
Under review as a conference paper at ICLR 2021

TASKSET: A DATASET OF OPTIMIZATION TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present TaskSet, a dataset of tasks for use in training and evaluating optimizers.
TaskSet is unique in its size and diversity, containing over a thousand tasks ranging
from image classification with fully connected or convolutional neural networks, to
variational autoencoders, to non-volume preserving flows on a variety of datasets.
As an example application of such a dataset we explore meta-learning an ordered
list of hyperparameters to try sequentially. By learning this hyperparameter list
from data generated using TaskSet we achieve large speedups in sample efficiency
over random search. Next we use the diversity of the TaskSet and our method for
learning hyperparameter lists to empirically explore the generalization of these lists
to new optimization tasks in a variety of settings including ImageNet classification
with Resnet50 and LM1B language modeling with transformers. As part of this
work we have opensourced code for all tasks, as well as 29 million training curves
for these problems and the corresponding hyperparameters.1

1 INTRODUCTION

As machine learning moves to new domains, collecting diverse, rich, and application-relevant datasets
is critical for its continued success. Historically, research on learning optimization algorithms have
only leveraged single tasks (Andrychowicz et al., 2016; Metz et al., 2019a), or parametric synthetic
tasks (Wichrowska et al., 2017), due to the difficulty of obtaining large sets of tasks.

1.1 TASKSET: A SET OF TASKS

We present a set of tasks significantly larger than any optimizer dataset previously studied. We
aim to better enable standardized research on optimizers, be that analysis of existing optimizers, or
development of new learned learning algorithms. We call this suite of tasks TaskSet.

Much in the same way that learned features in computer vision outpaced hand designed features
(Krizhevsky et al., 2012; LeCun et al., 2015), we believe that data driven approaches to discover opti-
mization algorithms will replace their hand designed counterparts resulting in increased performance
and usability. To this end, standardizing a large suite of optimization tasks is an important first step
towards more rigorous learned optimizer research.

In this setting, a single “example” is an entire training procedure for a task defined by data, loss
function, and architecture. Thus, TaskSet consists of over a thousand optimization tasks, largely
focused on deep learning (neural networks). They include image classification using fully connected
and convolutional models, generative models with variational autoencoders (Kingma & Welling,
2013) or flows (Dinh et al., 2016; Papamakarios et al., 2017), natural language processing tasks
including both language modeling and classification, as well as synthetic tasks such as quadratics,
and optimization test functions. The problems themselves are diverse in size, spanning 7 orders
of magnitude in parameter count, but remain reasonably fast to compute as almost all tasks can be
trained 10k iterations on a CPU in under one hour. To demonstrate the breadth of this dataset we
show an embedding of all the tasks in Appendix A.1 in Figure S1.

1redacted url

1

Under review as a conference paper at ICLR 2021

1.2 AMORTIZING HYPERPARAMETER SEARCH

Machine learning methods are growing ever more complex, and their computational demands are
increasing at a frightening pace (Amodei & Hernandez, 2018). Unfortunately, most modern machine
learning models also require extensive hyperparameter tuning. Often, hyperparameter search is many
times more costly than the final algorithm, which ultimately has large economic and environmental
costs (Strubell et al., 2019).

The most common approach to hyperparameter tuning involves some form of quasi-random search
over a pre-specified grid of hyperparameters. Building on past work (Wistuba et al., 2015b; Pfisterer
et al., 2018), and serving as a typical example problem illustrative of the sort of research enabled
by TaskSet, we explore a hyperparameter search strategy consisting of a simple ordered list of
hyperparameters to try. The idea is that the first few elements in this list will cover most of the
variation in good hyperparameters found in typical machine learning workloads.

We choose the elements in this list by leveraging the diversity of tasks in TaskSet, by meta-learning
a hyperparameter list that performs the best on the set of tasks in TaskSet. We then test this list of
hyperparameters on new, larger machine learning tasks.

Although learning the list of hyperparameters is costly (in total we train∼29 million models consisting
of over 4,000 distinct hyper parameter configurations), our final published list is now available as a
good starting guess for new tasks.

Furthermore, we believe the raw training curves generated by this search will be useful for future
hyperparameter analysis and meta-learning research, and we release it as part of this work. We
additionally release code in Tensorflow (Abadi et al., 2016), Jax (Bradbury et al., 2018), and Py-
Torch (Paszke et al., 2019) for a reference optimizer which uses our learned hyperparameter list, and
can be easily applied to any model.

2 TASKSET: A SET OF TASKS

How should one choose what problems to include in a set of optimization tasks? In our case, we
strive to include optimization tasks that have been influential in deep learning research over the last
several decades, and will be representative of many common machine learning problems. Designing
this dataset requires striking a balance between including realistic large-scale workloads and ensuring
that tasks are fast to train so that using it for meta-learning is tractable. We construct our dataset
largely out of neural network based tasks. Our chosen tasks have between ten thousand and one
million parameters (much smaller than the billions commonly used today), as a result most problems
can train in under an hour on a cloud CPU with 5 cores. We additionally focus on increased “task
diversity” by including many different kinds of training algorithms, architectures, and datasets –
inspired by past work in reinforcement learning which has demonstrated large numbers of problems
and increased diversity around some domain of interest is useful for both training and generalization
Heess et al. (2017); Tobin et al. (2017); Cobbe et al. (2018); OpenAI et al. (2019). Again though, a
balance must be struck, as in the limit of too much diversity no learning can occur due to the no free
lunch theorem (Wolpert & Macready, 1997). Our dataset, TaskSet, is made up of 1162 tasks in total.
We define a task as the combination of a loss function, a dataset, and initialization.

Specifically we define a task as a set of 4 functions:

• Initialization: ()→ parameter initial values
• Data generator: data split (e.g. train / valid / test)→ batch of data
• Forward pass: (batch of data, params)→ loss
• Gradient function: (input data, params)→ gradients (dloss

dparams)

A task has no tunable hyperparameters and, coupled with an optimizer, provides all the necessary
information to train using first order optimization. This makes experimentation easier, as each task
definition specifies hyperparameters such as batch size (Shallue et al., 2018; McCandlish et al., 2018)
or initialization (Schoenholz et al., 2016; Yang & Schoenholz, 2017; Xiao et al., 2018; Li & Nguyen,

2

Under review as a conference paper at ICLR 2021

0 1 2 3 4 5 6 7 8
log10 parameter count

0
20
40
60
80

100
120

nu
m

be
r o

f t
as

ks

0 200 400 600 800 1000 1200
task index

0.0
0.2
0.4
0.6
0.8
1.0

pe
rc

en
t o

f o
pt

im
ize

rs 0.9
0.5
0.2
0.1
0.01

1
se

c

10
 se

c

1
m

in

5
m

in

30
 m

in
1

hr
2

hr

training time

0
20
40
60
80

100
120

nu
m

be
r o

f t
as

ks

Figure 1: (a) A histogram of parameter counts for each problems in the task suite. Our task suite
spans more than 7 orders of magnitude in model size. (b) Percentage of optimizers (y-axis) capable
of reaching a given loss value (color) for tasks (x-axis). We find there exists around 100 “easy” tasks
on which more than half of the optimizers perform well, and a large number of “difficult” tasks for
which almost no optimizers perform well. (c) A histogram of training times. Almost all tasks can be
trained in under an hour.

2019; Pretorius et al., 2018; Hayou et al., 2018; Karakida et al., 2018; Blumenfeld et al., 2019; Hayou
et al., 2019) that no longer need to be tuned.

We augment a set of “fixed” tasks which have been designed by hand, with “sampled” tasks that are
randomly generated task instances.

2.1 SAMPLED FAMILIES OF TASKS

Sampled tasks are created by sampling neural network architectures (e.g., MLPs, convnets), activation
functions, datasets (e.g., images, text, quadratic functions, and synthetic tasks), and other properties.
We organize these sampled tasks into similar families of tasks. See Appendix H for a complete
description of these sampled tasks. Broadly, these are separated into tasks sampling image models
(mlp, mlp_ae (Hinton & Salakhutdinov, 2006), mlp_vae (Kingma & Welling, 2013), conv_pooling,
conv_fc, nvp (Dinh et al., 2016), maf (Papamakarios et al., 2017)), tasks sampling language models
(char_rnn_language_model (Graves, 2013), word_rnn_language_model, rnn_text_classification),
quadratics (quadratic) and other synthetic tasks (losg_tasks (Wichrowska et al., 2017)). Defining a
sampling distribution that generates tasks that are always valid, and that run within a time constraint,
is difficult. Instead, we define a broad distribution and make use of rejection sampling to remove
tasks that are either too slow or that we are unable to optimize at all. By starting with a distribution
that is too broad, and pruning it, we hope to achieve better coverage of tasks.

2.2 HAND DESIGNED TASKS

In addition to the sampled tasks, we also include 107 hand designed tasks. These consist of more
common tasks that both improve the coverage beyond the sampled tasks, and provide for better
interpretability through a closer match to existing tasks in the literature. These tasks span image
classification, text classification, language modeling, and generative modeling, as well as some
synthetic tasks such as associative retrieval (Ba et al., 2016). We leave the description of each one of
these tasks to Appendix H.3.

2.3 AGGREGATE STATISTICS OF TASKSET

In Figure 1a we show histograms of compute times for all problems and find almost all problems train
under an hour (see Appendix C for per task family histograms). In Figure 1c we plot a histogram of
the number of parameters per tasks. Finally, in Figure 1b we show a distribution of task difficulty by
plotting the fraction of optimizer configurations that achieve a certain loss value. We find that for
some tasks as many as 50% of optimizers perform well while for others < 1% achieve a loss close to
the smallest observed loss. For a qualitative visualization of TaskSet, see Appendix A

3 AMORTIZED HYPERPARAMETER SEARCH

As a simple demonstration of using TaskSet for meta-learning research, we consider learning hyper-
parameter lists. This idea of learning lists of hyper parameters has been explored in (Wistuba et al.,

3

Under review as a conference paper at ICLR 2021

2015b; Pfisterer et al., 2018). We define an optimizer as the pairing of an optimization algorithm and
all its corresponding hyperparameters (e.g. learning rate). While sometimes practitioners use a single
optimizer – e.g. Adam (Kingma & Ba, 2014) with default hyperparameters – most practitioners will
often run multiple optimizers and use a validation set to select the best performer.

3.1 OPTIMIZER FAMILIES

We define different parameterizations of hand designed optimizers as an optimizer family. The
optimizer families we consider consist of:

• Adam1p: One hyperparameter, the fixed learning rate α
• Adam4p: Four Adam hyperparameters, α, β1, β2, and ε
• Adam6p: Adam4p hyperparameters, and two additional hyperparameters controlling linear

and exponential learning rate decays
• Adam8p: The hyperparameters in Adam6p plus two additional hyperparameters for `1 and
`2 regularization terms

• NAdamW: A 10 hyperparameter search space based on NAdam (Dozat, 2016) with cosine
learning rate decay, and weight decay.

For the full update equations see Appendix D.1 for Adam and D.2 for NadamW. We chose Adam
based on its use in existing work, and NAdam based on performance shown in (Choi et al., 2019).

3.2 LEARNED HYPERPARAMETER LISTS

Traditionally researchers tune hyperparameters on a per model basis. While this often results in
performance gains; it comes at the cost of immense compute, and researchers are almost never able
to expend enough compute to saturate model performance (Shallue et al., 2018). As an alternative to
per-problem tuning, we proposes instead tuning the search strategy itself on a dataset of tasks and
transferring the knowledge gained to new tasks of interest. This idea is already implicitly done by
humans – e.g. we don’t start a hyperparameter search with a learning rate of 106 – we use values that
the community has found useful.

This dataset-based tuning has a number of desirable properties. First, the resulting search strategies
are much more efficient, resulting in large speedups in sample efficiency on unseen tasks over a
random search baseline. Second, we are less restricted by the number of optimizer parameters we
search over or by needing to define reasonable search spaces. For example, if there are redundant
regions of search space, our learned optimizer will be less likely to sample them repeatedly, unlike
random search. If there is a region of hyperparameter space that performs poorly on all problems, the
learned search strategy will avoid it.

In this work we parameterize the learned search strategy as an ordered list of optimizers to try (i.e. a
list of hyperparameter configurations). Given a fixed number of task evaluations we would like to
achieve the best possible performance on all tasks in the training set of tasks. For a length k list of
optimizers we define our loss as:

J(θ1,...,k) =
∑
τ∈tasks

[
min
i∈1..k

f(τ, θi)

]
, (1)

where θi are the optimizer hyperparameters for element i in the list, and f is an appropriately
normalized loss computed after training task τ .

We seek to find an optimal list of optimizers as (similar to (Wistuba et al., 2015b)):

θ∗1,...,k = arg min
θ1,...,k

J(θ1,...,k). (2)

This is meant to serve as an example task, illustrative of the sort of research enabled by TaskSet.
More advanced hyperparameter search strategies would no doubt yield even more performant results.

4

Under review as a conference paper at ICLR 2021

3.3 SCORING AN OPTIMIZER BY AVERAGING OVER TASKS

To score a task, we initialize the parameters of the task and run 10,000 iterations of an optimizer.
We monitor loss on each data split (train, validation, test) every 200 steps using an average over 50
mini-batches per evaluation. For all data presented in this paper we also compute averages over 5
random task parameter initializations.

A side effect of the diverse task dataset is that losses span multiple orders of magnitude, making
direct aggregation of performance problematic. To remedy this we normalize the loss values for
all tasks linearly between 0 and 1 where 1 is validation loss at initialization and zero is the lowest
validation loss achieved by any tested optimizer. Loss values greater than the loss at initialization are
clipped to 1. To collapse an entire normalized training curve into a scalar cost, we compute the mean
normalized loss over the 10,000 iterations. We find empirically that this choice is similar to taking
the minimum (Appendix B.5). We leave exploring alternative methods such as performance profiles
(Dolan & Moré, 2002) and Nash averaging (Balduzzi et al., 2018) for future work.

3.4 GREEDY LEARNING FROM RANDOM SEARCH

Optimizing Eq. 2 is combinatorially expensive. To tractably solve this optimization problem, we
introduce two approximations (Wistuba et al., 2015b). First, we shift the unconstrained search
over the full space of optimizers to search over a finite set of optimizers, Θ. This finite set can
be computed ahead of time and decouples the expensive procedure of training each task with an
optimizer from training the learned search space. Separating data and training in this way has been
done for both hyperparameter search (Eggensperger et al., 2015), and neural architecture search
(Klein & Hutter, 2019; Ying et al., 2019). In total we trained 1,000 optimizer configurations for each
of Adam1p, Adam4p, Adam6p, Adam8p, and NAdamW on all 1,162 tasks with 5 random seeds
per pair. Second, we use a greedy heuristic to approximate the combinatorial search over sets of k
optimizers. For a single optimizer trial, k = 1, we select the best performing optimizer on average
across all training tasks. We then continue to select optimizer parameters such that the minimum of
all optimizer-parameters per task, aggregated over all tasks is minimized. This shifts the complexity
from exponential in k to linear. Finding a length k set of optimizers can thus be efficiently computed
as follows:

θ∗1 = arg min
θ∈Θ

[∑
τ∈tasks

f(τ, θ)

]
(3)

θ∗k = arg min
θ∈Θ

[∑
τ∈tasks

[min (b, f(τ, θ))]

]
where b = min

i∈1..(k−1)
f(τ, θ∗i). (4)

We note that the first argument of the outer min, b, can be computed once per set of hyperparameters
as it does not depend on θ. Finally, as our tasks are stochastic, we order optimizers based on validation
loss and report test loss (Van Hasselt et al., 2016).2

This training strategy requires an original search space from which to collect data and build Θ. The
search space we use is described in Appendix E.2. While large, we find that the optimal parameters
for each task end up covering almost the entire space. At some point, no improvement can be obtained
on any of the tasks in the dataset. At this point, we simply randomly order the remaining optimizers
though expect more sophisticated methods could be employed.

4 EXPERIMENTS: TRAINING AND GENERALIZATION OF LEARNED

HYPERPARAMETER LISTS

With our dataset of tasks and data collected, we turn our attention to exploring training of the
hyperparameter lists, and generalization beyond the suite of tasks in TaskSet. In this exploration,

2This technically means that increasing the number of optimizes could potentially decrease performance, but
we find this rarely happens in practice.

5

Under review as a conference paper at ICLR 2021

100 101 102 103

number of optimizers tried

0.1

0.2

0.3

0.4

0.5

J o
n

he
ldo

ut
 ta

sk
s

Learned
Rand: Adam8p
Rand: Adam4p
Rand: Adam1p
Refined: min/max
Refined: perc

Figure 2: By learning a search space we achieve large speedups over random search. On the y-axis we
show J, or the best aggregated and normalized performance achieved given some number of optimizer
trials (x-axis). This is computed on heldout tasks not used to train the hyperparameter list. In solid
we show median performance with 25-75 percentile shown with error bars over 50 resamplings of
the train-test split of tasks, as well as random samplings. In black we show a learned search space
computed from the Adam8p family of optimizes. In color we show various random search baselines.
See §4.1 for description of these.

we hope to give a flavor of the types of research possible with TaskSet. Our main tool to show
performance are figures that sweep the number of optimizers configurations on the x-axis, and show
the best performance achieved for each number of optimizers tried, averaged over some set of tasks
(Eq. 1).

4.1 LEARNED HYPERPARAMETER LISTS ARE MORE EFFICIENT THAN RANDOM SEARCH

To demonstrate the impact of learning a search space, we take the 1,162 tasks split them into even train
and test tasks. We then learn a search strategy using optimizers from the Adam8p family following
Eq. 4 on the train tasks. Results in Figure 3. As baselines, we use random search with different search
spaces, including just learning rate (Rand: Adam1p), the default Adam hyper parameters (Rand:
Adam4p), as well as the Adam 8 dimensional search space (Rand: Adam8p). To better get a sense
of performance, we show two additional “Refined” baselines which involve random sampling from
better search space. For min/max, we sample from the minimum bounding box containing the best
hyperparameters for each task. To improve the search space quality, we shrink this bounding box so
90% of the best hyperparameters are enclosed. Further considerations regarding search space volume
are treated in E.1, and the precise search spaces are specified in Appendix E.2. Finally, one difficulty
of working with offline data is the difficulty of running online hyperparameter optimization methods
such as Bayesian Optimization without running additional compute. Future work will explore offline
Bayesian methods.

4.2 MORE TASKS LEAD TO BETTER GENERALIZATION

We next look at the effects of the number of training tasks on generalization. We take subsets of
tasks of different size, and train hyperparameter lists using Eq.4. We compute test performance on
the remainder of the tasks and plot loss averaged over different splits in Fig. 3. We find that a large
number of tasks (more than 100) are required to achieve near-optimal test performance. This is
surprising to us given how simple our learned search strategy is (simply a list of hyperparameters),
but not wholly so given past work studying generalization in RL (Cobbe et al., 2018).

4.3 GENERALIZATION TO DIFFERENT TYPES OF PROBLEM

For learned algorithms to be generally useful, some amount of generalization to unseen task families
is required. To test this, we split our data into disjoint task types. We perform two splits: testing on
RNN tasks and training on all others, and testing on autoencoder tasks and training on all others. As
a best case baseline we additionally train search spaces on the test task families directly. We find an
order of magnitude better sample efficiency than random search for both cases and find our learned
search space is close in performance to search spaces trained on just the testing tasks (Fig. 3).

6

Under review as a conference paper at ICLR 2021

100 101 102 103

Optimizers tried

0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160

J o
n

he
ldo

ut
 ta

sk
s

10 Tasks
30 Tasks
100 Tasks
600 Tasks

101 102 103

Number of tasks used for learning

0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160

30 Optimizers
100 Optimizers

(a) (b)
100 101 102 103

number of optimizers tried

0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28

J

RNN Tasks

100 101 102 103

number of optimizers tried

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

J

AE Tasks

Learn: Other tasks
Learn: Same tasks
Rand: Adam8p
Rand: Adam1p

(c) (d)

Figure 3: Using more tasks to train the search space results in improved performance on heldout tasks.
(a) The number of optimizers tried vs performance on heldout tasks. In color, we show different
numbers of tasks used to learn the search spaces. We show median performance with error bars
denoting 25 and 75 percentile. (b) Performance at a fixed number of optimizers tried vs number
of tasks used for meta-training. We find performance continues to improve as we meta-train on
more tasks. These plots are slices out of (a), with colors matching the vertical dashed lines. (c,d)
We show aggregate performance (J) as a function of number of optimizers tried when training the
hyperparameter list on a different distributions of tasks than those we test on. We show testing on
RNNs (c) and auto encoders (d), and train on 700 tasks sampled from the remainder set of tasks. We
find that these learned search spaces perform much better than random search in both the learning rate
search space and in the original Adam8p search space. We additionally plot the best case performance
– the case where we train and test on the same problem type. We show median and 25-75 percentile
averaged over 50 different samplings.

5 EXPERIMENTS: REALISTIC PROBLEMS

In §4.3 and §B.1 we explored generalization of learned hyperparameter lists to held out tasks within
the TaskSet dataset. While useful for analysis, these tasks are still far from the workloads commonly
employed to solve real problems. In this section, we explore the performance of our learned search
space on a number of state of the art models. These models drastically differ from the training set
of tasks in parameter count and compute cost. We see these experiments as evidence that the tasks
presented in TaskSet capture enough of the structure of “realistic” problems that TaskSet can be used
to improve larger scale workloads. For all experiments in this section we take the optimizer ordering
using the NAdamW optimizer family on all TaskSet tasks then apply the resulting search space to the
target problem. The final ordered list of hyperparameters used is in Appendix G. We show results for
ResNet50 on ImageNet, and Transformers on LM1B. Additional results with reinforcement learning
using PPO are in Appendix B.2.

First we explore ImageNet classification using a ResNet50. on We take the TPU implementation
with default settings from the official Tensorflow models repository (Tensorflow, 2019), and swap
out different optimizers. We show accuracy computed over the course of training as well as best
performance for a given hyperparameter budget in Figure 4. We find that the learned search space
vastly outperforms learning rate tuned Adam.

Next we explore language modeling on LM1B with a Transformer. We take the transformer (Vaswani
et al., 2017) example implemented in Jax (Bradbury et al., 2018) with Flax (Flax Developers,
2020). We train using a 2x2 TPU V2 configuration for 100k iterations. Once again we take
all other hyperparameters as is and simply swap optimizer implementation. We find the learned
hyperparameter list dramatically outperforms the default optimizer setting and the fixed learning
rate baseline. Nevertheless, we emphasize that our method does not require any knowledge of the
underlying problem to achieve faster results. See Appendix B.3 for this same transformer with a
budget of 20k iterations.

6 RELATED WORK

The idea of sets of tasks has been explored throughout machine learning. The majority of these
suites are for use in evaluation where as our suite is targeted for meta-learning. The closest family of
optimization tasks for evaluation to those presented here is DeepObs (Schneider et al., 2019) which

7

Under review as a conference paper at ICLR 2021

0 30 60 90
training epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Im
ag

eN
et

 R
es

Ne
t5

0
 te

st
ac

cu
ra

cy

100 101 102 103

number of optimizers tried

0.66
0.68
0.70
0.72
0.74
0.76
0.78

Im
ag

en
et

 R
es

ne
t5

0
 te

st
ac

cu
ra

cy

Learned
Default SGDM
Rand: AdamLr
Rand: NAdam

a) b) 4.0 4.0

en en Learned
en 3.9 en 3.9 Rand: AdamLr 0 0

>, >, Rand: Lr Schedule
g- 3.8 g- 3.8

Rand: NAdam lo... lo...

......

C

3.7
C

3.7 (I.) (I.)

en en
en en

0 3.6 0 3.6 lo... lo...

(.) (.)
......

en
3.5

en
3.5 (I.) (I.)

� �

3.4 3.4

0 50000 100000 10° 101 102 103

Training iteration number of optimizer tried

c) d)

Figure 4: We find our learned optimizer list outperforms both learning rate tuned Adam and
default training hyperparameters for ResNet50 and a 53M parameter Transformer trained on LM1B.
a) Learning curves for the best hyperparameter from each optimizer class on the ResNet50 task.
b) Number of optimizers tried vs best top 1 ImageNet accuracy achieved on the ResNet50 task.
For NAdamW, we first train models with a validation set created by splitting the training set. We
compute maxes over this set, and show the performance when retraining on the full training set
on the official ImageNet validation set. For AdamLR, we simply compute a max over the official
ImageNet validation set. c) Training curves for the best hyperparameter for each optimizer class on
the Transformer task. d) Number of optimizers tried vs the test loss obtained given the best validation
performance on the Transformer task.

includes 20 neural network tasks. Our task suite focuses on smaller problems and contains 50x more
tasks. Outside of evaluation, task suites in reinforcement learning such as Obstacle Tower (Juliani
et al., 2019), ProcGen (Cobbe et al., 2019), CoinRun (Cobbe et al., 2018), and Sonic (Nichol et al.,
2018) focus on training algorithms that work across a variety of settings.

The creation of TaskSet was motivated by the goal of learning learning algorithms, or meta-
learning (Schmidhuber, 1987; 1995; Hochreiter et al., 2001), and in particular learned optimizers
(Bengio et al., 1990; Andrychowicz et al., 2016; Bello et al., 2017; Wichrowska et al., 2017; Li &
Malik, 2017; Lv et al., 2017; Metz et al., 2019a;b). This use case is explored with this dataset in
(Metz et al., 2020). In this work we do not use this task suite to train learned optimizers, but instead
focus on learning a hyperparameter search strategy. Tuning hyperparameters by leveraging multiple
tasks has been explored within the contexts of Bayesian optimization Swersky et al. (2013); Perrone
& Shen (2019); Perrone et al. (2018) as well as meta-learning (Reif et al., 2012; Gomes et al., 2012;
Feurer et al., 2014; Wistuba et al., 2015b;a; Chen et al., 2017; Pfisterer et al., 2018). See Appendix F.1
for a full discussion of sets of tasks in machine learning, Appendix F.2 for more info on optimization
in machine learning, and Appendix F.3 for a discussion on existing hyper parameter search methods.

7 DISCUSSION

Learning optimization algorithms represents a promising direction for accelerating machine learning
research. For the resulting algorithms to become useful tools, however, we must further understand
the relationships between training tasks, meta-optimization, and both iid and out of distribution
generalization.

This work takes steps towards this goal by introducing a significantly larger set of optimization
tasks than ever previously considered. As an example use-case, we provide a thorough analysis of
how TaskSet enables meta-optimization of simple, but performant hyperparameter lists. Despite
this approach’s simplicity, the training of learned learning algorithms is computationally expensive.
We hope to explore alternative parameterizations which will increase efficiency by, e.g., leveraging
previous evaluations or partial model training (Swersky et al., 2014; Li et al., 2016).

We are releasing the optimal hyperparameter list we have found as a drop-in replacement optimizer
in a variety of deep learning frameworks (Tensorflow (Abadi et al., 2016), PyTorch (Paszke et al.,
2019), and JAX (Bradbury et al., 2018)) in the hopes that the research community finds them useful.
We believe this represents a new set of reasonable optimizer defaults for new problems. Finally, we
hope TaskSet encourages more standardized research on general purpose optimizers.

8

Under review as a conference paper at ICLR 2021

REFERENCES

URL https://s3.amazonaws.com/amazon-reviews-pds/readme.html.

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pp. 265–283, 2016.

Dario Amodei and Danny Hernandez. Ai and compute. Heruntergeladen von https://blog. openai.
com/aiand-compute, 2018.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
and Nando de Freitas. Learning to learn by gradient descent by gradient descent. In Advances in
Neural Information Processing Systems, pp. 3981–3989, 2016.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. In Advances in Neural Information Processing Systems, pp.
4331–4339, 2016.

David Balduzzi, Karl Tuyls, Julien Perolat, and Thore Graepel. Re-evaluating evaluation. In Advances
in Neural Information Processing Systems, pp. 3268–3279, 2018.

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech M Czarnecki, Julien Perolat, Max
Jaderberg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. arXiv preprint
arXiv:1901.08106, 2019.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc Le. Neural optimizer search with reinforcement
learning. 2017. URL https://arxiv.org/pdf/1709.07417.pdf.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Université
de Montréal, Département d’informatique et de recherche opérationnelle, 1990.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305, 2012.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger
(eds.), Advances in Neural Information Processing Systems 24, pp. 2546–2554. Curran Associates,
Inc., 2011.

Yaniv Blumenfeld, Dar Gilboa, and Daniel Soudry. A mean field theory of quantized deep networks:
The quantization-depth trade-off. arXiv preprint arXiv:1906.00771, 2019.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative compo-
nents with random forests. In European Conference on Computer Vision, 2014.

Olivier Bousquet, Sylvain Gelly, Karol Kurach, Olivier Teytaud, and Damien Vincent. Critical
hyper-parameters: No random, no cry. arXiv preprint arXiv:1706.03200, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

9

https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://arxiv.org/pdf/1709.07417.pdf
http://github.com/google/jax

Under review as a conference paper at ICLR 2021

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model
architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp Koehn.
One billion word benchmark for measuring progress in statistical language modeling. CoRR,
abs/1312.3005, 2013. URL http://arxiv.org/abs/1312.3005.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P Lillicrap,
Matt Botvinick, and Nando de Freitas. Learning to learn without gradient descent by gradient
descent. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp.
748–756. JMLR. org, 2017.

Yutian Chen, Aja Huang, Ziyu Wang, Ioannis Antonoglou, Julian Schrittwieser, David Silver, and
Nando de Freitas. Bayesian optimization in alphago. arXiv preprint arXiv:1812.06855, 2018.

Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Maddison, and George E
Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint arXiv:1910.05446,
2019.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. arXiv preprint arXiv:1812.02341, 2018.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning, 2019.

Ian Dewancker, Michael McCourt, Scott Clark, Patrick Hayes, Alexandra Johnson, and George Ke.
A stratified analysis of bayesian optimization methods. arXiv preprint arXiv:1603.09441, 2016.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance profiles.
Mathematical programming, 91(2):201–213, 2002.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. In Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Katharina Eggensperger, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Efficient benchmark-
ing of hyperparameter optimizers via surrogates. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter optimiza-
tion at scale. arXiv preprint arXiv:1807.01774, 2018.

10

http://arxiv.org/abs/1312.3005

Under review as a conference paper at ICLR 2021

Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Using meta-learning to initialize
bayesian optimization of hyperparameters. In Proceedings of the 2014 International Conference
on Meta-learning and Algorithm Selection-Volume 1201, pp. 3–10. Citeseer, 2014.

Flax Developers. Flax: A neural network library for jax designed for flexibility, 2020. URL
https://github.com/google-research/flax/tree/prerelease.

Wikimedia Foundation. Wikimedia downloads. URL https://dumps.wikimedia.org.

Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan
Leary, Jason Li, Huyen Nguyen, and Jonathan M Cohen. Stochastic gradient methods with
layer-wise adaptive moments for training of deep networks. arXiv preprint arXiv:1905.11286,
2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Taciana AF Gomes, Ricardo BC Prudêncio, Carlos Soares, André LD Rossi, and André Carvalho.
Combining meta-learning and search techniques to select parameters for support vector machines.
Neurocomputing, 75(1):3–13, 2012.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam Fishman,
Ke Wang, Ekaterina Gonina, Neal Wu, Efi Kokiopoulou, Luciano Sbaiz, Jamie Smith, Gábor Bartók,
Jesse Berent, Chris Harris, Vincent Vanhoucke, and Eugene Brevdo. TF-Agents: A library for
reinforcement learning in tensorflow. https://github.com/tensorflow/agents, 2018.
URL https://github.com/tensorflow/agents. [Online; accessed 25-June-2019].

Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tusar, and Dimo Brockhoff. Coco: A platform
for comparing continuous optimizers in a black-box setting. arXiv preprint arXiv:1603.08785,
2016.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the selection of initialization and activation
function for deep neural networks. arXiv preprint arXiv:1805.08266, 2018.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. Mean-field behaviour of neural tangent kernel
for deep neural networks, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez,
Ziyu Wang, SM Eslami, Martin Riedmiller, et al. Emergence of locomotion behaviours in rich
environments. arXiv preprint arXiv:1707.02286, 2017.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In International Conference on Artificial Neural Networks, pp. 87–94. Springer, 2001.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (eds.). Automatic Machine Learning: Methods,
Systems, Challenges. Springer, 2018. In press, available at http://automl.org/book.

11

https://github.com/google-research/flax/tree/prerelease
https://dumps.wikimedia.org
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents

Under review as a conference paper at ICLR 2021

Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Hunter Henry, Adam Crespi,
Julian Togelius, and Danny Lange. Obstacle tower: A generalization challenge in vision, control,
and planning. arXiv preprint arXiv:1902.01378, 2019.

Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in
deep neural networks: mean field approach. 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Aaron Klein and Frank Hutter. Tabular benchmarks for joint architecture and hyperparameter
optimization. arXiv preprint arXiv:1905.04970, 2019.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction
with bayesian neural networks. 2016.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 datasets. URl: https://www.
cs. toronto. edu/kriz/cifar. html, 6, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Manoj Kumar, George E Dahl, Vijay Vasudevan, and Mohammad Norouzi. Parallel architecture and
hyperparameter search via successive halving and classification. arXiv preprint arXiv:1805.10255,
2018.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Ke Li and Jitendra Malik. Learning to optimize neural nets. arXiv preprint arXiv:1703.00441, 2017.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. arXiv preprint arXiv:1603.06560,
2016.

Ping Li and Phan-Minh Nguyen. On random deep weight-tied autoencoders: Exact asymptotic
analysis, phase transitions, and implications to training. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HJx54i05tX.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 2017.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization and longer
horizons. arXiv preprint arXiv:1703.03633, 2017.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

12

https://openreview.net/forum?id=HJx54i05tX
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

Under review as a conference paper at ICLR 2021

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural language
models. arXiv preprint arXiv:1707.05589, 2017.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, pp. 4556–4565, 2019a.

Luke Metz, Niru Maheswaranathan, Jonathon Shlens, Jascha Sohl-Dickstein, and Ekin D Cubuk.
Using learned optimizers to make models robust to input noise. arXiv preprint arXiv:1906.03367,
2019b.

Luke Metz, Niru Maheswaranathan, C Daniel Freeman, Ben Poole, and Jascha Sohl-Dickstein. Tasks,
stability, architecture, and compute: Training more effective learned optimizers, and using them to
train themselves. arXiv preprint arXiv:2009.11243, 2020.

Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object image library (coil-20).
1996.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence o (1/kˆ 2). In Doklady AN USSR, volume 269, pp. 543–547, 1983.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A
new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Alex Olsen, Dmitry A. Konovalov, Bronson Philippa, Peter Ridd, Jake C. Wood, Jamie Johns, Wesley
Banks, Benjamin Girgenti, Owen Kenny, James Whinney, Brendan Calvert, Mostafa Rahimi
Azghadi, and Ronald D. White. DeepWeeds: A Multiclass Weed Species Image Dataset for
Deep Learning. Scientific Reports, 9(2058), 2 2019. doi: 10.1038/s41598-018-38343-3. URL
https://doi.org/10.1038/s41598-018-38343-3.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving rubik’s cube with a robot hand. arXiv preprint, 2019.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pp. 2338–2347, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Valerio Perrone and Huibin Shen. Learning search spaces for bayesian optimization: Another view
of hyperparameter transfer learning. In Advances in Neural Information Processing Systems, pp.
12751–12761, 2019.

Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cédric Archambeau. Scalable hyperpa-
rameter transfer learning. In Advances in Neural Information Processing Systems, pp. 6845–6855,
2018.

13

https://doi.org/10.1038/s41598-018-38343-3

Under review as a conference paper at ICLR 2021

Johann Petrak. Fast subsampling performance estimates for classification algorithm selection. In
Proceedings of the ECML-00 Workshop on Meta-Learning: Building Automatic Advice Strategies
for Model Selection and Method Combination, pp. 3–14. Citeseer, 2000.

Florian Pfisterer, Jan N van Rijn, Philipp Probst, Andreas Müller, and Bernd Bischl. Learning
multiple defaults for machine learning algorithms. arXiv preprint arXiv:1811.09409, 2018.

Arnu Pretorius, Elan van Biljon, Steve Kroon, and Herman Kamper. Critical initialisation for deep
signal propagation in noisy rectifier neural networks. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 31, pp. 5717–5726. Curran Associates, Inc., 2018.

Prajit Ramachandran, Barret Zoph, and Quoc Le. Searching for activation functions. 2017.

J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform. https://GitHub.
com/FacebookResearch/Nevergrad, 2018.

Matthias Reif, Faisal Shafait, and Andreas Dengel. Meta-learning for evolutionary parameter
optimization of classifiers. Machine learning, 87(3):357–380, 2012.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Tom Schaul, Ioannis Antonoglou, and David Silver. Unit tests for stochastic optimization. arXiv
preprint arXiv:1312.6055, 2013.

Juergen Schmidhuber. On learning how to learn learning strategies. 1995.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn:
the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Frank Schneider, Lukas Balles, and Philipp Hennig. Deepobs: A deep learning optimizer benchmark
suite. International Conference on Learning Representations, 2019.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. arXiv preprint arXiv:1611.01232, 2016.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

Christopher J Shallue, Jaehoon Lee, Joe Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E
Dahl. Measuring the effects of data parallelism on neural network training. arXiv preprint
arXiv:1811.03600, 2018.

Prabhu Teja Sivaprasad, Florian Mai, Thijs Vogels, Martin Jaggi, and François Fleuret. On the
tunability of optimizers in deep learning. arXiv preprint arXiv:1910.11758, 2019.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pp. 2951–2959, 2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural
networks. In International conference on machine learning, pp. 2171–2180, 2015.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. In Advances in
neural information processing systems, pp. 2004–2012, 2013.

14

https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

Under review as a conference paper at ICLR 2021

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv
preprint arXiv:1406.3896, 2014.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin
Riedmiller. DeepMind control suite. Technical report, DeepMind, January 2018. URL https:
//arxiv.org/abs/1801.00690.

Tensorflow. tensorflow tpu resnet50, Oct 2019. URL https://github.com/tensorflow/
tpu/tree/master/models/official/resnet.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30. IEEE,
2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin, Carles
Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-dataset: A dataset
of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096, 2019.

Laurens Van Der Maaten. Accelerating t-sne using tree-based algorithms. The Journal of Machine
Learning Research, 15(1):3221–3245, 2014.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science in
machine learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.2641198.
URL http://doi.acm.org/10.1145/2641190.2641198.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, pp. 3630–3638, 2016.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. arXiv preprint arXiv:1905.00537, 2019.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha
Denil, Nando de Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize.
International Conference on Machine Learning, 2017.

15

https://arxiv.org/abs/1801.00690
https://arxiv.org/abs/1801.00690
https://github.com/tensorflow/tpu/tree/master/models/official/resnet
https://github.com/tensorflow/tpu/tree/master/models/official/resnet
http://doi.acm.org/10.1145/2641190.2641198

Under review as a conference paper at ICLR 2021

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems, pp. 4148–4158, 2017.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Learning hyperparameter optimization
initializations. In 2015 IEEE international conference on data science and advanced analytics
(DSAA), pp. 1–10. IEEE, 2015a.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Sequential model-free hyperparameter
tuning. In 2015 IEEE international conference on data mining, pp. 1033–1038. IEEE, 2015b.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger B Grosse. Understanding short-horizon bias in
stochastic meta-optimization. pp. 478–487, 2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 3485–3492, June 2010. doi: 10.1109/CVPR.2010.5539970.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Penning-
ton. Dynamical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla
convolutional neural networks. In International Conference on Machine Learning, 2018.

Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. In Advances
In Neural Information Processing Systems, 2017.

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and Frank Hut-
ter. NAS-Bench-101: Towards Reproducible Neural Architecture Search. arXiv e-prints, art.
arXiv:1902.09635, Feb 2019.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. The
visual task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. International
Conference on Learning Representations, 2017. URL https://arxiv.org/abs/1611.
01578.

16

https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578

Under review as a conference paper at ICLR 2021

mlp_ae_family
fixed
word_rnn_language_model_family
char_rnn_language_model_family
conv_pooling_family
losg_tasks_family
maf_family
mlp_family
mlp_vae_family
conv_fc_family
quadratic_family
nvp_family
rnn_text_classification_family

Figure S1: A 2D TSNE embedding of all 1162 tasks. This embedding is produced from a 1,000
dimensional feature vector consisting of task loss evaluated with many different hyperparameter
configurations. We find similar tasks – e.g. masked auto regressive flow models, and character / word
RNN models – cluster, suggesting similarity in the optimizers that perform well. See §?? for more
details.

A TASKSET VISUALIZATION

For a qualitative view, we constructed a feature space consisting of performance measurements for
each task+optimizer pair (See §3.3). This forms a dense matrix of size number of tasks by number of
optimizers. We then perform T-SNE (Maaten & Hinton, 2008; Van Der Maaten, 2014) to reduce the
dimensionality to two and plot the results coloring by task family (Figure S1). Clusters in this space
correspond to tasks that work well with similar optimizers. We find diversity of tasks with clusters
occurring around similar families of tasks.

A.1 TSNE OF TASKSET

B ADDITIONAL EXPERIMENTS

B.1 GENERALIZATION TO DIFFERENT SIZED PROBLEMS

Training learned algorithms on large models is often infeasible for computational reasons. As such,
one form of generalization needed when building learned algorithms is the ability to transfer to
different sized models. As shown in Figure 1 the tasks in this suite contain a wide range of parameter
counts, and can thus be used to test this kind of generalization. We split the tasks into 8 groups –
one group per order of magnitude in parameter count, and train hyperparameter lists on one range
and test on the rest. In Figure S2 we plot the fraction of the training loss achieved by the test loss
on the target parameter range. We find peak performance around the model sizes used for training,
and smooth falloff as the testing tasks become more dissimilar as measured by parameter count. We
note that our problems are not evenly distributed across these groups thus each group will contain
a different percentage of the underlying tasks. While this potentially confounds these results, we
believe a similar bias occurs in realistic workloads as well.

0 1 2 3 4 5 6 7
number of parameters (log10)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

tra
in

J /
 te

st
J

0-1
3-4
6-7
all

Figure S2: We show learned search space generalization, measured as a ratio of the loss achieved
in training and testing, versus the number of task parameters used during search space training.
Generalization falls off as one moves further away from the training regime. In black we show that a
uniform mixture of the 7 parameter buckets does not fall off.

17

Under review as a conference paper at ICLR 2021

B.2 REINFORCEMENT LEARNING WITH PPO

Figure S3: We find our learned hyperparameter lists performs about as well as random search on
the NAdam search space, and worse than the random search on the learning rate tuned Adam search
space.

We test the learned hyperparameter lists on two continuous control reinforcement learning environ-
ments, half cheetah and humanoid, from Gym’s Mujoco environments(Todorov et al., 2012; Brockman
et al., 2016). We use TF-Agents (Guadarrama et al., 2018) with all non-optimizer hyperparameters
set via searching a mixture of environments. In figure B.2 we find our learned hyperparameter lists
achieves comparable to slightly worse performance does not out perform learning rate tuning of
Adam in both efficiency nor final performance. To diagnose this behavior we ran all 1k optimizers
for both problems and found the learned hyperparameter list performs comparable to random search
in the underlying space. To probe further, we computed spearman correlation on the performance of
each optimizer as compared to the rest of the tasks in the task suite. We found considerably worse
correlations than where present for tasks in the TaskSet. This is not surprising as TaskSet contains no
reinforcement learning problems.

B.3 LM1B TARGETING 20K ITERATIONS

We show a transformer on LM1B similar to that shown in §5 except run for only 20k iterations, a fith
of the steps. Results in Figure S4. We find the learned hyperparameter lists are much more efficient
than either of the baselines.

Figure S4: We find our learned hyperparameter lists out performs learning rate tuned Adam with
both a constant, and a fixed learning rate schedule on a 53M parameter Transformer trained on LM1B.
Left: Learning curves for the best of the optimizers. Right: Number of optimizers tried vs best test
loss.

B.4 PROBING SHORT HORIZON

Often the goal when training a learned optimizers is to minimize performance after training some
number of iterations. This is extremely computationally expensive and in practice approximations
must be used. One common family of approximations is short horizon based methods. These methods
rely upon somehow truncating training so that updates can be made to the learned optimizer more
frequently. This is commonly done via truncated backprop (Werbos, 1990; Wichrowska et al., 2017;

18

Under review as a conference paper at ICLR 2021

Figure S5: Hyperparameter lists trained on short horizon data generalize remarkably well. On the
y-axis we show performance evaluated on the the full 10k training iterations for a given number
of optimizers tried (x-axis). In color we show different number of steps used when evaluating task
optimizer performance when training the hyperparameter list.

Metz et al., 2019a; Wu et al., 2016), or proxy objectives such as only training for a handful of epoch
(Zoph & Le, 2017). While this short horizon proxy is certainly not optimal(Wu et al., 2016), the
performance gains are immense and in practice is what makes meta-training optimizers feasible.
In our task suite, we test this short horizon learning by training hyperparameter lists only using
some finite amount of training iterations per task and testing in the full training regieme (10k steps).
Results in figure S5. We find that even when learning the hyperparameter list on a mere 200 steps,
our hyperparameter list continues to generalize to outperform random search on Adam8p. This is
promising as this suggests that training the learned hyperparameter list can be done with 1/50th of
the total compute. This result is surprising to us as prior work indicates the effect of this bias can
be severe (Wu et al., 2016; Metz et al., 2019a). We suspect it is due to the simplicity of the learned
parameter space but leave a thorough analysis of this for future work.

100 101 102 103
0.1

0.5

1.0
default norm
last quantile norm
min norm
random

0.0 0.2 0.4 0.6 0.8 1.0
default norm

0.0
0.2
0.4
0.6
0.8
1.0

las
t q

ua
nt

ile
 n

or
m

0.0 0.2 0.4 0.6 0.8 1.0
default norm

0.0
0.2
0.4
0.6
0.8
1.0

m
in

no
rm

Figure S6: Left: Aggregate performance (y-axis) vs number of optimizer tried (x-axis) for different
normalization and aggregation techniques. In each curve we train the hyperparameter list with a dif-
ferent normalization and aggregation strategy and test with the default normalization and aggregation
technique described in 3.3. We find some some strategies are near identical in performance (e.g. min
norm), while others perform significantly worse – e.g. last quantile norm. In both cases, however,
we still perform better than the underlying random search. Center: Correlation between default nor-
malization and the quantile based normalization strategy. Correlation is quite low – 0.193 Pearson’s
correlation. Right: Correlation between the default normalization using a mean to aggregate over
validation over the course of training vs using a min over validation over the course training. We find
a much higher correlation of 0.911.

B.5 CHOICE OF NORMALIZATION FUNCTION

There is no easy way to define a single metric for optimizer performance over a mixture of tasks.
This paper picks a single normalization strategy based on minimum validation loss and the validation
loss at initialization presented in §3.3. In this section we show the impact of choosing a different
normalization and or aggregation technique. First, instead of computing the mean over learning
curves as described in §3.3 we compute a min. Second, instead of rescaling based on init and min,

19

Under review as a conference paper at ICLR 2021

we linearly rescale based on the 95 percentile of validation loss and the min validation loss achieved
at the end of training each task.In Figure S6 we show learned hyperparameter list training and testing
performance as a function of number of optimizers tried when training with different normalization
techniques. We find using the min instead of mean results in a negligible change, while using the
percentile loss more significantly hurts performance. This difference can be explained by Figure S6b
and S6c where we show correlations between the two losses. We find the percentile loss has a much
weaker correlation to the default normalizer. We suspect this difference is due to the fact that many
optimizers diverage on tasks. By using the 95 percentile we upweight optimizers that do not diverge.

B.6 TASK FAMILIES ARE DIVERSE

To show the effects of diversity we train and test hyperparameter lists on each pair of task family.
We additionally normalize each column from 0-1 to account for different mean losses across tasks.
Results in Figure S7. While we do find some similarity in tasks – e.g. between MAF and NVP models,
but no two tasks behave the same performance characteristics (no duplicate columns) suggesting that
each task family is providing a different contribution to the space of all tasks. We also find when
training on certain “far away” tasks, e.g. the quadratic family, we find poor performance on most
other task families.

m
af nv
p

m
lp_

va
e

m
lp_

ae
co

nv
_p

oo
lin

g
co

nv
_f

c
m

lp
wo

rd
_r

nn
_lm

rn
n_

te
xt_

cla
ss

ch
ar

_r
nn

_lm
los

g_
ta

sk
s

qu
ad

ra
tic

Train task family

maf
nvp

mlp_vae
mlp_ae

conv_pooling
conv_fc

mlp
word_rnn_lm

rnn_text_class
char_rnn_lm

losg_tasks
quadratic

Te
st

ta
sk

 fa
m

ily

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

no
rm

ali
ze

d
los

s

Figure S7: Learning hyperparameter lists using one task family and testing on the remainder of
task families. We normalize each column from 0-1 to account for different mean losses across tasks.
Lower loss means better performance. We find some groups of similar tasks, but in general no two
task families behave identically.

B.7 EFFECTS OF THE META-TRAINING SEARCH SPACE SIZE

Our offline learning technique described in §3.4 hinges on a finite set of optimizers collected via
random search. This set is denote by Θ in Eq.4. In this section we probe the impact of this size. We
take different sized subsets of the the thousand Adam8p optimizer configurations and train and test
search spaces on different iid splits of tasks. We then plot performance as a function of this number
of optimizers in Figure S9. Moving left in this figure corresponds to increasing the compute needed
to train the learned hyperparameter list. We find performance continues to improve as the size of Θ
grows. Given the high dimension of our meta-parameters, 8, this is not a surprise as the number of
evaluations needed to explore the space will grow exponentially. We find that the full thousand trials
are needed to out perform learning rate tuned Adam when only given a single optimizer evaluation.
We find around 100 optimizers (size of Θ) are needed in the case of 10 optimizer trials (k = 10).

Overall this sugjests that randomsearch might not be the most efficient learning method for creating
hyperparameter lists. This is especially true as we work with optimizer families that have more
hyperparameters. Other approximate learning methods should likely be explored such as truncated
backprop through time as used by the learned optimizer community(Metz et al., 2019a), and/or
population based methods (Balduzzi et al., 2019).

20

Under review as a conference paper at ICLR 2021

lo
sg

_t
a
sk

s

q
u
a
d
ra

ti
c

m
lp

m
lp

_a
e

co
n
v
_p

o
o
lin

g

co
n
v
_f

c

m
lp

_v
a
e

n
v
p

rn
n
_t

e
x
t_

cl
a
ss

if
ic

a
ti

o
n

m
a
f

fi
x
e
d

ch
a
r_

rn
n
_l

a
n
g
u
a
g
e
_m

o
d
e
l

w
o
rd

_r
n
n
_l

a
n
g
u
a
g
e
_m

o
d
e
l

1 sec

10 sec

1 min

5 min

30 min
1 hr
2 hr

ti
m

e
 t

o
 t

ra
in

 1
0

k
st

e
p
s

Figure S8: Timings computed for each task family. We find most task families have a narrow
distribution of compute times.

101 102 103

number optimizers

0.10
0.15
0.20
0.25
0.30
0.35
0.40

los
s

1 hparams (Adam8p)
1 hparams (Adam4p)
10 hparams (Adam8p)
10 hparams (Adam4p)
100 hparams (Adam8p)
100 hparams (Adam4p)
1 -- Adam lr
10 - Adam lr

Figure S9: Performance continues to improve as more and more optimizers are used when training the
search spaces. On the x-axis we show number of optimzers (size of Θ, the number of hyperparameter
evaluations used in training the learned hyperparameter list) and y-axis we show test loss achieved
when applying the learned search space for a given fixed length, e.g. different values of k shown in
color). We plot median with 25-75 percentile shaded over different random optimizer samples and iid
task splits. Stars (with horizontal guide lines) denote best search for the corresponding number of
hyperparameters for learning rate tuned Adam in half orders of magnitude.

C TASK TIMINGS

In Figure S8 we show box plots of training times for each problem. For each task we use the median
step time recorded over a mixture of different physical devices and multipled by 10k to estimate a
full training time. Future versions of this dataset of tasks will contain more variation within each task
family.

21

Under review as a conference paper at ICLR 2021

D OPTIMIZER FAMILY UPDATE EQUATIONS

D.1 ADAM8P UPDATE EQUATIONS

The 8 meta-parameters are: the learning rate, α, first and second moment momentum, β1, β2, the
numerical stability term, ε, `2 and `1 regularization strength, and learning rate schedule constants
λexp_decay and λlinear_decay. For Adam6p, we set `1 and `2 to zero.

φ(0) =problem specified random initialization (S1)

m(0) =0 (S2)

v(0) =0 (S3)

g(t) =
d

dφ(t)
(f(x;φ(t)) + `2||φ(t)||22 + `1||φ(t)||1) (S4)

m(t) =β1m
(t−1) + g(t)(1− β1) (S5)

v(t) =β2v
(t−1) + (g(t))2(1− β2) (S6)

m̂(t) =
m(t)

1− βt+1
1

(S7)

v̂(t) =
v(t)

1− βt+1
2

(S8)

u(t) =
m̂(t)

√
v̂(t) + ε

(S9)

s
(t)
linear =max(1− tλlinear_decay, 0) (S10)

s(t)
exp =exp(−tλexp_decay) (S11)

φ(t+1) =αs
(t)
linears

(t)
expu

(t) (S12)

D.2 NADAMW UPDATE EQUATIONS

This optimizer family has 10 hyper parameters. The base learning rate, αbase, first and second moment
momentum, β1, β2, the numerical stability term, ε, `2WD `2 regularization strength, `2AdamW
AdamW style weight decay, and a boolean to switch between NAdam and Adam, buse nesterov. The
learning rate schedule is based off of a single cycle cosine decay with a warmup. It is controlled by 3
additional parameters – cwarmup, cconstant, and cmin learning rate mult.

The learning rate is defined by:

u =cwarmupT > t (S13)
αdecay&constant =(αbase − cmin learning rate mult)(0.5 (S14)

cos(tπ/(T − cconstant)) + 0.5)+ (S15)
cmin learning rate mult (S16)

αwarmup =
t

(Tcwarmup)
(S17)

α =(1− u)αdecay&constant + uαwarm (S18)

The update equations of NAdamW are quite similar to that of Adam8p. For clarity we list the full
update here.

22

Under review as a conference paper at ICLR 2021

φ(0) =problem specified random initialization (S19)

m(0) =0 (S20)

v(0) =0 (S21)

g(t) =
d

dφ(t)
(f(x;φ(t)) + `2wd||φ(t)||22 (S22)

m(t) =β1m
(t−1) + g(t)(1− β1) (S23)

v(t) =β2v
(t−1) + (g(t))2(1− β2) (S24)

m̂(t) =
m(t)

1− βt+1
1

(S25)

v̂(t) =
v(t)

1− βt+1
2

(S26)

u
(t)
heavy ball =

m̂(t)

√
v̂(t) + ε

(S27)

u
(t)
nesterov =

β1m̂
(t) + (1− β1)g(t)

√
v̂(t) + ε

(S28)

φ(t+1) =φ(t) − (1− buse nesterov)αu
(t)
heavy ball+ (S29)

buse nesterovαu
(t)
nesterov − α`2AdamWφ(t) (S30)

E OPTIMIZER FAMILY SEARCH SPACES

E.1 SEARCH SPACE CONSIDERATIONS

The performance of random search critically depends on the boundaries of the original search space.
Without prior knowledge about the problems, however, picking a good search space is difficult.
To explore this we additionally choose search spaces after collecting and looking at the data. We
then use this search space to simulate random search within the constraints via rejection sampling.
To find these search spaces we find the best hyper parameters for each task and construct new
hyperparameter ranges with min and max values determined by the smallest and largest values of
each hyperparameter which were the best hyperparameter for some task. This removes regions of the
search space not used by any task. We also tested bounds based on the 5th and 95th percentile of
best performing hyperparameters computed over all tasks. In the case of min and max, we find the
optimal hyperparameters cover nearly all of the existing space, whereas the percentile based search
spaces reduces the volume of the search hypercube by more than 90% leaving us with only ∼100
hyperparameter configurations. In Figure 3, we find, in all cases, learning the hyperparameter list is
much more efficient.

E.2 ADAM8P, ADAM6P, ADAM4P, ADAMLR SEARCH SPACES

For Adam1p, Adam4p, Adam6p, and Adam8p we sample learning rate logritmically between 1e-8
and 10, beta1 and beta2 we parametrize as 1 − x and sample logrithmically between 1e-4 and 1
and 1e-6 and 1 respectively. For learning rate schedules we sample linear decay between 1e-7, 1e-4
logrithmically and exponential decay logrithmically between 1e-3, 1e-6. We sample both `1 and `2
logrithmcally between 1e-8, 1e1.

E.3 NADAMW SEARCH SPACE

This search space was chosen heuristically in an effort to generalize to new problems. We would like
to emphasize that it was not tuned. We used our insight from Adam based optimizer families and

23

Under review as a conference paper at ICLR 2021

chose this. No iterations where done. We expect more iterations will improve not only in distribution
performance, but alsos generalization performance.

The initial learning rate, αbase is sampled from log space between 1e− 5 and 1.0. 1− β1 is sampled
logrithmically between 1e − 3, and 1.0. 1 − β2 is sampled between 1e − 5, and 1.0. ε is sampled
logarithmically between 1e − 8 and 1e4. We sample using nesterov (buse nesterov) 50% of the time.
We sample `2WD and `2AdamW logrithmically between 1e− 5 and 1e− 1. Equal probabilities of a
third we either use both terms, zero out `2WD, or zero out `2AdamW . With 50% probability we use
a nonzero min learning rate multiplier sampled logrithmically between 1e− 5 and 1.0. With 50%
probability we sample the warm up fraction, cwarmup between 1e-5 and 1e-1, otherwise it is set to zero.
Finally, we uniformly sample the amount of time the learning rate is held constant(cconstant) between
0 and 1.

F EXTENDED RELATED WORK

F.1 SETS OF TASKS

Benchmarks consisting of multiple tasks are becoming an increasingly common technique for
measuring improvement in algorithm design. Reinforcement learning has Atari Bellemare et al.
(2013), DMLab Beattie et al. (2016), gym Brockman et al. (2016), and dm_control Tassa et al. (2018).
Natural language processing has evaluation sets such as GLUE (Wang et al., 2018), Super GLUE
(Wang et al., 2019), and the NLPDecathalon (McCann et al., 2018). In computer vision there is (Zhai
et al., 2019) which studies transfer learning of image features. In black box optimization there is
Nevergrad (Rapin & Teytaud, 2018), COmparing Continuous Optimizers (COCO) (Hansen et al.,
2016) and a number of tasks to test Bayesian hyperparameter optimization presented in (Dewancker
et al., 2016). For first order gradient methods there are unit tests for stochastic optimization (Schaul
et al., 2013) which studies toy optimization functions, and DeepObs (Schneider et al., 2019) which
includes 20 neural network tasks. Hyperparameter tuning practices on these benchmarks vary
between tuning on each task separately, to tuning one set of hyperparameters for all problems. In
Atari (Bellemare et al., 2013), for example, it is common practice to tune hyperparameters on a subset
of tasks and evaluate on the full set. This protocol can further be extended by leveraging unseen
levels or games at test time as done in Obstacle Tower (Juliani et al., 2019), ProcGen (Cobbe et al.,
2019), CoinRun (Cobbe et al., 2018), and Sonic (Nichol et al., 2018). We believe generalization to
unseen tasks is key for learned algorithms to be useful thus our learned search space experiments
mirror this setting by making use of hold out tasks.

Existing meta-learning data sets share similar goals to our work but focus on different domains. In
few shot learning there is MiniImageNet (Vinyals et al., 2016) which is built procedurally from the
ImageNet dataset (Russakovsky et al., 2015). Meta-Dataset (Triantafillou et al., 2019) takes this
further and also focuses on generalization by constructing few shot learning tasks using images from
a number of different domains for evaluation purposes. The automated machine learning community
has OpenML (Vanschoren et al., 2013) with a focus on selecting and tuning non-neural algorithms.
For learning optimizers, the use of task suites has been limited and ad-hoc. Many works use a single
or small number of standard machine learning tasks (Andrychowicz et al., 2016; Li & Malik, 2017;
Lv et al., 2017; Metz et al., 2019a). Wichrowska et al. (2017) uses a set of synthetic problems
meant to emulate many different kinds of loss surfaces. While existing collections of tasks exist for
optimizer evaluation, e.g. (Schneider et al., 2019), they contain too small a number of tasks to act as
a comprehensive training set for learning algorithms, and many of their tasks are additionally too
computationally expensive to be useful during learning.

F.2 HAND DESIGNED AND LEARNED OPTIMIZERS

Optimization is core to machine learning and thus the focus of extensive work. Methods such as
Nesterov momentum (Nesterov, 1983), AdaGrad (Duchi et al., 2011), RMSProp (Tieleman & Hinton,
2012), and Adam (Kingma & Ba, 2014) have all shown considerable improvements in both the speed
of optimization and ease of use by exposing robust, and easier to tune hyperparameters than SGD
(Sivaprasad et al., 2019). Adaptive step size methods in particular have emerged at the forefront with

24

Under review as a conference paper at ICLR 2021

many works building from it including AdamW (Loshchilov & Hutter, 2017), RAdam (Liu et al.,
2019), Novograd (Ginsburg et al., 2019), and NAdam Dozat (2016). Recently, there has been a focus
on comparing optimizers either for best performance, or ease of use (Wilson et al., 2017; Choi et al.,
2019; Schneider et al., 2019; Sivaprasad et al., 2019). This has proven difficult as performance is
heavily dependent on the choice of search space for optimization hyperparameters (Choi et al., 2019).

Learned optimizers represent a parallel thread in the development of optimizers. By learning as
opposed to hand-designing optimizers, researchers hope to not only increase performance but also ease
of use (e.g. minimize the number of hyperparameters required or lower hyperparameter sensitivity)
(Bengio et al., 1990; Schmidhuber, 1995; Hochreiter et al., 2001). Recently, there has been renewed
interest in parameterizating learning algorithms with neural networks and learning these optimizers
on neural network based losses (Andrychowicz et al., 2016; Wichrowska et al., 2017; Li & Malik,
2017; Lv et al., 2017; Metz et al., 2019a;b). Other approaches make learn symbolic parameterizations
for new optimizers (Bello et al., 2017). These various methods are all trained and evaluated on
different distributions of tasks making comparison across papers challenging. The dataset of tasks
presented here will hopefully aid in the ability to compare and evaluate progress in learned optimizer
research.

In this work, we develop a much more minimal type of “learned optimizer” than previous work which
developed new functional forms for the optimizer. Optimization involves not only the functional form
of the optimizer, but also the rules for choosing hyperparameters and applying the optimizer. We
focus on this second aspect of optimization and learn a hyperparameter search space to improve the
performance of existing hand designed methods.

F.3 HYPERPARAMETER SEARCH

Hyperparameter search is a key component in machine learning. Considerable improvements have
been made in language Melis et al. (2017), computer vision (Snoek et al., 2012), and RL (Chen et al.,
2018) simply by tuning better. Often no single hyperparameter configuration works well across all
tasks for existing optimization methods. Most current hyperparameter search methods involve trying
a very large number of hyperparameters for every new task, which is computationally infeasible for
large tasks, and additionally can severely limit the number of hyperparameters that can be tuned.
Many common techniques such as random search (Bergstra & Bengio, 2012; Bousquet et al., 2017),
Bayesian optimization (Snoek et al., 2012; 2015), tree parzen estimators (Bergstra et al., 2011), or
sequential halving (Kumar et al., 2018) require setting a hyperparameter search space by hand which
is not only difficult but often wildly inefficient.

Learning hyperparameters or search strategies by leveraging multiple tasks has been explored within
the context of Bayesian optimization Swersky et al. (2013); Perrone & Shen (2019); Perrone et al.
(2018) as well as under the term meta-learning in Chen et al. (2017) in which an LSTM is meta-trained
to produce function locations to query.

The cost of hyperparameter search is often large as each evaluation requires training a model to
completion. Often multi-fidelity based approaches are used which leverage “simpler” tasks and
transfer the resulting hyperparameters (Hutter et al., 2018). Common approaches include training on
partial function evaluations Swersky et al. (2014); Domhan et al. (2015); Li et al. (2016); Klein et al.
(2016); Falkner et al. (2018), or leveraging simplified data and models (Petrak, 2000; Zoph & Le,
2016; Brock et al., 2017). Our dataset of tasks serves as a: “simpler” set of tasks to train on; a large
and diverse enough set of problems that optimization algorithms trained on it may be expected to
generalize; and a framework to test transfer across different types of problems.

25

Under review as a conference paper at ICLR 2021

G LIST OF NADAM HPARAMS

Idx Lr warmup constant Min LR mult beta1 beta2 epsilon nesterov l2 reg l2 weight decay

0 1.24e-3 0.000 0.477 1.01e-3 0.94666 0.94067 8.114e-8 False 0.000e+00 7.258e-5
1 5.33e-3 0.000 0.172 0.0 0.96047 0.99922 8.665e-8 True 0.000e+00 5.563e-3
2 2.12e-4 0.000 0.210 1.39e-3 0.62297 0.97278 1.540e-7 False 0.000e+00 5.361e-2
3 4.06e-1 0.000 0.324 0.0 0.99724 0.98680 1.079e+02 True 0.000e+00 1.562e-2
4 2.05e-2 0.000 0.885 1.57e-5 0.35731 0.86043 8.874e-5 True 0.000e+00 7.217e-2
5 5.95e-4 0.008 0.378 0.0 0.89130 0.99983 1.483e-7 True 0.000e+00 4.087e-2
6 7.53e-3 0.000 0.422 9.55e-4 0.69192 0.98434 3.593e-8 False 0.000e+00 3.060e-4
7 4.69e-3 0.000 0.509 0.0 0.99639 0.98820 2.056e-5 False 0.000e+00 3.552e-2
8 2.95e-1 0.000 0.201 0.0 0.99678 0.99981 7.498e+00 False 3.792e-4 3.463e-4
9 2.04e-3 0.000 0.527 0.0 0.49995 0.99755 5.630e-8 True 0.000e+00 2.796e-2

10 7.39e-1 0.001 0.556 3.31e-3 0.99691 0.80639 2.900e+03 False 0.000e+00 7.851e-2
11 8.12e-3 0.000 0.207 0.0 0.17785 0.96033 7.971e-2 False 0.000e+00 1.489e-2
12 3.33e-2 0.000 0.369 0.0 0.69592 0.99997 5.510e-6 True 0.000e+00 1.362e-5
13 6.95e-3 0.000 0.014 0.0 0.99412 0.99305 4.352e-7 False 0.000e+00 3.142e-5
14 1.88e-1 0.000 0.205 1.08e-1 0.98597 0.56531 3.335e+00 True 1.265e-5 3.868e-3
15 9.47e-4 0.007 0.452 0.0 0.43977 0.09422 2.120e-7 False 0.000e+00 6.902e-3
16 3.75e-3 0.000 0.184 0.0 0.87756 0.96128 3.163e-3 True 7.468e-5 2.627e-3
17 7.25e-1 0.000 0.495 0.0 0.99800 0.99781 3.608e+00 True 1.656e-5 3.911e-2
18 4.58e-3 0.000 0.107 3.66e-1 0.42294 0.99963 4.174e-6 True 0.000e+00 4.446e-3
19 3.07e-4 0.007 0.518 0.0 0.57863 0.99625 9.881e-6 False 0.000e+00 5.521e-2
20 2.94e-5 0.000 0.830 8.27e-5 0.96916 0.99896 7.782e-7 True 3.364e-4 3.416e-3
21 1.65e-4 0.002 0.457 2.70e-1 0.95280 0.04565 2.832e-6 True 0.000e+00 1.141e-2
22 9.17e-1 0.010 0.897 2.67e-2 0.45061 0.99244 4.945e-1 False 1.253e-3 0.000e+00
23 2.36e-3 0.000 0.986 0.0 0.98560 0.99997 1.080e-8 True 0.000e+00 3.023e-3
24 2.14e-2 0.000 0.128 0.0 0.98741 0.99336 1.266e-4 False 0.000e+00 5.194e-4
25 5.91e-2 0.000 0.062 0.0 0.99794 0.99383 3.447e+02 True 0.000e+00 3.935e-2
26 1.57e-3 0.000 0.251 0.0 0.91820 0.99991 4.675e-5 False 0.000e+00 4.112e-5
27 4.43e-1 0.000 0.702 0.0 0.94375 0.93551 2.335e-8 True 0.000e+00 8.325e-5
28 2.98e-3 0.008 0.046 0.0 0.68612 0.94232 6.614e-2 False 6.489e-5 0.000e+00
29 1.65e-2 0.004 0.082 4.92e-4 0.95717 0.99789 3.068e+01 True 0.000e+00 8.920e-2
30 5.58e-3 0.000 0.538 0.0 0.97559 0.99990 3.238e-8 True 0.000e+00 4.896e-4
31 8.54e-1 0.000 0.229 0.0 0.93129 0.50200 2.051e-2 False 2.068e-4 2.801e-2
32 7.38e-3 0.000 0.722 8.78e-2 0.21456 0.99752 2.862e-2 False 0.000e+00 8.439e-2
33 4.26e-4 0.001 0.923 2.06e-1 0.47239 0.99974 8.221e-5 False 1.248e-5 0.000e+00
34 6.04e-3 0.000 0.698 0.0 0.97849 0.91449 1.806e+00 False 3.183e-3 1.762e-2
35 8.86e-3 0.000 0.104 1.66e-1 0.98967 0.99720 1.493e-2 True 0.000e+00 2.253e-2
36 1.51e-2 0.000 0.431 1.99e-3 0.80488 0.97878 2.538e-8 True 0.000e+00 2.269e-5
37 2.50e-3 0.000 0.009 0.0 0.98127 0.99988 1.799e-7 False 0.000e+00 1.303e-2
38 3.42e-4 0.000 0.827 6.38e-1 0.25217 0.96572 2.928e-7 True 0.000e+00 1.318e-3
39 6.94e-5 0.000 0.085 0.0 0.98674 0.42709 2.387e-7 False 0.000e+00 2.071e-4
40 3.03e-2 0.001 0.313 0.0 0.90610 0.99997 4.449e-3 True 0.000e+00 2.813e-5
41 4.64e-3 0.000 0.495 2.26e-5 0.64658 0.54108 3.528e-8 False 0.000e+00 2.996e-5
42 2.25e-3 0.000 0.722 0.0 0.97967 0.97518 1.488e-7 True 1.812e-5 2.180e-2
43 6.66e-4 0.000 0.632 2.79e-5 0.65968 0.99997 6.848e-6 True 0.000e+00 3.130e-3
44 3.31e-3 0.000 0.146 0.0 0.90447 0.99970 6.618e-6 True 0.000e+00 2.184e-2
45 7.84e-4 0.016 0.124 0.0 0.95065 0.99685 2.141e-2 False 0.000e+00 4.024e-5
46 6.16e-3 0.016 0.623 0.0 0.98823 0.98744 1.616e-6 False 0.000e+00 1.544e-2
47 3.26e-4 0.000 0.738 1.61e-4 0.78425 0.99998 3.468e-3 False 0.000e+00 4.709e-2
48 4.12e-3 0.001 0.205 0.0 0.99561 0.75382 2.390e-6 True 0.000e+00 3.631e-2
49 6.26e-1 0.000 0.932 2.52e-3 0.99401 0.83521 2.431e+00 True 0.000e+00 1.048e-2

Top 50 hyper parameters found using the NAdamW search space. We find diverse learning rates, with
very little warmup used. We additionally find most good performing optimizers make use of AdamW
style weight decay. Finally, matching insight from (Choi et al., 2019), we find large values of ε.

26

Under review as a conference paper at ICLR 2021

H DESCRIPTION OF TASKS IN TASK SUITE

In this section we detail the task distribution used throughout this work. In addition to this text, a
Tensorflow (Abadi et al., 2016) implementation is also released at github.com/google-research/google-
research/tree/master/task_set.

H.1 SAMPLED TASKS

H.1.1 DEFAULT SAMPLED COMPONENTS

As many of the sampled tasks are neural networks. We define common sampling routines used by all
the sampled tasks.

Activation functions: We define a distribution of activation functions which is sampled correspond-
ing the following listing both name and weight. These are a mix of standard functions (relu, tanh) to
less standard (cos).

• relu: 6
• tanh: 3
• cos: 1
• elu: 1
• sigmoid: 1
• swish (Ramachandran et al., 2017): 1
• leaky relu (with α = 0.4): 1
• leaky relu (with α = 0.2): 1
• leaky relu (with α = 0.1): 1

Initializations: We sample initializers according to a weighted distribution. Each initialization
sample also optionally samples hyperparameters (e.g. for random normal initializers we sample
standard deviation of the underlying distribution).

• he normal (He et al., 2015): 2
• he uniform (He et al., 2015): 2
• glorot normal (Glorot & Bengio, 2010): 2
• glorot uniform (Glorot & Bengio, 2010): 2
• orthogonal: 1. We sample the “gain”, or multiplication of the orthogonal matrix logarithmi-

cally between [0.1, 10].
• random uniform 1.0: This is defined between [−s, s] where s is sampled logarithmically

between [0.1, 10].
• random normal: 1.0: The std is sampled logarithmically between (0.1, 10).
• truncated normal: 1.0: The std is sampled logarithmically between (0.1, 10).
• variance scaling: 1.0: The scale is sampled logarithmically between (0.1, 10).

RNN Cores: We define a distribution over different types of RNN cores used by the sequential tasks.
With equal probability we sample either a vanilla RNN (Elman, 1990), GRU(Chung et al., 2014),
or LSTM(Hochreiter & Schmidhuber, 1997). For each cell we either sample 1 shared initialization
method or sample a different initialization method per parameter vector with a 4:1 ratio. We sample
the core hidden dimension logarithmically between [32, 128].

H.1.2 SAMPLED DATASETS

Image Datasets: We sample uniformly from the following image datasets. Each dataset additionally
has sampled parameters. For all datasets we make use of four data splits: train, valid-inner, valid-outer,
test. Train is used to train models, valid-inner is used while training models to allow for modification

27

https://github.com/google-research/google-research/tree/master/task_set
https://github.com/google-research/google-research/tree/master/task_set

Under review as a conference paper at ICLR 2021

of the training procedure (e.g. if validation loss doesn’t increase, drop learning rate). Valid-outer is
used to select meta-parameters. Test should not be used during meta-training.

For all datasets, we sample a switch with low probability (10% of the time) to only use training data
and thus not test generalization. This ensures that our learned optimizers are capable of optimizing a
loss as opposed to a mix of optimizing and generalizing.

Mnist: Batch size is sampled logarithmically between [8, 512]. We sample the number of training
images logarithmically between [1000, 55000] (LeCun, 1998).

Fashion Mnist: Batch size is sampled logarithmically between [8, 512]. We sample the number of
training images logarithmically between [1000, 55000] (Xiao et al., 2017).

Cifar10: Batch size is sampled logarithmically between [8, 256]. The number of training examples
is sampled logarithmically [1000, 50000] (Krizhevsky et al., 2009).

Cifar100: Batch size is sampled logarithmically between [8, 256]. The number of training examples
is sampled logarithmically [1000, 50000] (Krizhevsky et al., 2009).

{food101_32x32, coil100_32x32, deep_weeds_32x32, sun397_32x32}: These dataset take the orig-
inal set of images and resize them to 32x32 using OpenCV’s (Bradski, 2000) cubic interpolation. We
ignore aspect ratio for this resize. Batch size is sampled logarithmically between [8, 256] (Bossard
et al., 2014; Nene et al., 1996; Olsen et al., 2019; Xiao et al., 2010).

Imagenet32x32 / Imagenet16x16: The ImageNet 32x32 and 16x16 dataset as created by Chrabaszcz
et al. (2017). Batch size is logrithmically sampled between [8, 256].

H.1.3 TEXT CLASSIFICATION:

IMDB sentiment classification: We use text from the IMDB movie reviews dataset(Maas et al.,
2011) and tokenize using subwords using a vocab size of 8k(Sennrich et al., 2015). We then take
length s random slice from each example where s is sampled logarithmically between [8, 64]. These
examples are then batched into a batch size logarithmically sampled between [8, 512]. We sample the
number of training examples logarithmically between [1000, 55000] and with 10% probability just
use training data instead of valid / test to test pure optimization as opposed to generalization.

H.1.4 CHARACTER AND WORD LANGUAGE MODELING

For the character and word language modeling datasets we make use of the following data
sources: imdb movie reviews(Maas et al., 2011), amazon product reviews (ama) using the Books,
Camera, Home, and Video subset each as separate datasets, LM1B(Chelba et al., 2013), and
Wikipedia(Foundation) taken from the 20190301 dump using the zh, ru, ja, hab, and en language
codes. We split each article by new lines and only keep resulting examples that contain more than 5
characters. For infrastructure reasons, we only use a million articles from each language and only
200k examples to build the tokenizer.

Byte encoding: We take length s random slices of each example where s is sampled logarithmically
between [10, 160]. These examples are then batched into a batch size logarithmically sampled
between [8, 512]. With probability 0.2 we restrict the number of training examples to a number
logarithmically sampled between [1000, 50000]. Finally, with a 10% probability just use training
data instead of valid / test to test pure optimization as opposed to generalization.

subword encoding: We encode the text as subwords with a vocabsize of 8k (Sennrich et al., 2015).
We then take length s random slices of each example where s is sampled logarithmically between
[10, 256]. These examples are then batched into a batch size logarithmically sampled between [8, 512].
With probability 0.2 we restrict the number of training examples to a number logarithmically sampled
between [1000, 50000]. Finally, with a 10% probability just use training data instead of valid / test to
test pure optimization as opposed to generalization.

28

Under review as a conference paper at ICLR 2021

H.2 SAMPLED TASKS

H.2.1 MLP

This task family consists of a multi layer perceptron trained on flattened image data. The amount of
layers is sampled uniformly from [1, 6]. Layer hidden unit sizes are sampled logarithmically between
[16, 128] with different number of hidden units per layer. One activation function is chosen for the
whole network and is chosen as described in H.1.1. One shared initializer strategy is also sampled.
The image dataset used is also sampled.

Two sampled configurations are shown below.

1 {
2 "layer_sizes": [
3 71
4],
5 "activation": "leaky_relu2",
6 "w_init": [
7 "he_normal",
8 null
9],

10 "dataset": [
11 "sun397_32x32",
12 {
13 "bs": 32,
14 "just_train": false,
15 "num_train": null
16 },
17 {
18 "crop_amount": 0,
19 "flip_left_right": false,
20 "flip_up_down": true,
21 "do_color_aug": false,
22 "brightness": 0.002936489121851211,
23 "saturation": 0.4308521744067503,
24 "hue": 0.19648945965587863,
25 "contrast": 0.036096320130911644
26 }
27],
28 "center_data": false
29 }

1 {
2 "layer_sizes": [
3 68,
4 37,
5 78
6],
7 "activation": "relu",
8 "w_init": [
9 "glorot_normal",

10 null
11],
12 "dataset": [
13 "food101_32x32",
14 {
15 "bs": 117,
16 "just_train": true,
17 "num_train": null
18 },
19 null
20],

29

Under review as a conference paper at ICLR 2021

21 "center_data": true
22 }

H.2.2 MLP_AE

This task family consists of a multi layer perceptron trained with an auto encoding loss. The amount
of layers is sampled uniformly from [2, 7]. Layer hidden unit sizes are sampled logarithmically
between [16, 128] with different number of hidden units per layer. The last layer always maps back
to the input dimension. The output activation function is sampled with the following weights: tanh:2,
sigmoid:1, linear_center:1, linear:1 where linear_center is an identity mapping. When using the
linear_center and tanh activation we shift the ground truth image to [−1, 1] before performing a
comparison to the model’s predictions. We sample the per dimension distance function used to
compute loss with weights l2:2, l1:1, and the reduction function across dimensions to be either mean
or sum with equal probability. A single activation function, and initializer is sampled. We train on
image datasets which are also sampled.

A sample configurations is shown below.

1 {
2 "hidden_units": [
3 73,
4 103,
5 105,
6 104,
7 76
8],
9 "activation": "relu",

10 "w_init": [
11 "glorot_uniform",
12 null
13],
14 "dataset": [
15 "mnist",
16 {
17 "bs": 39,
18 "num_train": 43753,
19 "num_classes": 10,
20 "just_train": false
21 },
22 null
23],
24 "output_type": "tanh",
25 "loss_type": "l2",
26 "reduction_type": "reduce_sum"
27 }

H.2.3 MLP VAE

This task has an encoder with sampled number of layers between [1, 3]. For each layer we sample the
number of hidden units logarithmically between [32, 128]. For the decoder we sample the number of
layers uniformly between [1, 3]. For each layer we sample the number of hidden units logarithmically
between [32, 128]. We use a gaussian prior of dimensionality logarithmically sampled between
[32, 128]. A single activation function and initialization is chosen for the whole network. The output
of the encoder is projected to both a mean, and a log standard deviation which parameterizes the
variational distribution, q(z|x). The decoder maps samples from the latent space to a quantized
gaussian distribution in which we compute data log likelihoods log p(x|z). The loss we optimize is
the evidence lower bound (ELBO) which is computed by adding this likelihood to the kl divergence
between our normal distribution prior and q(z|x). We use the reparameterization trick to compute
gradients. This model is trained on sampled image datasets.

30

Under review as a conference paper at ICLR 2021

A sample configuration is listsed below.

1 {
2 "enc_hidden_units": [
3 73
4],
5 "dec_hidden_units": [
6 74
7],
8 "activation": "relu",
9 "w_init": [

10 "he_normal",
11 null
12],
13 "dataset": [
14 "food101_32x32",
15 {
16 "bs": 22,
17 "just_train": true,
18 "num_train": null
19 },
20 null
21]
22 }

H.2.4 CONV POOLING

This task consists of small convolutional neural networks with pooling. We sample the number
of layers uniformly between [1, 5]. We sample a stride pattern to be either all stride 2, repeating
the stride pattern of 1,2,1,2... for the total number of layers, or 2,1,2,1... for the total number of
layers. The hidden units are logarithmically sampled for each layer between [8, 64]. We sample one
activation function and weight init for the entire network. Padding for the convolutions are sampled
per layer to either be same or valid with equal probability. For the convnet we also sample whether or
not to use a bias with equal probability. At the last layer of the convnet we do a reduction spatially
using either the mean, max, or squared mean sampled uniformly. This reduced output is fed into a
linear layer and a softmax cross entropy loss. These models are trained on a sampled image dataset.

A sample configuration is shown below.

1 {
2 "strides": [
3 [1, 1],
4 [2, 2],
5 [1, 1],
6 [2, 2],
7 [1, 1]
8],
9 "hidden_units": [

10 46,
11 48,
12 47,
13 29,
14 18
15],
16 "activation": "leaky_relu4",
17 "w_init": [
18 "glorot_normal",
19 null
20],
21 "padding": [
22 "SAME",

31

Under review as a conference paper at ICLR 2021

23 "SAME",
24 "VALID",
25 "SAME",
26 "VALID"
27],
28 "pool_type": "squared_mean",
29 "use_bias": true,
30 "dataset": [
31 "cifar100",
32 {
33 "bs": 10,
34 "num_train": 5269,
35 "just_train": true
36 },
37 null
38],
39 "center_data": false
40 }

H.2.5 CONV FC

This task consists of small convolutional neural networks, flattened, then run through a MLP. We
sample the number of conv layers uniformly between [1, 5]. We sample a stride pattern to be either
all stride 2, repeating the stride pattern of 1,2,1,2... for the total number of layers, or 2,1,2,1... for the
total number of layers. The hidden units are logarithmically sampled for each layer between [8, 64].
Padding for the convolutions are sampled per layer to either be same or valid with equal probability.

The output is then flattened, and run through a MLP with hidden layers sampled uniformly from [0, 4]
and with sizes sampled logrithmically from [32, 128]. The loss is then computed via softmax cross
entropy.

We sample one activation function and weight init for the entire network. For the convnet we also
sample whether or not to use a bias with equal probability. These models are trained on a sampled
image dataset.

An example configuration is shown below.

1 {
2 "strides": [
3 [2, 2],
4 [2, 2],
5 [2, 2],
6 [2, 2]
7],
8 "hidden_units": [
9 17,

10 30,
11 13,
12 16
13],
14 "activation": "relu",
15 "w_init": [
16 "glorot_uniform",
17 null
18],
19 "padding": [
20 "VALID",
21 "VALID",
22 "VALID",
23 "SAME"
24],

32

Under review as a conference paper at ICLR 2021

25 "fc_hidden_units": [],
26 "use_bias": true,
27 "dataset": [
28 "coil100_32x32",
29 {
30 "bs": 49,
31 "just_train": false,
32 "num_train": null
33 },
34 null
35],
36 "center_data": true
37 }

H.2.6 CHARACTER RNN LANGUAGE MODEL

This task takes character embedded data, and embeds in a size s embedding vector where s is sampled
logarithmically between [8, 128] with random normal initializer with std 1.0. With 80% we use
all 256 tokens, and with 20% chance we only consider a subset of tokens sampled logarithmically
[100, 256]. We then pass this embedded vector to a RNN with teacher forcing with equal probability
we use a trainable initializer or zeros. A linear projection is then applied to the number of vocab
tokens. Losses are computed using a softmax cross entropy vector and mean across the sequence.

A sample configuration is shown below.

1 {
2 "embed_dim": 30,
3 "w_init": [
4 "he_normal",
5 null
6],
7 "vocab_size": 256,
8 "core": [
9 "gru",

10 {
11 "core_dim": 84,
12 "wh": [
13 "glorot_uniform",
14 null
15],
16 "wz": [
17 "random_normal",
18 0.4022641748407826
19],
20 "wr": [
21 "he_uniform",
22 null
23],
24 "uh": [
25 "he_normal",
26 null
27],
28 "uz": [
29 "glorot_normal",
30 null
31],
32 "ur": [
33 "glorot_uniform",
34 null
35]
36 }

33

Under review as a conference paper at ICLR 2021

37],
38 "trainable_init": true,
39 "dataset": [
40 "lm1b/bytes",
41 {
42 "patch_length": 147,
43 "batch_size": 63,
44 "just_train": false,
45 "num_train": null
46 }
47]
48 }

H.2.7 WORD RNN LANGUAGE MODEL

This task takes word embedded data, and embeds in a size s embedding vector where s is sampled
logarithmically between [8, 128] with random normal initializer with std 1.0. A vocab size for this
embedding table is sampled logarithmically between [1000, 30000]. We then pass this embedded
vector to a RNN with teacher forcing with equal probability we use a trainable initializer or zeros. A
linear projection is then applied to the number of vocab tokens. Losses are computed using a softmax
cross entropy vector and mean across the sequence.

A sample configuration shown below.

1 {
2 "embed_dim": 91,
3 "w_init": [
4 "glorot_uniform",
5 null
6],
7 "vocab_size": 13494,
8 "core": [
9 "gru",

10 {
11 "core_dim": 96,
12 "wh": [
13 "he_normal",
14 null
15],
16 "wz": [
17 "he_normal",
18 null
19],
20 "wr": [
21 "he_normal",
22 null
23],
24 "uh": [
25 "he_normal",
26 null
27],
28 "uz": [
29 "he_normal",
30 null
31],
32 "ur": [
33 "he_normal",
34 null
35]
36 }
37],

34

Under review as a conference paper at ICLR 2021

38 "trainable_init": true,
39 "dataset": [
40 "tokenized_amazon_reviews/Video_v1_00_subwords8k",
41 {
42 "patch_length": 14,
43 "batch_size": 59,
44 "just_train": false,
45 "num_train": null
46 }
47]
48 }

H.2.8 LOSG PROBLEMS

These tasks consist of a mixture of many other tasks. We sample uniformly over the following
types of problems. We brielfy describe them here but refer reader to the provided source for more
information. In this work we took all the base problems from (Wichrowska et al., 2017) but modified
the sampling distributions to better cover the space as opposed to narrowly sampling particular
problem families. Future work will consist of evaluating which sets of problems or which sampling
decisions are required.

quadratic: n dimensional quadratic problems where n is sampled logarithmically between [10, 1000].
Noise is optionally added with probability 0.5 and of the scale s where s is sampled logarithmically
between [0.01, 10].

bowl: A 2d qaudratic bowl problem with a sampled condition number (logrithmically between
[0.01, 100]). Noise is optionally added with probability 0.5 and of the scale s where s is sampled
logarithmically between [0.01, 10].

sparse_softmax_regression: A synthetic random sparse logistic regression task.

optimization_test_problems: A uniform sample over the following functions: Ackley, Beale,
Branin, logsumexp, Matyas, Michalewicz, Rosenbrock, StyblinskiTang.

fully_connected: A sampled random fully connected classification neural network predicting 2
classes on synthetic data. Number of input features is sampled logrithmically between 1 and 16, with
a random activation function, and a sampled number of layers uniformly sampled from 2-5.

norm: A problem that finds a minimum error in an arbitrary norm. Specifically: (
∑

(Wx− y)p)(1
p)

where W ∈ RNxN , y ∈ RNx1. The dimentionality, N , is sampled logrithmically between 3, and
1000. The power, p, is sampled uniformly between 0.1 and 5.0. W , and y are drawn from a standard
normal distribution.

dependency_chain: A synthetic problem where each parameter must be brought to zero sequentially.
We sample dimensionality logrithmically between 3, 100.

outward_snake: This loss creates a winding path to infinity. Step size should remain constant across
this path. We sample dimensionality logrithmically between 3 and 100.

min_max_well: A loss based on the sum of min and max over parameters: maxx+ 1/(minx)− 2.
Note that the gradient is zero for all but 2 parameters. We sample dimentaionlity logrithmically
between 10 and 1000. Noise is optionally added with probability 0.5 and of the scale s where s is
sampled logarithmically between [0.01, 10].

sum_of_quadratics: A least squares loss of a dimentionality sampled logrithmically between 3 and
100 to a synthetic dataset.

projection_quadratic: A quadratic minimized by probing different directions. Dimentionality is
sampled from 3 to 100 logrithmically.

In addition to these base tasks, we also provide a variety of transformations described bellow. The
use of these transformations is also sampled.

35

Under review as a conference paper at ICLR 2021

sparse_problems: With probability 0.9 to 0.99 the gradient per parameter is set to zero. Additional
noise is added with probability 0.5 sampled from a normal with std sampled logrithmically between
[0.01, 10.0].

rescale_problems: Rescales the loss value by 0.001 to 1000.0 sampled logrithmically.

log_objective: Takes the log of the objective value.

2 Sample configurations shown below.

1 [
2 "fully_connected",
3 {
4 "n_features": 16,
5 "n_classes": 2,
6 "activation": "leaky_relu2",
7 "bs": 7,
8 "n_samples": 12,
9 "hidden_sizes": [

10 32,
11 8,
12 5,
13 9,
14 8
15]
16 },
17 36641
18]

1 [
2 "outward_snake",
3 {
4 "dim": 9,
5 "bs": 30,
6 "n_samples": 249
7 },
8 79416
9]

1 [
2 "rescale_problems",
3 {
4 "base": [
5 "sum_of_quadratics",
6 {
7 "dim": 36,
8 "bs": 5,
9 "n_samples": 1498

10 }
11],
12 "scale": 227.86715292020605
13 },
14 89629
15]

H.2.9 MASKED AUTOREGRESSIVE FLOWS

Masked autoregressive flows are a family of tractable density generative models. See XX for more
information. The MAF is defined by a sequence of bijectors. For one bijector samples a number of
layers to either be 1 or 2 with equal probability, and a number of hidden layers sampled logarithmically
between [16, 128]. We sample the number of bijector uniformly from [1, 4] and use the same hidden

36

Under review as a conference paper at ICLR 2021

layers across all bijector. We sample activation function, and initializer once for the whole model. In
this task we model image datasets which are also sampled.

A sample configuration is shown below.

1 {
2 "activation": "relu",
3 "w_init": [
4 "he_uniform",
5 null
6],
7 "dataset": [
8 "imagenet_resized/16x16",
9 {

10 "bs": 19,
11 "just_train": true,
12 "num_train": null
13 },
14 null
15],
16 "hidden_units": [
17 44,
18 24
19],
20 "num_bijectors": 3
21 }

H.2.10 NON VOLUME PRESERVING FLOWS

NVP are a family of tractable density generative models. See Dinh et al. (2016) for more information.
The NVP is defined by a sequence of bijectors. For one bijector samples a number of layers to either
be 1 or 2 with equal probability, and a number of hidden layers sampled logarithmically between
[16, 128]. We sample the number of bijector uniformly from [1, 4] and use the same hidden layers
across all bijector. We sample activation function, and initializer once for the whole model. In this
task we model image datasets which are also sampled.

A sample configuration shown below.

1 {
2 "activation": "cos",
3 "w_init": [
4 "glorot_normal",
5 null
6],
7 "dataset": [
8 "sun397_32x32",
9 {

10 "bs": 228,
11 "just_train": false,
12 "num_train": null
13 },
14 null
15],
16 "hidden_units": [
17 21,
18 121
19],
20 "num_bijectors": 4
21 }

37

Under review as a conference paper at ICLR 2021

H.2.11 QUADRATIC LIKE PROBLEMS

This task distribution defines a synthetic problem based on a non-linear modification to a quadratic.
The dimensionality of the problem is sampled logarithmically between [2, 3000].

The loss for this task is described by:

output_fn((AX −B)2 + C) (S31)

where X = param ∗ weight_rescale and where param is initialized by initial_dist.sample() /
weight_rescale.

The output_fn is sampled uniformly between identity, and f(x) = log(max(0, x)). The loss scale is
sampled logarithmically between [10−5, 103].

We define a distribution over matrices A as a sample from one of the following: normal: we sample a
mean from a normal draw with a standard deviation of 0.05 and a std from a uniform [0, 0.05]. The
elements of A are drawn from the resulting distribution. uniform: linspace_eigen: logspace_eigen:

We define a distribution over B to be either normal with mean and std sampled from N(0, 1), U(0, 2)
respectively or uniform with min and range equal to U(-5, 2.5), U(0, 5) respectively.

With probability 50% we add noise from a distribution whose parameters are also sampled.

A sample configuration shown below.

1 {
2 "A_dist": [
3 "linspace_eigen",
4 {
5 "min": 32.09618575514275,
6 "max": 122.78045861480965
7 }
8],
9 "initial_dist": [

10 "uniform",
11 {
12 "min": 2.3911997838130956,
13 "max": 6.723940057771417
14 }
15],
16 "output_fn": "log",
17 "dims": 212,
18 "seed": 68914,
19 "loss_scale": 0.6030061302850566,
20 "noise": null
21 }

H.2.12 RNN TEXT CLASSIFICATION

This task consists of using an RNN to classify tokenized text. We first trim the vocab length to be of
a size logarithmically sampled between [100, 10000]. The text is then embedded into a vocab size
logarithmically sampled between [8, 128]. These embeddings get fed into a sampled config RNN.
With equal probability the initial state of the rnn is either sampled, or zeros. With equal probability we
either take the last RNN prediction, the mean over features, or the per feature max over the sequence.
This batch of activations is then passed through a linear layer and a softmax cross entropy loss. The
initialization for the linear projection is sampled.

An example configuration shown below. In this version of TaskSet the dataset sampling contains a
bug. All data used is from the imdb_reviews/subwords8k dataset.

1 {
2 "embed_dim": 111,

38

Under review as a conference paper at ICLR 2021

3 "w_init": [
4 "random_normal",
5 0.1193048629073732
6],
7 "dataset": [
8 "imdb_reviews/subwords8kimdb_reviews/bytes",
9 {

10 "bs": 43,
11 "num_train": null,
12 "max_token": 8185,
13 "just_train": true,
14 "patch_length": 20
15 }
16],
17 "vocab_size": 3570,
18 "core": [
19 "vrnn",
20 {
21 "hidden_to_hidden": [
22 "he_uniform",
23 null
24],
25 "in_to_hidden": [
26 "he_uniform",
27 null
28],
29 "act_fn": "leaky_relu2",
30 "core_dim": 35
31 }
32],
33 "trainable_init": false,
34 "loss_compute": "max"
35 }

39

Under review as a conference paper at ICLR 2021

H.3 FIXED TASKS

In addition to sampled tasks, we also define a set of hand designed and hand specified tasks. These
tasks are either more typical of what researcher would do (e.g. using default initializations) or specific
architecture features such as bottlenecks in autoencoders, normalization, or dropout.

In total there are 107 fixed tasks. Each task is labeled by name with some information about the
underlying task. We list all tasks, discuss groups of tasks, but will not describe each task in detail.
Please see the source for exact details.

Associative_GRU128_BS128_Pairs10_Tokens50
Associative_GRU256_BS128_Pairs20_Tokens50
Associative_LSTM128_BS128_Pairs10_Tokens50
Associative_LSTM128_BS128_Pairs20_Tokens50
Associative_LSTM128_BS128_Pairs5_Tokens20
Associative_LSTM256_BS128_Pairs20_Tokens50
Associative_LSTM256_BS128_Pairs40_Tokens100
Associative_VRNN128_BS128_Pairs10_Tokens50
Associative_VRNN256_BS128_Pairs20_Tokens50

These tasks use RNN’s to perform an associative memory task. Given a vocab of tokens, and some
number of pairs to store and a query the RNN’s goal is to produce the desired value. For example
given the input sequence A1B2C3?B_ the RNN should produce ________B.

This model embeds tokens, applies an RNN, and applies a linear layer to map back to the output
space. Softmax cross entropy loss is used to compare outputs. A weight is also placed on the losses
so that loss is incurred only when the RNN is supposed to predict. For RNN cells we use LSTM
(Hochreiter & Schmidhuber, 1997), GRU (Chung et al., 2014), and VRNN – a vanilla RNN. The
previous tasks are defined with the corresponding RNN cell, number of units, batch size, sequence
lengths, and number of possible tokens for the retrieval task.

Copy_GRU128_BS128_Length20_Tokens10
Copy_GRU256_BS128_Length40_Tokens50
Copy_LSTM128_BS128_Length20_Tokens10
Copy_LSTM128_BS128_Length20_Tokens20
Copy_LSTM128_BS128_Length50_Tokens5
Copy_LSTM128_BS128_Length5_Tokens10
Copy_LSTM256_BS128_Length40_Tokens50
Copy_VRNN128_BS128_Length20_Tokens10
Copy_VRNN256_BS128_Length40_Tokens50

These tasks use RNN’s to perform a copy task. Given a vocab of tokens and some number of tokens
the RNN’s job is to read the tokens and to produce the corresponding outputs. For example an
input might be: ABBC|____ and the RNN should output ____|ABBC. See the source for a complete
description of the task. Each task in this set varies the RNN core, as well as the dataset structure.

This model embeds tokens, applies an RNN, and applies a linear layer to map back to the output
space. Softmax crossentropy loss is used to compare outputs. A weight is also placed on the losses
so that loss is incurred only when the RNN is supposed to predict. For RNN cells we use LSTM
(Hochreiter & Schmidhuber, 1997), GRU (Chung et al., 2014), and VRNN – a vanilla RNN. The
previous tasks are defined with the corresponding RNN cell, number of units, batch size, sequence
lengths, and number of possible tokens.

FixedImageConvAE_cifar10_32x32x32x32x32_bs128
FixedImageConvAE_cifar10_32x64x8x64x32_bs128
FixedImageConvAE_mnist_32x32x32x32x32_bs128
FixedImageConvAE_mnist_32x64x32x64x32_bs512

40

Under review as a conference paper at ICLR 2021

FixedImageConvAE_mnist_32x64x8x64x32_bs128

Convolutional autoencoders trained on different datasets and with different architectures (sizes of
hidden units).

FixedImageConvVAE_cifar10_32x64x128x64x128x64x32_bs128
FixedImageConvVAE_cifar10_32x64x128x64x128x64x32_bs512
FixedImageConvVAE_cifar10_32x64x128x64x32_bs128
FixedImageConvVAE_cifar10_64x128x256x128x256x128x64_bs128
FixedImageConvVAE_mnist_32x32x32x32x32_bs128
FixedImageConvVAE_mnist_32x64x32x64x32_bs128
FixedImageConvVAE_mnist_64x128x128x128x64_bs128

Convolutional variational autoencoders trained on different datasets, batch sizes, and with different
architectures.

FixedImageConv_cifar100_32x64x128_FC64x32_tanh_variance_scaling_bs64
FixedImageConv_cifar100_32x64x64_flatten_bs128
FixedImageConv_cifar100_bn_32x64x128x128_bs128
FixedImageConv_cifar10_32x64x128_flatten_FC64x32_tanh_he_bs8
FixedImageConv_cifar10_32x64x128_flatten_FC64x32_tanh_variance_scaling_bs64
FixedImageConv_cifar10_32x64x128_he_bs64
FixedImageConv_cifar10_32x64x128_largenormal_bs64
FixedImageConv_cifar10_32x64x128_normal_bs64
FixedImageConv_cifar10_32x64x128_smallnormal_bs64
FixedImageConv_cifar10_32x64x128x128x128_avg_he_bs64
FixedImageConv_cifar10_32x64x64_bs128
FixedImageConv_cifar10_32x64x64_fc_64_bs128
FixedImageConv_cifar10_32x64x64_flatten_bs128
FixedImageConv_cifar10_32x64x64_tanh_bs64
FixedImageConv_cifar10_batchnorm_32x32x32x64x64_bs128
FixedImageConv_cifar10_batchnorm_32x64x64_bs128
FixedImageConv_coil10032x32_bn_32x64x128x128_bs128
FixedImageConv_colorectalhistology32x32_32x64x64_flatten_bs128
FixedImageConv_food10164x64_Conv_32x64x64_flatten_bs64
FixedImageConv_food101_batchnorm_32x32x32x64x64_bs128
FixedImageConv_mnist_32x64x64_fc_64_bs128
FixedImageConv_sun39732x32_bn_32x64x128x128_bs128
Mnist_Conv_32x16x64_flatten_FC32_tanh_bs32

Convolutional neural networks doing supervised classification. These models vary in dataset, archi-
tecture, and initializations.

FixedLM_lm1b_patch128_GRU128_embed64_avg_bs128
FixedLM_lm1b_patch128_GRU256_embed64_avg_bs128
FixedLM_lm1b_patch128_GRU64_embed64_avg_bs128
FixedLM_lm1b_patch128_LSTM128_embed64_avg_bs128
FixedLM_lm1b_patch128_LSTM256_embed64_avg_bs128

Language modeling tasks on different RNN cell types and sizes.

FixedMAF_cifar10_3layer_bs64
FixedMAF_mnist_2layer_bs64
FixedMAF_mnist_3layer_thin_bs64

Masked auto regressive flows models with different architectures (number of layers and sizes).

41

Under review as a conference paper at ICLR 2021

FixedMLPAE_cifar10_128x32x128_bs128
FixedMLPAE_mnist_128x32x128_bs128
FixedMLPAE_mnist_32x32x32_bs128

Autoencoder models based on multi layer perceptron with different number of hidden layers and
dataset.

FixedMLPVAE_cifar101_128x128x32x128x128_bs128
FixedMLPVAE_cifar101_128x32x128_bs128
FixedMLPVAE_food10132x32_128x64x32x64x128_bs64
FixedMLPVAE_mnist_128x128x8x128_bs128
FixedMLPVAE_mnist_128x64x32x64x128_bs64
FixedMLPVAE_mnist_128x8x128x128_bs128
Imagenet32x30_FC_VAE_128x64x32x64x128_relu_bs256

Variational autoencoder models built from multi layer perceptron with different datasets, batchsizes,
and architectures.

FixedMLP_cifar10_BatchNorm_128x128x128_relu_bs128
FixedMLP_cifar10_BatchNorm_64x64x64x64x64_relu_bs128
FixedMLP_cifar10_Dropout02_128x128_relu_bs128
FixedMLP_cifar10_Dropout05_128x128_relu_bs128
FixedMLP_cifar10_Dropout08_128x128_relu_bs128
FixedMLP_cifar10_LayerNorm_128x128x128_relu_bs128
FixedMLP_cifar10_LayerNorm_128x128x128_tanh_bs128
FixedMLP_cifar10_ce_128x128x128_relu_bs128
FixedMLP_cifar10_mse_128x128x128_relu_bs128
FixedMLP_food10132x32_ce_128x128x128_relu_bs128
FixedMLP_food10132x32_mse_128x128x128_relu_bs128
FixedMLP_mnist_ce_128x128x128_relu_bs128
FixedMLP_mnist_mse_128x128x128_relu_bs128
FixedNVP_mnist_2layer_bs64

Image classification based on multi layer perceptron. We vary architecture, data, batchsize, normal-
ization techniques, dropout, and loss type across problems.

FixedNVP_mnist_3layer_thin_bs64
FixedNVP_mnist_5layer_bs64
FixedNVP_mnist_5layer_thin_bs64
FixedNVP_mnist_9layer_thin_bs16

Non volume preserving flow models with different batchsizesm and architectures.

FixedTextRNNClassification_imdb_patch128_LSTM128_avg_bs64
FixedTextRNNClassification_imdb_patch128_LSTM128_bs64
FixedTextRNNClassification_imdb_patch128_LSTM128_embed128_bs64
FixedTextRNNClassification_imdb_patch32_GRU128_bs128
FixedTextRNNClassification_imdb_patch32_GRU64_avg_bs128
FixedTextRNNClassification_imdb_patch32_IRNN64_relu_avg_bs128
FixedTextRNNClassification_imdb_patch32_IRNN64_relu_last_bs128
FixedTextRNNClassification_imdb_patch32_LSTM128_E128_bs128
FixedTextRNNClassification_imdb_patch32_LSTM128_bs128
FixedTextRNNClassification_imdb_patch32_VRNN128_tanh_bs128
FixedTextRNNClassification_imdb_patch32_VRNN64_relu_avg_bs128
FixedTextRNNClassification_imdb_patch32_VRNN64_tanh_avg_bs128

42

Under review as a conference paper at ICLR 2021

RNN text classification problems with different RNN cell, sizes, embedding sizes, and batchsize.

TwoD_Bowl1
TwoD_Bowl10
TwoD_Bowl100
TwoD_Bowl1000

2D quadratic bowls with different condition numbers.

TwoD_Rosenbrock
TwoD_StyblinskiTang
TwoD_Ackley
TwoD_Beale

Toy 2D test functions.

43

