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Abstract

This paper presents an automated method for001
evaluating phrase distance measures based on002
cohesion and diffusion measurements, eliminat-003
ing the need for direct human judgment. The004
evaluation involves five homegrown datasets,005
each consisting of 200 headlines or abstracts006
from news articles, subdivided into 20 sets.007
Two datasets are in Arabic, while others in-008
clude news in French, German, and English.009
Each set contains 10 texts with shared meaning010
but different cohesion, and diffusion is mod-011
eled by distances between articles with differ-012
ent meanings. The benchmark for evaluating013
phrase distance measures combines Silhouette014
Index properties with the mean of Pearson Cor-015
relations over distance matrix pairs.016

Our findings reveal that Yule distance with bi-017
nary embeddings consistently surpasses other018
measures. Phrase distance performance re-019
mains steady across languages, tokenizers and020
sentences’ lengths.021

1 Introduction022

With the rise of the transformer model (Vaswani023

et al., 2023) and the recent prominence of Ope-024

nAI’s ChatGPT model (Wu et al., 2023), interest025

in large language models (LLMs) modeling and026

applications have surged to unprecedented levels.027

Phrase Distance Measures (PDM)s, which measure028

the distance in meaning between two sentences or029

paragraphs, are pivotal are indispensable for evalu-030

ating LLMs (Lai et al., 2023). They assist in com-031

paring expert-known true answers with those from032

chat-enabled LLMs, which highlights the need to033

understand the deviation from a known truth. So-034

lutions, relying on context-aware ChatBots with035

architectures built on vector databases encoding036

domain-specific contexts (Mansurova et al., 2023;037

Yager, 2023; Neumann et al., 2023), necessitate038

effective and rapid PDMs to locate relevant con-039

texts in response to user queries. The performance040

of PDMs themselves is an active field of research 041

and discussion and several new PDMs have been 042

developed (Zhao et al., 2019; Zhang et al., 2020; 043

Rei et al., 2020; Sellam et al., 2020; Yuan et al., 044

2021) and studied for explainability (Leiter et al., 045

2022). 046

In most cases PDMs themselves are evaluated 047

by human judgement. In this work we propose 048

assessing distance measures by their ability to clus- 049

ter similar content (cohesion) and differentiate dis- 050

parate content (diffusion). We apply this method on 051

phrase distances inspired by the work in bioinfor- 052

matics (Haschka et al., 2021), effectively scoring 053

commonly used PDMs and investigate the effective- 054

ness of different PDMs using five hand-designed 055

datasets in four languages: Arabic, English, French, 056

and German. These datasets, constructed from 057

news articles scraped from various outlets, consist 058

of 20 articles which shares the same meaning but 059

expressed in distinct styles. Human selection en- 060

sures that the 10 different texts for the same article 061

meet this requirement. 062

Herein we present a multidimensional study, 063

varying tokenization, embedding, and distance 064

measures on word embeddings to identify the opti- 065

mal phrase distance measure. Across all datasets 066

and languages, the Yule distance, with a simple 067

binary word embedding vector, consistently yields 068

the most promising results in practical contexts. 069

2 Background and Related Work 070

A comprehensive review spanning over 15 years in 071

the development of PDMs underscores the signifi- 072

cance of consistency and highlights the challenges 073

in reporting machine learning model performance. 074

This complexity inherently complicates the inter- 075

pretation of model performance reports (Blagec 076

et al., 2022). The paper emphasizes that ROUGE 077

(Lin, 2004), BLEU (Papineni et al., 2002), and 078

METEOR (Banerjee and Lavie, 2005) stand out 079
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as the most commonly reported evaluation metrics080

(Blagec et al., 2022).081

Critiques of these metrics often center around082

their correlation with human judgment, with dis-083

cussions acknowledging the limitations of n-gram084

correlations (Reiter, 2018), such as those found in085

BLEU (Papineni et al., 2002) or various ROUGE086

(Lin, 2004) variants. Interestingly, these discus-087

sions suggest that metrics based on F1-measure088

yield superior performance (Lavie et al., 2004).089

Many advanced PDMs have seen their light in re-090

cent years (Zhao et al., 2019; Zhang et al., 2020;091

Rei et al., 2020; Sellam et al., 2020; Yuan et al.,092

2021) but rely on computationally intensive tasks093

and the community is further reluctant to adopt094

them (Leiter et al., 2022). Due to the multilingual095

character of this study, we were unable to assess096

all of them comprehensively. Nevertheless, we uti-097

lized the multilingual Bert variant (Devlin et al.,098

2019) together with the Bert score (Zhang et al.,099

2020). The expansion of the method shown herein100

to other variants remains trivial if the goal is a sin-101

gle language comparison.102

Although previous studies have utilized scrapped103

news datasets for phrase distance metric evalua-104

tion (Agirre et al., 2016), this paper introduces a105

straightforward and established method in bioin-106

formatics (Haschka et al., 2021) to systematically107

assess PDMs used in the field of LLM/AI research.108

This approach aims to provide a more nuanced un-109

derstanding of the performance and limitations of110

phrase distance measures.111

3 Methodology112

The methodology employed in this study revolves113

around assessing the effectiveness of various PDMs114

in capturing the cohesion and diffusion dynamics115

within an expert-curated dataset. In section ??, we116

define our distance nomenclature while 3.2 elabo-117

rates on the construction of the dataset which fea-118

tures clusters of phrases sharing identical meanings,119

strategically distant from clusters conveying differ-120

ent meanings. As per the definition in equation121

(3), a PDM is a composite of tokenization algo-122

rithms (section 3.3), embeddings (section 3.4), and123

vector or n-gram distances (section 3.5). Our ap-124

proach involves systematic variations in all three125

components, a detailed exposition of which follows126

below.127

The efficacy of distinguishing these clusters,128

thereby assessing how closely phrases with sim-129

ilar meanings align and how distinctly they stand 130

from phrases with different meanings, is quantified 131

through two performance indices. These indices 132

are based on the Silhouette method and a Pearson 133

Correlation of pairwise distance matrix elements 134

concerning an optimal distance matrix, elucidated 135

in section 3.6. 136

3.1 Formulation 137

3.2 Datasets 138

Five datasets were curated each comprising 20 dis- 139

tinct news contents or meanings. For every news 140

content, 10 diverse news outlets that articulated the 141

same information in varying were identified. Con- 142

sequently, each dataset encompasses a total of 200 143

items. The selection of languages differed for each 144

dataset, including English, French, German, and 145

two datasets in Arabic. This deliberate multilin- 146

gual approach, along with variations in word and 147

sentence lengths across datasets, was adopted to 148

test the robustness of the evaluation across diverse 149

data sets as shown in Figure 1. The data collection 150

spanned news sources such as public crime reports, 151

tabloid press, technology updates, and financial 152

news, deliberately excluding religious and extreme 153

political content. This careful selection ensures a 154

balanced and representative evaluation of various 155

phrase distance measures across a broad spectrum 156

of data. 157

3.3 Tokenizers and Tokenizer Training 158

For the training of tokenizers, we leveraged a subset 159

of 50,000 articles from the wiki40b dataset (Guo 160

et al., 2020) for each language: German, French, 161

English, and Arabic. The Hugging Face tokeniz- 162

ers library (Wolf et al., 2020) facilitated the train- 163

ing process. The trained tokenizers include Byte- 164

Pair Encoding (Sennrich et al., 2016), Unigram 165

(Kudo, 2018), WordPiece (Devlin et al., 2019), 166

and WordLevel tokenization. A vocabulary size 167

of 32,000 was selected for each tokenizer, aligning 168

with the input size of common large language mod- 169

els (LLMs) (OpenAI et al., 2023; Touvron et al., 170

2023). 171

Post-training, we applied these tokenizers to en- 172

code the 50,000 articles they were trained on. No- 173

tably, we observed that the number of tokens gen- 174

erated by these algorithms is language-dependent. 175

Table 1 provides insights into the token generation. 176

This language-dependent tokenization variation un- 177

derscores the importance of considering linguistic 178
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Arabic

Word Length [Number of Characters]

News Headline/Abstract Length [Number of Words]

Arabic-2

English

French

German

Figure 1: The diversity of the 5 datasets in 4 lan-
guages scrapped from various news sources. En-
tropy is here calculated word-wise: H(ds) =
−
∑n

i=1 P (wi) log2 P (wi) where P (wi) is the proba-
bility to find the word wi out of n words in the dataset
ds.

nuances when applying tokenization in multilin-179

gual contexts.180

3.4 Embeddings181

In this section, we explore four distinct types of182

embeddings tailored to various distance measures.183

Certain vector distance measures, such as the Lp-184

norm or cosine distance (equation (3)), necessitate185

vectors in v⃗ ∈ Rn form. Therefore, we employed a186

simple embedding technique for each dataset item,187

mapping them into a vector with a dimensionality188

equal to the dictionary size. This involved counting189

the occurrences of each token and placing them at190

the corresponding index.191

Other distance measures, like Jaccard or Yule dis-192

tance, are designed for binary vectors v⃗ ∈ {0, 1}n.193

Here, we straightforwardly set the index for a spe-194

cific token in the vector to 1 if the token occurred195

at least once.196

In addition to these fundamental embeddings,197

we introduced two advanced embedding methods:198

1. Singular Value Decomposition based em-199

beddings:200

• Utilizing the trained tokenizers detailed201

in Section 3.3, we encoded 50,000202

Wikipedia articles corresponding to the203

language of the tokenizer.204

• For each article, we created a vector with 205

dimensions matching the vocabulary size 206

(32,000), indicating the token counts. 207

• Performing a singular value decomposi- 208

tion on these encoded datasets, we re- 209

tained the right-hand vectors correspond- 210

ing to the top 100 singular values. 211

• Embeddings were then generated by pro- 212

jecting the encoded data onto these right- 213

hand vectors, resulting in embeddings 214

v⃗SVD ∈ R100. 215

• The singular value decomposition aimed 216

to enhance the initial embeddings by fil- 217

tering variance, yielding more suitable 218

embeddings. 219

2. Bert model embeddings: 220

• We generated embeddings based on the 221

Bert model (Devlin et al., 2019). 222

• This embedding approach has the advan- 223

tage of distinguishing phrases by mean- 224

ing, capturing nuances like the difference 225

between "I went home and cooked food 226

for my family" and "I stayed home and 227

cooked food for my family." 228

• These embeddings were directly built 229

from the coefficients found in the trans- 230

former architecture of a Bert model. 231

These diverse embedding strategies allow us to 232

capture different aspects of linguistic information, 233

enabling a comprehensive evaluation of phrase dis- 234

tance measures. 235

3.5 Distance Measures 236

This study defines a PDM as the image, 237

D : p1 × p2 → d, (1) 238

of the operator D applied to p1 and p2 representing 239

the character strings of two texts of arbitrary length. 240

p1 and p2 are as such elements of a field of texts, 241

and d ∈ R represents the similarity in meaning 242

between the phrases p1 and p2. 243

We propose an optimal distance measure, 244

Dopt(p1, p2) defined as: 245

Dopt(p1, p2) =

{
0 if p1, p2 ∈ a
1 if p1 ∈ a, p2 ∈ b

, (2) 246

where a and b are sets of 10 news articles that 247

share the same meaning but are written by differ- 248

ent outlets in varying style. The Silhouette Index 249
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and the mean of Pearson correlations, calculated250

under different distance measures D are employed251

as benchmarks. Optimal cases yield indices close252

to 1, while the worst cases result in -1 (Silhouette253

Index) or 0 (mean of Pearson correlations). This254

article presents a dataset and strategy for evaluat-255

ing distance measures, addressing both cohesion256

and diffusion. A PDM is considered effective if it257

identifies articles with the same meaning as close258

(cohesion) and those with different meanings as259

distant (diffusion).260

To compare two phrases they are transformed261

into vectors v⃗ ∈ Rn. This vector representation,262

known as an embedding enables the application of263

a vector distance measure:264

T (p1) = v⃗p1 ,265

T (p2) = v⃗p2 ,266

V (v⃗p1 , v⃗p2) = d, (3)267

where T (p) is a composition of text tokenization268

and embedding algorithms.269

The comprehensive D involves multiple opera-270

tions, encompassing tokenization and embedding,271

ultimately leading to the formation of V . Further-272

more, V can be applied to both real v⃗ ∈ Rn and273

binary v⃗ ∈ 0, 1n embeddings. Additionally, there274

exist PDMs that operate directly on tokens, exem-275

plified by widely used paraphrasing distances like276

BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),277

and METEOR (Banerjee and Lavie, 2005). This278

nuanced approach allows for a multifaceted explo-279

ration of various linguistic aspects within the scope280

of phrase distance measures.281

The following vector distance measures were282

applied on real, v⃗ ∈ Rn, embeddings:283

• Lp-norms for p = {1, 2}: These norms are for284

the p = 1 case further known as Manhattan285

for the p = 2 case Euclidean distance. They286

are defined by the equation:287

Lp =

[
n∑

i=1

|v1,i − v2,i|p
] 1

p

(4)288

• The cosine distance: This distance is built289

from the angle between the two vectors:290

Vcos =
⟨v1|v2⟩√

⟨v1|v1⟩
√

⟨v2|v2⟩
, (5)291

with ⟨v1|v2⟩ denoting the inner product be-292

tween v1 and v2.293

It is essential to highlight that, given the high di- 294

mensionality and the well-documented curse of di- 295

mensionality, particularly with naive embeddings, 296

the anticipated superior performance of the cosine 297

distance over the L1-norm is acknowledged (So- 298

hangir and Wang, 2017). Additionally, an expected 299

advantage of the L1-norm over the L2-norm is rec- 300

ognized (Aggarwal et al., 2001). 301

Further, the following binary vector distance 302

measures were evaluated: 303

• Jaccard distance: 304

VJac(v1, v2) =
|v1 ∪ v2| − |v1 ∩ v2|

|v1 ∪ v2|
, (6) 305

where |v1 ∪ v2| (union) represents the number 306

of vector elements that are 1 in v1 or v2, and 307

|v1 ∩ v2| (intersection) represents the number 308

of elements that are in both v1 and v2 1. 309

• Yule distance: 310

ξ = |{i : i ∈ v1, i /∈ v2}|, 311

η = |{i : i /∈ v1, i ∈ v2}|, 312

ζ = |{i : i ∈ v1, v2}|, 313

τ = |{i : i /∈ v2, v2}|, 314

d(x, y) =
2ξη

ζτ
. (7) 315

The F1-score served as an additional distance 316

metric in our study, but with a distinct approach. 317

Unlike the typical binary embeddings, we applied 318

it to real v⃗ ∈ Rn embeddings, utilizing a weighted 319

average, as implemented in scikit-learn (Pedregosa 320

et al., 2011). 321

In addition to paraphrasing distances working 322

with real and binary embeddings, the effectiveness 323

of paraphrasing distance metrics that operate on 324

n-grams—recurrent sequences of tokens within a 325

phrase is investigated. To explore this, BLEU (Pap- 326

ineni et al., 2002), ROUGE (Lin, 2004), and ME- 327

TEOR (Banerjee and Lavie, 2005) scores, all of 328

which rely on n-grams were used. 329

3.6 Evaluation Coefficients/Benchmark 330

Indices 331

In evaluating phrase distance measures D, two dis- 332

tinct performance indicators were used with our 333

curated dataset outlined in Section 3.2. These 334

benchmarks enable a comprehensive assessment of 335

a phrase distance measure’s performance. 336
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1. Silhouette Index: The Silhouette Index337

(Rousseeuw, 1987) was implemented as fol-338

lows, considering a pair of different news arti-339

cles a and b:340

kj,a =
1

na

na∑
i=1

D(pa(i), pa(j)), (8)341

kj,b =
1

nb

nb∑
i=1

D(pb(i), pa(j)), (9)342

sj =


kj,a < kj,b : 1− kj,a

kj,b

kj,a = kj,b : 0

kj,a > kj,b :
kj,b
kj,a

− 1

,(10)343

S =
1

na

na∑
j=1

sj , (11)344

where pa,b(i) is the i-th element news arti-345

cles with, a the same meaning or, b a dif-346

ferent meaning. The Silhouette varies be-347

tween −1 ≤ S ≤ +1. It is negative if the348

distances between the articles with the same349

meaning would be spread out and less clus-350

tered together than news articles with a differ-351

ent meaning. More interesting are of course352

cases where articles of the same meaning clus-353

ter together and articles of different meanings354

are more distant from each other. In this in-355

stance, the Silhouette index results in a posi-356

tive value. Our rationale is based on the un-357

derstanding that an optimal distance measure358

would produce Silhouette scores approaching359

+1.360

The Silhouette Index, the arithmetic mean of361

Silhouettes over each set of articles of the362

same meanings to characterize a phrase dis-363

tance measures effectiveness with a dataset364

was also used. The closer the Silhouette Index365

is to +1 the more effective the phrase distance366

measure is in clustering together articles of367

the same meaning and differentiating them368

from articles of a different meaning.369

SI =

∑
pairs S(ci, cj)

npairs
. (12)370

A higher SI indicates greater effectiveness in371

clustering together articles of the same mean-372

ing and differentiating them from those with373

different meanings.374

2. Pearson Correlation Index We defined a375

Pearson Correlation Index (PI) for pairwise376

distance matrices, starting with the definition 377

of a distance matrix M : 378

Mi,j =

{
1 : (pi ∈ a) ∧ (pj ∈ b)
0 : otherwise

, (13) 379

and a distance matrix K under a given phrase 380

distance measure D: 381

Ki,j = D(pi, pj). (14) 382

The Pearson correlation for a single set pair 383

of news articles a and b is then calculated as: 384

P =
∑

∀i,j∈a,b

Mi,jKi,j√(
Mi,j − M̄

)2√(
Ki,j − K̄

)2 ,
(15) 385

where M̄ and K̄ are the means of the elements 386

in matrices M and K. The overall Pearson 387

Correlation Index for a dataset is given by: 388

PI =
∑

Pairs of Sets

PPair. (16) 389

Under optimal conditions, a phrase distance 390

D that correctly separates phrases of the same 391

meaning and diffuses phrases of different 392

meanings is expected to yield a PI close to 393

1. 394

By combining these indices with our datasets and 395

the outlined equations, we possess the necessary 396

tools to comprehensively evaluate the performance 397

of a phrase distance measure. 398

4 Experimental Results 399

Our experimental findings demonstrate consistent 400

results across languages and datasets, with only a 401

minor discrepancy observed in the Pearson Corre- 402

lation Index (PI) for the Yule distance in the Arabic 403

dataset. Despite significant variations in the num- 404

ber of token generations, particularly notable in 405

Arabic compared to other languages, the impact 406

on the effectiveness of phrase distance measures 407

remained limited. 408

Our key observation is that the selection of a 409

well-behaved phrase distance measure, capable of 410

identifying a suitable vector distance, holds greater 411

significance than the choice of tokenizer. Notably, 412

binary distance measures, lacking specialized em- 413

beddings, consistently outperformed specialized 414

paraphrasing distances such as BLEU (Papineni 415

et al., 2002), ROUGE (Lin, 2004), or METEOR 416

(Banerjee and Lavie, 2005) in practical scenarios. 417
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The ability to effectively cluster together phrases418

with the same meaning and distinguish those with419

different meanings is vividly illustrated in Figure420

2.421

These results emphasize the practical utility of422

binary distance measures and sheds light on their423

superior performance compared to their specialized424

counterparts in various linguistic contexts. The ef-425

fectiveness of a PDM in capturing the nuances of426

meaning appears to be more closely tied to its inher-427

ent properties than the specifics of the tokenization428

process.429

4.1 Differences in Languages and Token430

Generation431

Despite training tokenizers for English, French,432

German, and Arabic on datasets of approximately433

the same size, the number of tokens generated434

varies significantly across languages, as illustrated435

in Table 1. Notably, the Arabic language exhibits436

nearly 10 times the token generation compared to437

the other languages. This discrepancy can be at-438

tributed to Arabic being considered a low-resource439

language (Alyafeai et al., 2021; Mofijul Islam et al.,440

2022).441

However, our analysis indicates that the in-442

creased number of tokens in Arabic does not443

substantially impact the efficacy of downstream444

metrics. This observation suggests that, despite445

language-specific variations in token generation,446

the performance of PDMs remains robust and com-447

parable across diverse linguistic contexts. The re-448

silience of these measures underscores their versa-449

tility in handling variations in tokenization outputs,450

offering consistent performance across languages.451

4.2 Effects of Embeddings452

Our investigation extended beyond the impact453

of tokenizers to explore the influence of embed-454

dings on the performance of phrase distance mea-455

sures. As detailed in Section 3.4,the generic em-456

beddings—vectors were generated with a dimen-457

sionality that matched the tokenizer’s vocabulary458

size—by counting the occurrences of tokens in459

a given phrase. Additionally, the Singular Value460

Decomposition (SVD) computed an orthonormal461

basis, aiming to emphasize tokens with high vari-462

ance in the dataset. This transformation not only463

enhances the importance of specific tokens but also464

reduces dimensionality, mitigating the curse of di-465

mensionality and potentially improving vector dis-466

tance measures.467

Subsequently, we utilized Bert embeddings, con- 468

structed from coefficients within the Bert model’s 469

neural network. Given that these embeddings gen- 470

erate vectors in Rn and not binary vectors, and 471

considering the inapplicability of n-gram counting 472

and similarity metrics such as BLEU and ROUGE, 473

we confined the embeddings comparison to Lp and 474

cosine vector distances. 475

Our observations indicate a modest improve- 476

ment in scores with different embeddings. How- 477

ever, it is noteworthy that distance measures paired 478

with basic binary embeddings consistently outper- 479

formed those utilizing SVD or Bert-style embed- 480

dings. The superiority of primitive binary embed- 481

dings in conjunction with various distance mea- 482

sures underscores their robustness and efficiency 483

in capturing meaningful linguistic nuances across 484

different datasets and languages. 485

4.3 Effectiveness of Different Distance 486

Measures 487

Our findings highlight notable disparities in the ef- 488

fectiveness of various distance measures. n-gram 489

counting measures, such as BLEU and ROUGE, 490

exhibit suboptimal performance compared to clas- 491

sical metrics. Even within the ROUGE score, ex- 492

perimentation with different n-gram sizes reveals a 493

diminishing performance trend with higher n. In 494

contrast, the cosine distance, when coupled with 495

straightforward embeddings, consistently outper- 496

forms these n-gram-based metrics. Lp-distances 497

display weaker performance than cosine distance 498

across the board. 499

It is to be notes that all metrics were surpassed 500

by the Yule distance, which consistently yields Sil- 501

houette scores and Pearson Correlation indices of 502

pairwise distance matrices in the 0.5-0.9 ranges. 503

5 Limitations 504

While our study focuses on the cohesion of simi- 505

larity and separability of different news headlines 506

and abstracts, assessed through the Silhouette In- 507

dex (12) and a mean of Pearson Correlation over 508

the matrix elements of pairwise distance matrices 509

(16), it does not delve into deep linguistic features 510

beyond the cohesion and diffusion approach. 511

Despite the dataset’s diversity, encompassing a 512

Semitic language, two Indo-Germanic, and one 513

Romance language, limitations arise from the ab- 514

sence of languages with vastly different grammar 515

and script, such as Mandarin, Chinese, or Hindi. 516
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Figure 2: The performance of PDMs according to SI (12) and PI (16) indices. PDMs found in the upper right
corners perform inherently better at cohesion of phrases of similar meaning and diffusion of phrases with different
meaning than distance measures in the lower left corners.
PDMs are annotated as follows: L1: L1-distance, L2: L2-distance, COS: Cosine Distance, SL1: L1-distance on
SVD embeddings, SL2: L2-distance on SVD embeddings, R1. . .4/RL Rouge 1. . .4/L variant scores, B: Bleu score,
M: Meteor score, J: Jaccard distance, Y: Yule distance.
Columns outline the different tokenizers used: [BPE] Byte-Pair-Encoding (Sennrich et al., 2016), [UNI] Unigram
(Kudo, 2018), [WLV] by WordLevel tokenization, and [WPC] by WordPiece tokenization (Devlin et al., 2019).
Further, Bert Embeddings were used with the WordPiece implementation used by Bert.
Rows outline the different datasets: Each dataset contains 20 different meanings with 10 similar news articles per
meaning, totaling 200 items.
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Language Words Bytes BPE UNI WLV WPC
English 24.7M 159M 37.3M 36.2M 31.3M 39.7M
German 19.0M 144M 48.7M 60.0M 31.6M 51.5M
French 19.1M 129M 64.2M 70.7M 49.4M 67.0M
Arabic 15.8M 172M 554.6M 554.9M 295.0M 577.7M

Table 1: Number of tokens generated from different tokenizers for 50 000 articles in the given languages of the
wiki40b dataset.
[Words] outlines the number of words found in the 50 000 articles. [Bytes] corresponds to the size in bytes
of the 50 000 articles. The columns outline the number of tokens generated by the [BPE] Byte-Pair-Encoding
(Sennrich et al., 2016), [UNI] Unigram (Kudo, 2018), [WLV] by WordLevel tokenization, and [WPC] by WordPiece
tokenization (Devlin et al., 2019)

While results between Arabic and the other lan-517

guages appear similar, subtle variations, such as518

the slight degradation of the effectiveness of the519

Yule distance measured by the Pearson Index (16),520

suggest challenges in extrapolating our findings to521

linguistically distinct languages.522

Additionally, the exclusion of several novel523

phrase distance measures stems from underlying524

models that either lacked the resources for retrain-525

ing or did not support the multilingual nature of526

this study.527

6 Discussion528

This study introduced a method for evaluating the529

effectiveness of phrase distance measures in dis-530

cerning phrases of the same meaning from those531

with different meanings. This method, based on a532

carefully curated dataset, eliminates the need for533

further human intervention inspired by the work534

of (Haschka et al., 2021) in bioinformatics. By535

employing the Silhouette Index and Pearson Corre-536

lation of Distance Matrices, our method provides a537

robust and automated means of assessing diverse538

phrase distance measures.539

Our results challenge the conventional wisdom540

in the field of Large Language Models (LLMs),541

revealing that straightforward embeddings and dis-542

tance measures can outperform widely used met-543

rics such as BLEU and ROUGE. Importantly, these544

findings hold across varied datasets, showcasing545

independence from the choice of tokenizers, lan-546

guages, and phrase lengths.547

Notably, for phrase distance measures with non-548

binary embeddings, the cosine distance emerges as549

a preferred choice. However, when utilizing binary550

embeddings, the Yule distance consistently outper-551

forms other distance measures. This outcome has552

significant implications for the implementation of553

vector databases. If future databases store encoded 554

phrases as binary data, it could streamline data 555

query and retrieval processes, potentially achiev- 556

ing efficiency gains through Binary Operations and 557

Single Instruction Multiple Data (SIMD) mecha- 558

nisms. 559

To further explore the impact of different embed- 560

dings, we generated SVD-based embeddings and 561

commonly used Bert embeddings. While our re- 562

sults indicate a favorable effect of Bert embeddings, 563

SVD-based embeddings did not yield similar im- 564

provements. Nevertheless, it is noteworthy that the 565

Yule distance continues to outperform Bert embed- 566

dings in conjunction with classical distance mea- 567

sures, emphasizing the robustness and efficacy of 568

the Yule distance across various embedding types. 569

7 Conclusion 570

In conclusion, this study introduces an automated 571

methodology for evaluating phrase distance met- 572

rics, with a particular focus on the cohesion and 573

diffusion dynamics within phrases of similar or dis- 574

tinct meanings. Employing diverse datasets span- 575

ning multiple languages, our comprehensive eval- 576

uation of various distance measures underscores 577

the consistent superiority of the Yule distance, es- 578

pecially when coupled with binary embeddings. 579

This observed performance extends across linguis- 580

tic variations, demonstrating language and length 581

independence in our findings. 582

Furthermore, our exploration into the impact of 583

different embeddings reveals the notable efficacy 584

of binary embeddings, particularly when employed 585

in conjunction with the Yule distance. The results 586

underscore the practical implications of optimizing 587

phrase distance measures, especially in the context 588

of large language models. This work provides valu- 589

able insights into refining the performance of such 590
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measures across varied linguistic scenarios.591

The significance of our research lies in its con-592

tribution to the evolving landscape of natural lan-593

guage processing, where robust and efficient PDMs594

are essential. By presenting a nuanced understand-595

ing of the effectiveness of diverse metrics and em-596

beddings, this study serves as a foundation for fu-597

ture advancements in the optimization and applica-598

tion of phrase distance measures within the realm599

of large language models.600
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