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Abstract

Semantic Role Labeling (SRL) aims at recog-001
nizing the predicate-argument structure of a002
sentence and can be decomposed into two sub-003
tasks: predicate disambiguation and argument004
labeling. Prior work deals with these two tasks005
independently, which ignores the semantic con-006
nection between the two tasks. In this paper, we007
propose to use the machine reading comprehen-008
sion (MRC) framework to bridge this gap. We009
formalize predicate disambiguation as multiple-010
choice machine reading comprehension, where011
the descriptions of candidate senses of a given012
predicate are used as options to select the cor-013
rect sense. The chosen predicate sense is then014
used to determine the semantic roles for that015
predicate, and these semantic roles are used to016
construct the query for another MRC model for017
argument labeling. In this way, we are able to018
leverage both the predicate semantics and the019
semantic role semantics for argument labeling.020
We also propose to select a subset of all the021
possible semantic roles for computational ef-022
ficiency. Experiments show that the proposed023
framework achieves state-of-the-art results on024
both span and dependency benchmarks.025

1 Introduction026

Semantic Role Labeling (SRL) aims at recognizing027

the predicate-argument structure of a sentence. The028

classic PropBank-style SRL includes two tasks:029

predicate disambiguation and argument labeling.030

Predicate disambiguation determines the specific031

meaning of a predicate in a given context and ar-032

gument labeling identifies the arguments of the033

predicate and assign them with the corresponding034

semantic roles, where each argument is a text span035

in the sentence. PropBank defines two types of se-036

mantic roles for argument labeling: core roles and037

non-core roles (Bonial et al., 2010). Core roles are038

required roles that are in a close relation to the039

main verb in a sentence, such as agent and patient.040

There are seven core roles in PropBank: A0-A5 and041

The stock has been beaten down for two days.
[ A1 ] [beat.02][ A2 ][ TMP ]

sense id beat.02
Sense push, cause motion

Roles
A0 causer of motion
A1 thing moving
A2 direction, destination

Figure 1: An example of SRL. A0, A1 and A2 are se-
mantic roles for the sense id “beat.02”. The meanings
of A0, A1 and A2 are respectively “causer of motion”,
“thing moving” and “direction, destination”.

AA. Non-core roles are modifiers, such as location 042

(LOC) and time (TMP). The specific meanings of 043

predicates and core roles are defined in the frame 044

files. For example, for the sentence in Figure 1, 045

the sense id of the predicate “beaten” is “beat.02”, 046

and the roles of its three arguments are A1, A2 047

and TMP, whose arguments are respectively “The 048

stock”, “down” and “for two days”. We can get the 049

meaning of sense label “beat.02” and roles A1 and 050

A2 from the frame files. 051

In traditional methods, predicate disambiguation 052

and argument labeling are usually solved as two 053

independent tasks. These works usually rely on 054

feature-based methods (He et al., 2018b; Roth and 055

Lapata, 2016; Che and Liu, 2010b)) for predicate 056

disambiguation, and use span-based (Ouchi et al., 057

2018; He et al., 2018a; Li et al., 2019b) or BIO- 058

based (He et al., 2017; Strubell et al., 2018; Shi and 059

Lin, 2019) methods for argument labeling. These 060

methods treat different predicate senses and argu- 061

ment roles as different class categories, and then 062

solve them through classification. However, since 063

these approaches ignore the semantic information 064

of both predicate senses and argument roles, they 065

are unable to establish the semantic connection be- 066

tween the two tasks, i.e., argument roles are defined 067

under predicate sense via the frame files. Some 068

works (Cai et al., 2018; Conia and Navigli, 2020) 069
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Input Sentence
The stock has been < p> beaten </p> down for
two days.

Multiple-Choice MRC for Predicate Disam-
biguation
Question: What is the sense of predicate
“beaten”?
A. (Cause) pulsating motion that often makes
sound
B. push, cause motion
C. win over some competitor
Answer: B

Extractive MRC for Argument Labeling
Question for A0: What are the arguments with
meaning "causer of motion"?
Answer: No Answer
Question for A1: What are the arguments with
meaning "thing moving"?
Answer: the stock
Question for A2: What are the arguments with
meaning "direction, destination"?
Answer: down
Question for TMP: What are the time modifiers
of predicate “beaten”?
Answer: for two days

Figure 2: An illustration of our MRC framework for
Semantic Role Labeling. The meanings of predicate
senses and argument roles are used for multiple-choice
and extractive MRC, respectively.

jointly deal with these two tasks, but still cannot es-070

tablish the semantic connection. We bridge this gap071

with an MRC framework, and we hope that the re-072

sults from predicate disambiguation will contribute073

to argument labeling.074

For PropBank-style semantic role labeling, al-075

though the specific meanings of predicate senses076

and argument roles are provided in the frame files,077

this information is seldom used due to its huge num-078

ber and lack of effective ways to utilize it. Inspired079

by recent success in formulating non-MRC NLP080

tasks as MRC tasks (Levy et al., 2017; Li et al.,081

2020c), we propose an MRC framework for SRL,082

which can effectively utilize the semantic informa-083

tion provided by frame files. First, we transform084

the predicate disambiguation task into multiple-085

choice machine reading comprehension, where the086

descriptions of candidate predicate senses are used087

as options to select the correct sense. Then, we088

use the result of predicate disambiguation (i.e., the089

predicate sense) to determine the meaning of each 090

core role with respect to the predicate. Lastly, we 091

transform argument labeling into extractive ma- 092

chine reading comprehension, where the descrip- 093

tion of each semantic role is used to construct the 094

query to extract the answer span within the input 095

sentence, which serves as the argument we want. 096

In addition, we also propose an additional mod- 097

ule to select a subset of all possible semantic roles 098

to improve computational efficiency. We provide 099

an example of the MRC framework regarding the 100

example of Figure 1 in Figure 2. 101

We conduct experiments on CoNLL2005 (Car- 102

reras and Màrquez, 2005), CoNLL2009 (Hajič 103

et al., 2009), and CoNLL2012 (Pradhan et al., 104

2013) benchmarks. Experimental results show that 105

our model can achieve SOTA results on the three 106

benchmarks. 107

In summary, our contributions are as follows: 108

• To the best of our knowledge, we are the first 109

to exploit the semantic information of both the 110

predicate senses and argument roles provided 111

in the frame files. 112

• We propose a novel MRC framework to lever- 113

age this semantic information, where predi- 114

cate disambiguation is formalized as multiple- 115

choice MRC and argument labeling is formal- 116

ized as extractive MRC. 117

• Our framework is able to obtain SOTA results 118

on three benchmarks without using any syn- 119

tactic information. 120

2 Related Work 121

2.1 Semantic Role Labeling 122

Early semantic role labeling methods focused on 123

feature engineering (Zhao et al., 2009; Pradhan 124

et al., 2005). Recently, neural network based mod- 125

els have been studied and achieved promising per- 126

formance. Collobert et al. (2011) proposed a uni- 127

fied neural network architecture and can avoid task- 128

specific engineering. Zhou and Xu (2015) proposed 129

to use BiLSTM as an end-to-end system for SRL. 130

Tan et al. (2018) applied self-attention (Vaswani 131

et al., 2017) mechanism to directly draw the global 132

dependencies of the inputs. Shi and Lin (2019) pre- 133

sented a BERT (Devlin et al., 2019) based model 134

for semantic role labeling. Jindal et al. (2020) pro- 135

pose a parameterized neighborhood memory adap- 136

tive method for SRL. Kalyanpur et al. (2020); 137
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Paolini et al. (2021); Blloshmi et al. (2021) cast138

SRL to a generative translation problem. Zhou et al.139

(2020); Marcheggiani and Titov (2020) incorpo-140

rates syntactic information into SRL.141

Some works also show that predicate disam-142

biguation is helpful for argument labeling. Che et al.143

(2010) incorporated a word sense feature to im-144

prove the SRL performance. Che and Liu (2010a);145

Cai et al. (2018); Conia and Navigli (2020) jointly146

dealt with predicate disambiguation and argument147

labeling. These methods are different from ours148

and cannot use this semantic information of the149

sense label and role label.150

2.2 Machine Reading Comprehension151

According to the type of the answer, machine read-152

ing comprehension can be divided into the follow-153

ing four categories: extractive (Rajpurkar et al.,154

2016), multiple-choice (Lai et al., 2017), close155

style (Onishi et al., 2016), and free-form (Nguyen156

et al., 2016). Related to our work are extractive157

and multiple-choice MRC. For extractive reading158

comprehension such as SQuAD (Rajpurkar et al.,159

2016), the answer is a span in the text, and the160

MRC model (Seo et al., 2017) gets the answer by161

predicting the probability that the word is start or162

end. Some datasets such as DROP (Dua et al., 2019)163

have answers that include multiple spans, and the164

answers can be obtained by using BIO tagging165

(Segal et al., 2019). For multiple-choice reading166

comprehension where the answer is one of several167

options, a method (Pan et al., 2019) is to calculate168

the score for each option and then select the option169

with the highest score.170

2.3 Formalizing Non-MRC Tasks as MRC171

Over the past few years, some studies have tried172

to cast non-MRC tasks as MRC tasks. He et al.173

(2015) introduce the task of question-answer driven174

semantic role labeling without predefining an in-175

ventory of frames. Levy et al. (2017) show that176

relation extraction can be reduced to answering177

simple reading comprehension questions. McCann178

et al. (2018) frame ten tasks as question answering.179

Li et al. (2020c) propose to formulate named en-180

tity recognition as an MRC task. Other examples181

include joint entity relation extraction (Li et al.,182

2019a), coreference resolution (Wu et al., 2020),183

event extraction (Li et al., 2020a), entity linking184

(Gu et al., 2021), dependency parsing (Gan et al.,185

2021), text classification (Chai et al., 2020), etc.186

Our approach to formalizing argument labeling 187

as extractive MRC is similar to QA-SRL (He et al., 188

2015), but we focus on improving the performance 189

of the model on Propbank-style SRL, while (He 190

et al., 2015) aims to provide a new SRL annotation 191

paradigm, and (He et al., 2015) neither uses the 192

predicate sense definitions nor the argument role 193

definitions provided in the frame files. 194

3 Method 195

3.1 Overview 196

An overview of our system is shown in Algorithm 197

1. Given a sentence x = {x1, ..., xn} and the predi- 198

cate p, the predicate disambiguation task is to de- 199

termine the predicate sense s ∈ S of p, where 200

S is the set of all predicate senses, and the ar- 201

gument labeling task is to find all the arguments 202

A = {a1, ..., ak} of p, where ai ∈ A is a text 203

span in x, and assigning them the corresponding 204

semantic roles. 205

Our framework mainly consists of three mod- 206

ules: predicate disambiguation, role prediction, and 207

argument labeling, all of which use RoBERTa (Liu 208

et al., 2019) as the backbone and use two special 209

symbols < p></p> to mark the predicate p in the in- 210

put sentence x. The predicate disambiguation mod- 211

ule is intended to obtain the predicate sense of the 212

predicate p. Note that we do not use the predicate 213

sense for argument labeling directly, but only use 214

it to get the meanings of the argument roles in the 215

frame files. The role prediction module is to ob- 216

tain the set of candidate roles for the predicate, and 217

the main purpose of this module is to reduce the 218

number of questions that need to be constructed 219

when solving the argument labeling problem via 220

an extractive MRC. The argument labeling module 221

is used to obtain the arguments of the predicate, 222

which is the core module in the whole framework. 223

3.2 Multiple-Choice MRC for Predicate 224

Disambiguation 225

For the predicate disambiguation task, determin- 226

ing the sense label of the predicate involves two 227

steps: identifying the lemma of the predicate, and 228

determining the sense index of the predicate under 229

this lemma. We use spaCy (Honnibal et al., 2020) 230

to identify the lemma of the predicate. If the rec- 231

ognized lemma is not in the frame files, we use 232

the lemma with the smallest edit distance of the 233

predicate. After identifying the lemma, we can find 234

all the senses defined under this lemma from the 235
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Algorithm 1: MRC framework for SRL

Input: sentence x = {x1, ..., xn} with marked
predicate p, frame files, annotation guidelines

Output: predicate sense ŝ, arguments A
1: Get the lemma l of p using SpaCy
2: Get all the predicate senses Sl of l and the

corresponding descriptions Ds
l from the frame

files
3: for si in Sl do
4: Get the description dsi of sense si from Ds

l

5: Concatenate dsi and x to get the input for
RoBERTa

6: Compute the score of si as the answer with
Eq.(1)

7: end for
8: Select the highest scoring ŝ ∈ Sl as the predi-

cate sense of p
9: Get the candidate argument roles Rp of p from

the role prediction module
10: for ri in Rp do
11: if ri is core role then
12: Get the description dri of role ri from the

frame files with ŝ
13: else
14: Get the description dri of role ri from the

annotation guidelines
15: end if
16: Construct query qi using dri and p
17: Concatenate qi and x to get the input for

RoBERTa
18: Calculate the probability that each word in

x belongs to the BIO tags
19: end for
20: Decode with non-overlap constraint to get the

arguments A of p
21: return ŝ, A

frame files, and then we choose the correct sense236

through multiple-choice reading comprehension.237

Specifically, let Sl be all possible senses for the238

detected lemma. For each sense si ∈ Sl, the cor-239

responding sense description is dsi . We treat dsi as240

option, and the input for the RoBERTa is the con-241

catenation of dsi and x. The probability score of si242

as the correct sense is calculated by:243

P (si = 1|dsi , x, p) = sigmoid(FFNp(h
d)) (1)244

where hd is the context representation of the first245

input token from RoBERTa and FFNp is a sin-246

gle layer feedforward neural network. We train the247

model using the binary cross-entropy loss function. 248
1 During inference, we choose the sense with the 249

highest probability score among all the sense op- 250

tions as the answer. 251

3.3 Role Prediction 252

In semantic role labeling, most semantic roles do 253

not have corresponding arguments given a specific 254

input sentence. For example, in the CoNLL2005 255

dataset, there is a total number of 20 roles, but 256

on average there are only 2.5 roles per predicate. 257

Therefore, we use a role prediction module to avoid 258

asking questions about impossible roles at the next 259

argument labeling stage, reducing the amount of 260

calculation required when using the MRC-based 261

method. 262

Let R be the set of all semantic roles (in CoNLL 263

2005 the size of R is 20), the purpose of role pre- 264

diction is to predict a set of possible roles Rp ⊆ R 265

for the predicate p. The input to RoBERTa is the 266

sentence x with the marked predicate p. Let hr be 267

the context representation of the first token of the 268

input sequence from RoBERTa, and ri ∈ R is the 269

i-th role of R. We use the sigmoid function to cal- 270

culate the probability that the predicate p has a role 271

ri: 272

P (ri = 1|x, p) = sigmoid(FFNri(h
r)) (2) 273

where FFNri is a single layer feedforward neural 274

network. We use the binary cross entropy loss func- 275

tion to train the model. During inference, we only 276

keep up to λN roles with the highest probability 277

score, where N is the number of predicates in the 278

dataset. 2 Note that here we select the roles with 279

the top λN probability scores on the whole dataset, 280

not on the input sentence. And in the argument la- 281

beling module, we use the predicted roles from the 282

role prediction module instead of the gold roles for 283

training. 284

3.4 Extractive MRC for Argument Labeling 285

We formalize argument labeling as extractive read- 286

ing comprehension, where the meaning of argu- 287

ment role is used to construct the query, and since 288

the answer may contain multiple spans, we use BIO 289

1We also tried to use softmax to get the probability of
all senses, and then use the multi-class cross entropy loss
for training, but we found the loss is unstable and hard to
optimize.

2An alternative strategy is to use a fixed threshold, which
performs similarly to ours. But our strategy can directly get the
number of argument roles, which helps to analyze the amount
of computation needed in argument labeling.
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tagging to extract the arguments. 3 In ProbBank-290

style SRL, a role may be a norm role, a reference291

role, or a continuation role. A norm role is a stan-292

dard role defined in the annotation guidelines, a293

reference role is a reference to some other argu-294

ments, and a continuation role is a continuation295

phrase of a previously started argument. For exam-296

ple, role A1 may be N-A1 or R-A1, or C-A1. Since297

the subcategories of N/R/C do not contain semantic298

information, we do not encode such information299

into the query of the MRC model. We use BIO300

tagging to get the arguments of the predicate, and301

the set of BIO tags is302

T = {B, I} × {N,R,C} ∪ {O} (3)303

We use templates to construct the query of the MRC304

model. For core roles, our template is “What are305

the X arguments of predicate Y with meaning Z?”,306

where X is the role type(e.g., "A0"), Y is the predi-307

cate, and Z is the description of role X in the frame308

files. For non-core roles, our template is “What are309

the W modifiers of predicate Y?”, where W is the310

specific meanings of non-core roles defined in the311

annotation guidelines.312

Specifically, let qi represent the query corre-313

sponding to the predicate p and the role ri ∈ Rp ,314

the input of the MRC model is the concatenation of315

qi and x. The context representation of x in the in-316

put < qi, x > pair is hri = {hri1 , ..., hrin }, our goal317

is to predict yri = {yri1 , ..., yrin }. Each yrij ∈ yri318

belongs to one tag in the tag set T . For yrij , its prob-319

ability distribution on BIO tag set is calculated by320

a softmax layer:321

P (yrij = t|x, p, ri) ∝ exp(Wth
ri
j + bt) (4)322

where t ∈ T is a BIO tag, Wt and bt are the cor-323

responding parameters. We use multi-class cross324

entropy loss to train the model. And we use the325

method in section 3.5 to get the argument.326

Note that at this stage, we use the predicate sense327

extracted at the predicate disambiguation stage to328

find the sense of each role selected at the role pre-329

diction stage. For example, suppose the predicate330

sense is “beat.02” and the semantic role is A0 as331

shown in Figure 1, we will immediately obtain332

the role’s sense “causer of motion”. In this way,333

the predicate sense can be leveraged for role sense334

detection, and thus further for semantic labeling,335

3For dependency semantic role labeling, since pre-trained
language models such as BERT split a word into multiple sub-
words, which is similar to span, BIO tagging is also applicable.

bridging the gap between the two tasks via an MRC 336

framework. 337

3.5 Constrained Decoding 338

There are many global constraints in semantic role 339

labeling (Punyakanok et al., 2008; Li et al., 2020b), 340

such as all arguments of the predicate cannot over- 341

lap and each core role should appear at most once 342

for each predicate. Our MRC approach does not 343

directly model these constraints and can not guaran- 344

tee that the obtained results satisfy these constraints. 345

For simplicity, we only consider the non-overlap 346

arguments constraint. The previous approach of 347

using BIO tagging (He et al., 2017; Shi and Lin, 348

2019) to extract arguments can naturally model the 349

non-overlap constraint, since each word in x can 350

only belong to one of the BIO tags, there will be 351

no overlapping words between the argument ele- 352

ments. But in our MRC-based BIO tagging method, 353

since we have Rp roles, each word has at most Rp 354

BIO tags. We implement the non-overlap constraint 355

by mapping the local role-related BIO tag of each 356

word into a global BIO tag set. 357

Specifically, for the sentence x = {x1, ..., xn}, 358

the goal of constraint decoding is to obtain the cor- 359

responding tag sequence y = {y1, ..., yn}, where 360

yj ∈ y belongs to the tag set Tp: 361

Tp = Rp × {B, I} × {N,R,C} ∪ {O} (5) 362

For tag tp ∈ Tp, when it is a BI tag, it can be 363

expressed as ri-t, where ri ∈ Rp and t ∈ T . For BI 364

tags, we add a role tag directly before the original 365

BI tag. For example, the B-R tag of role A1 will be 366

converted to A1-B-R, and then the score of the new 367

tag is equal to the probability of the original tag: 368

s(yj = tp) = s(yj = ri-t)

= p(yrij = t)
(6) 369

where s(·) is the score function. For O tags, we 370

merge the O tags of different roles into one O tag, 371

and the score of O tag after merging is the product 372

of the O tag probabilities of all roles. 373

s(yj = O) =

|Rp|∏
i=1

p(yrij = O) (7) 374

During inference, for each word xi, its tag yj is the 375

highest scoring tag in the new BIO tag set Tp. 376

yj = argmax
tp∈Tp

s(yj = tp) (8) 377

And we use the BIO tag sequence y to get all the 378

arguments. 379
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Model Dev WSJ Brown

Shi and Zhang (2017) - 93.4 82.4
Roth and Lapata (2016) 94.8 95.5 -
He et al. (2018b) 95.0 95.6 -
Shi and Lin (2019)+BERT 96.3 96.9 90.6

Ours+BERT 96.3 97.2 91.9
Ours+RoBERTa 96.6 97.3 91.3
Ours-semantics 96.2 96.7 89.9

Table 1: Predicate disambiguation results on
CoNLL2009.

CoNLL09 WSJ CoNLL09 Brown

Model P R F1 P R F1

syntax-aware
Cai and Lapata (2019) 91.7 90.8 91.2 83.2 81.9 82.5
Kasai et al. (2019) 90.3 90.0 90.2 81.0 80.5 80.8
Zhou et al. (2020)+BERT 91.2 91.2 91.2 85.7 86.1 85.9
Fei et al. (2021)+RoBERTa 92.9 92.8 92.8 - - -
syntax-agnostic
Li et al. (2019b) 89.6 91.2 90.4 81.7 81.4 81.5
Conia and Navigli (2020)+BERT 92.5 92.7 92.6 - - 85.9
Shi and Lin (2019)+BERT 92.4 92.3 92.4 85.7 85.8 85.7
Jindal et al. (2020)+BERT 90.0 91.5 90.8 83.5 86.5 85.0

Ours+BERT 93.3 92.7 93.0 87.5 86.6 87.0
Ours+RoBERTa 93.5 93.1 93.3 87.7 86.6 87.2

Table 2: Argument labeling results on CoNLL2009.

4 Experiments380

4.1 Datasets381

We conduct experiments on the CoNLL2005,382

CoNLL2009 and CoNLL2012 datasets. The383

CoNLL2005 and CoNLL2012 datasets are span-384

based SRL, where the arguments are constituents385

(spans) in the sentence, and the CoNLL2009386

dataset is dependency-based SRL, where the ar-387

guments are syntactic heads. The CoNLL2005388

dataset consists of sections of the Wall Street Jour-389

nal part of the Penn TreeBank, where section 2-390

21 is used for training, section 24 is used for de-391

velopment, and section 23 is used for evaluation.392

In addition, it also includes three sections of the393

Brown corpus to test the robustness of the sys-394

tems. The CoNLL2009 dataset uses the same cor-395

pus as CoNLL2005, but uses NomBank to extend396

the annotations. The CoNLL2012 dataset is ex-397

tracted from the OntoNotes v5.0 corpus. The frame398

files are available as official resources in the three399

datasets and can be used by all systems.400

4.2 Experiment Setup401

For data preprocessing we follow (Li et al., 2019b).402

We use RoBERTa Large as the base encoder and403

we use two special symbols < p> and </p> to mark404

the predicate of the input sentence. We adopt Adam405

as optimizer, and the warmup rate is 0.05, the ini- 406

tial learning rate is 1e-5, the maximum number of 407

epochs is 20, the number of tokens in each batch 408

is 2048. λ is tuned on development set to ensure 409

that the recall of the predicted roles is higher than 410

99%. All the experiments were conducted on a 411

Tesla V100 GPU with 16GB memory. 412

Predicate disambiguation is evaluated using ac- 413

curacy, and argument labeling is evaluated using 414

micro F1. The evaluation of argument labeling 415

in CoNLL2009 also includes the results of predi- 416

cate disambiguation, where the predicate sense is 417

treated as a special kind of argument of a virtual 418

root node. 419

4.3 Main Results 420

Predicate Disambiguation We evaluate the per- 421

formances of predicate disambiguation on the 422

CoNLL2009 dataset as previous work on the 423

CoNLL2005 and CoNLL2012 datasets did not con- 424

sider predicate disambiguation. The error of lemma 425

recognition is also included in the final results. In 426

Table 1, we report the experimental results of our 427

method when using BERT and RoBERTa as en- 428

coders. The model using RoBERTa achieves the 429

best results on the development set and on the in- 430

domain test set (WSJ), and the model using BERT 431

achieves the best results on the out-of-domain 432

test set (Brown). The performances of BERT and 433

RoBERTa on the development and brown test sets 434

are opposite, which indicates that the evaluation 435

on the development set does not fully reflect the 436

model’s generalization ability. 437

To investigate the impact of the sense descrip- 438

tions provided by the frame files, we also give the 439

experimental results without using this semantic in- 440

formation in Table 1 (“-semantics”). In this setting, 441

we also use RoBERTa, but the predicate sense de- 442

scription is replaced by the corresponding numeric 443

label (e.g., “02” in “beat.02”). The experimental 444

results show that the model performs worse when 445

this semantic information is not available, espe- 446

cially in the out-of-domain Brown test set, where 447

the accuracy decreases by 1.4%. 448

Argument Labeling Table 2 shows the results 449

for dependency SRL, and Table 3 shows the ex- 450

perimental results for span SRL. Compared with 451

the previous SOTA, 4 our improvement on the 452

4Fei et al. (2021) only reported the experimental results
when using gold instead of predicted syntactic information, so
we do not compare with it.
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CoNLL05 WSJ CoNLL05 Brown CoNLL12 Test

Model P R F1 P R F1 P R F1

syntax-aware
Zhou et al. (2020)+BERT 89.0 88.8 88.9 81.9 81.0 81.4 - - -
Mohammadshahi and Henderson (2021)+BERT 89.1 88.7 88.9 83.9 82.5 83.2 - - -
Xia et al. (2020)+RoBERTa 88.4 88.8 88.6 83.1 83.3 83.2 - - -
Marcheggiani and Titov (2020)+RoBERTa 87.7 88.1 88.0 80.5 80.7 80.6 86.5 87.1 86.8
Fei et al. (2021)+RoBERTa 88.9 89.3 89.0 83.5 83.8 83.7 88.1 88.8 88.6
syntax-agnostic
Li et al. (2019b) 87.9 87.5 87.7 80.6 80.4 80.5 85.7 86.3 86.0
Conia and Navigli (2020)+BERT - - - - - - 86.9 87.7 87.3
Blloshmi et al. (2021)+BART - - - - - - 87.8 86.8 87.3
Shi and Lin (2019)+BERT 88.6 89.0 88.8 81.9 82.1 82.0 85.9 87.0 86.5
Jindal et al. (2020)+BERT 88.7 88.0 87.9 80.3 80.1 80.2 86.3 86.8 86.6
Paolini et al. (2021)+T5 - - 89.3 - - 82.0 - - 87.7

Ours+BERT 89.7 89.0 89.3 85.9 83.5 84.7 88.0 87.7 87.8
Ours+RoBERTa 90.4 89.7 90.0 86.4 83.8 85.1 88.6 87.9 88.3

Table 3: Argument labeling results on CoNLL2005 and CoNLL2012.

in-domain WSJ test sets of CoNLL2005 and453

CoNLL2009 is 0.7 and 0.7, respectively, on the454

out-of-domain Brown test set is 1.9 and 0.8, respec-455

tively, and on the CoNLL2012 test set is 0.6. Since456

our method is syntax-agnostic, we first compare457

it with the syntax-agnostic methods. Our method458

improves more on the out-of-domain Brown test459

set of CoNLL2005 and CoNLL2009 than on the460

in-domain WSJ test set, which indicates that our461

method has stronger generalization ability than462

the previous syntax-agnostic methods. The syntax-463

aware method (Mohammadshahi and Henderson,464

2021) also performs better on the Brown test set465

compared to the syntax-agnostic methods (Shi and466

Lin, 2019), a similar phenomenon to ours. How-467

ever, unlike the syntax-aware approach, our ap-468

proach is syntax-agnostic and utilizes the seman-469

tic information provided in the frame files rather470

than the syntactic information of the sentence, and471

outperforms syntax-aware methods. This observa-472

tion demonstrates that leveraging semantic infor-473

mation in frame files provides stronger generality474

than syntax-aware techniques for SRL.475

5 Ablation studies476

5.1 Effect of Predicate Disambiguation477

Our framework uses a pipelined approach to con-478

nect the predicate disambiguation and the argument479

labeling task, so different predicate disambiguation480

accuracies may affect the results of argument label-481

ing. Here we analyze the performance of the same482

argument labeling model with different predicate483

disambiguation accuracies. We obtain the results484

of different predicate disambiguation accuracies485

Figure 3: Experimental results of different predicate
disambiguation accuracies.

through randomly replacing part of the gold pred- 486

icate senses with other predicate senses. Then we 487

use the ordinarily trained argument labeling model 488

to make predictions under different predicate dis- 489

ambiguation results. Figure 3 shows that the model 490

performs monotonically worse as the predicate dis- 491

ambiguation accuracy decreases, with the rate of 492

decline for recall being much faster than that for 493

precision. This suggests that when an incorrect 494

predicate disambiguation result is obtained, our 495

argument labeling model usually does not lead to 496

the correct argument. Thus, an accurate predicate 497

disambiguation model is required. 498

5.2 Effect of Argument Role Semantics 499

We also study the performance of our MRC frame- 500

work in the case where the query does not contain 501

any semantics, and in this case, the query is re- 502

placed with a category label. We use RoBERTa 503

base for our experiments. When role semantics 504
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Recall 0.90 0.93 0.96 0.99
F1 87.3 88.4 88.2 88.6

Table 4: Experimental results of different role prediction
recall scores.

is not considered, the F1 scores on the develop-505

ment set and the out-of-domain Brown test set of506

CoNLL2005 are 88.2 and 83.2, respectively. when507

role semantics is considered, the F1 scores on the508

development set and the out-of-domain Brown test509

set of CoNLL2005 are 88.5 and 83.8, respectively.510

The experimental results show that taking seman-511

tics into account performs better than not taking se-512

mantics into account, especially when the domains513

of the training and test sets are different. And this514

proves that the semantics of the argument roles is515

useful in our framework.516

5.3 Effect of Role Prediction517

The main purpose of role prediction is to predict518

the possible argument roles of predicates, which519

can reduce the number of questions that need to be520

asked by the argument labeling module. Since role521

prediction is an upstream task of argument labeling,522

missing potential argument roles in the role predic-523

tion stage can lead to the error propagation problem.524

We mitigate this problem by ensuring that the recall525

of role prediction is higher than 99% and training526

the argument labeling model under the predicted527

roles. Table 4 shows the influence of different role528

prediction recall scores on argument labeling. It529

can be seen that when the recall is low, the F1 score530

of argument labeling will decrease significantly –531

87.3 when recall is 0.90 versus 88.6 when recall is532

0.99.533

5.4 Computational Efficiency534

In our MRC framework, to utilize the semantic535

information of labels (predicate senses and argu-536

ment roles), we need to encode all <label, sen-537

tence> pairs using a pre-trained model, which can538

be computationally intensive if the number of la-539

bels is large, we mitigate this problem by filter-540

ing impossible labels. 5 In predicate disambigua-541

tion, we use lemma to filter impossible predicate542

senses, and in argument labeling, we use an addi-543

tional role prediction module to filter impossible544

5We also tried to decouple the label and sentence encoding
to avoid encoding the same sentence multiple times, but it did
not perform as well as the simple filtering strategy.

decode P R F1
overlap 85.4 84.0 84.7
non-overlap 86.2 83.9 85.0

Table 5: Experimental results of different decoding
methods.

roles. Since the main computation in our frame- 545

work is spent on the argument labeling module, 546

here we give a rough analysis of the computational 547

overhead it requires. In section 3.3, we select the 548

λN roles with the highest probability scores in the 549

dataset, which are used in the argument labeling 550

module to construct queries, so λN reflects the 551

amount of computation we need in the argument 552

labeling module. When λ = R, this approach is 553

equivalent to asking questions directly to all roles. 554

In CoNLL2005, CoNLL2009, and CoNLL2012, 555

the total number of semantic roles are 20, 20, 28, 556

respectively, and the actual λs in the role predic- 557

tion module are 5, 4.2, 5.5, respectively. The value 558

of λ is much smaller than the number of all se- 559

mantic roles, and this indicates that our model 560

achieves approximately 4x, 4.8x and 5.1x speedups 561

in CoNLL2005, CoNLL2009, and CoNLL2012 562

compared to asking questions directly to all roles. 563

5.5 Effect of Constrained Decoding 564

In this section, we study the effect of the non- 565

overlap constraint. Experimental results in Table 566

5 show that when not considering the non-overlap 567

constraint, the model recall is higher, but the preci- 568

sion and F1 score are lower than when considering 569

the non-overlap constraint. In our experiments, the 570

F1 scores are improved most of the time after using 571

constraint decoding, and all experimental results 572

reported in this paper are obtained with constraint 573

decoding. 574

6 Conclusion 575

In this paper, we propose an MRC-based frame- 576

work for semantic role labeling. We formalize pred- 577

icate disambiguation as multiple-choice reading 578

comprehension and argument labeling as extractive 579

reading comprehension. Besides, we also propose 580

a role prediction module to reduce the computa- 581

tion caused by considering all roles in the dataset 582

for argument labeling. Experimental results show 583

that our framework can effectively use the semantic 584

information of argument roles and achieve SOTA 585

performance on three benchmarks. 586
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