
CoMPS: Continual Meta Policy Search

Anonymous Author(s)
Affiliation
Address
email

1

Abstract

We develop a new continual meta-learning method to address challenges in se-2

quential multi-task learning. In this setting, the agent’s goal is to achieve high3

reward over any sequence of tasks quickly. Prior meta-reinforcement learning4

algorithms have demonstrated promising results in accelerating the acquisition5

of new tasks. However, they require access to all tasks during training. Beyond6

simply transferring past experience to new tasks, our goal is to devise continual7

reinforcement learning algorithms that learn to learn, using their experience on8

previous tasks to learn new tasks more quickly. We introduce a new method, con-9

tinual meta-policy search (CoMPS), that removes this limitation by meta-training10

in an incremental fashion, over each task in a sequence, without revisiting prior11

tasks. CoMPS continuously repeats two subroutines: learning a new task using12

RL and using the experience from RL to perform completely offline meta-learning13

to prepare for subsequent task learning. We find that CoMPS outperforms prior14

continual learning and off-policy meta-reinforcement methods on several sequences15

of challenging continuous control tasks.16

1 Introduction17

Meta-reinforcement learning algorithms aim to address the sample complexity challenge of conven-18

tional reinforcement learning (RL) methods by learning to learn – utilizing the experience of solving19

prior tasks in order to solve new tasks more quickly. Such methods can be exceptionally powerful,20

learning to solve tasks that are structurally similar to the meta-training tasks with just a few dozen21

trials [14, 10, 56, 63]. However, prior work on meta-reinforcement learning is generally concerned22

with asymptotic meta-learning performance, or how well the meta-trained policy can adapt to a single23

new task at the end of a long meta-training period. The meta-training process itself requires iteratively24

attempting each meta-training task in a “round-robin” fashion. While this is reasonable in supervised25

settings, in reinforcement learning revisiting and repeatedly interacting with previously seen tasks in26

the real world may be difficult or impossible. For example, when learning to tidy in different homes –27

effective generalization requires visiting many homes and interacting with many items, but needing28

to revisit every prior home and item on each iteration of meta-training would be impractical. Instead,29

we would want the robot to use each new experience in each new home to incrementally augment its30

skillset so that it can acquire new cleaning skills in new homes more quickly, as shown in Figure 131

using examples from MetaWorld [60]. In this paper, we study the continual meta-reinforcement32

learning setting, where tasks are experienced one at a time, without the option to collect additional33

data on previous tasks. The objective is to decrease the time it takes to learn each successive task, as34

well as achieve high asymptotic performance.35

This paper proposes a novel meta-learning algorithm for tackling the continual multi-task learning36

problem in a reinforcement learning setting. The key desiderata for such a method are the following.37

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Figure 1: In the continual meta-RL setting, the agent interacts with a single task at a time and, once
finished with a task, never interacts with it again. An agent who can efficiently learn should reuses
experience from previous tasks to more quickly adapt to the subsequent tasks more quickly.

First, an effective continual meta-learning algorithm should adapt quickly to new tasks that resemble38

previously seen tasks, and at the same time still adapt (even if slowly) to completely novel tasks. This39

adaptation is crucial in the early stages of meta-training when the number of tasks seen so far is small,40

and every new task appears new and different. Second, an effective continual meta-learning algorithm41

should be able to use all previously seen tasks to improve its ability to adapt to future tasks, integrating42

information even from tasks seen much earlier in training, and are therefore far off-policy. To address43

the first requirement, we base our approach on model-agnostic meta-learning (MAML) [14]. MAML44

adapts to new tasks via gradient descent, while the meta-training process optimizes the initialization45

for this gradient descent process to enable the fastest possible adaptation. Because the adaptation46

process in MAML corresponds to a well-defined learning algorithm, even new out-of-distribution47

tasks are learned (albeit slowly), while tasks that resemble those seen previously will be learned48

much more quickly [13]. To address the second requirement, and make it possible to incorporate49

data from older tasks without revisiting them, we devise a method where the adaptation process50

corresponds to on-policy policy gradient. This meta-training uses behavioral cloning on successful51

episodes experienced by the agent from older tasks. Although the “inner loop” policy gradient52

adaptation process is on-policy, and the agent adapts to each new task with on-policy experience, the53

meta-training process, which is similar to distillation of previously collected experience, is off-policy.54

Essentially, the agent meta-trains the model such that a few steps of policy gradient result in a policy55

that mimics the most successful episodes on each previously seen task. This can effectively enable56

our approach to incorporate experience from much older policies and tasks into the meta-training57

process. Although our algorithm is intended to operate in settings where new tasks are revealed58

sequentially, one at a time, as in the home cleaning robot example before, it still relies on storing59

all experience – therefore, we do not address the forgetting challenges explored in prior work on60

continual learning [16], and instead focus on how sequential meta-learning can accelerate incremental61

task acquisition.62

Our primary contribution is a meta-reinforcement learning algorithm that supports the sequential63

multi-task learning setting, where the agent cannot revisit previous tasks to collect data. To evaluate64

our approach, we modify a collection of commonly used meta-RL benchmarks into continual multi-65

task problems, with tasks presented one at a time. Our method outperforms other methods, achieving66

a higher average reward with fewer samples on average over each of the tasks in the sequence. In67

addition, we evaluate each method’s ability to generalize over a collection of held-out tasks during68

training. We find that CoMPS achieves a higher meta-test time performance on held-out tasks. Lastly,69

we show that as the agent experiences more tasks, learning time on new tasks decreases, indicating70

that meta-learning performance increases asymptotically with the number of tasks.71

2 Related Work72

Meta-learning, or learning-to-learn [44, 4, 54], is concerned with the problem of learning a prior,73

given a set of tasks, that enables more efficient learning in the future. We focus on meta-learning74

for reinforcement learning [44, 10, 56, 14, 31]. There are many ways to represent the meta-learned75

model, including black box models [10, 56, 31, 49, 37, 63, 43, 12, 50, 9], applying gradient descent76

from initial parameters [14, 19, 40, 8, 30, 62, 32], and training a critic to provide policy gradients [51,77

2

24, 58, 5]. Recent work has made progress toward using supervised meta-learning in an online78

setting [38, 15, 27, 26, 18, 61, 3, 55, 59, 57]. Adaptation without task boundaries or inside of an RL79

episode has also become a new area of investigation for meta-learning [33, 25, 21, 1, 23, 21]. Our80

work focuses on a distinct problem setting, where for meta-training the RL tasks are experienced81

sequentially, and the goal is to learn each RL task more quickly by leveraging the experience from82

the prior tasks, without the need to revisit prior tasks.83

Continual or online learning studies the streaming data setting, where experience is used for training84

as soon as it is received [54, 22, 7, 35]. Both of these terms are often used to describe the process85

of learning tasks in sequence while avoiding the problem of forgetting, which refers to negative86

transfer to prior tasks [16, 41, 36, 42, 6, 53, 2]. Following Rolnick et al. [39], we do not aim to87

address the problem of forgetting, and instead retain data from prior tasks in a replay buffer to use88

for training a model that can adapt quickly to new tasks. Other recent methods support continual89

learning without ground truth task boundaries [45, 48, 34], but have not yet been demonstrated to90

perform well in reinforcement learning settings. Even with replay buffers, the data from previous91

tasks is still challenging to reuse since it was collected by a different policy. In Section 4 we describe92

our approach that explicitly optimizes for efficiently learning new tasks, which we find effective for93

accelerating the lifelong reinforcement learning process using stored off-policy data.94

Off-policy RL methods are known to achieve good sample efficiency by reusing prior data. Therefore,95

several recently proposed sample-efficient meta-RL algorithms have been formulated as off-policy96

methods [37, 12, 33, 43]. In principle, these methods could be extended to the continual meta-learning97

setting. However, in practice, their ability to utilize data from past tasks collected under an older98

policy is limited, and we find, via our experiments, that they tend to perform poorly in the continual99

meta-reinforcement learning setting, possibly due to their limited ability to extrapolate to the new out100

of distribution tasks.101

To meta-train without revisiting prior tasks, our method uses a type of self-imitation or distillation102

procedure. Although this resembles imitation learning, it does not use external demonstrations:103

meta-self-imitation learning uses high reward experience the agent itself collected in prior tasks.104

There are a number of non-meta-learning based methods that used behavioral cloning, distillation, and105

self-imitation for re-integrating previous experience [41, 36, 29, 52, 17]. Our work uses meta-self-106

imitation learning as the outer objective. As such not only trains a model to imitate a previous policy107

but also trains this policy to adapt given little data quickly. This training is similar to GMPS [30];108

however, CoMPS does not use on-policy data and must generate its own high reward data that it can109

use for meta-self-imitation-learning. Instead, comps itself must generate its own high reward data110

that it can use for meta-self-imitation learning. Section 4 describes how we construct an off-policy111

meta-RL algorithm that collects its own data for meta-imitation.112

3 Preliminaries113

Reinforcement learning framework. RL problems are generally formalized as a Markov decision114

process (MDP), defined by the tuple MDP = (S,A,P, R, ρ, γ, T), with the state space s ∈ S,115

the action space a ∈ A, a transition probability function P(s′|s, a), a reward function R(s, a), an116

initial state distribution ρ(s0), a discount factor γ ∈ (0, 1] , and a time horizon T . The agent’s117

actions are defined by a policy π(a|s, θ) parametrized by θ. The objective of the agent is to learn an118

optimal policy: θ∗ := argmaxθJ(θ), where J(θ) = Est+1∼P(·|st,at),at∼π(·|st;θ),s0∼ρ [γtR(st, at)] is119

the expected discounted return.120

Meta learning. Given a function f(X; θ) with parameters θ and a loss function `, such as the121

mean squared error, and a set of samples Di := (Xi, Yi), we can write the task-loss as L(Di, θi) =122

Exi,yi∈Di [`(f(xi; θi), yi)]. In the supervised setting, each task is specified with paired data of input123

xi and output yi samples. Meta-learning aims to leverage training across a set of meta-training tasks124

to enable fast adaptation on a different set of meta-test tasks not seen during training. MAML [14]125

accomplishes this by meta-training a set of initial parameters θ over the training tasks to efficiently126

adapt to a new task. We first summarize MAML for the supervised learning setting. A fixed127

distribution of tasks p(T) is assumed. During meta-training a set of M tasks are drawn from this128

distribution {Ti}Mi=0. When the agent is deployed it experiences new tasks Tj ∼ p(T) that provied a129

new set of data Dj := {xj , yj}. Meta-learning trains the parameters for a model θ on {Ti}Mi=0 such130

that when the agent is deployed and recieved data from new tasks Dj the objective f(X; θ) is low131

3

after few gradient updates on the data Dj . MAML minimizes the training loss:132

min
θ

∑
Ti∼p(T)

L(θ − α∇θL(θ,Dtraini),Dtesti) (1)

where for each tasks that data Di is split into training Dtraini and testing Dtesti data. This objective133

essentially optimizes the initial parameters θ for few-shot generalization.134

Meta reinforcement learning. Meta-learning in an RL setting requires extending this framework135

to MDPs. Each RL task Ti is a different MDP, with its own task objective Ji, defined as before. The136

state S and action space A are the same for these MDPs, however their transitions, rewards, and137

initial states can differ. To meta-train over these MDPs, the supervised losses in Eq. 1 are replaced138

with the expected discounted return. However, this meta-training process itself is sample inefficient139

(even though meta-test time adaptation is fast), requiring on-policy trajectories to estimate the inner140

policy gradient and many more trajectories for the outer objective. To reduce the cost of needing141

additional trajectories for the outer objective, Mendonca et al. [30] propose meta-training with the142

expected discounted return as the inner task loss and supervised imitation as the outer loss:143

min
θ

∑
Ti

∑
T vi ∼D∗0:i

ETi [LBC(θ+α∇θJi(θ),Dvi)], LBC(θi,Di) = −
∑

(st,at)∈Di

log π(at|st, θi). (2)

The outer behavioral cloning loss LBC does not require collecting more data from the environment,144

but on-policy data from the environment is needed for computing the inner update on the policy145

parameters φi = θ + α∇θJi(θ). This meta-RL method is more sample efficient when we have146

near-optimal data for the outer behavioral cloning loss LBC , but it cannot be trivially extended to a147

continual setting, the inner objective requires data to be repeatedly collected from each meta-training148

task. The following section will outline the continual multi-task learning problem and describe how149

we can extend GMPS to such a setting, removing the need to revisit prior tasks and carefully include150

a process for the agent to generate its own near-optimal data.151

4 Continual Meta Policy Search152

θ0 L

T0

θ1 L

T1

θ2 L

T2

θ3

Figure 2: The continual multi-task rein-
forcement learning problem for a sequence
of three tasks. The agent applies learning
algorithm L on task Ti and forwards policy
parameters θi+1 after each task.

In the continual multi-task reinforcement learning set-153

ting, which we study in this paper, an agent proceeds154

through many tasks Ti, one at a time. The agent’s goal155

is to quickly solve each new task using a learning rule156

L, achieving high reward as efficiently as possible. In157

order to accomplish this, the agent can use all of its ex-158

perience solving tasks T0:i to learn how to adapt quickly159

to each new task Ti+1, but cannot revisit past tasks to160

collect additional data once it moves on to the next task.161

This differs from the standard reinforcement learning setup, in which there is a single task T0, and162

the standard meta-RL setting, where all tasks can be revisited as many times as needed during163

meta-training. After each round of training on a new task, the agent produces a new set of policy164

parameters θi to serve as initialization for the next task. The learning rule L needs to serve two165

purposes: (1) solve the current task; (2) prepare the model parameters for efficiently solving future166

tasks. This process is depicted in Figure 2.167

CoMPS overview. CoMPS addresses the continual multi-task RL problem one task at a time168

through a sequence of tasks Ti. The L process for CoMPS consists of two main parts, a rein-169

forcement learning RL process to learn the new task involving potentially hundreds of training170

steps and a meta-RL M process, which uses the experience from previous tasks to meta-train171

the initial parameters for RL. We illustrate the flow of these processes for CoMPS in Fig-172

ure 3. The combination of RL and M creates a solution to the continuous multi-task RL173

problem that can perform non-trivial learning via meta-learning across tasks to accelerate learn-174

ing. The RL step consists of using an on-policy RL algorithm to optimize a policy on Ti (de-175

scribed next), which benefits from the previous rounds of meta-training and is therefore very176

fast. This RL training process produces a dataset of trajectories Di = {τ0, . . . , τj} where177

τ = {(s0, a0, r0), . . . , (sT , aT , rT)}. From this dataset, we set aside the experience that achieved178

the highest reward on the task as D∗i ← maxτ∈Di
∑

(at,st)∈τ Ri(st, at) called the skilled experience.179

The details of the RL step, the algorithm used, and the implementation are given in Section 4.1.180

4

Ti

RL

D∗i

M D∗0:i

θi

Ti+1

RL

D∗i+1

M D∗0:i+1

θi+1

Figure 3: CoMPS is split in to two
process. A reinforcement learning
step RL and a meta-learning step
M . The meta-learning step M uses
the data gathered thus far, denoted
D∗0:i, to meta-train θi. RL is initial-
ized from these parameters θi for
the next task.

The meta-training in M uses the experience collected during181

RL in two separate data sets. The first dataset corresponds to182

the skilled experience D∗0:i, which is used in the outer meta-183

imitation learning objective. The second dataset consists of all184

the experience seen so far, D0:i, which is used for estimating185

the inner policy gradient based on Equation 2. Thus, instead186

of naı̈vely finetuning parameters on each new task, as in the187

case of standard continual RL methods, the M step in CoMPS188

produces meta-trained parameters that are optimized such that189

all prior tasks can be learned as quickly as possible starting190

from these parameters. When there are enough such tasks,191

these meta-trained parameters can provide forward transfer192

and generalize to enable fast adaptation to new tasks, enabling193

them to be acquired more efficiently than with naı̈ve finetuning.194

However, to accomplish this, the M step must train from off-195

policy data from prior tasks. In Section 4.2, we describe how196

we implement this procedure.197

4.1 Task Adaptation via Policy Gradient198

To solve each task in the RL step, we use the popular policy gradient algorithm PPO [46]. PPO199

uses stochastic policy gradients to determine how to update the policy parameters θ compared to200

a recent version of the parameters that generated the current data θ′, using a distribution ration201

rt(θ) = π(a|s,θ)
π(a|s,θ′) . A first-order constraint, in the form of a gradient clipping term, is used to202

limit on-policy distribution shift of rt while optimizing the policy parameters using Lppo(θ) =203

E[min(rt(θ)Âπθ′ , clip(rt(θ), 1 − ε, 1 + ε)Âπθ′)]. The advantage Âπθ′ = rt+1 + γVπθ′ (st+1) −204

Vπθ′ (st) is a score function that measures the improvement an action has over the expected policy205

performance Vπθ′ (st). CoMPS increases the sample efficiency of PPO in theRL step via initialization206

from the network parameters θi from theM step, which performs off-policy meta-RL, that we describe207

next. During the RL step, we collect 20 rollouts and perform 16 training updates with a batch size208

of 256. Additional details, including the learning parameters and network design, can be found209

in Appendix C.210

4.2 Outer Loop Meta-Learning211

Algorithm 1 CoMPS Meta-Learning

1: require: θ, skilled D∗0:i and off-policy D0:i

2: for n← 0 . . . N do
3: for j ← 0 . . . i do
4: Dtrj ←sample m rollouts from Dj
5: φj ← θ + α∇Jj(θ) (via imp. weights)
6: Sample data Dvalj ∼ D∗j
7: Update θ ← θ − β∇LBC(φj ,Dvalj)
8: end for
9: end for

The M process of CoMPS meta-trains a set of212

parameters θi using meta-self-imitation from213

the skilled experience. The outer self-imitation214

learning objective in Eq. 2 uses the skilled ex-215

perience D∗0:i to train the agent to be capable216

of (re)learning these skilled behaviors from one217

or a few policy gradient steps using previously218

logged off-policy experience, sampled randomly219

from D0:i. In contrast to methods that are con-220

cerned with forgetting, the parameters produced221

by this meta-RL training can quickly learn new222

behaviors that are similar to the high-value poli-223

cies from previous tasks and, if enough prior tasks have been seen, likely generalize to quickly learn224

new tasks as well. The use of gradient-based meta-learning is particularly important here: as observed225

in prior work [13], gradient-based meta-learning methods are more effective at generalizing to new226

tasks under mild distributional shift as compared to contextual methods, making them well-suited227

for continual meta-learning with non-stationary task sequences, where new tasks can deviate from228

the distribution of tasks seen previously. In this case, gradient-based meta-learning methods degrade229

gracefully standard gradient-based optimization – in this case, policy gradient. However, in the230

continual setting, where prior tasks cannot be revisited, a significant challenge in this procedure is231

that the meta-RL optimization needs to estimate the policy gradient ∇θJ(θ) in its inner loop for232

each previously seen task, without collecting additional data from the task (which it is not allowed to233

revisit). To address this challenge, we will utilize an importance-sampled update that we describe234

5

collect task
experience

Reinforcement Learning

update policy

Off-Policy Meta-Self-Imitation

off-policy IS update

meta-self-imitation
skilled
experience

off-policy
experience

Figure 4: Outline of CoMPS. The left side corresponds to the M block for Figure 3 and the right
the RL block. On the right (RL), for each round i the policy πθi is initalized using the previously
trained meta-policy parameters. At the end of policy training for round i the experience for task i is
collected into the off-policy buffer D0:i and skilled experience is stored in another buffer D∗0:i. This
experience is given to M that uses the off-policy experience for the inner expected reward updates.
The outer step behavior clones from the skilled experience the RL agent generated itself previously.

in Section 4.3, using samples from the full dataset of off-policy experience for that task, D0:i, to235

estimate an inner loop policy gradient. In effect, this procedure trains the model to learn policies that236

are close to the near-optimal trajectories in D∗0:i by taking (off-policy) policy gradient steps on the237

sub-optimal trajectories in D0:i. The complete meta-training process is summarized in Algorithm 1,238

and corresponds to a reinforcement learning inner update and a meta-imitation learning outer update,239

though imitation uses the agent’s own experience without requiring any demonstrations. In our240

implementation, the skilled data consists of the 20 highest-scoring rollouts per task. Further details241

on the networks and hyperparameters used for Algorithm 1 are available in Appendix D.242

4.3 Off-Policy Inner Gradient Estimation for Meta-Learning243

In this section, we describe the particular form of the inner-loop policy gradient estimator used in244

Algorithm 1. Although many prior works have studied importance-sampled policy gradient updates,245

and GMPS [30] uses an importance-sampling update based on PPO [46], we found this simple246

importance sampled approach to be insufficient to handle the highly off-policy data in D0:i. This is247

because the data for the earlier tasks may have been collected by substantially different policies than248

the data from the latest tasks. To enable our method to handle such highly off-policy data, we utilize249

both an improtance-sampled policy gradient estimator and an importance-sampled value estimate for250

the baseline in the policy gradients. The former is estimated via clipped importance weights, while251

the latter uses an estimator based on V-trace [11] to compute value estimates, which are then used252

as the baseline. For state sm given a trajectory (st, at, rt)
m+n
t=m , we define the n-step V-trace value253

targets for V (sm) =
∑n
t=0 γ

trt, as:254

vm = V (sm) +

m+n=1∑
t=m

γt−m

(
t−1∏
i=m

ci

)
ρt(rt + γV (st+1)− V (st)). (3)

The values ρt = min(ρ̄, rt(θ)) and ci = min(c̄, ri(θ)) are truncated importance weights, where ρ̄255

and c̄ are hyperparameters, and rt(θ) = π(at|st, θ)/π(at|st, θ′), where θ′ denotes the parameter256

vector of the policies that sampled the trajectory in the dataset. The value function parameters ω are257

trained to minimize the l2 loss |vm − Vω(sm)|. The V-trace value estimate is then used to estimate258

the advantage values for policy gradient, which are given by Âm = rm + vm+1 − Vω(sm), and259

the gradient is then given by∇θJ(θ) ≈ 1
N

∑
i ρi∇θ log πθ(ai|si)Âi, analogously to PPO and other260

importance-sampled policy gradient algorithms. This importance-sampled gradient estimator is used261

for the inner loop update in Algorithm 1 line 5. We show in our ablation experiments that this262

approach is needed to enable successful meta-training using the exhaustive off-policy experience263

collected by CoMPS.264

6

4.4 CoMPS Summary265

An outline of the entire CoMPS algorithm, including how data is accumulated as more tasks are266

solved, is shown in Figure 4. The RL process keeps track of the set of trajectories that achieve267

the highest sum of rewards D∗i . The RL step returns the separate skilled experience D∗i , and all268

experience collected during RL training in Di. The M step uses this experience to perform meta-269

RL via training a model to learn how to reproduce the best policies achieved from previous tasks.270

Significantly, this meta-RL training process can accelerate the RL process even in fully offline271

settings, allowing the agent to train a meta-RL model without collecting additional experience.272

5 Experiments273

Our experiments aim to analyze the performance of CoMPS on both stationary and non-stationary task274

sequences in the continual meta-learning setting, where each task is observed once and never revisited275

again during the learning process. To this end, we construct a number of sequential meta-learning276

problems out of previously proposed (non-sequential) meta-reinforcement learning benchmarks. We277

separate our evaluation into experiments with stationary task distributions, where each task in the278

sequence is sampled identically, and non-stationary task distributions, where the tasks either become279

harder over time or else are selected to be maximally dissimilar for prior tasks (see discussion below).280

We describe the task domains and the methods in our comparisons below, with further details provided281

in Appendix A.282

Tasks. An illustration of the tasks in our evaluation is provided in Figure 5, along with a visualiza-283

tion of the tasks, and includes the following task families:284

Ant Goal: In this environment, a quadrupedal robot must reach different goal locations, arranged in a285

semicircle in front of the robot. The non-stationary distribution selects the locations that are furthest286

from previously chosen location each time, while the stationary one selects them at random.287

Ant Direction: Here, the same quadrupedal robot must run in a particular direction. The non-288

stationary and stationary distributions are constructed as above.289

Half Cheetah: Here, the goal is to control the half-cheetah to run at different velocities, either290

forward or backward. The direction is chosen randomly, but in the non-stationary distribution, the291

desired velocity magnitude increases over time.292

MetaWorld: We utilize the suite of robotic manipulation tasks from Yu et al. [60], which we arrange293

into a sequence. The non-stationary sequence orders the tasks in increasing difficulty, as measured by294

how long regular PPO can solve the tasks individually.295

Prior methods. We compare CoMPS both to prior meta-learning methods and to prior methods for296

continual learning. Since learning without revisiting prior tasks requires an off-policy algorithm, we297

include PEARL [37] as a meta-learning baseline, which utilizes the off-policy SAC [20] algorithm298

and can in principle learn without revisiting prior tasks. While several prior methods use policy299

gradients with meta-RL [40, 1], these methods require on-policy data, making them unsuited for this300

continual meta-learning problem setting. For continual learning, we include a PPO transfer learning301

baseline (denoted PPO+TL), which trains sequentially on the tasks, as well as the more sophisticated302

Progress & Compress (P&C) method [47], which further guards against forgetting of prior tasks.303

Although we don’t evaluate backward transfer, we still include P&C as a representative example of304

prior continual learning methods.305

Meta-learning over stationary task distributions. In our first set of experiments, we compare306

the methods on stationary task sequences. The results are presented in Figure 6. The plots show the307

average number of episodes needed to reach a success threshold on each task, such that methods308

that solve each task faster take few episodes that task. In this evaluation protocol, once the fraction309

of successful rollouts exceeds a threshold, the algorithm moves on to the next task, and the goal is310

to solve all the tasks as fast as possible. For additional details on how success is computed and the311

thresholds used see Appendix A. In these experiments, we can see that CoMPS solves the tasks the312

fastest, and in fact solves tasks faster as more tasks are experienced, indicating the benefits of meta-313

learning. The improvements on the harder Ant environments are most pronounced. This indicates314

the benefits of continual meta-learning, where each task enables the method to solve new tasks even315

more quickly. Reaching the success threshold on the more challenging MetaWorld tasks is generally316

7

(a) Ant Goal (b) Ant Direction (c) Half cheetah (d) MetaWorld

Figure 5: Environments and tasks used in our evaluation. In Ant Goal the non-stationary task
distribution selects the next goal location that is furthest from all previous locations, e.g. T0:i =
((5, 0), (−5, 0), (0, 5), (0,−5), . . .). In Ant Direction the tasks start at 0◦ along the x-axis and rotate
ccw 70◦ for each new task. The Half Cheetah tasks start with low target velocity and alternate
between larger +− velocities .e.g. T0:i = (0.5,−0.5, 1.0,−1.0, . . .).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Task Number

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 C

ou
nt

Ant Goal

CoMPS
GMPS+PPO
PEARL
PNC
PPO+TL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Task Number

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 C

ou
nt

Ant Direction

CoMPS
GMPS+PPO
PEARL
PNC
PPO+TL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Task Number

100

200

300

400

500

Av
er

ag
e

Ep
iso

de
 C

ou
nt

Cheetah Velocity
CoMPS
GMPS+PPO
PEARL
PNC
PPO+TL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Task Number

50

100

150

200

250

300

Av
er

ag
e

Ep
iso

de
s c

ou
nt

Metaworld
CoMPS
GMPS+PPO
PNC
PPO+TL

Figure 6: These figures show the average number of episodes needed to solve each new task after
completing i tasks (fewer is better). Results are computed over 6 sequences of 20 tasks, averaged
over 6 random seeds.

difficult, and all methods struggle with this. In Appendix E we include additional results that show317

CoMPS receives higher reward on average for these experiments, while in the non-stationary task318

analysis, we will also show that CoMPS significantly improves on MetaWorld in terms of average319

reward. In the next paragraph, we provide a more fine-grained analysis of the average rewards for320

each method, using the non-stationary task distributions.321

Meta-learning over non-stationary task distributions. In our second set of experiments, we322

evaluate all of the methods on non-stationary task sequences. The results of these comparisons323

are presented in Figure 7, which show complete learning curves for each method over the task324

sequence (left), as well as a plot of the average performance on each task (right) – the plot on the325

right is obtained by averaging within each task, and provides a clearer visualization of aggregate326

performance. The plots show that CoMPS attains the best performance in each task family, and the327

gains are particularly large on the higher-dimensional Ant Direction and Ant Goal tasks. Note that328

the decrease in performance on the Half-Cheetah task is due to the increasing difficult of tasks later329

in the sequence, but CoMPS still attains higher rewards than other methods. On the two Ant tasks330

and MetaWorld, the average performance of CoMPS increases as more tasks are seen, indicating331

that the meta-learning procedure accelerates acquisition of new tasks. Note the clear improvement for332

CoMPS in this domain, in contrast to the comparatively inconclusive results in terms of time steps333

to success in the previous paragraph – since the MetaWorld tasks are significantly harder than Ant334

or Cheetah, success on each task may be out of reach for all methods [60], though the analysis in335

Figure 7 still shows a clear difference in terms of average rewards. PEARL generally performs poorly336

on the harder Ant tasks: although SAC is an off-policy algorithm, it is well known that such methods337

do not perform well when they are not allowed to gather any additional online data (as, for example,338

in the case of offline RL) [28]. This may account for the poor performance of PEARL and for this339

reason we leave it out of our MetaWorld results here and include them Appendix E. PPO+TL and340

P&C provide strong baselines, but do not benefit from meta-learning as CoMPS does, and therefore341

their performance does not improve as much as more tasks are observed.342

Ablation study. We perform an ablation analysis to compare CoMPS to GMPS+PPO that does not343

use V-trace-based off-policy importance sampling. The results in Figure 6 show that GMPS+PPO can344

not make good use of the off-policy experience and, as a consequence, performs worse than CoMPS,345

especially on Ant Goal and Ant Direction. In Figure 7, where non-stationary task distributions are346

used, CoMPS also outperforms GMPS+PPO on average.347

8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Task Number

500

450

400

350

300

250

200

Av
er

ag
e

Re
tu

rn
s

Ant Goal

CoMPS
GMPS+PPO
PEARL
PNC
PPO+TL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Task Number

100

50

0

50

100

150

200

Av
er

ag
e

Re
tu

rn
s

Ant Direction
CoMPS
GMPS+PPO
PEARL
PNC
PPO+TL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Task Number

400

300

200

100

Av
er

ag
e

Re
tu

rn
s

Cheetah Velocity

CoMPS
GMPS+PPO
PEARL
PNC
PPO+TL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Task Number

50

100

150

200

250

300

350

400

Av
er

ag
e

Re
tu

rn
s

Metaworld
CoMPS
GMPS+PPO
PNC
PPO+TL

Figure 7: On the left are “lifelong” plots of rewards received for every episode of training over 20
tasks. Results are averaged over 6 seeds, and each task gets 500 episodes where each episode collects
5000 samples. The right plots show the average average return across the 500 episodes on each of the
20 individual tasks. CoMPS achieves higher average returns and improves its performance as more
tasks are solved.

6 Discussion348

In this work, we proposed CoMPS, a new method for continual meta-reinforcement learning. Unlike349

standard meta-RL methods, CoMPS learns tasks one at a time, without the need to revisit prior tasks.350

Our experimental evaluation shows that CoMPS can acquire long task sequences more efficiently351

than prior methods, and can master each task more quickly. Crucially, the more tasks CoMPS has352

experienced, the faster it can acquire new tasks. At the core of CoMPS is a hybrid meta-RL approach353

that uses an off-policy importance-sampled inner loop policy gradient updated combined with a354

simple supervised outer loop objective based on imitating the best data from prior tasks produced355

by CoMPS itself. This provides for a simple and stable approach that can be readily applied to a356

wide range of tasks. CoMPS does have several limitations. Like all importance-sampled policy357

gradient methods, the variance of the importance weights can become large, necessitating clipping358

and other tricks. We found that including a V-trace off-policy value estimator for the baseline helps359

to mitigate this, providing better performance even for highly off-policy prior task data, but better360

gradient estimators could likely lead to better performance in the future. Additionally, CoMPS still361

requires all prior data to be stored and does not provide for any mechanism to handle forgetting.362

While this is reasonable in some settings, an interesting direction for future work could be to develop363

a fully online method that does not require this. Since CoMPS does not require revisiting prior tasks,364

it can be a practical choice for real-world meta-reinforcement learning, and a particularly exciting365

direction for future work is to apply CoMPS to realistic lifelong learning scenarios for real-world366

applications, in domains such as robotics.367

9

References368

[1] Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter369

Abbeel. Continuous adaptation via meta-learning in nonstationary and competitive environments.370

In International Conference on Learning Representations, 2018.371

[2] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In372

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11254–373

11263, 2019.374

[3] Antreas Antoniou, Massimiliano Patacchiola, Mateusz Ochal, and Amos Storkey. Defining375

benchmarks for continual few-shot learning. arXiv preprint arXiv:2004.11967, 2020.376

[4] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule.377

Université de Montréal, Département d’informatique et de recherche . . . , 1990.378

[5] Yevgen Chebotar, Artem Molchanov, Sarah Bechtle, Ludovic Righetti, Franziska Meier, and379

Gaurav Sukhatme. Meta-learning via learned loss. arXiv preprint arXiv:1906.05374, 2019.380

[6] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowl-381

edge transfer. arXiv preprint arXiv:1511.05641, 2015.382

[7] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial383

Intelligence and Machine Learning, 10(3):1–145, 2016.384

[8] Ignasi Clavera, Anusha Nagabandi, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and385

Chelsea Finn. Learning to adapt: Meta-learning for model-based control. arXiv preprint386

arXiv:1803.11347, 3, 2018.387

[9] Ron Dorfman and Aviv Tamar. Offline meta reinforcement learning. arXiv preprint388

arXiv:2008.02598, 2020.389

[10] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2:390

Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,391

2016.392

[11] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam393

Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-394

PALA: Scalable distributed deep-RL with importance weighted actor-learner architectures. In395

Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on396

Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1407–1416,397

Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.398

[12] Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, and Alexander J Smola. Meta-q-learning.399

2019.400

[13] Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and401

gradient descent can approximate any learning algorithm. 2018.402

[14] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-403

tation of deep networks. In Proceedings of the 34th International Conference on Machine404

Learning-Volume 70, pp. 1126–1135. JMLR. org, 2017.405

[15] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning.406

In International Conference on Machine Learning, pp. 1920–1930, 2019.407

[16] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive408

sciences, 3(4):128–135, 1999.409

[17] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine. Divide-and-410

conquer reinforcement learning. 2018.411

[18] Erin Grant, Ghassen Jerfel, Katherine Heller, and Thomas L. Griffiths. Modulating transfer412

between tasks in gradient-based meta-learning, 2019.413

[19] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-414

reinforcement learning of structured exploration strategies. In Advances in Neural Information415

Processing Systems, pp. 5302–5311, 2018.416

[20] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy417

maximum entropy deep reinforcement learning with a stochastic actor. 80:1861–1870, 10–15418

Jul 2018.419

10

[21] James Harrison, Apoorva Sharma, Chelsea Finn, and Marco Pavone. Continuous meta-learning420

without tasks. arXiv preprint arXiv:1912.08866, 2019.421

[22] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends R© in422

Optimization, 2(3-4):157–325, 2016.423

[23] Xu He, Jakub Sygnowski, Alexandre Galashov, Andrei A Rusu, Yee Whye Teh, and Razvan424

Pascanu. Task agnostic continual learning via meta learning. arXiv preprint arXiv:1906.05201,425

2019.426

[24] Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, Jonathan Ho, and Pieter427

Abbeel. Evolved policy gradients. In Advances in Neural Information Processing Systems, pp.428

5400–5409, 2018.429

[25] Khurram Javed and Martha White. Meta-learning representations for continual learning. In430

H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alche-Buc, E. Fox, and R. Garnett (eds.),431

Advances in Neural Information Processing Systems 32, pp. 1820–1830. Curran Associates,432

Inc., 2019.433

[26] Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Reconciling meta-learning434

and continual learning with online mixtures of tasks. In H. Wallach, H. Larochelle, A. Beygelz-435

imer, F. d Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing436

Systems 32, pp. 9122–9133. Curran Associates, Inc., 2019.437

[27] Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. Adaptive gradient-based438

meta-learning methods. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox,439

and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 5917–5928.440

Curran Associates, Inc., 2019.441

[28] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy442

q-learning via bootstrapping error reduction. 32, 2019.443

[29] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep444

visuomotor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.445

[30] Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, and Chelsea446

Finn. Guided meta-policy search. arXiv preprint arXiv:1904.00956, 2019.447

[31] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive448

meta-learner. arXiv preprint arXiv:1707.03141, 2017.449

[32] Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline450

meta-reinforcement learning with advantage weighting. arXiv preprint arXiv:2008.06043,451

2020.452

[33] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via meta-learning:453

Continual adaptation for model-based RL. In International Conference on Learning Represen-454

tations, 2019.455

[34] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual456

learning. arXiv preprint arXiv:1710.10628, 2017.457

[35] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.458

Continual lifelong learning with neural networks: A review. Neural Networks, 113:54 – 71,459

2019. ISSN 0893-6080.460

[36] Emilio Parisotto, Lei Jimmy Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask461

and transfer reinforcement learning. In International Conference on Learning Representations,462

2016.463

[37] Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient464

off-policy meta-reinforcement learning via probabilistic context variables. arXiv preprint465

arXiv:1903.08254, 2019.466

[38] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenen-467

baum, Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot468

classification. In International Conference on Learning Representations, 2018.469

[39] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-470

ence replay for continual learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché-Buc,471

E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 350–472

360. Curran Associates, Inc., 2019.473

11

[40] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal474

meta-policy search. arXiv preprint arXiv:1810.06784, 2018.475

[41] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James476

Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy477

distillation. arXiv preprint arXiv:1511.06295, 2015.478

[42] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,479

Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive Neural Networks. arXiv,480

2016.481

[43] Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisenroth. Meta reinforcement482

learning with latent variable gaussian processes. arXiv preprint arXiv:1803.07551, 2018.483

[44] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to484

learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.485

[45] Jürgen Schmidhuber. POWERPLAY: training an increasingly general problem solver by486

continually searching for the simplest still unsolvable problem. CoRR, abs/1112.5309, 2011.487

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal488

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.489

[47] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,490

Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework491

for continual learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th492

International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning493

Research, pp. 4528–4537, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.494

[48] Rupesh Kumar Srivastava, Bas R. Steunebrink, and Jürgen Schmidhuber. First experiments495

with powerplay. CoRR, abs/1210.8385, 2012.496

[49] Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and497

Ilya Sutskever. Some considerations on learning to explore via meta-reinforcement learning.498

arXiv preprint arXiv:1803.01118, 2018.499

[50] Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi, and Claire Cardie. Dream: A challenge500

data set and models for dialogue-based reading comprehension. Transactions of the Association501

for Computational Linguistics, 7:217–231, 2019.502

[51] Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to learn:503

Meta-critic networks for sample efficient learning. arXiv preprint arXiv:1706.09529, 2017.504

[52] Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia505

Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning.506

arXiv preprint arXiv:1707.04175, 2017.507

[53] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J Mankowitz, and Shie Mannor. A Deep508

Hierarchical Approach to Lifelong Learning in Minecraft. arXiv, pp. 1–6, 2016.509

[54] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media,510

2012.511

[55] Matthew Wallingford, Aditya Kusupati, Keivan Alizadeh-Vahid, Aaron Walsman, Aniruddha512

Kembhavi, and Ali Farhadi. Are we overfitting to experimental setups in recognition?, 2020.513

[56] Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos,514

Charles Blundell, Dharshan Kumaran, and Matthew Botvinick. Learning to reinforcement learn.515

CoRR, abs/1611.05763, 2016.516

[57] Huaxiu Yao, Yingbo Zhou, Mehrdad Mahdavi, Zhenhui Li, Richard Socher, and Caiming Xiong.517

Online structured meta-learning. arXiv preprint arXiv:2010.11545, 2020.518

[58] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and Sergey519

Levine. One-shot imitation from observing humans via domain-adaptive meta-learning. 2018.520

[59] Tianhe Yu, Xinyang Geng, Chelsea Finn, and Sergey Levine. Variable-shot adaptation for online521

meta-learning. arXiv preprint arXiv:2012.07769, 2020.522

[60] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and523

Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement524

learning. In Conference on Robot Learning, pp. 1094–1100. PMLR, 2020.525

12

[61] Zhenxun Zhuang, Yunlong Wang, Kezi Yu, and Songtao Lu. Online meta-learning on non-526

convex setting. arXiv preprint arXiv:1910.10196, 2019.527

[62] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast528

context adaptation via meta-learning. In International Conference on Machine Learning, pp.529

7693–7702, 2019.530

[63] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,531

and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-532

learning. In International Conference on Learning Representations, 2020.533

Checklist534

The checklist follows the references. Please read the checklist guidelines carefully for information on535

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or536

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing537

the appropriate section of your paper or providing a brief inline description. For example:538

• Did you include the license to the code and datasets? [No] Our code does require a license539

to mujoco. It is possible to get a free lisence for students use that can be used to run our540

code.541

• Did you include the license to the code and datasets? [No] The code and the data are542

proprietary.543

• Did you include the license to the code and datasets? [N/A]544

Please do not modify the questions and only use the provided macros for your answers. Note that the545

Checklist section does not count towards the page limit. In your paper, please delete this instructions546

block and only keep the Checklist section heading above along with the questions/answers below.547

1. For all authors...548

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s549

contributions and scope? [Yes] You can see in our experiments section that we do back550

up our claim that CoMPS can acheive faster learning speeds in sequential learning551

problems across multiple environments.552

(b) Did you describe the limitations of your work? [Yes] At the end of Section 6 we discuss553

the general limitations of our method that are based on the limitations of the methods554

components.555

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See556

Appendix F.557

(d) Have you read the ethics review guidelines and ensured that your paper conforms to558

them? [Yes] Yes, we have.559

2. If you are including theoretical results...560

(a) Did you state the full set of assumptions of all theoretical results? [N/A]561

(b) Did you include complete proofs of all theoretical results? [N/A]562

3. If you ran experiments...563

(a) Did you include the code, data, and instructions needed to reproduce the main ex-564

perimental results (either in the supplemental material or as a URL)? [Yes] We are565

including code with this submission. This will include instruction on how to reproduce566

the experiments in the paper.567

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they568

were chosen)? [Yes] Please see the accompanying supplemental material.569

(c) Did you report error bars (e.g., with respect to the random seed after running exper-570

iments multiple times)? [Yes] See Figure 6 and Figure 7 we included error bars and571

performed our experiments over 6 random seeds.572

(d) Did you include the total amount of compute and the type of resources used (e.g.,573

type of GPUs, internal cluster, or cloud provider)? [Yes] Please see the accompanying574

supplemental material in Appendix A.575

13

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...576

(a) If your work uses existing assets, did you cite the creators? [Yes] We use a set of577

environments from [37] and some code from [30].578

(b) Did you mention the license of the assets? [Yes] It is well known that Mujoco, which579

is needed to use the robotics simulator for our experiments, needs a software liscence.580

(c) Did you include any new assets either in the supplemental material or as a URL? [No]581

(d) Did you discuss whether and how consent was obtained from people whose data you’re582

using/curating? [N/A] We are not using peoples data.583

(e) Did you discuss whether the data you are using/curating contains personally identifiable584

information or offensive content? [N/A] See above.585

5. If you used crowdsourcing or conducted research with human subjects...586

(a) Did you include the full text of instructions given to participants and screenshots, if587

applicable? [N/A]588

(b) Did you describe any potential participant risks, with links to Institutional Review589

Board (IRB) approvals, if applicable? [N/A]590

(c) Did you include the estimated hourly wage paid to participants and the total amount591

spent on participant compensation? [N/A]592

14

