
Entropy Coding of Unordered Data Structures

Julius Kunze 1 Daniel Severo 2 3 Giulio Zani 4 Jan-Willem van de Meent 4 James Townsend 4

Abstract
We present shuffle coding, a general method for
optimal compression of sequences of unordered
objects using bits-back coding. Data structures
that can be compressed using shuffle coding in-
clude multisets, graphs, hypergraphs, and oth-
ers. We release an implementation that can easily
be adapted to different data types and statistical
models, and demonstrate that our implementation
achieves state-of-the-art compression rates on a
range of graph datasets including molecular data.

1. Introduction
The information stored and communicated by computer
hardware, in the form of strings of bits and bytes, is inher-
ently ordered. A string has a first and last element, and
may be indexed by numbers in N, a totally ordered set. For
data like text, audio, or video, this ordering carries meaning.
However, there are numerous data structures in which the
‘elements’ have no meaningful order. Common examples
include graphs, sets, and ‘map-like’ datatypes such as JSON.
Recent applications of machine learning to molecular data
benefit from large datasets of molecules, which are graphs
with vertex and edge labels representing atom and bond
types (some examples are shown in Table 1 below). All of
these data are necessarily stored in an ordered manner on a
computer, but the order then represents redundant informa-
tion. This work concerns optimal lossless compression of
unordered data, and we seek to eliminate this redundancy.

Recent work by Severo et al. (2023a) showed how to con-
struct an optimal lossless codec for (unordered) multisets
from a codec for (ordered) vectors, by storing information in
an ordering. Their method depends on the simple structure

1Department of Computer Science, University College
London 2Department of Electrical and Computer Engineer-
ing, University of Toronto 3Vector Institute for Artificial
Intelligence, Toronto 4Amsterdam Machine Learning Lab
(AMLab), University of Amsterdam. Correspondence to:
Julius Kunze <juliuskunze@gmail.com>, James Townsend
<j.h.n.townsend@uva.nl>.

Accepted to the Neural Compression Workshop, at the 40 th In-
ternational Conference on Machine Learning, Honolulu, Hawaii,
USA. Copyright 2023 by the author(s).

of multisets’ automorphism groups, and does not extend to
other unordered objects such as unlabelled graphs. In this
paper we overcome this issue and develop shuffle coding, a
method for constructing codecs for general ‘unordered ob-
jects’ from codecs for ‘ordered objects’. Our definitions of
ordered and unordered objects are based on the concept of
‘combinatorial species’ (Joyal, 1981; Bergeron et al., 1997),
which were developed to assist with the enumeration of
combinatorial structures. They include multisets, as well as
all of the other unordered data structures mentioned above,
and many more.

Although our method is applicable to any unordered object,
we focus our experiments on unordered (usually referred
to as ‘unlabelled’) graphs, as these are a widely used data
type, and the improvements in compression rate from re-
moving order information are large (as summarized in Ta-
ble 2). We show that shuffle coding can achieve significant
improvements relative to existing methods, when compress-
ing unordered graphs under the G(n, p) model of Erdős
& Rényi (1960), as well as the recently proposed Pólya’s
urn-based model of Severo et al. (2023b). Shuffle Coding
extends to graphs with vertex and edge attributes, such as
the molecular and social network datasets of TUDatasets
(Morris et al., 2020), which are compressed in Section 4.
We release source code1 with straightforward interfaces to
enable future applications of shuffle coding with more so-
phisticated models and to classes of unordered objects other
than graphs.

2. Background
This section gives definitions for ordered and unordered ob-
jects. Entropy coding is reviewed in Appendix B. Examples
are given throughout the section for clarification.

For n ∈ N, we let [n] := {0, 1, . . . , n − 1}, with [0] = ∅.
The symmetric group of permutations on [n], i.e. bijections
from [n] to [n], will be denoted by Sn. Permutations com-
pose on the left, like functions, so for s, t ∈ Sn, the product
st denotes the permutation formed by performing t then s.

1Source code, data and detailed results are available at https:
//github.com/juliuskunze/shuffle-coding.

1

https://github.com/juliuskunze/shuffle-coding
https://github.com/juliuskunze/shuffle-coding

Entropy Coding of Unordered Data Structures

Table 1. Examples of molecules and their order information. The ‘discount’ column shows the saving achieved by shuffle coding by
removing order information (see eq. 11). For each molecule m, n is the number of atoms and |Aut(m)| is the size of the automorphism
group. All values are in bits, and log denotes the binary logarithm.

Molecular structure Permutation Symmetry Discount
log n! log|Aut(m)| log n!− log|Aut(m)|

Nitric oxide N O 1.00 0.00 1.00

Water H
O

H 2.58 1.00 1.58

Hydrogen peroxide O O
H H 4.58 1.00 3.58

Ethylene C C
H H

H H
9.49 3.00 6.49

Boric acid B
O

O
O

H

H

H

12.30 2.58 9.71

Permutations are represented as follows

0 1

2
= (2, 0, 1) ∈ S3. (1)

The glyph on the left-hand side represents the permutation
that maps 0 to 2, 1 to 0 and 2 to 1. This permutation can
also be represented concretely by the vector (2, 0, 1).

Concepts from group theory, including subgroups, cosets,
actions, orbits, and stabilizers are used throughout. We pro-
vide an overview of the required background in Appendix A.

We will be compressing objects which can be ‘re-ordered’ by
applying permutations. This is formalized in the following
definition:
Definition 2.1 (Permutable class2). For n ∈ N, a per-
mutable class of order n is a set F , equipped with a left
group action of the permutation group Sn on F , which we
denote with the · binary operator. We refer to elements of
F as ordered objects.
Example 2.2 (Simple graphs Gn). Let Gn be the set of
simple graphs with vertex set [n]. Specifically, an element
g ∈ Gn is a set of ‘edges’, which are unordered pairs of
distinct elements of [n]. We define the action of Sn on a
graph by moving the endpoints of each edge in the direction
of the arrows, for example

0 1

23
·

0 1

23
=

0 1

23
. (2)

Our main contribution in this paper is a general method
for compressing unordered objects. These may be defined

2This definition is very close to that of a ‘combinatorial species’,
the main difference being that we fix a specific n. See discussion
in (Yorgey, 2014).

formally in terms of the equivalence classes, known as orbits,
which comprise objects that are identical up to re-ordering
(see Appendix A for background):
Definition 2.3 (Isomorphism, unordered objects). For two
objects f and g in a permutable class F , we say that f is
isomorphic to g, and write f ≃ g, if there exists s ∈ Sn

such that g = s · f (i.e. if f and g are in the same orbit
under the action of Sn). Note that the relation ≃ is an
equivalence relation. For f ∈ F we use f̃ to denote the
equivalence class containing f , and F̃ to denote the quotient
set of equivalence classes. We refer to elements f̃ ∈ F̃ as
unordered objects.

For the simple graphs in Example 2.2, the generalized iso-
morphism in Definition 2.3 reduces to the usual notion of
graph isomorphism. We can define a shorthand notation
for unordered graphs, with points at the nodes instead of
numbers:

:=
0̃ 1

23
. (3)

Using this notation, the unordered simple graphs on three
vertices, for example, can be written:

G̃3 =
{

, , ,
}
. (4)

Finally, we define the subgroup of Sn containing the sym-
metries of a given object f :
Definition 2.4 (Automorphism group). For an element f of
a permutable class F , we let Aut(f) denote the automor-
phism group of f , defined by

Aut(f) := {s ∈ Sn | s · f = f}. (5)

This is the stabilizer subgroup of f under the action of Sn.

2

Entropy Coding of Unordered Data Structures

The elements of the automorphism group of the simple
graph from Example 2.2 are:

Aut

(
0 1

23

)
=

{
0 1

23
,

0 1

23

}
.

(6)

2.1. Canonical orderings

To define a codec for unordered objects, we will introduce
the notion of a ‘canonical’ representative of each equiva-
lence class in F̃ . This allows us, for example, to check
whether two ordered objects are isomorphic, by mapping
both to the canonical representative and comparing.

Definition 2.5 (Canonical ordering). A canonical ordering
is an operator · : F → F , such that

1. For f ∈ F , we have f ≃ f .

2. For f, g ∈ F , f = g if and only if f ≃ g.

For graphs, the canonical orderings we use are computed
using the nauty and Traces libraries (McKay & Piperno,
2014). The libraries provide a function, which we call
canon_perm, which, given a graph g, returns a permutation
s such that s · g = g. As well as canon_perm, nauty and
Traces are able to compute the automorphism group of a
given graph, via a function which we refer to as aut.3

While permutable objects other than graphs cannot be di-
rectly canonized by nauty and Traces, it is often possible
to embed objects into graphs in such a way that the structure
is preserved and the canonization remains valid (Anders &
Schweitzer, 2021).

3. Codecs for unordered objects
Our main contribution in this paper is a generic codec for
unordered objects, i.e. a codec respecting a given probability
distribution on F̃ . We first derive an expression for the
rate that this codec should achieve, then in Section 3.1 we
describe the codec itself.

To help simplify the presentation, we will use the following
generalization of exchangeability from sequences of random
variables to arbitrary permutable classes:

Definition 3.1 (Exchangeability). For a probability distri-
bution P defined on a permutable class F , we say that P is
exchangeable if isomorphic objects have equal probability
under P , i.e. if

f ≃ g ⇒ P (f) = P (g). (7)
3In fact, a list of generators for the group is computed, rather

than the entire group, which may be very large.

0 1

2

0 1

2

0 1

2

0 1

2

0 1

2

0 1

2

·
0 1

2
=

0 1

2

0 1

2

0 1

2

Figure 1. Visualization of Lemma 3.3. For a fixed graph g, the six
elements s ∈ S3 can be partitioned according to the value of s · g.
The three sets in the partition are the left cosets of Aut(g).

We can assume, without loss of modelling power, that un-
ordered objects are generated by first generating an ordered
object from an exchangeable distribution and then ‘forget-
ting the order’:

Lemma 3.2 (Symmetrization). For any distribution Q on
a class of unordered objects F̃ , there exists a unique ex-
changeable distribution P on ordered objects F for which

Q(f̃) =
∑
g∈f̃

P (g). (8)

Proof. For existence, set P (f) := Q(f̃)/|f̃ | for f ∈ F , and
note that g ∈ f̃ ⇒ g̃ = f̃ . For uniqueness, Definition 3.1
implies that the restriction of P to any particular class must
be uniform, which completely determines P .

We will model real-world permutable objects using an ex-
changeable model, which will play the role of P in Equa-
tion (8). To further simplify our rate expression we will also
need the following application of the orbit-stabilizer theo-
rem (see Appendix A for more detail), which is visualized
in Figure 1:

Lemma 3.3. Given a permutable class F , for each object
f ∈ F , there is a fixed bijection between the left cosets of
Aut(f) in Sn and the isomorphism class f̃ . This is induced
by the function θf : Sn → F defined by θf (s) := s · f . This
implies that

|f̃ | = |Sn|
|Aut(f)|

=
n!

|Aut(f)|
. (9)

Proof. Follows directly from the orbit-stabilizer theorem
(Theorem A.4) and the definitions of Aut, f and f̃ .

For any f ∈ F , this allows us to express the right hand side
of Equation (8) as:∑

g∈f̃

P (g) = |f̃ |P (f) =
n!

|Aut(f)|
P (f) (10)

3

Entropy Coding of Unordered Data Structures

where the first equality follows from exchangeability of
P , and the second from Equation (9). Finally, from Equa-
tions (8) and (10), we have the following rate expression,
which a codec on unordered objects should achieve:

log
1

Q(f̃)
= log

1

P (f)

Ordered rate

− log
n!

|Aut(f)|
Discount

. (11)

Note that only the log 1/P (f) term depends on the choice
of model. The log(n!/|Aut(f)|) term can be computed di-
rectly from the data, and is the ‘discount’ that we get for
compressing an unordered object vs. compressing an or-
dered one. The discount is larger for objects which have a
smaller automorphism group, i.e. objects which lack sym-
metry. It can be shown that almost all simple graphs have a
trivial automorphism group for large enough n (Bollobás,
2001, Chapter 9), and in practice the discount is usually
equal to or close to log n!.

3.1. Achieving the target rate for unordered objects

In Listing B.1 we give examples of codecs for ordered
strings and simple graphs which achieved the ‘ordered rate’.
To operationalize the negative ‘discount’ term, we can use
the ‘bits-back with ANS’ method introduced by Townsend
et al. (2019), the key idea being to decode an ordering as
part of an encode function (see line 4 in the code below).

The value of the negative term in the rate provides a hint
at how exactly to decode an ordering: the discount is equal
to the logarithm of the number of cosets of Aut(f) in Sn,
so a uniform codec for those cosets will consume exactly
that many bits. Lemma 3.3 tells us that there is a direct
correspondence between the cosets of Aut(f) and the set
f̃ , so if we uniformly decode a choice of coset, we can
reversibly map that to an ordering of f .

The following is an implementation of shuffle coding, show-
ing, in comments, the effect of the steps on message length.

1 def encode(m, f):
2 f_canon = action_apply(canon_perm(f), f)
3 # Changes message length by − log n!

|Aut(f)|:

4 m, s = UniformLCoset(f_canon.aut).decode(m)
5 g = action_apply(s, f_canon)
6 # Changes message length by + log 1

P (f):
7 m = P.encode(m, g)
8 return m
9

10 def decode(m):
11 m, g = P.decode(m)
12 s_ = inv_canon_perm(g)
13 f_canon = action_unapply(s_, f)
14 m = UniformLCoset(f_canon.aut).encode(m, s_)
15 return m, f_canon

The encode function accepts a pair (m, f), and reversibly
decodes a random choice g from the isomorphism class of f.
This is done using UniformLCoset, discussed in detail in
Appendix E. The canonization on line 2 is necessary for the
decoder to recover the chosen coset and encode it on line 12.
We avoid representing equivalence classes explicitly as sets,
instead using a single element of the class as a representative.
Thus the encoder accepts any f in the isomorphism class
being encoded, and the decoder then returns the canoniza-
tion of f. Similarly, UniformLCoset.encode accepts any
element of the coset, and UniformLCoset.decode returns
a canonical coset element.

4. Experiments
To demonstrate the method experimentally, we first applied
it to the TUDatasets graphs (Morris et al., 2020), using a
very simple Erdős-Rényi G(n, p) model for P . Table 2
shows a summary, highlighting the significance of the dis-
count achieved by shuffle coding. We compressed a dataset
at a time (note that for each high-level graph type there are
multiple datasets in TUDatasets). To handle graphs with
discrete vertex and edge attributes, we treated all attributes
as independent and identically distributed (i.i.d.) within
each dataset. For each dataset, the codec computes and en-
codes a separate empirical probability vector for vertices and
edges, as well as an empirical p parameter, and the size n of
each graph. For encoding these meta-data we used Uniform
codecs. Further details can be found in Appendix G.

In Appendix F, we additionally compare our method to PnC
(Bouritsas et al., 2021) and SZIP (Choi & Szpankowski,
2012), achieving state-of-the-art compression rates on a
range of graph datasets. We also provide runtimes and
ablations.

Table 2. For the TUDatasets, this table shows the significance of
the discount term in Equation (11). With an Erdős-Rényi (ER)
model, with edge probability adapted to each dataset, the percent-
age improvement (Discount) is the difference between treating the
graph as ordered (Ordered) and using Shuffle coding to forget the
order (Shuffle coding). Rates are measured in bits per edge.

Graph type Ordered Shuffle coding Discount

Small molecules 2.11 1.14 46%
Bioinformatics 9.20 6.50 29%
Computer vision 6.63 4.49 32%
Social networks4 3.98 2.97 26%
Synthetic 5.66 2.99 47%

4Three of the 24 social network datasets, REDDIT-BINARY,
REDDIT-MULTI-5K, REDDIT-MULTI-12K, were excluded be-
cause compression running time was too long.

4

Entropy Coding of Unordered Data Structures

5. Conclusion
We have presented shuffle coding, the first general method
which achieves an optimal rate when compressing sequences
of unordered objects. We have also implemented experi-
ments which demonstrate the practical effectiveness of shuf-
fle coding for compressing many kinds of graphs, including
molecules and social network data. We look forward to fu-
ture work applying the method to other forms of unordered
data, and applying more sophisticated probabilistic genera-
tive models to gain improvements in compression rate.

Acknowledgements
James Townsend acknowledges funding under the project
VI.Veni.212.106, financed by the Dutch Research Council
(NWO). We thank Ashish Khisti for discussions and en-
couragement, and Heiko Zimmermann for feedback on the
paper.

References
Anders, M. and Schweitzer, P. Parallel Computation of

Combinatorial Symmetries. August 2021.

Bergeron, F., Labelle, G., and Leroux, P. Combinatorial
Species and Tree-like Structures. Encyclopedia of Mathe-
matics and Its Applications. 1997.

Besta, M. and Hoefler, T. Survey and Taxonomy of Lossless
Graph Compression and Space-Efficient Graph Represen-
tations, April 2019.

Bollobás, B. Random Graphs. Cambridge Studies in Ad-
vanced Mathematics. Second edition, 2001.

Bouritsas, G., Loukas, A., Karalias, N., and Bronstein, M.
Partition and Code: Learning how to compress graphs.
In Advances in Neural Information Processing Systems,
volume 34, pp. 18603–18619, 2021.

Chen, X., Han, X., Hu, J., Ruiz, F., and Liu, L. Order Mat-
ters: Probabilistic Modeling of Node Sequence for Graph
Generation. In Proceedings of the 38th International
Conference on Machine Learning, pp. 1630–1639, July
2021.

Choi, Y. and Szpankowski, W. Compression of Graphical
Structures: Fundamental Limits, Algorithms, and Experi-
ments. IEEE Transactions on Information Theory, 58(2):
620–638, February 2012.

Duda, J. Asymmetric numeral systems. arXiv:0902.0271
[cs, math], May 2009.

Erdős, P. and Rényi, A. On the evolution of random graphs.
Publications of the Mathematical Institute of the Hungar-
ian Academy of Sciences, 5(1):17–60, 1960.

Holt, D. F. Handbook of Computational Group Theory.
Discrete Mathematics and Its Applications. 2005.

Joyal, A. Une théorie combinatoire des séries formelles.
Advances in Mathematics, 42(1):1–82, October 1981.

Kingma, F., Abbeel, P., and Ho, J. Bit-Swap: Recursive Bits-
Back Coding for Lossless Compression with Hierarchical
Latent Variables. In Proceedings of the 36th International
Conference on Machine Learning, pp. 3408–3417, May
2019.

Knuth, D. E. The Art of Computer Programming, volume 2.
2nd ed. edition, 1981.

McKay, B. D. and Piperno, A. Practical graph isomorphism,
II. Journal of Symbolic Computation, 60:94–112, January
2014.

5

Entropy Coding of Unordered Data Structures

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. TUDataset: A collection of bench-
mark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and beyond
(GRL+ 2020), 2020.

Seress, Á. Permutation Group Algorithms. Number 152 in
Cambridge Tracts in Mathematics. 2003.

Severo, D., Townsend, J., Khisti, A., Makhzani, A., and
Ullrich, K. Compressing Multisets with Large Alphabets.
IEEE Journal on Selected Areas in Information Theory,
2023a.

Severo, D., Townsend, J., Khisti, A. J., and Makhzani, A.
Random Edge Coding: One-Shot Bits-Back Coding of
Large Labeled Graphs. Proceedings of the 40th Interna-
tional Conference on Machine Learning, 2023b.

Sims, C. C. Computational methods in the study of permu-
tation groups. In Computational Problems in Abstract
Algebra, pp. 169–183. January 1970.

Steinruecken, C. Lossless Data Compression. PhD thesis,
University of Cambridge, 2014.

Steinruecken, C. Compressing Sets and Multisets of Se-
quences. IEEE Transactions on Information Theory, 61
(3):1485–1490, March 2015.

Steinruecken, C. Compressing Combinatorial Objects. In
2016 Data Compression Conference (DCC), pp. 389–396,
March 2016.

Townsend, J. A tutorial on the range variant of asymmetric
numeral systems, January 2020.

Townsend, J. Lossless Compression with Latent Variable
Models. PhD thesis, April 2021.

Townsend, J., Bird, T., and Barber, D. Practical lossless
compression with latent variables using bits back coding.
In International Conference on Learning Representations
(ICLR), 2019.

Varshney, L. and Goyal, V. Toward a source coding theory
for sets. In Data Compression Conference (DCC’06), pp.
13–22, March 2006.

Yorgey, B. Combinatorial Species and Labelled Structures.
PhD thesis, University of Pennsylvania, 2014.

Zhu, Y., Du, Y., Wang, Y., Xu, Y., Zhang, J., Liu, Q., and
Wu, S. A Survey on Deep Graph Generation: Methods
and Applications. In Proceedings of the First Learning
on Graphs Conference, pp. 47:1–47:21, December 2022.

6

Entropy Coding of Unordered Data Structures

A. Group actions, orbits and stabilizers
This appendix gives the definitions of group actions, orbits and stabilizers as well as a statement and proof of the orbit-
stabilizer theorem, which we make use of in Section 3. We use the shorthand H ≤ G to mean that H is a subgroup of G, and
for g ∈ G, we use the usual notation, gH := {gh | h ∈ H} and Hg := {hg | h ∈ H} for left and right cosets, respectively.
Definition A.1 (Group action). For a set X and a group G, a group action, or simply action, is a binary operator

·G : G×X → X (12)

which respects the structure of G in the following sense:

1. The identity element e ∈ G is neutral, that is e ·G x = x.

2. The operator ·G respects composition. That is, for g, h ∈ G,

g ·G (h ·G x) = (gh) ·G x. (13)

We will often drop the subscript G and use infix · alone where the action is clear from the context.
Definition A.2 (Orbit). An action of a group G on a set X induces an equivalence relation ∼G on X , defined by

x ∼G y if and only if there exists g ∈ G such that y = g · x. (14)

We refer to the equivalence classes induced by ∼G as orbits, and use OrbG(x) to denote the orbit containing an element
x ∈ X . We use X/G to denote the set of orbits, so for each x ∈ X , OrbG(x) ∈ X/G.
Definition A.3 (Stabilizer subgroup). For an action of a group G on a set X , for each x ∈ X , the stabilizer

StabG(x) := {g ∈ G | g · x = x} (15)

forms a subgroup of G.

We make use of the orbit-stabilizer theorem in Section 3. Here we give a statement and brief proof of this well-known
theorem.
Theorem A.4 (Orbit-stabilizer theorem). For an action of a finite group G on a set X , for each x ∈ X , the function
θx : G → X defined by

θx(g) := g · x (16)

induces a bijection from the left cosets of StabG(x) to OrbG(x). This implies that the orbit OrbG(x) is finite and

|OrbG(x)| =
|G|

|StabG(x)|
. (17)

Proof. We show that θf induces a well defined function on the left-cosets of StabG(x), which we call θ̃f . Specifically, we
define

θ̃f (g StabG(x)) := g · x, (18)

and show that θ̃f is injective and surjective.

To see that θ̃f is well defined and injective, note that

h ∈ g StabG(x) ⇐⇒ g−1h ∈ StabG(x) (19)

⇐⇒ g−1h · x = x (20)
⇐⇒ g · x = h · x, (21)

using the definition of StabG.

For surjectivity, we have

y ∈ OrbG(x) =⇒ ∃g ∈ G s.t. y = g · x (22)

=⇒ y = θ̃f (g StabG(x)) (23)

using the definition of OrbG.

7

Entropy Coding of Unordered Data Structures

In Appendix E.2, it will be helpful to have an explicit bijection between G and the Cartesian product OrbG(x)× StabG(x).
This requires a way of selecting a canonical element from each left coset of StabG(x) in G. This is similar to the canonical
ordering of Definition 2.5:

Definition A.5 (Transversal). For a group G with subgroup H ≤ G, a transversal of the left cosets of H in G is a mapping
t : G → G such that

1. For all g ∈ G, we have t(g) ∈ gH .

2. For all f, g ∈ G, if f ∈ gH , then t(f) = t(g).

Given such a transversal, we can setup the bijection mentioned above:

Lemma A.6. Let G be a group acting on a set X . If, for x ∈ X , we have a transversal tx of the left cosets of StabG(x) in
G, then we can form an explicit bijection between G and OrbG(x)× StabG(x).

Proof. For g ∈ G, let

ox(g) := g · x (24)

sx(g) := tx(g)
−1g, (25)

then ox ∈ OrbG(x). By condition 1 in Definition A.5, there exists h ∈ StabG(x) such that t(g) = gh, and in particular
sx(g) = h ∈ StabG(x). So there is a well-defined function ϕx(g) := (ox(g), sx(g)) with ϕx : G → OrbG(x)× StabG(x).

To see that ϕx is injective, suppose that ϕx(f) = ϕx(g). Then ox(f) = ox(g), so f ·x = g ·x, and therefore f ∈ g StabG(x).
Condition 2 in Definition A.5 implies that tx(f) = tx(g), and since sx(g) = sx(f) we have tx(f)

−1f = tx(g)
−1g, so

f = g.

The orbit-stabilizer theorem implies that |G| = |OrbG(x)||StabG(x)|, and therefore if ϕx is injective it must also be
bijective.

B. Codecs
We fix a set M of prefix-free binary messages, and a length function l : M → [0,∞), which measures the number of
physical bits required to represent values in M .

Definition B.1 (Optimal codec). For a set X and a probability distribution on X with mass function P , an optimal codec
for P is an inverse pair of functions

encode : M ×X → M and decode : M → M ×X (26)

which respect P in the sense that, for any m ∈ M and x ∈ X ,

l(encode(m,x)) ≈ l(m) + log
1

P (x)
.5 (27)

We refer to log 1
P (x) as the rate of the codec.

Definition B.1 captures the abstract properties of codecs based on the range variant of asymmetric numeral systems (rANS).
Note that the encode function requires a pre-existing message as its first input. Therefore, at the beginning of encoding we
set m equal to some fixed, short initial message m0, with length less than 64 bits. This constant ‘initial bit cost’ exists for all
entropy coding methods, and is amortized as we compress more data.

We will assume access to three primitive codecs provided by rANS. These are

• Uniform(n), respecting a uniform distribution on {0, 1, . . . , n-1}.

• Bernoulli(p), respecting a Bernoulli distribution with probability p.

5This condition, with a suitable definition of ≈, is equivalent to rate-optimality in the usual Shannon sense, see (Townsend, 2020).

8

Entropy Coding of Unordered Data Structures

• Categorical(ps), respecting a categorical distribution with probability vector ps on {0, 1, . . . , len(ps)-1}.

Listing B.1 shows how we can use the primitive codecs to implement codecs for strings and simple graphs. The string codec
respects a distribution where each character is drawn i.i.d. from a categorical with known probabilities. For simple graphs,
the codec respects the Erdős-Rényi G(n, p) model, where each edge’s existence is decided by an independent draw from a
Bernoulli with known probability parameter. We will use these codecs for ordered objects as a component of shuffle coding.

Listing B.1 Left: Codec for fixed-length strings implemented by applying a Categorical codec to each character. Right:
Codec for graphs respecting an Erdős-Rényi distribution G(n, p), implemented by applying the Bernoulli codec to each
edge.

def String(ps, length):
def encode(m, string):

assert len(string) == length
for c in reversed(string):

m = Categorical(ps).encode(m, c)
return m

def decode(m):
string = []
for _ in range(length):
m, c = Categorical(ps).decode(m)
string.append(c)

return m, str(string)
return Codec(encode, decode)

def ErdosRenyi(n, p):
def encode(m, g):
assert len(g) == n
for i in reversed(range(n)):

for j in reversed(range(i)):
e = g[i][j]
m = Bernoulli(p).encode(m, e)

return m

def decode(m):
g = []
for i in range(n):

inner = []
for j in range(i)

m, e = Bernoulli(p).decode(m)
inner.append(e)

g.append(inner)
return (m, g)

return Codec(encode, decode)

There is an implementation-dependent limit on the parameter n of Uniform and on the number of categories for Categorical.
In the 64-bit rANS implementation which we wrote for our experiments, this limit is 248. This is not large enough to, for
example, cover Sn for large n, and therefore permutations must be encoded and decoded sequentially, see Appendix E. For
details on the implementation of the primitive rANS codecs listed above, see Duda (2009); Townsend (2021).

C. Initial bits
The increase in message length from shuffle coding is equal to the optimal rate in Equation (11). However, the decode
step on line 3 of the encode function assumes that there is already some information in the message which can be decoded.
At the very beginning of encoding, these ‘initial bits’ can be generated at random, but they are unavoidably encoded into
the message, meaning that for the first object, the discount is not realised. This constant initialization overhead means
that the rate, when compressing only one or a few objects, is not optimal, but tends to the optimal rate if more objects are
compressed, as the overhead is amortized.

By generalizing the multiset coding method described by Severo et al. (2023a), it is possible to reduce the initial bits needed
by shuffle coding from O(log n!) to O(log n). This is achieved by the encoder eagerly encoding information during the
progressive decoding of the coset. We leave a detailed description of that more sophisticated method to future work and
focus here on the simpler version described above. The more sophisticated method which interleaves encoding and decoding
steps can be viewed as a special case of the ‘bit-swap’ method of Kingma et al. (2019).

D. Related work
To date, there has been a significant amount of work on compression of what we refer to as ‘ordered’ graphs, see Besta
& Hoefler (2019) for a comprehensive survey. Compression of ‘unordered’ graphs, and unordered objects in general, has
been less well studied, despite the significant potential benefits of removing order information (see Table 2). The work
of Varshney & Goyal (2006) is the earliest we are aware of to discuss the theoretical bounds for compression of sets and
multisets, which are unordered strings.

9

Entropy Coding of Unordered Data Structures

Choi & Szpankowski (2012) discuss the theoretical rate for unordered graphs (a special case of our eq. 11), and present a
compression method called ‘structural ZIP’ (SZIP), which asymptotically achieves the rate

log
1

PER(g)
− n log n+O(n), (28)

where PER is the Erdős-Rényi G(n, p) model. Compared to our method, SZIP is less flexible in the sense that it only applies
to simple graphs (without vertex or edge attributes), and it is not an entropy coding method, thus the model PER cannot
be changed easily. On the other hand, SZIP can achieve good rates on single graphs, whereas, because of the initial bits
issue (see Appendix C), our method only achieves an optimal rate on sequences of objects. We discuss this issue further and
provide a quantitative comparison in Section 4.

Steinruecken (2014; 2015; 2016) provides a range of specialized methods for compression of various ordered and unordered
permutable objects, including multisets, permutations, combinations and compositions. Steinruecken’s approach is similar
to ours in that explicit probabilistic modelling is used, although different methods are devised for each kind of object rather
than attempting a unifying treatment as we have done.

Our method can be viewed as a generalization of the framework for multiset compression presented in Severo et al. (2023a),
which also used ‘bits-back with ANS’ (BB-ANS; Townsend et al., 2019; Townsend, 2021). Severo et al. (2023a) use
interleaving to reduce the initial bits overhead and achieve an optimal rate when compressing a single multiset (which can
also be applied to a sequence of multisets), whereas the method presented in this paper is optimal only for sequences of
unordered objects (including sequences of multisets). However, as mentioned in Section 1, their method only works for
multisets and not for more general unordered objects. Very recently, Severo et al. (2023b) proposed a codec for large ordered
graphs, applying the multiset codec with a Pólya urn model to compress the graph’s edge set. We use this in some of our
experiments below.

There are a number of recent works on deep generative modelling of graphs (see (Zhu et al., 2022) for a survey), which
could be applied to entropy coding to improve compression rates. Particularly relevant is Chen et al. (2021), who optimize
an evidence lower-bound (ELBO), equivalent to an upper-bound on the rate in Equation (11), when P is not exchangeable.
Finally, the ‘Partition and Code’ (PnC; Bouritsas et al., 2021) method uses neural networks to compress unordered graphs.
We compare to PnC empirically in Table 3. PnC is also specialized to graphs, although it does employ probabilistic modelling
to some extent.

E. A uniform codec for cosets of a permutation group
Shuffle coding, as described in Section 3, requires that we are able to encode and decode left cosets in Sn of the automorphism
group of a permutable object. In this appendix we describe a codec for cosets of an arbitrary permutation group characterized
by a list of generators. We first describe the codec, which we call UniformLCoset, on a high level and then in Appendices E.1
and E.2, we describe the two main components in more detail.

The target rate for a uniform coset codec is equal to the log of the number of cosets, that is

log
|Sn|
|H|

= log n!− log|H|. (29)

This rate expression hints at an encoding method: to encode a coset we first decode a choice of element of the coset
(equivalent to decoding a choice of element of H and then multiplying it by a canonical element of the coset), and then
encode that chosen element using a uniform codec on Sn. Note that if the number of cosets is small we could simply encode
the index of the coset directly, but in practice this is rarely feasible.

The following is a concrete implementation of a left coset codec:

1 def UniformLCoset(grp): Effects on l(m):
2 def encode(m, s):
3 s_canon = coset_canon(grp, s)
4 m, t = UniformPermGrp(grp).decode(m) − log|H|
5 u = s_canon * t
6 m = UniformS(n).encode(m, u) + log(n!)

10

Entropy Coding of Unordered Data Structures

7 return m
8

9 def decode(m):
10 m, u = UniformS(n).decode(m)
11 s_canon = coset_canon(subgrp, u)
12 t = inv(s_canon) * u
13 m = UniformPermGrp(grp).encode(m, t)
14 return m, s_canon
15 return Codec(encode, decode)

The codecs UniformS and UniformPermGrp are described in Appendix E.1 and Appendix E.2 respectively. UniformS(n)
is a uniform codec over the symmetric group Sn, and UniformPermGrp is a uniform codec over elements of a given
permutation group, i.e., a subgroup of Sn.

We use a stabilizer chain, discussed in more detail in Appendix E.2, which is a computationally convenient representation
of a permutation group. A stabilizer chain allows computation of a transversal which can be used to canonize coset
elements (line 3 and line 11 in the code above). Routines for constructing and working with stabilizer chains are standard
in computational group theory, and are implemented in SymPy (https://www.sympy.org/), as well as the GAP system
(https://www.gap-system.org/), see Holt (2005, Chapter 4) for theory and description of the algorithms. The method
we use for coset_canon is implemented in the function MinimalElementCosetStabChain in the GAP system.

E.1. A uniform codec for permutations in the symmetric group

We use a method for encoding and decoding permutations based on the Fisher-Yates shuffle (Knuth, 1981, 139–140). The
following is a Python implementation:

1 def UniformS(n):
2 def swap(s, i, j):
3 si_old = s[i]
4 s[i] = s[j]
5 s[j] = si_old
6

7 def encode(m, s):
8 p = list(range(n))
9 p_inv = list(range(n))

10 to_encode = []
11 for j in reversed(range(2, n + 1)):
12 i = p_inv[x[j - 1]]
13 swap(p_inv, p[j - 1], x[j - 1])
14 swap(p, i, j - 1)
15 to_encode.append(i)
16

17 for j, i in zip(range(2, n + 1), reversed(to_encode)):
18 m = Uniform(j).encode(m)
19 return m
20

21 def decode(m):
22 s = list(range(n))
23 for j in reversed(range(2, n + 1)):
24 m, i = Uniform(j).decode(m)
25 swap(s, i, j - 1)
26 return m, s
27 return Codec(encode, decode)

The decoder closely resembles the usual Fisher-Yates sampling method, and the encoder has been carefully implemented to

11

https://www.sympy.org/
https://www.gap-system.org/

Entropy Coding of Unordered Data Structures

exactly invert this process. Both encoder and decoder have time complexity in O(n).

E.2. A uniform codec for permutations in an arbitrary permutation group

For coding permutations from an arbitrary permutation group, we use the following construction, which is a standard tool in
computational group theory (see (Seress, 2003; Holt, 2005)):

Definition E.1 (Base, Stabilizer chain). Let H ≤ Sn be a permutation group, and B = (b0, . . . , bK−1) a list of elements of
[n]. Let H0 := H , and Hk := StabHk−1

(bk−1) for k = 1, . . . ,K. If HK is the trivial group containing only the identity,
then we say that B is a base for H , and the sequence of groups H0, . . . ,HK is a stabilizer chain of H relative to B.

Bases and stabilizer chains are guaranteed to exist for all permutation groups, and can be efficiently computed using the
Schreier-Sims algorithm (Sims, 1970). The algorithm also produces a transversal for the left cosets of each Hk+1 in Hk for
each k = 0, . . . ,K − 1, in a form known as a Schreier tree (Holt, 2005).

If we define Ok := OrbHk
(bk), for k = 0, . . . ,K − 1, then by applying the orbit-stabilizer theorem recursively, we have

|H| =
∏K−1

k=0 |Ok|, which gives us a decomposition of the rate that a uniform codec on H should achieve:

log|H| =
K−1∑
k=0

log|Ok|. (30)

Furthermore, by applying Lemma A.6 recursively, using the transversals produced by Schreier-Sims, we can consruct an
explicit bijection between H and the Cartesian product

∏K−1
k=0 Ok. We use this bijection, along with a sequence of uniform

codecs on O0, . . . , OK−1 for coding automorphisms at the optimal rate in Equation (30). For further details refer to the
implementation.

F. Further experimental results
F.1. Rate comparison

We compared our compression rate directly to Bouritsas et al. (2021), who used a more sophisticated neural method to
compress graphs (upper part of Table 3). They reported results for six of the datasets from the TUDatasets with vertex and
edge attributes removed, and for two of the six they reported results which included vertex and edge attributes. Because PnC
requires training, it was evaluated on a random test subset of each dataset, whereas shuffle coding was evaluated on entire
datasets.

We found that for some types of graphs, such as the bioinformatics and social network graphs, performance was significantly
improved by using a Pólya urn (PU) preferential attachment model introduced by Severo et al. (2023b). The urn model,
for ordered graphs, treats edges as a set, and we were able to use an inner shuffle codec for sets to encode the edges,
demonstrating the straightforward compositionality of shuffle coding. Differently to the original implementation, we apply
shuffle coding to the list of edges, resulting in a codec for the multiset of edges. We do not use a tree data structure for the
Pólya urn. We also disallow edge redraws and self-loops, leading to an improved rate, as shown in Appendix F.3. This
change breaks edge-exchangeability, leading to a ‘stochastic’ codec, meaning that the code length depends on the initial
message. Shuffle coding is compatible with such models. In this more general setting, the ordered log-likelihood term in the
rate (eq. 11) is replaced with a variational ‘evidence lower bound’ (ELBO). The discount term is unaffected. The derivations
in the main text are based on the special case of exchangeable models, where log-likelihoods are exact, for simplicity. They
can be generalized with little effort and new insight.

As mentioned in Appendix D, SZIP achieves a good rate for single graphs, whereas shuffle coding is only optimal for
sequences of graphs. In the lower part of Table 3, we compare the ‘net rate’, which is the increase in message length from
shuffle coding the graphs, assuming some existing data is already encoded into the message. The fact that shuffle coding
‘just works’ with any statistical model for ordered graphs is a major advantage of the method, as demonstrated by the fact
that we were easily able to improve on the Erdős-Rényi results by swapping in a recently proposed model.

The total single-thread running time for all of our experiments was 30 hours on a MacBook Pro 2018 with a 2.7GHz Intel
Core i7 CPU. Our implementation has not yet been optimized for speed and we are optimistic that the running time of
shuffle coding can be significantly improved. One thing that will not be easy to speed up is canonical ordering, since for this
we use the nauty and Traces libraries, which have already been heavily optimized. Fortunately, those calls are currently

12

Entropy Coding of Unordered Data Structures

Table 3. Comparison between shuffle coding, with Erdős-Rényi (ER) and our Pólya urn (PU) models, and the best results obtained by
PnC (Bouritsas et al., 2021) and SZIP (Choi & Szpankowski, 2012) for each dataset. Each SZIP comparison is on a single graph, and thus
for shuffle coding we report the net compression rate, that is the additional cost of compressing that graph assuming there is already some
compressed data to append to. All measurements are in bits per edge.

Shuffle coding

Dataset ER PU PnC

Small molecules
MUTAG 1.88 2.66 2.45±0.02
MUTAG (with attributes) 4.20 4.97 4.45
PTC_MR 2.00 2.53 2.97±0.14
PTC_MR (with attributes) 4.88 5.40 6.49±0.54
ZINC_full 1.82 2.63 1.99

Bioinformatics
PROTEINS 3.68 3.50 3.51±0.23

Social networks
IMDB-BINARY 2.06 1.50 0.54
IMDB-MULTI 1.52 1.14 0.38

Shuffle coding (net)

Dataset ER PU SZIP

Airports (USAir97) 5.09 2.90 3.81
Protein interaction (YeastS) 6.84 5.70 7.05
Collaboration (geom) 8.30 4.41 5.28
Collaboration (Erdos) 7.00 4.37 5.08
Genetic interaction (homo) 8.22 6.77 8.49
Internet (as) 8.37 4.47 5.75

only 10 percent of the overall time, and we believe there is significant scope for optimization of the rest. We report the time
required for canonical ordering for each dataset in the next subsection.

We have published data used to evaluate SZIP (Choi & Szpankowski, 2012) with the authors’ consent. This and more
detailed results are available in the code repository https://github.com/entropy-coding/shuffle-coding.

F.2. Runtimes

We show runtimes of our experiments in Table 4. These runtimes include time needed for gathering dataset statistics
and parameter coding. The results show that for our implementation, only a small fraction of runtime is spent on finding
automorphism groups and canonical orderings with nauty.

F.3. Model ablations

We present results of additional ablation experiments on the PnC datasets in Table 5. We do an ablation that uses a uniform
distribution for vertex and edge attributes with an Erdős-Rényi model (unif. ER). There is a clear advantage to coding
maximum-likelihood categorical parameters (ER), justifying it as the approach used throughout this paper. We also show
the rates obtained by the original method proposed in Severo et al. (2023b) (PU redr.), demonstrating a clear rate advantage
of our approach disallowing edge redraws and self-loops (PU) in the model.

Unlike PnC, we do not rely on compute-intense learning or hyper-parameter tuning, and instead rely on very simple empirical
statistics. We would expect to see improved rates for shuffle coding when combined with neural models.

13

https://github.com/entropy-coding/shuffle-coding

Entropy Coding of Unordered Data Structures

Table 4. Total runtimes, in seconds, for nauty calls determining the canonical ordering and generators of the automorphism group of all
graphs, and encoding and decoding with shuffle coding on the Erdős-Rényi (ER) and Pólya urn (PU) models, for all previously reported
TU and SZIP datasets.

ER PU

Dataset nauty encode decode encode decode

TU by type
Small molecules 172 1211 1160 – –
Bioinformatics ≤ 1 24 19 – –
Computer vision ≤ 1 18 16 – –
Social networks 94 38241 35987 – –
Synthetic 1 19 17 – –

Small molecules
MUTAG ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1
MUTAG (with attributes) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1
PTC_MR ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1
PTC_MR (with attributes) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1
ZINC_full 4 35 35 74 80

Bioinformatics
PROTEINS ≤ 1 1 1 2 2

Social networks
IMDB-BINARY ≤ 1 2 2 3 3
IMDB-MULTI ≤ 1 2 2 4 4

SZIP
Airports (USAir97) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1
Protein interaction (YeastS) ≤ 1 3 4 7 10
Collaboration (geom) 12 7268 6527 5882 5868
Collaboration (Erdos) 111 747 748 762 766
Genetic interaction (homo) 18 216 252 331 275
Internet (as) 4987 38670 34507 37156 38432

G. Parameter coding details
All bit rates reported for our experiments include model parameters. Once per dataset, we code the following lists of natural
numbers by coding both the list length and the bit count ⌈logm⌉ of the maximum element m with a codec respecting a
discretized log-uniform distribution, as well as each element of the list using the same log-uniform codec over [0, 2m]:

• A list resulting from sorting the graphs’ numbers of vertices, and applying run-length coding, encoding run lengths and
differences between consecutive numbers of vertices.

• For datasets with vertex attributes: a list of all vertex attribute counts within a dataset.

• For datasets with edge attributes: a list of all edge attribute counts within a dataset.

• For Erdős-Rényi models: a list consisting of the following two numbers: the total number of edges in all graphs, and
the number of vertex pairs that do not share an edge.

Coding these empirical count parameters allows coding the data according to maximum likelihood categorical distributions.
For Pólya urn models, we additionally code the edge count for each graph using a uniform codec over [0, 1

2n(n − 1)],
exploiting the fact that the vertex count n is already coded as described above. For each dataset, we use a single bit to code
whether or not self-loops are present and adapt the codec accordingly.

14

Entropy Coding of Unordered Data Structures

Table 5. Model ablations compared to PnC.

Shuffle coding

Dataset unif. ER ER PU PU redr. PnC

Small molecules
MUTAG – 1.88 2.66 2.81 2.45±0.02
MUTAG (with attributes) 6.37 4.20 4.97 5.13 4.45
PTC_MR – 2.00 2.53 2.74 2.97±0.14
PTC_MR (with attributes) 8.04 4.88 5.40 5.61 6.49±0.54
ZINC_full – 1.82 2.63 2.75 1.99

Bioinformatics
PROTEINS – 3.68 3.50 3.62 3.51±0.23

Social networks
IMDB-BINARY – 2.06 1.50 2.36 0.54
IMDB-MULTI – 1.52 1.14 2.17 0.38

15

