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Fig. 1: Given an object image, we propose a NeRF-based pose estimation method, which reduces the hundreds of optimization
steps in former NeRF-based method to one step, while avoiding being stuck in local minima, and obtaining more accurate
poses. As a result, with only 5 minutes training of a fast NeRF [1], our method achieves CAD model-free real-time pose
estimation on novel objects at 6FPS. This is a shortened version of an accepted paper at ICRA 2024.

Abstract— Given the image collection of an object, we aim at
building a real-time image-based pose estimation method, which
requires neither its CAD model nor hours of object-specific
training. Recent NeRF-based methods provide a promising
solution by directly optimizing the pose from pixel loss between
rendered and target images. However, during inference, they
require long converging time, and suffer from local minima,
making them impractical for real-time robot applications. We
aim at solving this problem by marrying image matching
with NeRF. With 2D matches and depth rendered by NeRF,
we directly solve the pose in one step by building 2D-3D
correspondences between target and initial view, thus allowing
for real-time prediction. Moreover, to improve the accuracy
of 2D-3D correspondences, we propose a 3D consistent point
mining strategy, which effectively discards unfaithful points
reconstruted by NeRF. Moreover, current NeRF-based methods
naively optimizing pixel loss fail at occluded images. Thus, we
further propose a 2D matches based sampling strategy to pre-
clude the occluded area. Experimental results on representative
datasets prove that our method outperforms state-of-the-art
methods, and improves inference efficiency by 90×, achieving
real-time prediction at 6 FPS.

I. INTRODUCTION

Object pose estimation has wide applications in robot ma-
nipulation, augmented reality (AR) and mobile robotics [2].
Traditional methods typically require the CAD model of the
object in advance, and searching for handcrafted features [3],
[4] between the preregistered images or templates and the tar-
get image. However, obtaining such high-quality CAD model
can be difficult and labor-intensitive, or requires specialized
high-end scanners. Recent methods have been applying deep

neural network to regress the poses [5]–[9]. However, they
can only estimate poses of known instances [5]–[7] or similar
ones from the same category [8]–[11], and have to retrain on
novel objects for hours. Moreover, they require large amount
of training data, which is tedious to collect and annotate.
Thus, it is difficult to apply such methods in real world due
to unaffordable training time and human labor.

To further avoid tedious retraining for each novel object,
recent methods [12], [13] learn from the traditional pipeline
of SfM (Struction-from-Motion) to estimate object poses via
feature matching. Given a small set of multi-view images,
they first reconstruct sparse point cloud of the object via
SfM, and then form 2D-3D correspondences to estimate the
pose by solving the PnP [14] problem. Unfortunately, such
methods rely on forming stably repeatable correspondences
across all input frames, which usually cannot be guaranteed,
thus leading to large pose error. On the other hand, recent
advances in NeRF (Neural Radiance Fields [1], [15]–[17])
provide a mechanism for capturing complex 3D geometry
in a few minutes. Following former render-and-compare
methods for pose estimation [18]–[20], iNeRF [16] first
trains a NeRF from image collection, and then during testing,
it optimizes the pose by minimizing dense pixel error be-
tween the rendered and target image. Such dense supervision
allows iNeRF to achieve more accurate alignment, but it also
requires hundreds of iterations taking minutes. Moreover, its
convergence relies on good initialization, and typically fails
at large pose differences or occlusion.



In this work, we try to combine the best of both worlds
by marrying image matching with NeRF to achieve real-time
image-based pose estimation, without hundred steps of op-
timization. With 2D pixel matches and corresponding depth
rendered by NeRF, we can build 2D-3D correspondences,
and directly solve the pose with PnP [14]. This significantly
reduces the iteration number and allows for real-time in-
ference for NeRF based method. Moreover, comparing to
former keypoint-based method [12], [13], this eases the diffi-
culty of building 2D-3D correspondences in traditional SFM-
based methods, which needs to find 2D matches between
multiple input frames and the target image. With NeRF, our
method only matches between two images once, and can
convert arbitrary 2D matches to 2D-3D correspondences by
backprojecting NeRF rendered depth into 3D space.

Moreover, owing to the implicit nature of NeRF, the
rendered depth can be noisy and unfaithful [21]–[23]. To
improve the quality of 2D-3D correspondences, we further
propose a 3D consistent point mining strategy to discard
unfaithful and noisy 3D points reconstructed by NeRF so
that the PnP can obtain more accurate poses. Specifically,
we render the 3D points from nearby viewpoints and regard
the variation of them as the 3D consistency.

Our method also allows for further pose refinement from
pixel error, like former render-and-compare methods [16],
[18], [19]. However, this process is sensitive to occlusion,
which bakpropagtes false gradient to the pose. We notice that
the matching points indicate unoccluded area, and propose a
matching point based sampling strategy for loss computation.
We show that our proposed method improves the efficiency
over former NeRF based methods by 90 times, and can
inference in real-time at 6FPS, while achieving higher pose
accuracy and stronger robustness to occlusion.

Our contributions are three folds: 1) An efficient NeRF
based pose estimation method is proposed by introducing
image matching, which allows real-time image-based infer-
ence, and is free of CAD model or hours of pretraining. 2)
We propose a 3D consistent point mining strategy to discard
unfaithful 3D points to enable more accurate pose estimation.
3) In contrast to former render-and-compare based methods,
our method can overcome the occlusion problem with a
matching point based sampling strategy.

II. BACKGROUND

NeRF. Given multi-view images with annotated camera
parameters, NeRF [15] represents scenes via a 5D function:

c, σ = Φ(x,d), (1)

which maps the query point location x ∈ R3 to its density
σ ∈ R1, and view-dependent color c ∈ R3 at direction d ∈
R3. To render an image from view P , the color Ĉ(p, P ) of
a pixel p ∈ R2 is obtained by accumulating the color along
rays r that passes the pixel, following the volume rendering
technique [46]:

Ĉ(p, P ) =

N∑
i=i

ωici, (2)

where ωi =
∑N

i=i Ti(1 − exp(σiδi)) is the weight of each
ray point, Ti = exp(−

∑i−1
j=1 σjδj), and δi is the sample step

along the ray. Similarly, we can also render an approximate
depth at pixel p by

ẑ(p, P ) =

N∑
i=i

ωiti, (3)

where ti ∈ R1 is the depth at each ray point.
NeRF-based Pose Estimation. INeRF first proposes to

estimate the pose of a novel object with NeRF. It first trains
a NeRF model Φ with multi-view images of the object. Then,
during inference, given a new target image It, iNeRF [16]
recovers the camera pose T ∈ SE(3) by optimizing:

T̂ = argmin
T∈SE(3)

‖Φ(T )− It‖2, (4)

where Φ(T ) denotes NeRF rendered image from view T ,
and the function denotes an L2 loss between Φ(T ) and the
target image It. The NeRF weights are fixed in optimization.

III. METHOD

Our method aims at improving the convergence speed of
NeRF-based pose estimation method. The key insight is to
marry feature matching with NeRF to directly solve the pose
from 2D-3D correspondences via PnP, which we introduce
in III-A. Moreover, owing to the implicit nature of NeRF, 3D
coordinates lifted from 2D pixels can be noisy and unfaithful.
Thus, in Sec. III-B, we improve the 3D consistency by
introducing a 3D consistent point mining strategy before
solving the pose. So far, without any refinement, our result is
already more accurate than iNeRF [16] in most cases, which
needs hundreds steps of refinement. Our method also allows
further optimization to refine the initial pose. However, we
notice that current pixel error (Eq. 4) cannot handle occluded
images. For this, we propose a keypoint-guided occlusion
robust refinement to tackle the occlusion problem, which is
introduced in Sec. III-C.

A. One-step Pose Estimation via Feature Matching

Optimizing the pose from the photometric loss between
rendered and target image following the formulation of
iNeRF [16] (Eq. 4) can be extremely challenging, due to
highly non-convex objective function. As a result, current
methods are prone to being stuck in local minima. Here, we
propose to estimate the pose by marrying image matching
with NeRF. As shown in Fig. 2, the method has three main
steps:

1) Matching: To estimate the pose of the target image It,
we first render an image Ir from the initial guess of camera
pose P with the trained NeRF model. Then, a pretrained off-
the-shelf image matching model [45], [47], [48] is applied
to form 2D-2D matches [qi,pi] between the target image It
and the rendered image Ir, with qi ∈ It and pi ∈ Ir. We
apply the recent proposed transformer-based image matching
method LoFTR [47] in all our experiments.
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Fig. 2: Framework of the one-step pose estimation via feature matching strategy. Given the initial pose, we use NeRF [1]
to render an RGB image Ir, and a depth image D. Then, an off-the-shelf image matcher [47] is applied to generate 2D-2D
matches between the rendered and target image. Given location of matched 2D points and its depth rendered by NeRF, the
3D coordinates can be obtained, thus forming 2D-3D matches, from which the pose is finally solved via PnP+RANSAC.

2) Lifting: We then convert 2D-2D matches [qi,pi]
between target image It and rendered image Ir to 2D-
3D correspondences [qi,xi]. We achieve this by lifting the
matched 2D pixels p ∈ R2 in NeRF rendered image Ir to
3D space. Specifically, we first obtain the depth ẑi from the
depth map D rendered by the trained NeRF model following
Eq. 3. Then, the 3D coordinate of the corresponding point
x̂ is obtained via backprojection, and transformed to world
space via current camera pose P :

x̂i = P ẑiK
−1pi (5)

3) PnP: After obtaining the 2D-3D correspondences, the
pose is computed via PnP [14] with RANSAC [49]. The
above procedure already allows us to obtain good pose with
only one rendering step, which is much faster than former
NeRF based baselines [16], [17]. However, there may exists
error due to inaccurate feature matches. In the following, we
introduce a strategy to further improve the performance.

B. 3D Consistent Point Mining

In the above framework, one of the key factors that affect
the pose accuracy is the precision of the 2D-3D matches,
which are computed by a trained NeRF [15] model as
stated in III-A.2. However, owing to the implicit nature of
NeRF, the learned scene geometry can be unfaithful and
noisy [21]–[23]. Moreover, the estimated 3D coordinates
can be inconsistent when rendering from different views,
resulting in large pose error. These problems become severer
when the training images are limited, or the camera poses
are noisy.

To counter the above problem, we propose to preclude the
inconsistent 3D points by introducing a 3D consistent point
mining strategy. Specifically, for each 3D keypoint x that
is lifted from a matched 2D pixel p, its consistency m is
evaluated by re-estimating the 3D coordinates from nearby
views, and computing how well these points are aligned with
each other.

Specifically, given the current view P and estimated 3D
keypoint x, we first sample k nearby views P = {Pi}ki=1.
Then, we shoot rays R = {ri}ki=1 that pass the 3D keypoint
x from each view in P , and estimate the 3D coordinates
X = {xi}ki=1 on these rays:

X = Ẑ · norm(PP−1x), (6)

where Ẑ = {ẑi}ki=1 is the depth value of rays R estimated
by NeRF, and norm(·) denotes vector normalization. We
measure the point consistency with the location variance:

m =
1

k
||X − x||22, (7)

where larger m indicates lower consistency. Finally, we in-
troduce a threshold γ to discard the points whose consistency
m > γ, where γ is determined empirically.

C. Keypoint-guided Occlusion Robust Refinement

Current NeRF-based method cannot estimate the pose
of occluded images. The reason is that the photometric
loss computed from occluded area will backpropagate false
gradients to the pose, which will aggravate the issue of being
stuck in local minima.

Our image-matching based strategy provides a solution to
this problem. Assuming the image matcher to be accurate
enough, the matched keypoints naturally provide cues for
unoccluded area, thus preventing the false gradients. We
propose to compute the photometric loss with a new matched
keypoint-guided sampling strategy. Specifically, after predict-
ing matches, we apply 5× 5 morphological dilation around
the matched keypoint for n times to obtain the sample region.

IV. EXPERIMENTS

We evaluate the pose estimation performance of our pro-
posed method on NeRF synthetic dataset [15] and complex
real-world scene from LLFF dataset [50].



TABLE I: 6-DoF pose estimation Results on the NeRF
Synthetic and LLFF datasets, where RE / TE denote rotation
/ translation error, respectively. mRE / mTE denote mean
rotation / translation error over all subjects.

Method RE<5◦(↑) TE<0.05(↑) mRE (↓) mTE (↓)

NeRF Synthetic Dataset

iNeRF [16] 0.585 0.56 10.33 0.559
pi-NeRF [17] 0.24 0.04 15.83 1.073
LoFTR [47] 0.785 - 6.15 -
Ours (1-step) 0.945 0.75 1.57 0.096
Ours 0.95 0.88 1.25 0.077

LLFF Dataset

iNeRF [16] 0.50 0.55 16.46 0.0618
pi-NeRF [17] 0.00 0.00 133.37 3.999
LoFTR [47] 0.994 - 0.667 -
Ours (1-step) 1.00 1.00 0.325 0.0027
Ours 1.00 1.00 0.135 0.0008

A. Comparison Methods

We evaluate our method by comparing against state-of-
the-art NeRF based pose estimation methods iNeRF [16], pi-
NeRF [17], and image matching based method LoFTR [47].

To demonstrate the significance of the proposed feature
matching strategy, we build Ours (1-step) baseline. It takes
the PnP solved pose as final results, and does not apply
further pose refinement.

B. Results on Synthetic Dataset

1) Setting: We choose Instant-ngp [1] as the NeRF model.
For evaluation, we follow iNeRF [16] to sample test images,
and add a rotation perturbation within [10◦, 40◦], and a
translation perturbation within 0.2.

2) Results: As shown in Tab. I, we report the pose
correctness, i.e., the rate of poses with rotation error < 5◦,
and translation error < 5 units, and mean rotation (mRE)
and translation error (mTE).

On NeRF Synthetic dataset, Ours (1-step) already outper-
forms NeRF-based methods by 36% and 19% in terms of the
rotation and translation accuracy. Moreover, pi-NeRF [17]
achieves worse performance that iNeRF [16]. We assume the
reason is that pi-NeRF fails to guess good initial pose under
such severe pose perturbation, and abandoning the interest
region based pixel loss used in iNeRF makes the convergence
even harder. Our method is also superior than direct solving
pose from LoFTR [47] 2D matches via epipolar geometry.
With post refinement of 40 steps, our full method can further
boost the correctness of rotation and translation from 94.5%
/ 75% to 95% / 88%.The qualitative results shown in Fig. 3
shows that our method achieves nearly perfect alignment
under large initial pose differences.

C. Results on Real World Scene

On real-world scene, similar to NeRF Synthetic dataset,
our method achieves the best results. This dataset is more
challenging, because the scenes are captured with forward-
facing images, which will result in larger image differences
under the same rotation angle. As a result, it leads to
performance degradation for the comparison methods. On
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Fig. 3: Qualitative results of pose estimation on NeRF syn-
thetic [15] and real-world LLFF dataset [50]. We visualize
the results by overlying the target image and NeRF rendering
image from the estimated pose.
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Fig. 4: Qualitative results of pose estimation on synthesized
occluded data. The comparison methods fail to align the
occluded images after hundreds of iterations, while our
method aligns well in one step.

the contrary, our method even achieves better results (100%).
This verifies the robustness of our method to large pose
variations. Compared to synthetic dataset, the improved
performance may be because the matcher [47] performs
better on real-world data.

D. Results on Occluded Dataset

The occluded data is synthesized by composing the NeRF
synthetic and LLFF dataset. The LLFF real-world images are
used as background, and objects from synthetic dataset are
overlayed as foreground. The qualitative results are shown
in Fig. 4.

V. CONCLUSION

We have proposed a fast NeRF-based framework for
imaged-based, CAD-free novel object pose estimation. By
introducing keypoint matching, our method can directly solve
the pose with one step. Moreover, we propose a 3D consistent
point mining strategy to improve the quality of 2D-3D
correspondences, and a matching keypoint based sampling
strategy to improve the robustness to occluded images.
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