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Abstract

With the advancement of large language mod-001
els (LLMs), significant progress has been made002
in various Natural Language Processing (NLP)003
tasks. However, most existing LLMs still face004
two key challenges that hinder their broader005
applications: (1) their responses exhibit univer-006
sal characteristics and lack personalization tai-007
lored to specific users, and (2) they are highly008
dependent on cloud infrastructure due to in-009
tensive computational requirements, leading to010
response delays and user privacy concerns. Re-011
cent research has primarily focused on either012
developing cloud-based personalized LLMs or013
exploring the on-device deployment of general014
LLMs. However, few studies have addressed015
both limitations by investigating personalized016
on-device LMs. To bridge this gap, this paper017
introduces CDCDA-PLM, a framework for de-018
ploying a personalized LLM on user devices019
with the assistance of a powerful cloud-based020
LLM while satisfying personalized user privacy021
requirements. Specifically, to overcome the022
data sparsity of on-device personal data, users023
have the flexibility to selectively share personal024
data with the server-side LLM to generate more025
synthetic personal data. By combining this syn-026
thetic data with locally stored user data, we fine-027
tune the personalized parameter-efficient fine-028
tuning (PEFT) modules of the small on-device029
model to capture user personas effectively. Our030
experiments demonstrate the effectiveness of031
CDCDA-PLM across six tasks in a widely used032
personalization benchmark.033

1 Introduction034

Recently, Large Language Models (LLMs) have035

become a cornerstone of contemporary Natural036

Language Processing (NLP) research and indus-037

try applications due to their exceptional abilities038

in text understanding and generation (Radford and039

Narasimhan, 2018; Ray, 2023; Naveed et al., 2024).040

These models have achieved remarkable success041

and transformed numerous areas of NLP, such042

as translation, summarization, and conversational 043

AI (Thirunavukarasu et al., 2023; Hu et al., 2024; 044

Wang et al., 2024). 045

Despite their advancements, existing LLMs face 046

two significant limitations that hinder their broader 047

adoption: (1) Lack of Personalization. LLMs 048

are designed as universal models, which limits 049

their ability to generate responses tailored to users’ 050

personalized preferences and interests; (2) Depen- 051

dence on Cloud Infrastructure. The powerful 052

LLMs are typically trained and deployed on cloud 053

servers due to their high computational demands. 054

This setup not only necessitates reliable network 055

connections but also requires users to share sensi- 056

tive data with the server, raising privacy concerns. 057

As a result, there is an urgent need to develop per- 058

sonalized LLMs on personal devices that address 059

user-specific requirements while operating locally 060

on edge devices. 061

Some recent efforts have explored techniques for 062

enabling personalization in LLMs, which can be 063

generally categorized into prompt-based methods 064

and fine-tuning-based methods. The prompt-based 065

approaches format personalized prompts to lever- 066

age the in-context learning capabilities of LLMs. 067

For example, Christakopoulou et al. (2023) incor- 068

porates users’ historical data into prompts to en- 069

hance generation performance. And to conquer 070

the input length limitation when users’ historical 071

data are too long, some research employs retrieval- 072

augmentation generation (RAG) to augment user’s 073

query by adding the most relevant history informa- 074

tion into prompt (Richardson et al., 2023; Salemi 075

et al., 2023; Li et al., 2024a,b). On the other hand, 076

the fine-tuning methods directly optimize LLMs’ 077

parameters to adapt to users’ personal data distri- 078

butions (Tan et al., 2024b,a; Park et al., 2024; Li 079

et al., 2024b; Zhuang et al., 2024). 080

While these methods show promise for person- 081

alization, they are primarily designed for cloud- 082

based LLMs and face significant challenges in on- 083
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device settings. On-device LMs are constrained084

by the computational and storage limitations of085

edge devices, resulting in small model sizes. As086

demonstrated in many previous works (Richard-087

son et al., 2023; Salemi et al., 2024), prompt-based088

personalization methods, including RAGs, cannot089

achieve satisfactory performance with these small-090

size on-device LLMs since these models have lim-091

ited generalization and contextual understanding092

ability. Similarly, fine-tuning on-device LMs to093

adapt to users’ local data distributions presents ad-094

ditional difficulties. First, individual users typically095

possess limited data, which is insufficient for ef-096

fective model fine-tuning. Second, existing fine-097

tuning methods fail to fully leverage the powerful098

language understanding capabilities of large-scale,099

cloud-based LLMs.100

In this paper, we take the first step toward de-101

veloping a framework for personalized on-device102

fine-tuning of LLMs, combining the strengths of103

cloud-based LLMs with user privacy considera-104

tions. Specifically, the framework allows users to105

selectively share data with the cloud server based106

on their personal privacy preferences (Qu et al.,107

2024). A large cloud-based LLM then generates108

more synthetic data tailored to the user’s uploaded109

data, facilitating the transfer of knowledge to the110

on-device LM. Once the synthetic data is received111

from the server, we apply parameter-efficient fine-112

tuning (PEFT) techniques to optimize their on-113

device LM using both the synthetic data and user’s114

local personal data. This approach addresses the115

issue of sparse user data and enhances the flexibil-116

ity and efficiency of on-device model deployment.117

To evaluate the framework’s effectiveness, we con-118

duct extensive experiments on public datasets, and119

experimental results demonstrate that the proposed120

method can achieve promising performance in per-121

sonalized classification and generation tasks.122

Overall, the main contributions of this paper are123

summarized as follows:124

• We take the first step in exploring the problem125

of LLM personalization in the context of small126

on-device LM deployment, where storage size127

and computational resources are constrained.128

• We propose a personalized on-device LLM129

framework, CDCDA-PLM. In this framework,130

we design a novel cloud-device collaboration131

mechanism in which users selectively share132

a portion of their data with the cloud server133

based on their privacy preferences. The server134

model then leverages data augmentation to 135

transfer knowledge to the small on-device LM. 136

Additionally, we develop a dedicated filter- 137

ing method to enhance the robustness of the 138

knowledge transfer process. 139

• We conduct extensive experiments across mul- 140

tiple tasks to demonstrate the effectiveness 141

of CDCDA-PLM. Furthermore, we perform 142

detailed ablation studies and hyperparameter 143

analyses, followed by a case study, to fur- 144

ther highlight the superiority of our proposed 145

method. 146

2 Related Work 147

In this section, we review the literatures on 148

LLM personalization and on-device deployment 149

of LLMs. 150

2.1 Personalization of LLMs 151

Personalized LLM aims to better understand and 152

generate text specific to match the user’s interests 153

and preferences. The existing research on LLM 154

personalization could generally be divided into two 155

categories: prompt design based personalization 156

and parameter-efficient fine-tuning (PEFT) based 157

personalization (Salemi and Zamani, 2024). 158

Prompt-based Personalization. In the early de- 159

velopment of personalized prompts, query prompts 160

were formatted with user history as context to lever- 161

age the in-context and few-shot learning capabil- 162

ities of large language models (LLMs). For in- 163

stance, Christakopoulou et al. (2023) and Zhiyuli 164

et al. (2023) demonstrate that incorporating long 165

user history in prompts can enhance LLM gener- 166

ation performance. However, incorporating user 167

history in prompts will increase the inference com- 168

putational cost due to the lengthy input. To mitigate 169

this issue, Salemi et al. (2023) proposed a strategy 170

to shorten the user history length by using retrieval 171

model to select relevant documents from user his- 172

tory based on the user query. Moreover, Salemi 173

et al. (2024) optimizes and selects retrieval models 174

based on LLM feedback from personalized tasks. 175

Richardson et al. (2023) employ LLMs to gener- 176

ate concise summaries of user history, potentially 177

capturing a more comprehensive perspective of the 178

user. 179

Fine-tuning based Personalization. Parameter- 180

efficient fine-tuning (PEFT) offers an effective way 181

to optimize LLMs for users’ personal distributions 182

by modifying only a small subset of parameters 183
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(Hu et al., 2021; Dettmers et al., 2023). For exam-184

ple, OPPU proposed a PEFT-based personalized185

LLM, which fine-tunes the LoRA adapter on user186

profiles for each user, to store user knowledge on187

PEFT parameters (Tan et al., 2024b). Building on188

this work, PER-PCS aggregates fine-tuned LoRA189

adapters from multiple users into a shared adapter190

pool, which can be leveraged to generate a person-191

alized LLM for a target user by merging multiple192

LoRA adapters (Tan et al., 2024a). Reinforcement193

learning is also applied with PEFT to achieve better194

performance(Cheng et al., 2023; Li et al., 2024b;195

Park et al., 2024).196

However, all the aforementioned personalization197

approaches have been developed for cloud-based198

LLMs, which possess formidable generalization199

and language understanding capabilities, lacking200

the exploration of weak on-device models.201

2.2 On-device Deployment of LLMs202

Due to their large size, deploying LLMs on edge203

devices presents critical challenges, including high204

computational overhead and significant memory de-205

mands. Current deployment methods can generally206

be categorized into two strategies.207

The first strategy involves directly compressing208

the original large-scale model into a smaller one209

through quantization (Liu et al., 2023; Lin et al.,210

2025) and pruning (Ma et al., 2023; Frantar and211

Alistarh, 2023). Quantization maps high-precision212

values to lower precision, while pruning removes213

certain unimportant neurons. However, since the214

compressed model remains architecturally coupled215

with the original model, aggressive compression216

may lead to significant performance degradation.217

The second strategy focuses on transferring218

knowledge from a large cloud-based model to a219

smaller on-device model. A widely used approach220

within this strategy is knowledge distillation (KD)221

(Hinton et al., 2015; Gou et al., 2021). Based on the222

accessibility of the teacher model, the KD process223

can be classified into white-box KD and black-box224

KD. In white-box KD, the student model learns225

from the teacher model’s activations, hidden fea-226

tures, and output distribution (Xu et al., 2024; Ko227

et al., 2024; Wu et al., 2024; Agarwal et al., 2024;228

Gu et al., 2024). However, this approach requires229

the student model to share certain architectural sim-230

ilarities with the teacher model. In contrast, black-231

box KD allows the student model to access only the232

teacher model’s responses to enhance training data233

(Dai et al., 2023; Ho et al., 2023; Tian et al., 2024;234

Jung et al., 2024). For instance, Qin et al. (2024) 235

introduces an on-device LLM training framework 236

by selecting the most representative user data to 237

mitigate the data storage demands in the device. 238

However, in their method, the on-device model is 239

as large as the cloud-based model which is imprac- 240

tical. Our proposed method aligns closely with 241

black-box KD, leveraging a cloud-based model to 242

generate a synthetic dataset that transfers knowl- 243

edge to the smaller on-device LM model. 244

3 Research Problem Formulation 245

This paper explores personalized on-device fine- 246

tuning of large language models (LLMs), incor- 247

porating two key concepts: personalized LLMs 248

and on-device language models (LMs). Un- 249

like generative LMs, which produce output se- 250

quences solely based on the input sequence, a 251

personalized LM generates responses by consid- 252

ering both the user’s query x and their profile 253

Du. We define the user profile as a collection 254

of the user’s historical input-output pairs: i.e., 255

Du = {(xu1, yu1), (xu2, yu2), . . . , (xutu , yutu)}, 256

where tu indicates the history before query time t. 257

Compared to a cloud-based LLM Mcloud, an 258

on-device LM Mdevice has a significantly smaller 259

model size, as it must be deployed on a user’s local 260

device where computational resources are limited. 261

Additionally, unlike server-based LLMs, which are 262

trained on extensive datasets collected from various 263

sources, on-device LMs are constrained by user 264

privacy concerns and can only be trained on locally 265

available data, which is often insufficient. 266

4 Proposed Method 267

Different from previous work (Salemi et al., 2023), 268

which implements personalization in a cloud server 269

setting, this paper proposes a cloud-device collab- 270

orative data augmentation for on-device personal- 271

ized LM deployment framework that enhances both 272

privacy preservation and inference efficiency. The 273

basic idea of CDCDA-PLM is to use the powerful 274

server LLM model to assist the on-device person- 275

alized model’s fine-tuning. As shown in Figure 1, 276

the proposed framework consists of the following 277

five steps: (1) user-controllable data uploading, (2) 278

data augmentation with server LLM, (3) synthetic 279

data selection, (4) synthetic data downloading, and 280

(5) on-device LLM fine-tuning. In the following 281

sections, we provide a detailed description of each 282

step. 283
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Figure 1: Overview of the proposed method.

User controllable data uploading. A user’s his-284

torical profile provides a unique data distribution.285

However, due to the limited data size, directly fine-286

tuning on these local data cannot achieve satis-287

factory performance. In real applications, users’288

privacy preferences vary, i.e., some prioritize en-289

hanced service performance, while others are more290

concerned about privacy. In light of this, our frame-291

work allows users to voluntarily disclose and share292

a proportion Iu ∼ [1, . . . , tu] of historical data293

Dshare
u = {(xui, yui)}i∈Iu . These shared data are294

sent to a central server, where a powerful cloud-295

based LLM performs data augmentation.296

Data augmentation with server LLM. On the297

server side, we use the following prompt to aug-298

ment the uploaded shared data: "Generate an Input299

and Response pairs semantically similar to the fol-300

lowing example, no need to explain. Input: [],301

Response: []. Then, for each pair in the uploaded302

user dataset Dshare
u , the server employs a powerful303

LLM Mcloud to generate k augmented samples:304

Dsyn
u = {Dui = {(xjui, y

j
ui)}

k
j=1}i∈Iu (1)305

Synthetic data selection. Although (Mcloud) gen-306

erates a large amount of data for the target user, the307

generated data can be noisy, and not all samples308

contribute useful information for local training. In-309

tuitively, high-quality augmented data should be310

similar to the original samples while still providing311

some diversity. Therefore, we apply three carefully312

designed filters to select useful data for on-device313

training.314

Filter 1: Semantic consistency filter. Reliable315

synthetic data should preserve the semantics of the316

original statement without introducing hallucinated 317

content. Natural Language Inference (NLI) models 318

are trained to determine whether a given "hypothe- 319

sis" and "premise" entail, contradict, or are neutral 320

to each other. Therefore, we employ a small NLI 321

model MNLI (Liu et al., 2022) as the semantic eval- 322

uator, which provides a semantic consistent score 323

between the synthetic and original samples: 324

SCF = (MNLI(x ⇒ xsyn) ≥ ϵscf )∧ 325

(MNLI(xsyn ⇒ x) ≥ ϵscf ) (2) 326

where ϵscf is the threshold to filter out dissimilar 327

synthetic pairs, and MNLI(a ⇒ b) indicates the 328

possibility of inferring b given a. 329

Filter 2: Token diversity filter. While the SCF 330

filter ensures the consistency of semantics for syn- 331

thetic data, it is also important to maintain diversity 332

in the augmented data. Ideally, synthetic samples 333

should convey the original meaning but with dif- 334

ferent wording. To measure this, we apply the 335

ROUGE-L (Lin, 2004) metric to assess token over- 336

lap between original and generated sequences: 337

TDF = ROUGE-L(x, xsyn) ≤ ϵtdf (3) 338

where ϵtdf is the threshold for the ROUGE-L score. 339

Filter 3: Length size filter. Finally, we ensure 340

that synthetic samples have a reasonable length to 341

avoid abnormal or redundant data. We discard data 342

that are either too short or too long, using prede- 343

fined minimum and maximum length thresholds 344

ϵmin_len and ϵmax_len: 345
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LSF = (len(xsyn) ≥ ϵmin_len · len(x)∧346

(len(xsyn) ≤ ϵmax_len · len(x)) (4)347

Specifically, we filter all generated samples whose348

length ratio (i.e., the length ratio of xsyn to x) is349

out of the pre-defined range [ϵmin_len, ϵmax_len] to350

ensure the generated sample has a length similar to351

the input. By applying these three filters, we obtain352

a high-quality dataset Dfiltered from the synthetic353

data pool Dsyn, which is then used for on-device354

fine-tuning.355

Synthetic data downloading. After selecting the356

high-quality augmented data Dfiltered, the server357

sends these data back to the corresponding users.358

Users then download the data and combine them359

with their local datasets for on-device fine-tuning.360

On-device LLM finetuning. As previously men-361

tioned, there are three key challenges in fine-tuning362

a personalized LLM on users’ edge devices: (1)363

Limited personal data availability; (2) Smaller on-364

device LLMs compared to cloud-based models,365

leading to weaker language understanding; and366

(3) Limited hardware resources for fine-tuning on-367

device models. The first two challenges are ad-368

dressed by augmenting local datasets using the369

cloud server LLM, which enriches the training cor-370

pus and transfers knowledge from a more powerful371

model. In this step, we focus on addressing the372

third challenge, efficient fine-tuning on resource-373

constrained user devices.374

To achieve this, we employ a pretraining and375

efficient fine-tuning approach for on-device person-376

alization. Specifically, for a target task, we first377

fine-tune a general on-device LM on a public, stan-378

dard dataset to enhance its general task understand-379

ing. Since this step does not involve personal data,380

it is executed on the cloud server to avoid using the381

constrained on-device resources. After optimiza-382

tion, we obtain a task-specific pretrained model383

Mbase, which is sent to users as the initialization384

point for on-device fine-tuning.385

To further reduce on-device training costs, we386

implement parameter-efficient fine-tuning using387

LoRA (Dettmers et al., 2023). LoRA introduces388

trainable adapters ∆Wu into the original weights389

of Mbase, forming the on-device personalized LLM390

Mdevice:391

Mdevice = Mbase +∆Wu (5)392

We then only optimize ∆Wu using the user’s histor-393

ical data Du and the filtered LLM-generated data394

Dfiltered
u . 395

∆Wu = argminCE(Mdevice|Du ∪Dfiltered
u )

(6) 396

where CE(·) represents the cross-entropy loss 397

function. After optimizing the personalized on- 398

device LLM Mdevice, users can process queries 399

locally without relying on the cloud server, ben- 400

efiting from lower latency and enhanced privacy 401

protection. 402

5 Experiments 403

5.1 Experimental Settings 404

Datasets. To validate the effectiveness of the 405

proposed method, we conduct extensive experi- 406

ments on six personalization tasks in Large Lan- 407

guage Model Personalization (LaMP) benchmark 408

(Salemi et al., 2023), including three classification 409

tasks (LaMP-1: Personalized Citation Identifica- 410

tion, LaMP-2: Personalized Movie Tagging, LaMP- 411

3: Personalized Product Rating) and three genera- 412

tion tasks (LaMP-4: Personalized News Headline 413

Generation, LaMP-5: Personalized Scholarly Title 414

Generation, and LaMP-7: Personalized Tweet Para- 415

phrasing).1 In this study, we use the time-based 416

separation data in LaMP benchmark. The statistics 417

of datasets for each task are presented in Appendix 418

A. To promote the personalization phenomenon, 419

following (Tan et al., 2024b), we select the 100 420

most active users with the longest history logs as 421

target users while using all remaining users for base 422

model training. Our objective is to obtain person- 423

alized on-device LM models for each user among 424

these 100 users. 425

Evaluation Metrics. Following LaMP (Salemi 426

et al., 2023), we use accuracy and F1-score for the 427

LaMP-1 and LaMP-2, MAE and RMSE for the 428

LaMP-3, and ROUGE-1, ROUGE-L (Lin, 2004) 429

and BERTScore-F1 (BERT-F1) (Zhang et al., 2020) 430

for LaMP-4, LaMP-5 and LaMP-7. Except for 431

MAE and RMSE, where lower values are better, 432

all other metrics with higher values indicate better 433

performance. 434

Baselines. We compare CDCDA-PLM with the 435

non-personalized models and other personalized 436

baselines. In the non-personalized baselines, we se- 437

lect the cloud-based LLM (Mcloud) and on-device 438

LM (Mdevice), which is fine-tuned only on the re- 439

maining users without the 100 target users. 440

1We exclude the LaMP-6: Email Subject Generation task
as it relies on private data that we cannot access.
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Table 1: The performance of CDCDA-PLM and baseline on LaMP benchmark. The x% represents the ratio for
sharing local data with the cloud-based LLM for augmentation. The best performance of personalized on-device
model Mdevice is highlighted in bold and the second best is underlined.

Tasks Metric Non-Personalized Personalized Mcloud Personalized Mdevice

Mcloud Mdevice Mcloud Mdevice Direct-FT EDA-FT RKD-FT CDCDA-PLM
+RAG +RAG 50% 100% 50% 100% 50% 100%

LaMP-1 Accuracy ↑ 0.520 0.390 0.560 0.310 0.420 0.380 0.410 0.480 0.460 0.520 0.530
F1 ↑ 0.515 0.356 0.528 0.381 0.390 0.363 0.382 0.421 0.389 0.479 0.483

LaMP-2 Accuracy ↑ 0.248 0.017 0.319 0.009 0.243 0.277 0.296 0.265 0.283 0.303 0.336
F1 ↑ 0.129 0.017 0.225 0.019 0.099 0.132 0.156 0.112 0.125 0.143 0.167

LaMP-3 MAE ↓ 1.120 0.640 1.970 1.580 0.474 0.480 0.450 0.579 0.474 0.463 0.400
RMSE ↓ 1.371 1.131 2.508 2.191 0.946 0.949 0.831 1.091 0.912 0.940 0.834

LaMP-4
ROUGE-1 ↑ 0.107 0.102 0.122 0.092 0.106 0.116 0.117 0.113 0.116 0.119 0.120
ROUGE-L ↑ 0.096 0.090 0.110 0.083 0.094 0.102 0.104 0.101 0.103 0.104 0.107
BERT-F1 ↑ 0.847 0.838 0.849 0.837 0.845 0.847 0.847 0.846 0.847 0.848 0.849

LaMP-5
ROUGE-1 ↑ 0.427 0.360 0.457 0.328 0.375 0.362 0.370 0.359 0.375 0.380 0.382
ROUGE-L ↑ 0.362 0.309 0.379 0.292 0.314 0.301 0.316 0.292 0.307 0.305 0.317
BERT-F1 ↑ 0.894 0.885 0.896 0.882 0.886 0.880 0.885 0.883 0.884 0.886 0.886

LaMP-7
ROUGE-1 ↑ 0.365 0.337 0.355 0.296 0.337 0.354 0.373 0.359 0.374 0.362 0.383
ROUGE-L ↑ 0.310 0.297 0.315 0.262 0.302 0.311 0.327 0.311 0.328 0.325 0.336
BERT-F1 ↑ 0.881 0.877 0.881 0.869 0.875 0.879 0.880 0.881 0.882 0.881 0.881

The personalized baselines include RAG-based441

methods and fine-tuning based methods, for fair442

comparison, these personalized methods are all443

implemented on on-device models: (1)Retrieval-444

Augmented Personalization (RAG): RAG incor-445

porates relevant items from target user history to446

the prompt (Salemi et al., 2023) to achieve a per-447

sonalized response. To showcase the deteriorated448

performance of RAG in on-device LM, we also449

present the performance of RAG in the cloud coun-450

terpart. (2)Direct-FT: Directly LoRA fine-tuning451

Mdevice using the target user’s local historical data.452

This method cannot be satisfied due to limited lo-453

cal data size. (3) EDA-FT: (Wei and Zou, 2019):454

EDA (Easy Data Augmentation) is a traditional455

text data augmentation method including synonym456

replacement, random insertion, random swap, and457

random deletion. (4)RKD-FT: An LLM knowl-458

edge distillation method uses reverse KL diver-459

gence (Gu et al., 2024). For EDA-FT, RKD-FT,460

and CDCDA-PLM, they augment local knowledge461

based on users’ shared data, and we set the pro-462

portion of shared data to 50% and 100%. In Sec-463

tion 5.4, we will show the results with different464

sharing proportions.465

Implementation. For all baselines in our study,466

we choose models from one of the most widely467

adopted open-source LLM series Qwen2.5 2 (Yang468

et al., 2024). Specifically, we use Qwen2.5-3B-469

Instruct as the cloud-based model and Qwen2.5-470

0.5B-Instruct as the on-device model for each user.471

To ensure efficiency, we choose BM25 (Trotman472

et al., 2014) for all retrieval-base methods.473

2https://github.com/QwenLM/Qwen2.5

By default, we set the LLM generation samples 474

k to 5 in all experiments. We apply the LoRA 475

adapter on all linear layers of the on-device model, 476

and set the LoRA rank r to 16 and scaling factor α 477

to 8. We quantize the on-device model weight in 478

NF4 data type and use bfloat 16 for computation. 479

Based on the suggestion of the Qwen2.5 technique 480

report (Yang et al., 2024), we used the multinomial 481

sampling decoding with temperature τtemp = 0.7 482

to balance the computational efficiency and sam- 483

pling diversity of data generation. We implement 484

all the experiments using Pytorch (Paszke et al., 485

2017) and HuggingFace library (Wolf et al., 2020) 486

on an NVIDIA RTX A5000 GPU. 487

5.2 Overall Results 488

To validate our proposed method’s effectiveness, 489

we compare it with several baselines and show the 490

results in Table 1. From the results, we have some 491

interesting observations as follows. 492

First, by comparing the cloud model Mcloud 493

with the device model Mdevice, we observe that 494

the cloud model performs significantly better than 495

the corresponding device model in both personal- 496

ized and non-personalized settings. This is because 497

cloud-based models have a much larger number of 498

parameters, approximately six times more in our 499

experiments, making them unsuitable for deploy- 500

ment on edge devices. This finding highlights the 501

necessity of transferring knowledge from the cloud 502

model to support the weaker device model. 503

Furthermore, when comparing RAG-based per- 504

sonalization methods, we find that the performance 505

of the small on-device model actually declines after 506

incorporating RAG. This aligns with our argument 507
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Figure 2: The impact of hyperparameter in LLM data augmentation. k controls the number of samples generated by
server-sided LLM.

Table 2: The performance of the on-device model with different user share ratios on LaMP-2 and LaMP-7.

Tasks Metric Share Ratio
0% 10% 30% 50% 70% 90% 100% Avg

LaMP-2 Acc 0.243 0.250 0.282 0.303 0.320 0.327 0.336 0.294
F1 0.099 0.103 0.120 0.143 0.156 0.166 0.167 0.136

LaMP-7
R-1 0.337 0.344 0.355 0.362 0.369 0.373 0.383 0.360
R-L 0.302 0.299 0.315 0.325 0.316 0.330 0.336 0.317
BERT-F1 0.875 0.878 0.880 0.881 0.881 0.883 0.881 0.880

Table 3: Ablation studies results with respect to server
LLM data augmentation (LDA) and data selection (DS)
components. The best performances at share ratio 50%
and 100% are highlighted in underlined and bold, re-
spectively.

Methods Share Ratio LaMP-4 LaMP-7
R-1 R-L R-1 R-L

CDCDA-PLM 50% 0.119 0.104 0.362 0.325
100% 0.120 0.107 0.383 0.336

CDCDA-PLM (RS) 50% 0.113 0.099 0.352 0.314
100% 0.112 0.100 0.344 0.302

-DS 50% 0.115 0.103 0.354 0.315
100% 0.116 0.104 0.354 0.314

-DS -LDA (Direct-FT) 0.106 0.094 0.337 0.302

that on-device models are too small to effectively508

support prompt-based personalization.509

Among fine-tuning-based personalization ap-510

proaches, Direct-FT yields the worst performance511

due to the limited availability of local user data,512

which is typically insufficient for effective person-513

alized fine-tuning. The baseline methods, EDA-FT514

and RKD-FT, improve upon direct fine-tuning in515

some tasks, but their enhancements are limited. In516

some cases, their performance even deteriorates,517

likely due to the simplistic knowledge augmenta-518

tion techniques they employ.519

Our proposed CDCDA-PLM consistently out-520

performs all on-device baselines across all tasks.521

Additionally, CDCDA-PLM achieves performance522

comparable to cloud models, demonstrating its ef-523

fectiveness and strong generalization ability.524

5.3 Ablation Study 525

In this part, we demonstrate the effectiveness of 526

our delicately designed modules in CDCDA-PLM, 527

including LLM data augmentation (LDA) and data 528

selection (DS) components. As shown in Table 529

3, when we replace our carefully designed filters 530

in DS with random selection (RS), the ROUGE- 531

1 score of the full model with DS drops from 532

0.119 and 0.120 to 0.113 and 0.112 on the LaMP- 533

4 task at 50% and 100%, respectively. Specifi- 534

cally, when the share ratio increases from 50% 535

to 100%, the performance of CDCDA-PLM con- 536

sistently improved, however, CDCDA-PLM(RS)’s 537

performance decreased, indicating that our filters 538

can seize useful samples and prevent the side ef- 539

fects of noisy samples. This decline may be caused 540

by the increasing number of noisy samples when 541

the share ratio grows in RS. When we remove the 542

DS (i.e., -DS), i.e., the device model is directly 543

trained on all augmented data, the ROUGE-1 score 544

drastically decreases to 0.115 at 50% and 0.116 at 545

100% on LaMP-4. Furthermore, when we fine-tune 546

on-device models without LLM data augmentation 547

(i.e., -LDA), the model performance further drops 548

to 0.106 ROUGE-1 score on LaMP-4. Overall, the 549

results support the effectiveness of all the proposed 550

components. 551

5.4 Hyper-parameter analysis 552

In this part, we investigate the impact of the criti- 553

cal hyper-parameters associated with our proposed 554

method. 555

Impact of synthetic data augmentation size 556
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User Query: Generate a title for the following abstract of a paper: 

Abstract: Because of the large number of online games available nowadays, online game recommender systems are necessary for users and 

online game platforms. The former can discover more potential online games of their interests, and the latter can attract users to dwell longer in 

the platform. This paper investigates the characteristics of user behaviors with respect to the online games on the Steam platform. Based on the 

observations, we argue that a satisfying recommender system for online games is able to characterize: personalization, game contextualization 

and social connection. However, simultaneously solving all is rather challenging for game recommendation. … To this end, we propose a 

Social-aware Contextualized Graph Neural Recommender System (SCGRec), which harnesses three perspectives to improve game 

recommendation. We conduct a comprehensive analysis of users 2019 online game behaviors, which motivates the necessity of handling those 

three characteristics in the online game recommendation."

User Device (11003279)

Method: Response: R-1

Golden Answer "Large-scale Personalized Video Game Recommendation via Social-aware Contextualized Graph Neural Network"

𝑴𝒅𝒆𝒗𝒊𝒄𝒆 "A Comprehensive Analysis of User Online Game Behaviors for Satisfying Recommender Systems: Personalization, "Game 

Contextualization, and Social Connection"

0.13

+  RAG "Characterizing User Behaviors in Online Games through Social-Awareness" 0.09

+  Direct-FT "A novel recommender system combining user behavior, context and social knowledge for online games." 0.07

CDCDA-PLM "Social-aware Contextualized Graph Neural Recommender System for Online Games" 0.43

Figure 3: A case study in LaMP-5, which is the task of Personalized Scholarly Title Generation.

k: To better understand the impact of cloud-557

based LLM augmentation, we vary the number558

of LLM-generated samples k for both the classifi-559

cation (LaMP-2) and generation (LaMP-7) tasks,560

as shown in Figure 2. Overall, increasing k leads561

to improvements in both ROUGE-1 and ROUGE-L562

scores for LaMP-2 and LaMP-7. Specifically, in563

LaMP-2, performance stabilizes after generating564

a single sample, with only minor improvements565

thereafter. In contrast, LaMP-7 exhibits continuous566

and substantial gains as k increases. This differ-567

ence may be attributed to the predefined labels in568

the classification task, which constrain the LLM-569

generated labels to align with those in the shared570

dataset. Consequently, in classification tasks, using571

the same output labels in the synthetic dataset lim-572

its data diversity, reducing the potential benefits of573

increasing k.574

Impact of user sharing data proportion: To575

balance user privacy and model performance, we576

allow users to share a portion of their historical data577

to enhance the on-device model in our experiment.578

In this study, we vary the share ratio from 0% to579

100% to examine the impact of user-shared data on580

the LaMP-2 and LaMP-7 tasks. As shown in Table581

2, the proposed method consistently improves per-582

formance as the share ratio increases, indicating a583

trade-off between privacy and model performance.584

5.5 Case Study585

To further intuitively understand the personaliza-586

tion effectiveness of CDCDA-PLM, we conduct a587

case study for a user on the Personalized Scholarly588

Title Generation (LaMP-5) task, which tests the589

ability of models to capture stylistic patterns when 590

generating scholarly titles based on the abstract of 591

an article. 592

Figure 3 presents an example of a specific 593

user. Note that, according to this user’s historical 594

data, they prefer to directly include the proposed 595

method’s name from the abstract as part of the title. 596

In this case, they favor using the bold text "Social- 597

aware Contextualized Graph Neural Recommender 598

System" as indicated in the Golden Answer. How- 599

ever, all baseline models fail to capture this pref- 600

erence and instead generate titles by summarizing 601

the abstract’s semantics. Only our CDCDA-PLM 602

successfully identifies this pattern, producing a title 603

most similar to the Golden Answer. 604

6 Conclusion 605

This paper introduces a cloud-device collabora- 606

tive data augmentation on-device personalized LM, 607

named CDCDA-PLM, an LM deployment frame- 608

work designed to close the performance gap be- 609

tween cloud-based LLM and on-device LM by aug- 610

menting user on-device historical data. Specifically, 611

in this framework, users have the autonomy to de- 612

cide whether to share a portion of data with a server 613

LLM to enhance the performance of on-device LM. 614

Server LLM constructs a synthetic dataset con- 615

taining similar samples as user-sheared data to as- 616

sist the on-device personalized model’s fine-tuning. 617

The experimental results on the LaMP benchmark 618

demonstrate that CDCDA-PLM achieves better per- 619

formance on personalized content generation. 620
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7 Limitations621

Several limitations are concerned with our work.622

Firstly, due to dataset constraints, our study aims to623

deploy a personalized model to generate responses624

on a specific task for each user, ignoring the user625

behaviors from other tasks and domains. For ex-626

ample, for the user who engages in news head-627

line generation and scholarly title generation tasks,628

both tasks could provide the user’s stylistic pat-629

tern preference. Nevertheless, in the future, we630

believe CDCDA-PLM can be applied to any NLP631

task across different domains. Secondly, the data632

quality of LLM augmentation can be affected by633

the cloud-based LLM. Exploring a larger LLM or634

multiple LLMs to augment user data remains an635

area for future investigation.636

8 Ethical Considerations637

Training a personalized model heavily relies on638

personal data, which may leak sensitive or pri-639

vate information of users. Sharing user data with640

server LLM for user personal data augmentation641

also leads to privacy concerns. Therefore, it is im-642

portant to investigate further robust methods for643

privacy protection in cloud-server LLM data aug-644

mentation. In addition, a personalized model aims645

to generate content aligning with user preferences646

and interests shown in user data. However, per-647

sonalization models may be trained with user data648

consisting of biased and unfair information, lead-649

ing to harmful responses. Within CDCDA-PLM,650

the biased data is uploaded to server LLM for aug-651

mentation, which further negatively affects the on-652

device model. Future works may explore strategies653

to avoid sharing or augmenting harmful data on the654

server LLM.655
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A Datasets 898

In Table 4, #Q and #History represent the total num- 899

ber of user queries and history, respectively, in the 900

target users test dataset and synthetic selected train- 901

ing dataset. Lin and Lout are the average tokens of 902

inputs and outputs. 903

Table 4: The statistics of datasets used in our experi-
ment.

Task Target Users Synthetic Selected Dataset
# Q # History Lin Lout # Q Lin Lout

LaMP-1 100 317.57 78.43 3.0 15928 161.76 19.15
LaMP-2 2752 54.58 129.55 2.24 8962 121.21 2.20
LaMP-3 100 959.02 244.79 1.00 15721 193.19 1.00
LaMP-4 955 269.08 31.49 15.60 12736 27.40 14.27
LaMP-5 100 443.03 222.60 15.52 23473 156.92 18.63
LaMP-7 100 120.15 40.90 27.66 16490 39.56 0.00
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