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Abstract
We present a novel approach to generating001
scripts by using agents with different person-002
ality types. To manage character interaction in003
the script, we employ simulated dramatic net-004
works. Automatic and human evaluation on005
multiple criteria shows that our approach out-006
performs a vanilla-GPT2-based baseline. We007
further introduce a new metric to evaluate di-008
alogue consistency based on natural language009
inference and demonstrate its validity.010

1 Introduction011

The last couple of years have seen some promis-012

ing advancements in the area of open-ended story013

generation (Fan et al., 2018; Clark et al., 2018; Am-014

manabrolu et al., 2019), notably with the use of015

large pretrained generative neural language mod-016

els such as GPT-2 (Radford et al., 2019; See et al.,017

2019). However, these works mostly focus on pro-018

ducing very short stories, such as those in ROC-019

stories (Mostafazadeh et al., 2017). While there020

have been attempts at generating full-length theatri-021

cal works involving longer dialogue scripts, they022

use human-in-the-loop approaches, such as post-023

editing (Colton et al., 2016; Helper, 2018) or hu-024

man choice between alternatives during the genera-025

tion process (Rosa et al., 2021). Longer texts fully026

generated by language models (Sharp et al., 2016)027

often show as inconsistent and/or dull.028

In this work, we explore a novel approach to gen-029

erating longer scripted dialogues, such as theatre or030

movie scripts, inspired by works in personalizing031

dialogue agents (Zhang et al., 2018; Mazaré et al.,032

2018). Instead of handcrafting specific personas033

such as these previous works, we propose to clus-034

ter personalities based on major personality traits,035

i.e., the prevailing sentiment in the respective char-036

acters’ utterances. We use these clusters to train037

three distinct models, which then act as a positive,038

neutral and a negative character. Since there are039

more than two characters, we need a non-trivial040

dialogue management system do decide the order 041

of characters in the dialogue. We design a novel 042

approach based on simulating dramatic networks 043

(DN; Moretti, 2020). We compare our overall script 044

generation approach to a baseline based on a vanilla 045

GPT-2 model (Radford et al., 2019). We use ba- 046

sic automatic metrics for diversity and sentiment, 047

combined with human evaluation on multiple crite- 048

ria. Since automatic metrics for evaluating coher- 049

ence of open-ended text generation are scarce, we 050

present a new automatic metric based on natural 051

language inference (NLI; Williams et al., 2018). 052

Our contributions include: (1) DialogueScript 053

– script generation with distinct language models 054

for different characters, based on character clus- 055

tering; (2) dialogue management based on DN; 056

(3) NLI-Score – a novel metric for the evaluation 057

of consistency of the generation outputs; and (4) 058

automatic and human evaluation comparing our 059

DialogueScript/DN approach to a strong GPT-2 060

baseline. We plan to release our experimental code 061

and models on GitHub.1 062

2 Script Generation Approach 063

2.1 Character Clustering 064

The characters in movies usually display a consis- 065

tent personality within their utterances. However, 066

training models for specific characters would make 067

it difficult to explore various genres or situations 068

due to training data sparsity. To find an accept- 069

able balance between consistency and versatility, 070

we simplify the training and group characters into 071

several disjoint subsets based on their personality 072

types. This selection is realized by a sentiment 073

classifier by (Barbieri et al., 2020),2 which is based 074

on a pre-trained RoBERTa-base model (Liu et al., 075

2019), further trained on masked language model- 076

ing on on 58M tweets and finetuned on tweet senti- 077

1Link will be provided in the final version of the paper.
2https://huggingface.co/cardiffnlp/

twitter-roberta-base-sentiment
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ment classification. The model classifies the input078

into three groups, labeling it as positive, neutral or079

negative. Because the input length of the model080

is limited, processing all utterances of a character081

glued together would cause an undesirable input082

truncation. To address this issue, we label each083

dialogue turn individually and the overall character084

cluster assignment is computed as the prevailing085

sentiment over all their utterances.086

2.2 Data Preprocessing for Language Models087

Before the individual character language models088

are trained, the dataset needs to be pre-processed.089

Since the characters are identified by their member-090

ship in a cluster instead of their names, the name091

of each character is replaced by the label focus or092

other. The former denotes that the type of this093

character matches the sentiment of the model, e.g.094

when training a positive model, a positive charac-095

ter is labeled as the focus. The latter is used for096

marking characters that are not salient for current097

learning, e.g. the label of the negative and neutral098

characters in training data for the positive model.099

Because multiple characters within the same clus-100

ter may occur in one dialogue, several instances of101

every dialogue with different focus/other labels are102

included in the training data.103

2.3 Simulating Dramatic Networks104

To orchestrate the script generation between the105

separate character language models generating in-106

dividual utterances, we design a new approach107

based on DN (Moretti, 2020). We consider the108

script/dialogue to consist of one or more exchanges109

(one character starting and others replying) and110

each line to be addressed to one specific character111

(i.e., character A utters a line addressed to char-112

acter B). The dialogue flow is determined by in-113

terpretable parameters of characters and their rela-114

tions. There are 3 main parameters per character:115

• centrality – the probability of addressing another116

character (starting an exchange),117

• loyalty – probability distribution over potential118

addressees,119

• reciprocity – probability of replying to an ad-120

dress.121

All parameters are updated throughout the script122

generation. Unlike Moretti (2020), we do not esti-123

mate model parameters from existing play scripts.124

Instead, we set initial model parameters empirically125

based on a few test trials, and we use the DN model126

to manage generation of new scripts.3 127

While all characters initially have the same cen- 128

trality (i.e., the probability of starting the dialogue, 129

set at 1), centrality increases with every line spoken 130

by the given character. At the end of the script, each 131

character’s centrality reflects their significance for 132

the generated script. 133

The loyalty parameter works similarly – if char- 134

acter A addresses character B at a given point in 135

the script, their probability of addressing B in the 136

future increases (at the expense of other characters). 137

At the end of the script, the loyalty probability dis- 138

tribution reflects relationships a certain character 139

had with all other characters. We set the loyalty 140

probability distribution uniformly. 141

The reciprocity parameter determines if B re- 142

sponds to A after being addressed. To present a 143

realistic length of exchanges between two char- 144

acters in the script, reciprocity starts at 95% and 145

decays by a third after each line uttered. The initial 146

value and the decay rate are defined separately for 147

each character. They determine the length of ex- 148

changes between two certain characters and reflect 149

characters’ talkativeness. Reciprocity resets after 150

the end of a given exchange (when B decides not 151

to respond to A). When an exchange ends, the next 152

character to speak is chosen by centrality. 153

The probability of the dialogue ending after each 154

line is independent of characters’ relations; it is 155

fixed at 20% throughout the generation. 156

3 Evaluation Metrics 157

Since standard reference-based language genera- 158

tion metrics are not applicable to our free-form 159

long-text generation scenario, we combine ba- 160

sic corpus-based statistics showing diversity with 161

evaluation of personality consistency via senti- 162

ment classification, coupled with human evaluation 163

based on multiple criteria. We also propose a new 164

automatic metric targeted at consistency. 165

3.1 Automatic Metrics 166

Diversity We evaluate several automatic metrics 167

aimed at text diversity (van Miltenburg et al., 2018). 168

This includes the perplexity, the total number of 169

words generated, as well as the number of distinct 170

words (1-grams) and bigrams. All diversity metrics 171

are measured as average over generated dialogues. 172

3Moreover, while Moretti (2020)’s approach considers
multiple scenes, we only assume a single scene/dialogue for
simplicity.
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Personality consistency To show that our mod-173

els can generate consistent utterances based on the174

target character types, we measure sentiment of ut-175

terances in the generated dialogues, similarly to the176

training data clustering approach from Section 2.1.177

3.2 Human Evaluation178

We design two manual evaluation procedures, both179

to be carried out on the same text samples to reduce180

annotator mental load:181

Relative ranking The annotators are asked to or-182

der dialogues generated by different systems from183

best to worst, according to their own subjective184

judgement, with no further instructions. This rank-185

ing gives us an overall system comparison.186

Absolute scoring The annotators are asked to187

rate the generated dialogues in terms of the follow-188

ing properties on a 5-point Likert scale:189

• Coherence: Is the text coherent?190

• Consistency: Are the characters self-consistent?191

• Originality: Is the text original and interesting?192

• Overall impression: Did you enjoy reading this193

text?194

3.3 NLI-Score: A Consistency Metric195

Inspired by previous approaches using NLI to eval-196

uate texts for other NLG tasks (Dziri et al., 2019;197

Maynez et al., 2020), we develop NLI-Score, a new198

metric for dialogue consistency.199

In general, NLI determines whether a given sen-200

tence is entailed in, neutral to, or in contradiction201

with a context (Bowman et al., 2015). Unlike202

previous works, we aim at the neutral relation in203

NLI-Score, which indicates newly added informa-204

tion, but no inconsistencies. The contradiction re-205

lation indicates inconsistencies and the entailment206

relation is mostly indicative of repetition, both of207

which are unwanted in creative text generation. We208

use the RoBERTa-large-mnli model by (Liu et al.,209

2019)4 to compute probabilities of the different210

NLI classes, then take the probability of the neu-211

tral category as the basis our NLI-Score. To make212

the metric robust to varied length, we propose to213

measure the average neutrality per added sentence.214

The second sentence is compared with the first, the215

third with the first two, and so on.5216

4https://huggingface.co/roberta-large-mnli
5The context is truncated from the start if its length exceeds

the NLI model’s maximum input length.

4 Experiments 217

4.1 DialogueScript Training 218

In DialogueScript, characters are represented by 219

three separate language models trained by fine- 220

tuning the GPT2-small model (Radford et al., 221

2019), given the respective clustered data (positive, 222

neutral, or negative) as described in Sections 2.1 223

and 2.2. The training uses an adaptive learning rate 224

optimizer (α = 3× 10−5, ε = 1× 10−8) (Kingma 225

and Ba, 2015) and a linear scheduler with warmup 226

of 1,000 steps over five epochs. 227

To finetune the models, we use a dataset consist- 228

ing of movie scripts (1,276 movies) from Script- 229

Base (Gorinski and Lapata, 2018) and TV show 230

scripts (786 episodes) scraped from fan-sourced 231

collections, IMSDb6 and Forever Dreaming.7 232

4.2 Compared Model Variants 233

We evaluate 3 model variants: (1) a base Dialogue- 234

Script model with random order of characters, (2) 235

an extended DialogueScript + DN (based on the 236

DN orchestration described Section 2.3), and (3) a 237

Baseline based on vanilla GPT2-medium for com- 238

parison. Every generated dialogue includes three 239

characters (each supposedly corresponding to one 240

character type, i.e. positive, neutral and negative). 241

Both DialogueScript setups receive no textual 242

initialization and generate scripts from scratch. 243

This is not possible with the baseline, which re- 244

quires a prompt to generate a script-like text.8 245

Therefore, we use minimal prompts (a short 1- 246

sentence setting description + single-utterance 247

greeting from all three characters) to start the base- 248

line model generation. These prompts are not in- 249

cluded in the evaluation. 250

Note that the DialogueScript and DialogueScript 251

+ DN systems differ only in the order of the charac- 252

ters’ utterances and the length of scenes. The dia- 253

logue management does not influence the content 254

of the utterances themselves in any way, their con- 255

tent is generated using the same sentiment-based 256

models (see Section 4.1). 257

4.3 Results 258

Automatic metrics For automatic evaluation, 259

we use 50 scripts generated by our systems and 260

10 scripts by the GPT2-medium baseline. Table 1 261

6https://imsdb.com/
7https://transcripts.foreverdreaming.org/
8In our experiments, the unprompted GPT-2 model gener-

ated HTML code.
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Model Perplexity 1-gram Vocab 2-gram Vocab Words NLI-Score

Baseline 1.86 59.25 88.00 104.00 0.40
DialogueScript 2.48 241.90 428.06 489.76 0.47
DialogueScript + DN 2.13 183.57 308.13 359.61 0.46

Table 1: Automatic metric results: generated script diversity (average perplexity, unigram and bigram vocabulary
size, number of words) and consistency in terms of NLI-Score (see Section 3.3).

Sentiment
Character Positive Neutral Negative

Positive 35 64 1
Neutral 1 14 1
Negative 4 56 40

Table 2: Sentiment of the generated utterances, depend-
ing on the target sentiment for a given character.

Model 1st 2nd 3rd

Baseline 4 2 6
DialogueScript 2 5 5
DialogueScript + DN 6 5 1

Table 3: Results of relative ranking of model outputs.

shows that both DialogueScript setups produce262

more diverse scripts than the baseline. Table 2263

then demonstrates the inclination of DialogueScript264

model outputs to their target sentiment, with the265

exception of a prominent neutral sentiment. This is266

natural, because we cannot expect the characters to267

avoid common phrases with a neutral sentiment.268

Human evaluation We use 12 short excerpts269

from scripts generated by each model for all of270

the manual evaluation tasks. The annotators are271

shown 5-10 lines9 at a time. Each annotation is272

performed by 3 judges.273

Table 3 with relative ranking results shows that274

DialogueScript + DN was most frequently the best275

option and least frequently the worst one. As we276

can see in Table 4, both our systems beat the base-277

line in all of the absolute scoring criteria. The278

DialogueScript + DN setup scores better than base279

DialogueScript with random character ordering on280

all criteria except Coherence. Since both Dialogue-281

Script setups use the same models, we believe that282

the DN orchestration made a difference in making283

the character interaction more organic.284

NLI-Score We evaluated our new metric by com-285

paring it to human evaluation of consistency. The286

9The amount of text was similar for all evaluated dialogues
as the number of lines was balanced by their length.

Model Coh Con Orig Overall

Baseline 2.3 2.7 2.5 2.5
DialogueScript 3.3 3.2 3.8 3.3
DialogueScript + DN 3.0 3.3 4.7 3.8

Table 4: Average absolute human rating scores –
Coherence, Consistency, Originality and Overall im-
pression, on a 5-point Likert scale.

scores have a Pearson correlation of 0.50, show- 287

ing that NLI-Score does provide some consistency 288

information. When we apply NLI-Score for auto- 289

matic evaluation of the compared setups (see Ta- 290

ble 1), we can see that NLI-Score is similar for 291

both DialogueScript approaches and in both cases 292

higher than the baseline, showing that our gener- 293

ated texts contain less detectable contradictions and 294

repetitions than the baseline. 295

4.4 Discussion 296

While metrics such as perplexity can characterize 297

an NLG output, they are not enough to decide on 298

the overall output quality. However, we can use 299

these characteristics to make an observation that 300

our systems tend to be more verbose than the base- 301

line approach. We hypothesize that this might have 302

played a role in the human evaluation, especially in 303

the ranking task where the baseline texts appeared 304

sleeker and therefore easier to read. 305

5 Conclusion 306

We approached script generation by simulating the 307

interaction of characters. We prepared training data 308

for three different personality types (positive, neu- 309

tral and negative) by clustering average sentiment 310

values of characters in movies and TV shows. We 311

trained the corresponding models and combined 312

them by simulating dramatic networks. We pro- 313

posed a new metric, the NLI-Score, to automati- 314

cally evaluate the consistency of the generated text. 315

Based on both automatic metrics and human eval- 316

uation, our approach outperforms the baseline in 317

all of the observed qualities; our NLI-Score metric 318

shows as indicative of overall output consistency. 319
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