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ABSTRACT

An essential component of event reconstruction in particle physics experiments is
identifying the trajectory of charged particles in the detector. Traditional methods
for track finding are often complex, and tailored to specific detectors and input
geometries, limiting their adaptability to new detector designs and optimization
processes. To overcome these limitations, we present a novel, end-to-end track
finding algorithm that is detector-agnostic and can take into account multiple in-
put geometric types. To achieve this, our approach unifies inputs from multiple
sub-detectors and detector types into a single geometric algebra representation,
simplifying data handling compared to traditional methods. Then, we leverage an
equivariant graph neural network, GATr, to perform track finding across all data
from an event simultaneously. We validate the effectiveness of our pipeline on
various detector concepts with different technologies for the FCC-ee at CERN,
specifically the IDEA and CLD detectors. This work generalizes track finding
across diverse types of input geometric data and tracking technologies, facilitat-
ing the development of innovative detector concepts, accelerating detector devel-
opment cycles, and enabling comprehensive detector optimization.

1 INTRODUCTION

The Future Circular Collider is one of the proposed future colliders that could follow from the Large
Hadron Collider (LHC) at CERN. In the first stage, FCC-ee, an electron and a positron beam are
accelerated to nearly the speed of light to collide in multiple interaction points. These collisions gen-
erate sprays of outgoing particles. Sophisticated detector systems, comprising hundreds of millions
of sensors are utilized to measure information about these particles. One of the main challenges is
to identify and reconstruct the 3D trajectory and kinematic properties of a charged particles prop-
agating inside the detector’s magnetic field (see Figure 1), this is referred to as tracking. Classic
approaches solve this problem with combinatorial optimization methods such as Kalman filters (Ai,
2019; Bertacchi et al., 2020; Amrouche et al., 2020). However, these methods are detector depen-
dent, and have a long development cycle, reducing their adaptability to new detector concepts. Novel
approaches to tracking are needed to maximize the potential of future detectors.

Tracking is performed in two stages (Frühwirth & Strandlie, 2021), first track finding and then track
fitting. Track finding is essentially an object instantiation task, which requires to identify groups of
hits that form a track. Where the hits are the collection of measurements resulting from the particles
interacting with the detector. Hits are usually positions, but they can be more complex geometries,
such as shapes or directions. Track finding is a challenging problem: tracks can have a different
geometries and varying number of hits (10-100’s), a track can have missing hits in the trajectory,
they can have hits in one or multiple sub-detectors, or an in-flight decay of a particle can produce an
abrupt change in direction (kinked tracks) or disappear.

Track finding has been approached in multiple ways. Global methods cluster hits by transforming
the coordinates to a feature space in which relevant patterns are easier to detect (Brondolin et al.,
2020). Another approach is seeding and track following, usually implemented with a Combinatorial
Kalman Filter (Braun & Braun, 2019). This approach evaluates combinations of hits and iteratively
builds tracks (Ai, 2019; Cornelissen et al., 2008). However, it is complex due to the large combi-
natorics, and it requires a detailed description of the geometry and materials of the experiment. In
addition, when dealing with various types of input geometric data in each sub-detector, some works
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perform track finding for each sub-detector and then combine the track sections (Bertacchi et al.,
2020; Cornelissen et al., 2008). For example, the Belle II experiment has two tracking detectors, and
its track finding approach is composed of eight different algorithms including multiple algorithms
for each tracking detector and for the combination (Bertacchi et al., 2020). Overall, these algorithms
are detector dependent and have long development cycle.

Currently, there are new collider proposals with novel developments in detector technologies. For
example, for the FCC-ee, there are several detector concepts under investigation (Abada A, 2019;
Bacchetta et al., 2019; Bedeschi, 2021). Each different tracking component can result in multiple
input geometric types, depending on the measurement. As these new detector concepts are envi-
sioned, it is important to have adaptable tracking pipelines with fast turnaround that can cope with
different sub-detector concepts, geometric input data, variations and optimizations thereof. Figure 1
shows two of the detectors which produce different track representations requiring usually different
algorithms.

Novel Graph Neural Network (GNN) based methods have been recently shown to perform com-
petitively to classic pattern recognition approaches for a generic silicon detector while remaining
scalable and not depending on the geometry implementation of the detector (Ju et al., 2021; Am-
rouche et al., 2020). However, so far they have only been applied to silicon tracking systems, which
have pointcloud-like inputs, and Ju et al. (2021) also introduce pipelines with multiple preprocessing
steps.

This work presents the detector agnostic Geometric Graph Track Finding (GGTF) method. This
method is a generalized geometric track finding approach that:

• Can cope with multiple sub-detectors with different input geometries from multiple track-
ing technologies

• Does not require the geometry and materials specifications of the detector

• Does not rely on an analytical parametrization of the trajectories.

Specifically, our end-to-end pipeline considers the hits from all tracking components and outputs
a set of tracks. A critical new component is a geometric algebra representation of the data that
which allows multiple geometric types and a GNN, GATr (Brehmer et al., 2024), that exploits the
symmetries of the detector through equivariance. The performance of the algorithm is assessed
using two of the FCC-ee baseline detector concepts, the IDEA detector (Abada A, 2019; Bedeschi,
2021) and the CLD detector (Bacchetta et al., 2019).

2 RELATED WORK

Legacy tracking approaches Two main approaches are employed in track finding algorithms:
coordinate transformation (global methods), and seeding and track following approaches. The sim-
pler example of the first set, coordinate transformation, is conformal tracking. Conformal tracking
(Hansroul et al., 1988) is a circle fitting method that transforms circles in the plane passing through
the origin into straight lines. More complex transformations are the Hough transform (Duda & Hart,
1972), which finds clusters of points that lie close to a parametric curve reducing tracking to finding
intersection points, and the Retina algorithm (Ristori, 2000). However this algorithms tend not to
reconstruct more complex tracks including: tracks displaced from the vertex or kinked tracks. For
this reason, seeding and track following is the more common approach to track finding. Conformal
tracking can be improved using this type of approach. Brondolin et al. (2020) use the cellular au-
tomaton (CA) algorithm to take these deviations from the circular path, such as those due to multiple
scattering or displaced vertices into account. The CA algorithm uses a seeding procedure followed
by cell extrapolation. In other approaches, the seeding algorithm iteratively finds triplets of hits that
are likely to belong to the same track. The track candidates are then built from the seeds using a
Combinatorial Kalman Filter (Braun & Braun, 2019). These types of approaches give high accu-
racy but are computationally demanding. Some of these algorithms have complex implementations
as they use the geometry to calculate deviations from the expected path due to material interactions.
This requires the algorithm to interact with the geometry of the detector for every step which can be
costly (Ai et al., 2022; Ai, 2019).
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Figure 1: Top left: Simulated collision event showing the hits (in white) in the tracker of the IDEA
detector. In the drift chamber volume each hit is composed of two position coordinates due to
the ambiguity in the measurement (more details are given in Section 4). Top right: front view of
reconstructed hits. The circular shrinking pattern on the left corresponds to a low energy particle
curling inside the detector while losing energy. The straight tracks correspond to higher energy
particles. Bottom left: reconstructed hits in the CLD detector of the same event, the vertex-detector
is shown in black, the inner tracker layers are shown in blue and the outer tracker disks are shown in
grey. Bottom right: front view of the hits in the CLD detector.

An extensive review of classic pattern recognition algorithms is out of the scope of this paper, we
refer the reader to (Frühwirth & Strandlie, 2021) for an in depth review. However, it is worth noting
that track finding in real experiments, such as the Belle II (Bertacchi et al., 2020) applies a mix of
these algorithms to obtain the best tracking performance.

ML-based tracking Track finding can be posed as an object detection problem. Multiple ap-
proaches exist for object detection for point-cloud datasets, some focus on regression of bounding
boxes Yang et al. (2019); Hou et al. (2019); Wang & Solomon (2021), others find instance queries
using a voxelized representations of the point-cloud Kolodiazhnyi et al. (2024). However, these ap-
proaches are not directly applicable to track finding as the bounding boxes are hard to define due
to the geometry of the tracks, and the voxel representation would merge multiple tracks. For these
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reasons, the ML-based tracking approaches have focused on the tasks of edge prediction and dis-
covery of connected components as a second step Denby (1988); Stimpfl-Abele & Garrido (1991);
Ju et al. (2021); Farrell et al. (2018). These methods suffer from the costly post-processing step of
finding connected components in a graph. Earlier works also considered Recurrent Neural Networks
to perform a binary hit classification graph model that works on a subset of the event to extract tracks
iteratively. More recently, Lieret & DeZoort (2024) use a GNN based approach with a contrastive
learning loss to create a separable embedding space where they can perform clustering. This method
improves the performance over the connected components baseline, and is similar to some object
detection approaches based on similarity metrics Wang et al. (2018; 2019).

GNN based approaches (Farrell et al., 2018; Ju et al., 2021; Lieret & DeZoort, 2024) have focused
on the dataset proposed in (Amrouche et al., 2020) which considers pixel and strips tracking com-
ponents. One of our key contribution is to generalize the method of track finding using GNNs to
more complex tracking detectors.

3 PRELIMINARIES

Problem statement An event is a collection of measurements in a detector. The detector registers
the signals deposited by the interaction of particles with its sensitive components, referred to as
hits. The role of a tracking algorithm is to identify sets of hits produced by single particles and to
derive information on the particles trajectory based on those. For a set of hits in a given event, X ,
composed of hits from different tracking components X = {Xv, Xi, Xo, ...}, (vertex, inner tracker,
outer tracker, endcap inner tracker,...) we want to obtain a set of tracks that approximates the target
set of charged particles. The geometry of the detector is cylindrical, with a magnetic field along the
z direction. We define the (x, y) as the transverse plane , and the z as the beam direction. Figure
1 shows an example set of hits for different detectors. In this work, this is framed as an object
instantiation problem.

Trajectories In a detector with a homogeneous magnetic field, the trajectory of a particle forms a
helix, with varying curvature depending on its momentum. Particles with higher momentum result
in an arc, while lower momentum particles can curl inside the detector. As they lose energy, the
curvature of the helix increases, generating the shrinking displaced circles observed in Figure 1 top.

Representations The inputs from the different tracking detectors, as well as the geometries of
the tracks, are detector dependent. For a silicon detector, each hit h = (x, s) consist of a set of
3D coordinates x ∈ R3 and a scalar s corresponding to the subdetector index. For other detector
technologies, other information might be available. For example in a drift chamber, a gaseous
detector filled with wires which register ionization signals, each hit leads to two sets of coordinates,
(xleft,xright), due to inherent left-right ambiguity in the measurement. This richer data structure,
which steps away from point-like track representations, make the application of classical approaches
complex.

In addition, tracks might have very different geometries in different detectors. For a silicon detector
like CLD a particle will leave around 10-15 hits per track (Bacchetta et al., 2019), while for a
drift chamber each particle can generate O(100) hits. Not only the number of hits are different, but
also the presented geometries. A drift chamber like detector allows to capture particles of very low
energy looping through the detector due to the magnetic field, as can be seen in Figure 1 left. Lower
momentum particles have smaller curvature radius leading to spiral trajectories, which we will refer
to as curlers. These curlers represent a complex reconstruction tasks for classical algorithms, which
usually focus on the high momentum regime (higher curvature radius tracks).

4 GEOMETRIC-BASED GENERALIZED TRACK FINDING

Our main contribution is the GGTF pipeline, which transitions from the hits of the different tracking
detectors to a set of tracks. Our pipeline uses a novel geometric GNN, the Geometric Algebra
Transformer (GATr), (Brehmer et al., 2024) which represents the inputs in a projective geometric
algebra respecting equivariance, and the object condensation loss (Kieseler, 2020) to cluster hits
belonging to the same object close in an embedding space, as in (Ju et al., 2021). Unlike (Ju et al.,
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Figure 2: Overview of the GGTF end-to-end approach for track finding. The raw hits are repre-
sented as multivectors in the geometric algebra. The multivectors are transformed using the GATr.
The output of the network is a coordinate in 3d space and a scalar, β, obtained from the output
multivector by extracting the point and scalar components. Each ground truth track (object) should
result in a high β node or condensation point in the embedding space, pictured filled in red. The
outputs of the network are used by the object condensation loss to determine attractive and repul-
sive potentials between nodes to further allow a separable output embedding space as described in
Section 4. Finally a clustering step determines the track candidates by forming subsets of hits.

2021; Lieret & DeZoort, 2024), our architecture does not require edge filtering which reduces the
memory constraints. Also, our pipeline allows for more types of geometric inputs, unlocking this
new approach for more tracking detectors such as the drift chamber.

Representation of hits in the graph As an initial step, the set of hits for each event is converted
into a graph. However, unlike traditional approaches, the GATr architecture allows to represent
the raw hits as different geometric objects and transformations in the projective geometric algebra
G3,0,1. The elements of the algebra are 16-dimensional multivectors, these have direction, sign and
can be linearly combined (Brehmer et al., 2024). This method allows to have as an input planes,
lines, point or scalars. For example, we choose to represent the hits from the vertex detector as
points (trivectors) and the hits from the drift chamber as vectors. This vector goes from the left to
the right hit coordinates, therefore accounting for the ambiguity in the measurement.

Geometric Algebra Transformer The hits from the different systems are then unified in the mul-
tivector format, which represents the different geometrical objects in 16 dimensions. Then, we use
the GATr architecture as shown in Figure 2. It consist of multiple transformer blocks. Each block
has a LayerNorm, an equivariant multivector self-attention layer, a second LayerNorm, an equiv-
ariant multivector MLP with geometric bilinear interactions, and another residual connection. This
architecture is E(3) equivariant. The E(3)-equivariant linear layers map multivectors using grade
projections and multiplation with a homogenous basis vector. The geometric bilinears allow to build
more expressive networks by allowing grade mixing. The network outputs multivectors which are
used by the object condensation loss, defined below.

Loss function Modern approaches to reconstruct multiple objects focus on predicting a bounding
box per object as an output (Wang & Solomon, 2021; Girshick, 2015). However, due to the helical
trajectory of the tracks it would be hard to parameterize these boxes. On the other hand, the object
condensation approach for multi-object detection (Kieseler, 2020) allows to reconstruct an unknown
number of objects through a dedicated loss function without the use of bounding boxes. The intuition
behind this approach is as follows: the loss function requires the output of hits belonging to the same
track to be close in a low dimensional embedding space and those belonging to different tracks to
be far away. In this way, in the embedding space the tracks are easily separable.

The object condensation loss, L, is composed of two terms: a potential loss term LV to drive the
position of the coordinates in the embedding space, and Lβ which is used to avoid a minimum of
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LV and will be described below. First, in order to define these losses we need to define the attractive
and repulsive potentials. The force affecting every node, j, belonging to an object k is

qj▽Vk(xj) = qj▽
N∑
i=1

MikVik(xi, qi) (1)

qj is a charge per node and xj are the coordinates of the node on the output embedding space. The
mask Mik is 1 if i belongs to k and 0 otherwise. Therefore, the network is trained to predict a scalar
0 < βi < 1 and a coordinate x per node. The scalar is used to define the charge qj with an increasing
gradient:

qi = arctan2βi + qmin, (2)
qmin represents the minimum charge and avoids the minimum qi = 0. In order to avoid calculating
N matrices to calculate the potential, the potential affecting nodes belonging to an object is approx-
imated by the potential of the node with the highest charge in the object, α. For each track/object k,
the attractive loss is defined as:

Lattractive,k =
1

Nk

N∑
j=1

qj(MjkV̌k(xj), (3)

where Nk is the number of hits that belong the object. We define the repulsive loss per object as the
sum of the repulsive potentials, V̂ , of all hits that do not belong to the object:

Lrepulsive,k =

N∑
j=1

qj(1−Mjk)V̂k(xj), (4)

unlike the attractive loss, it is not divided by the total number of contributing hits as this results in
more separable embedding spaces. We refer to Appendix A.1.1 for a comparison of different loss
definitions, such as the hit-based definition in Kieseler (2020). Therefore the loss corresponding to
all tracks can be written as follows

LV =

K∑
k=1

(Lattractive,k + Lrepulsive,k). (5)

Then, Lβ is defined to enforce one condensation point per track (left side):

Lβ =
1

K

∑
k

(1− βαk) +
1

NB

N∑
i

niβi (6)

it also minimizes the βi component for noise hits (ni = 1), where NB are the number of hits that
are not assigned to a reconstructable particle. The full loss function is L = LV + Lβ .

Starting from the output multivectors of the GATr network, we define the coordinates of each node as
the point component extracted from the multivector and the β for each node as the scalar component.
This is represented on the right side of Figure 2.

Final track reconstruction During inference, the extracted point component of each multivector,
the output embedding is clustered using the HDBSCAN clustering algorithm (McInnes et al., 2017),
as this algorithm is able to reconstructs clusters of different densities. We refer to Section 5.1 for
a comparison of different clustering algorithms. Finally, the hits inside each output cluster define a
reconstructed track as shown in Figure 2 right.

5 EXPERIMENTS

Metrics In order to measure the performance of the various algorithms, each reconstructed track
is matched to a ground truth particle to which it shares the largest number of hits.

• The track hit purity is the ratio of the number of hits in the track that belong to the MC
particle and the total number of hits of the reconstructed track.
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• The track hit efficiency is the ratio of the number of hits in the track that belong to the MC
particle and the total number of hits this particle left in the detector.

The tracking efficiency is the probability to reconstruct a track. It can be defined in multiple ways,
we will consider the following variants:

1. The percentage of reconstructable charged particles that lead to a reconstructed track with
track hit purity greater than 75%, as in Bacchetta et al. (2019) .

2. The percentage of reconstructable charged particles with both ratios, the track hit purity and
the track hit efficiency, above 50%, as defined in the accuracy tracking challenge Amrouche
et al. (2020). Tracks are further separated in four categories. Good: both ratios above 50%,
reconstructed in this definition. Split: track hit efficiency below 50%, track hit purity above
50%, so only a fraction of the track is reconstructed. Multiple: track hit efficiency above
50%, but track hit purity below 50%, typically due to the aggregation of multiple particles.
Bad: both below 50%.

3. For the CLD detector as there are only 10-15 hits per track, we consider the percentage of
reconstructable charged particles that match with a reconstructed track with at least four
hits (the minimum number of hits for track fitting, the second tracking step).

We evaluate the performance of our algorithm by showing the efficiency vs particle proximity and
track displacement. Particle proximity is the smallest angular distance, ∆MC , between the Monte
Carlo particle associated to the track and any other MC particle. The angular distance between
two particles can be defined as a function of the azimuthal angle ϕ and the pseudorapidity η as
∆MC =

√
∆ϕ2 +∆η2. Reconstruction of displaced tracks is critical for the identification of

longed lived particles. These tracks are originated from a secondary vertex rather than from the
primary interaction point e.g b and d mesons which can travel a measurable distance before de-
caying. The displacement of a track can be measured looking at the production vertex radius, i.e.
R =

√
x2 + y2.

5.1 CLD DETECTOR

We start the demonstration of the GGTF pipeline and performance with the CLD detector. This
detector is an all-silicon tracker, therefore an easier case scenario as all hits are of the same type,
and can be compared to a heuristic based algorithm: the conformal tracking (Brondolin et al., 2020;
Bacchetta et al., 2019). The input are the hits left by the particles in the different subdetectors:
vertex, inner tracker and outer tracker. We generate a training dataset with 320k events resulting
from a e+e− → Z → qq̄, q = u, d decay, at a center of mass energy of 91.2 GeV/c; a validation
dataset with 10k events; and a regular evaluation set with 10k events for each detector concept. The
experiment, dataset details, and different cuts applied to be comparable to the baseline are described
in detail in Appendix A.1.1.

In the top left and center Figure 3 we show the track hit purity and track hit efficiency respectively.
Conformal tracking has a higher track hit purity but captures up to 40% less hits than GGTF in
the low pT regime. This shows in the different efficiency definitions. Using the definition based
only on purity, definition 1, the tracking efficiency is slightly lower than the baseline for low pT ,
shown in bottom left of Figure 3. If we consider the second definition, based on track hit purity
and efficiency, GGTF has an overall higher tracking efficiency, shown in bottom center of Figure
3. The discontinuity observed at 700 MeV can be explained by the fact that this is the minimal
transverse momentum needed to reach the outside of the tracker, therefore this threshold set the
limit for curlers.

We use the tracking efficiency definition 3 to study the performance on displaced tracks and particle
proximity. This definition allows to compare both algorithms on equal grounds as it uses a loser
definition of reconstructed track. GGTF outperforms the baseline for displaced tracks reconstruc-
tion, as shown in the top right of Figure 3. This is due to the conformal tracking algorithm assuming
that all tracks originate from a common point. Therefore, these displaced tracks do not align with
straight lines in the conformal plane, which leads to failure of the conformal tracking algorithm. The
percentage of fake tracks is very similar for both algorithms: 4.8% for GGTF and 5.2% for confor-
mal tracking. Since the track fitting stage is not performed, the distribution per pT is not available.
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Figure 3: Results for the CLD detector. Top left: track hit purity as a function of pT . Top center:
track hit efficiency as a function of pT . Top right: tracking efficiency as a function of the production
vertex radius (def. 3). Bottom left: tracking efficiency (def. 1) as a function of pT . Bottom center:
tracking efficiency (def. 2) as a function of pT . Bottom right: tracking efficiency as a function of
particle proximity.

Finally, the bottom right of Figure 3 shows the efficiency with the most inclusive definition 3 as a
function of particle proximity. Overall, this follows the expected trend, if the closest track is further,
it is easier to detect the tracks and GGTF improves the performance for really close tracks over the
baseline.

We compare the performance of different clustering algorithms (HDBSCAN (McInnes et al., 2017),
DBSCAN (Ester et al., 1996), beta-based object condensation (OC) (Kieseler, 2020)) in Figure 6.
HDBSCAN has similar performance to OC but is chosen for our pipeline due to its lower execution
time. DBSCAN has lower performance, as expected, as it does not consider clusters of varying
densities.

Figure 5 shows the classifications of tracks for reconstructable particles as described in Section 5.
The conformal tracking approach presents more split tracks while the GGTF can reconstruct a higher
percentage of ’full’ tracks.

5.2 IDEA DETECTOR

Next, we turn towards a more complex detector involving multiple tracking technologies and pro-
ducing more complex geometries. We study the IDEA detector which has a silicon inner vertex
detector and a drift chamber. The drift chamber is filled with gas and wires that collect the ioniza-
tion signal of particles. Each particle can leave O(100) hits in the detector, which is an order of
magnitude larger than for CLD. The IDEA detector does not have a baseline algorithm available.
We therefore use these results to illustrate the algorithm versatility in terms of detector technology.
The dataset decay and size are the same as those described in Section 5.1 for the CLD detector. See
Appendix A.1.2 for all the experiment details.

The results are shown in Figure 4. Figure 4 shows that GGTF provides good tracking efficiency
(definition 2). The curling limit of pT is shown with a blue vertical line. As expected, the tracking
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Figure 4: Results for the IDEA detector. Left: tracking efficiency (def. 2) as a function of pT .
Center: percentage of hits of the MC particle captured by the reconstructed track as a function of
pT . Right: tracking efficiency as a function of particle proximity.

efficiency is lower for lower pT particles as these are curling in the detector leaving very long tracks
which are hard to recover fully. This is shown in the center of Figure 4. These results are comparable
to the tracking efficiency shown for the Belle II detector Bertacchi et al. (2020).

Figure 5: Distribution of the reconstructed
tracks with different definitions as described in
section 5 for the GGTF and the baseline ap-
proach

Figure 6: Analysis of the GGTF using different
clustering schemes.

6 CONCLUSIONS

GGTF is a high-efficiency general track finding method for multiple sub-detectors with different
input geometries. It is able to find varied track geometries via an equivariant GNN. The success
of GGTF indicates that highly parameterized algorithms are likely unnecessary and can be replaced
with suitable GNNs. This new pipeline significantly simplifies the application of track finding to
optimization studies as the development cycle is largely reduced. An important future step is to
evaluate the algorithm impact on the track fitting stage, as its higher track hit efficiency could im-
prove the accuracy of the track parameters. Beyond the current applications, we suggest multiple
research directions to address the current limitations. For example, the algorithm was evaluated
without background, adding background would result in several ’noise’ hits, thereby degrading the
track hit purity and efficiency and increasing the probability of reconstructing fake tracks. Finally,
scalability of the algorithm needs to be improved to apply this method to full pile-up events, where
the number of hits can be up to an order of magnitude larger.
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Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. Pythia 6.4 physics and manual. Journal of
High Energy Physics, 2006(05):026, 2006.

Georg Stimpfl-Abele and Lluis Garrido. Fast track finding with neural networks. Computer Physics
Communications, 64(1):46–56, 1991.

Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann. Sgpn: Similarity group proposal
network for 3d point cloud instance segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2569–2578, 2018.

Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen, and Jiaya Jia. Associatively segmenting in-
stances and semantics in point clouds. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4096–4105, 2019.

Yue Wang and Justin M Solomon. Object dgcnn: 3d object detection using dynamic graphs. Ad-
vances in Neural Information Processing Systems, 34:20745–20758, 2021.

Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, and Niki
Trigoni. Learning object bounding boxes for 3d instance segmentation on point clouds. Advances
in neural information processing systems, 32, 2019.

11

https://github.com/key4hep/k4geo/tree/main/FCCee/CLD/compact/CLD_o4_v05
https://github.com/key4hep/k4geo/tree/main/FCCee/CLD/compact/CLD_o4_v05


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EXPERIMENTS

Dataset Raw hits are obtained by performing simulation using the Key4hep (Brondolin et al.,
2024) framework, a software ecosystem for future colliders (Brondolin et al., 2024). First, the
simulation of the collisions, production and decay of the Z boson are generated with PYTHIA8
(Sjöstrand et al., 2006). The considered decay is e+e− → Z → qq̄, q = u, d, at a center of
mass energy of 91.2 GeV/c. PYTHIA8 also evolves the produced particles, performing parton
showers and hadronization to produce a final set of outgoing particles. These particles are then
propagated through the detector using the DD4hep (Frank et al., 2014) toolkit which provides a
convenient interface to Geant4 (Agostinelli et al., 2003). Our approach is applied to the two detector
concepts under consideration. We generate one dataset for each detector concept and describe their
differences below.

We generate a training dataset with 320k events; a validation dataset with 10k events; and a regular
evaluation set with 10k events for each detector concept.

Figure 7: Left: layout of the CLD tracking system from Bacchetta et al. (2019). Right: layout of the
IDEA tracking system from Gaudio (2023).

A.1.1 CLD DETECTOR

The CLD detector (Bacchetta et al., 2019) has an all-silicon tracker. The tracking system consists of
a vertex pixel detector (V), an inner tracker with three barrel layers (ITB) and seven forward disks or
endcap (ITE), and an outer tracker with additional three barrel layers (OTB) and four discs (OTE).
We use version CLDo2v05 of the CLD detector geometry (Gaede et al., 2024).

Input format The dataset includes hits from each tracking sub-detector, reconstructed tracks from
the conformal tracking algorithm and association of each hit to a Monte Carlo particle to build the
set of target tracks to train the model on. Each input hit has global detector coordinates (x, y, z)
and a label of the subdetector they hit {V, ITB, ITE,OTB,OTE}. Additionally, hits created by MC
particles with less than 3 hits in total are labelled as noise hits, and the algorithm does not try to
reconstruct these tracks.

Models For the GATr we consider the architecture in Brehmer et al. (2024). We embed the hits of
all sub-detectors as trivectors. We use 10 attention blocks, 16 multivector and 64 scalar chanels, and
8 attention heads, resulting in 1.1 million parameters. The β is extracted as the scalar component of
the multivector, and the coordinate in the embedding space as the trivector component.

Training All models are trained by minimizing the object condensation loss. We train for 20
epochs with the Adam optimizer, using a batch size of 8, and a step scheduler for the learning rate
from 10−3 to 10−6.

Baselines We compare our approach to state-of-the art track finding algorithms. The reference
track finding approach for this detector which is based on conformal tracking and cellular automaton

12
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(Brondolin et al., 2020; Bacchetta et al., 2019). In order to reproduce the results of Bacchetta et al.
(2019), we apply the following cuts to the reconstructable particles. For the efficiency calculations
the cuts are: 10◦ < θ < 170◦, production radius smaller than 50 mm and a minimum particle
proximity larger than 0.02 rad. For the production vertex radius the applied cuts are: pT > 1 GeV,
10◦ < θ < 170◦, a particle proximity larger than 0.02 rad. For the particle proximity the applied
cuts are: pT > 1 GeV, 10◦ < θ < 170◦, and a production vertex radius, R < 50mm.

Additional plots Percentage of unique hits: A given particle can leave more than one hit per
layer, in which case, only one of the hits is considered unique. Evaluating the percentage of unique
hits allows to determine which algorithm captures more relevant hits. In addition, capturing the
maximum amount of unique hit improves the second stage of tracking, track fitting. Figure 8 shows
that GGTF captures up to 40% more unique hits for lower pT particles and 20% for higher pT .

Figure 8: Percentage of unique hits vs pT of the particle.

Comparison to other GNN architectures We compare the GATr architecture to the Gravnet ar-
chitecture Kieseler (2020) and the architecture proposed in Lieret & DeZoort (2024). The approach
presented in Lieret & DeZoort (2024)consist of first constructing the graph based on geometric con-
straints, then filtering the edges using a fully connected neural network, and finally using object
condensation with a GNN. The last GNN takes advantage of the weights learned by the edge fil-
tering. The geometric edge based constraints implemented in their paper are very biased towards
high pT tracks, as these are the ’tracks of interest’ for their application. We observe that due to
the helical trajectories of low pT tracks the edges are completely removed, resulting in many dis-
connected components if the geometric edge based constraints are applied. With our reproduced
implementation we are not able to obtain convergence during the training for our dataset and this
results in clustering spaces that can not be clustered. The Gravnet architecture is substituted in our
pipeline, and the loss function and the clustering step remained unchanged. The results comparing
the Gravnet architecture to the GATr are shown in Figure 9. Gravnet shows degraded performance
compared to GATr. We attribute this to the lack of geometric representation in the network and the
complexity of the geometry of the tracks.

Comparison of different loss functions We compare the performance of the GGTF pipeline un-
der different loss definitions. We consider the object condensation loss per hit in the event, per
track/object in the event and the loss defined in Section 4. Since different tracks might have a very
different number of hits the per track definition can help balance the training for tracks with a larger
number of hits. For the condensation loss per hit, the LV term is different to the one presented in

13
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Figure 9: Comparison of the track efficiency (definition 2) vs pT including the Gravnet model.

Eqn. 5 and the Lβ term is as defined in Eqn. 6. The potential term is defined as:

LV =
1

N

N∑
j=1

qj

K∑
k=1

(MjkV̌k(xj) + (1−Mjk)V̂k(xj)). (7)

Therefore each hit/node contributes equally to the loss function. For the condensation loss per object,
the attractive potential is the same as the one defined in Eqn. 3, and the repulsive potential is defined
as:

Lrepulsive,k =
1

N̂k

N∑
j=1

qj(1−Mjk)V̂k(xj), (8)

where N̂k is the number of nodes in the event that do not belong to object k. The Lβ term also
remains unchanged for this loss definition. The results of training our pipeline with the different loss
functions is presented in Figure 10. The best performing loss is the loss chosen for the main pipeline,
described in Section 4. This loss uses a per shower attractive potential and a repulsive potential to
all points not belonging to the shower without normalization. This points to the repulsive potential
definition having a larger impact on the performance, as the per track loss which shows the worst
performance, shares the attractive potential with the GGTF loss function.

A.1.2 IDEA DETECTOR

The tracking system of the IDEA detector (Abada A, 2019; Bedeschi, 2021) is composed of an
inner vertex detector, a drift chamber as main tracker and a silicon wrapper providing an additional
precise measurement at large radius. The modeling of the silicon wrapper geometry being not avail-
able at the time of this study, only the vertex detector and drift chamber have been included in the
simulation. The vertex detector is a silicon pixel detector surrounding the beam pipe for the precise
determination of the impact parameter of charged tracks. The hits resulting from this detector in-
clude global coordinate information as in CLD. The drift chamber is a full-stereo, unique volume,
highly granular cylindrical chamber. This tracking detector allows to measure the dalong along the
wire and the distance to the wire, dw. Therefore each hit can be described as h = (w, dw, dalong),
where w is the index of the wire. Using this information and the wire’s information this can be
converted to global coordinates. However, like in planar drift chamber there is an inherent left-right
ambiguity of the spatial position relative to the sense wire, so that each hit has a mirror hit (Frühwirth
& Strandlie, 2021). Therefore each hit corresponds to two sets of coordinates, (xleft,xright), and the
ambiguity can only be resolved after the track finding step (Frühwirth & Strandlie, 2021). Our
pipeline allows to account for this ambiguity (sec: 4). The hits of the IDEA detector are stored as:

hi = (x, y, z, 0) (9)
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Figure 10: Comparison of the evaluation of track efficiency (definition 2) vs pT for different loss
functions.

if they belong to the vertex. And,

hi = (xleft, yleft, zleft, xright, yright, zright, 1) (10)

if they belong to the drift chamber.

Models The model architecture has the same parameters as those described in Appendix A.1.1.

Training All models are trained by minimizing the object condensation loss. We train for 10
epochs with the Adam optimizer, using a batch size of 8 and a step scheduler for the learning rate
from 10−3 to 10−6.

Baselines The IDEA detector does not have a baseline algorithm available. The Belle II experi-
ment also has a tracking system composed of a vertex detector and a drift chamber. The results are
not directly comparable as the detectors have different geometries and the set up of the wires of the
drift chamber is different (Bertacchi et al., 2020). However we use the results presented in Bertacchi
et al. (2020) as a guideline.
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