonstrating the
capabilities of the algorithms. In the reinforcement learning community, it is a common practice to
show learning curves at a fixed number of steps for comparative analysis, even if full convergence is
not always achieved. Notably, papers on SAC Haarnoja et al. (2018), PPO Schulman et al. (2017),
GEPPO Queeney et al. (2021), and Off-Policy PPO Meng et al. (2023) follow similar practices, with
many of the environments presented in these works employing non-converged curves to provide
valuable insights into training dynamics and sample efficiency. Table 2 shows the detailed converged
reward performance of all different RL algorithms over different continuous tasks. In order to ensure
a fair comparison between GEPPO and our method, we first analyzed the performance differences
between the PPO baselines in our implementation vs. in the GEPPO repository. These discrepancies
were primarily due to variations in implementation details (e.g., leveraging TensorFlow packages,
early version of Mujoco environment), which significantly impacted the baseline performance. To
address the discrepancies, we normalized the PPO baseline results to match our implementation. As a
result, both baselines produced comparable outcomes. We then applied the same normalization factor
to the GEPPO results, repeating this procedure for each environment to ensure fair and consistent
comparisons across all settings.

Table 2: Summary of mean and standard deviation of rewards for each policy across diverse environ-
ments (in the form Mean ± Std) at or close to the converged stage. The bold one represents the best
reward performance.

Environment A2C GEPPO HP3O HP3O+ OffPolicy P3O PPO
CartPole 282.47± 170.87 21.76± 2.54 498.25± 2.51 500.00± 0.00 400.31± 72.60 295.38± 113.44 483.59± 36.70
Halfcheetah 334.16± 302.14 2156.31± 1024.06 3523.20± 565.39 3967.47± 244.80 738.11± 274.89 1251.17± 517.84 2276.87± 902.20
Hopper 120.31± 48.29 976.33± 68.36 988.67± 16.53 1891.35± 79.47 961.64± 76.69 1107.49± 281.71 946.90± 64.86
InvertedPendulum 71.26± 76.20 463.02± 0.00 956.66± 36.20 1000.00± 0.00 11.24± 3.22 810.77± 46.26 463.02± 445.28
LunarLander −69.13± 105.52 136.07± 12.33 225.91± 10.97 146.63± 7.10 114.68± 106.51 −624.72± 292.51 130.58± 16.53
Swimmer 12.99± 6.25 133.83± 6.69 340.00± 4.18 343.40± 1.41 157.73± 107.07 32.75± 14.32 131.98± 38.76
Walker 134.05± 51.54 1140.31± 389.75 1934.91± 152.69 1895.29± 98.74 2093.24± 370.08 1777.91± 465.01 1150.36± 97.18

A.13 COMPUTATIONAL EFFICIENCY

To probe particularly the computational efficiency of diverse algorithms presented in this study, we
compare them in the wall-clock time spent to reach a certain reward in the HalfCheetah environment.
Due to the time limitation, we are unable to obtain results for all other environments, while including
them in the final version. Such an investigation offers us useful insights about which methods are more
practically feasible and deployable given the limited real-time budget. Figure 12 shows the specific
performance of wall-clock time cost for different approaches reaching the rewards of 1100 and 2100,
respectively. One immediate observation from the results is that GEPPO requires significantly more
time to converge compared to all other schemes. For a couple of algorithms, such as A2C and
OffPolicy, the training progresses are pretty slow, eventually failing to achieve rewards of 1100 and
2100 in the HalfCheetah environment. Another implication of interest from the results is that at
the beginning, PPO may progress faster, compared to both HP3O and HP3O+. However, due to its
on-policy behavior, the sample inefficiency issue still affects the overall training progress. Different
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(a) LunarLander (b) HalfCheetah

(c) Hopper (d) InvertedPendulum

(e) Walker (f) Swimmer

(g) Humanoid

Figure 11: Training curves for SAC across various environments. The solid curves indicate the mean,
while the shaded areas represent the standard deviation over the five runs.

from that, both HP3O and HP3O+ make consistent progress throughout the training process and take
minimal time to achieve certain rewards. Between them, HP3O+ has slightly better performance,
which empirically validates our conclusion from Theorem 5. The finding also complies with that in
Figure 3b.
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(a) Time to reach the reward of 1100 for HalfCheetah (b) Time to reach the reward of 2100 for HalfCheetah

Figure 12: Time taken by algorithms to reach specific reward thresholds in the HalfCheetah environ-
ment.

A.14 IMPACT OF BUFFER SIZE AND MEMORY USAGE

In this subsection, we also discuss the impact of the buffer size on the model performance qualitatively.
The other two aspects included here are the discussion on the sampling strategy and the trade-off in
sparse reward settings.

• Large Trajectory Buffer Size: A larger trajectory buffer size allows us to store a greater
number of diverse trajectories. This diversity can enhance generalization and reduce over-
fitting, as the agent learns from a broad range of experiences. However, in sparse reward
settings, maintaining a large trajectory buffer may mean that the inclusion of outdated or
less relevant trajectories could introduce instability and slow down learning, as the agent
may be exposed to experiences that no longer align with its current policy.

• Small Trajectory Buffer Size: A smaller trajectory buffer retains fewer trajectories, which
typically results in the agent learning from more recent experiences that are closely aligned
with the current policy. This can improve stability, as updates are based on recent, relevant
data. However, a smaller buffer can reduce the diversity of sampled experiences, leading to
an increased risk of overfitting and limiting the agent’s ability to effectively explore different
parts of the environment.

• Sampling Strategy: Our sampling strategy also plays a critical role in managing the trade-
off between stability and performance. By ensuring that the best return trajectory is always
included in the sampled trajectories, we provide a strong guiding signal that improves policy
performance. The sample rate, where we evenly sample from each selected trajectory,
helps in maintaining a balance between exploration and exploitation, as well as in utilizing
high-quality trajectories effectively.

• Trade-off in Sparse Reward Settings: In sparse reward environments, the need to maintain
high-quality trajectories becomes even more crucial. A large trajectory buffer can help
capture rare, valuable experiences, but the risk of dequeuing these valuable trajectories before
they can contribute meaningfully to learning is higher. Ensuring that the best trajectory is
always sampled helps mitigate this issue, but the buffer size still influences how effectively
these rare rewards are retained and leveraged.

Regarding memory consumption, the total memory usage depends on the following:

1. Number of Trajectories in the Buffer (Buffer Size): We use a fixed-size replay buffer,
which holds N trajectories.

2. Average Length of Trajectories (T ): Since trajectories have varying lengths, the memory
usage will depend on the average trajectory length.

3. Dimensionality of State and Action Spaces: Let ds be the dimension of the state, and
da be the dimension of the action. Each step in a trajectory stores both state and action
information.

4. Data type size: Denote by n the specific data type size.
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The memory consumption (M ) can be roughly estimated as:
M = NTn(ds + da)

For example, if N = 1000 trajectories are stored, each with an average length of 200 steps, and
assuming ds = 17, da = 6, and using 32-bit floats (4 bytes), the memory requirement would be:

M = 1000× 200× (17 + 6)× 4 bytes = 18, 400, 000 bytes ≈ 18.4 MB
This calculation provides an estimate, but the actual memory usage may vary depending on the
environment and the specific implementation of the replay buffer.

A.15 EVALUATION RESULTS

(a) Evaluation plot for the HalfCheetah environment. (b) Evaluation plot for the Hopper environment.

(c) Evaluation plot for the Walker environment.

Figure 13: Evaluation plots for the HalfCheetah, Hopper, and Walker environments during the
evaluation stage every 5000 steps. Each experiment includes five different runs with various random
seeds. The solid curves indicate the mean, while the shaded areas represent the standard deviation
over the five runs.

The evaluation results align with our training expectations. Overall, our presented models, HP3O
and HP3O+, consistently outperform the baseline models across all environments, achieving higher
rewards while maintaining relatively low variance. The PPO baseline performs well initially but
tends to be less sample efficient and has relatively higher variance, whereas A2C struggles to reach
comparable performance.

The results clearly demonstrate that our presented models, HP3O and HP3O+, are better equipped for
these environments. This also verifies our claim from the training analysis. Both HP3O and HP3O+
combine improved sample efficiency and reduced variance, leading to more stable learning outcomes
and higher cumulative rewards. These advantages enable our models to not only outperform the
baselines but also maintain robustness and efficiency across diverse environments. Due to the time
limitation, we are unable to obtain results for other environments with other methods, and will include
additional results in the final version.
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