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Abstract

Diffusion models have achieved remarkable progress in the field of image genera-1

tion due to their outstanding capabilities. However, these models require substantial2

computing resources because of the multi-step denoising process during inference.3

While traditional pruning methods have been employed to optimize these models,4

the retraining process necessitates large-scale training datasets and extensive com-5

putational costs to maintain generalization ability, making it neither convenient6

nor efficient. Recent studies attempt to utilize the similarity of features across7

adjacent denoising stages to reduce computational costs through simple and static8

strategies. However, these strategies cannot fully harness the potential of the similar9

feature patterns across adjacent timesteps. In this work, we propose a novel pruning10

method that derives an efficient diffusion model via a more intelligent and differ-11

entiable pruner. At the core of our approach is casting the model pruning process12

into a SubNet search process. Specifically, we first introduce a SuperNet based13

on standard diffusion via adding some backup connections built upon the similar14

features. We then construct a plugin pruner network and design optimization losses15

to identify redundant computation. Finally, our method can identify an optimal16

SubNet through few-step gradient optimization and a simple post-processing pro-17

cedure. We conduct extensive experiments on various diffusion models including18

Stable Diffusion series and DiTs. Our DiP-GO approach achieves 4.4× speedup19

for SD-1.5 without any loss of accuracy, significantly outperforming the previous20

state-of-the-art methods.21

1 Introduction22

Diffusion models have undergone significant advancements over the past years due to the outstanding23

capabilities of Diffusion Probabilistic Models (DPMs) [1]. DPMs typically consist of two processes:24

the noise diffusion process and the reverse denoising process. Given their remarkable superiority25

in content generation, diffusion models have made significant progress in various fields of general26

image generation, including text-to-image generation [2, 3], layout-to-image generation [4, 5], image27

editing [6, 7], and image personalization [8, 9]. Furthermore, diffusion models have contributed28

to advancements in autonomous driving, ranging from driving dataset generation [10, 11, 12] to29

perception model enhancement [13, 14] through diffusion strategies. However, DPMs often incur30

considerable computational overhead during both the training and inference phases. The high cost of31

inference, due to the multi-step denoising computation during the sampling process, can significantly32

impact their practical application. Many efforts [15, 16, 17] have been made to improve the efficiency33

of diffusion models, which can be broadly divided into two types of optimization: inference sampling34

optimization and model structural optimization.35
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Sampling optimization methods reduce the number of sampling steps for generation without compro-36

mising image quality. For instance, DDIM [15] reduces these steps by exploring a non-Markovian37

process without requiring model retraining. LCM [18, 19] enable image generation in fewer steps38

with retraining requirements. Structural optimization methods [16, 17, 20, 21] aim to reduce com-39

putational overhead through efficient model design and model pruning. These methods require40

retraining the diffusion model, which entails significant computational overhead and large-scale41

datasets, making them neither convenient nor efficient. DeepCache [22] proposes a novel training-free42

paradigm based on the U-Net architecture in diffusion models, caching and retrieving features across43

adjacent denoising stages to reduce redundant computation costs. However, DeepCache only reuses44

the output feature of a U-Net block in a denoising step via a simple and static strategy. We believe45

many intermediate features remain untapped, and the simple static strategy cannot fully exploit the46

potential of similar feature patterns across adjacent timesteps during inference, as observed in recent47

studies [15, 18, 22].48

To address these challenges, we introduce Diffusion Pruning via Few-step Gradient Optimization49

(DiP-GO), a method designed to achieve efficient model pruning with enhanced dynamism and50

intelligence. Our approach rethinks the diffusion model during inference by proposing a SuperNet51

based on standard diffusion via adding some backup connections built upon the similar features,52

conceptualizing the inference process as a specific SubNet derived from our proposed SuperNet.53

We reformulate the diffusion model pruning into a SubNet search process. By addressing the out-54

of-memory issue inherent in the backward process during expanded denoising timesteps using the55

gradient checkpoint [23] method, we introduce a plugin pruner that discovers an optimal SubNet56

surpassing existing methods through carefully designed optimization losses. Extensive experiments57

validate the effectiveness of our approach, demonstrating a 4.4× speedup on Stable Diffusion 1.5.58

Moreover, our method efficiently prunes the DiT model [3] without requiring retraining the diffusion59

model, achieving significant inference speedup. Our contribution can be summarized as follows:60

(1) We define a SuperNet based on standard diffusion and show how to obtain a SubNet. This61

transforms the diffusion optimization problem into an efficient SubNet search process without the62

need for retraining pretraind diffusion models. (2) We design a plugin pruner tailored specifically for63

diffusion models. This pruner optimizes pruning constraints while maximizing synthesis capability.64

Additionally, we introduce a post-processing method for the pruner to ensure that the SubNet meets65

specified pruning requirements. (3) We conduct extensive pruning experiments across various66

diffusion models, including Stable Diffusion 1.5, Stable Diffusion 2.1, Stable Diffusion XL, and DiT.67

Extensive experiments demonstrate the superiority of our method, achieving a notable 4.4 × speedup68

during inference on Stable Diffusion 1.5 without the need for retraining the diffusion model.69

2 Related Work70

2.1 Efficient Diffusion Models71

The diffusion models, celebrated for their iterative denoising process during inference, play a pivotal72

role in content generation but are often hindered by time-consuming operations. To mitigate this73

challenge, extensive research has focused on accelerating diffusion models. Acceleration efforts74

typically approach the problem from two primary perspectives:75

Efficient Sampling Methods. Recent works focus on reducing the number of denoising steps76

required for content generation. DDIM [15] achieves this by exploring a non-Markovian process77

related to neural ODEs. Fast high-order solvers [24, 25] for diffusion ordinary differential equations78

also enhance sampling speed. LCMs [18, 19] treat the reverse diffusion process as an augmented79

probability flow ODE (PF-ODE) problem, inspired by Consistency Models (CMs) [26], enabling80

generation in fewer steps. PNDM [27] emphasizes efficient sampling without retraining diffusion81

model. Additionally, ADD [28] combines adversarial training and score distillation to transform82

pretrained diffusion models into high-fidelity image generators using only single sampling steps.83

Efficient Structural Methods. Other efforts concentrate on reducing the computational overhead84

associated with each denoising step. Previous methods [16, 17, 22] have typically conducted extensive85

empirical studies to identify and remove non-critical layers from U-Net architectures to achieve faster86

networks. BK-SDM [16] customizes three efficient U-Nets by strategically removing residual and87

attention blocks. Derived from BK-SDM, KOALA [17] develops two efficient U-Nets of varying sizes88

tailored for SD-XL applications. Diff-pruning [20] employs Taylor expansion over pruned timesteps89
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to pinpoint essential layer weights, optimizing model efficiency without sacrificing performance.90

DeepCache [22] enhances inference efficiency by reusing predictions from blocks in previous91

timesteps within the U-Net architecture. LAPTOP-Diff [21] tackles optimization problems with a92

one-shot pruning approach, incorporating normalized feature distillation to streamline retraining93

processes. T-GATE [29] not only reduces computation overhead but also marginally lowers FID94

scores by omitting text conditions during fidelity-improvement stages.95

In addition to the two primary acceleration methods, other strategies such as distillation [28, 30, 31],96

early stopping [32], and quantization [33] are commonly employed to enhance performance and97

efficiency. However, most of these strategies necessitate retraining pretrained models. Our method98

falls under the category of efficient structural methods by focusing on reducing inference time at each99

timestep. Importantly, these efficiency gains are achieved without retraining the diffusion model.100

2.2 Model Optimization101

Network Pruning. The taxonomy of pruning methodologies typically divides into two main cate-102

gories: unstructured pruning methods [34, 35, 36] and structural pruning methods [37, 38, 39, 40].103

Unstructured pruning methods involve masking parameters without structural constraints by zeroing104

them out, often requiring specialized software or hardware accelerators. In contrast, structured105

pruning methods generally remove regular parameters or substructures from networks. Recent works106

have been interested in accelerating transformers. Dynamic skipping blocks, which involve selectively107

removing layers while maintaining the overall structure, have emerged as a paradigm for transformer108

compression [41, 42, 43, 44]. However, applying structural pruning techniques to diffusion modeling109

poses unique challenges that necessitate reevaluating conventional pruning methods.110

3 Methodology111

In this study, we introduce the Diffusion Pruner via Few-step Gradient Optimization (DiP-GO),112

which utilizes a neural network to predict whether to skip or keep each computational block during113

inference. Our primary objective is to identify the optimal subset of computational blocks that114

facilitate denoising with minimal computational overhead. As illustrated in Figure 2, our method115

comprises three main components: a neural network pruner, optimization losses, and a post-process116

algorithm to derive the pruned model based on the predictions of pruner. The neural network pruner117

is designed with learnable queries inspired by DETR [45] to predict the state of each block. Our118

proposed optimization losses include sparsity and consistency constraints for generation quality,119

guiding the pruner to accurately assess the importance of each block. In this Section, we first revisit120

the framework of diffusion models in Section 3.1, emphasizing their potential for exploring pruned121

networks. In Section 3.2, we introduce a SuperNet based on diffusion models and demonstrate how122

to derive a SubNet or pruned network from it for inference acceleration, highlighting the challenges123

in achieving an optimal SubNet. Section 3.3 details our method, including the neural network124

pruner, optimization losses, and post-process algorithm for obtaining a SubNet that meets pruning125

requirements. Finally, we provide insights into the training and inference processes of our method.126

3.1 Preliminary127

We begin with a brief introduction to diffusion models. Diffusion models are structured to learn a128

series of sequential state transitions with the goal of iteratively refining random noise sampled from a129

known prior distribution towards a target distribution x0 that matches the data distribution. During130

the forward diffusion process, the transition from xt−1 to xt is initially determined by a forward131

transition function, which can be described as follows:132

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where the hyperparameter {βt ∈ (0, 1)}Tt=1 increases with each successive time step t.133

To generate samples from a learned diffusion model, it involves a series of reverse state transitions134

from xT → · · · → x0 to denoise random noise xT ∼ N (0, I) into the clean data point x0. At135

each timestep, the denoised output xt−1 is predicted by approximating the noise prediction network,136

which is conditioned on the time embedding t and the previous data point xt:137
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pθ(xt−1|xt) = N (xt−1;
1
√
at

(xt −
βt√
1− at

zθ(xt, t)), βI) (2)

where βt = 1 − αt, at =
∏T

i=1 αi, and zθ(xt, t) are the parameterized deep neural networks.138

With the reverse Markov chain, we can iteratively sample from the learnable transition kernel139

xt−1 ∼ pθ(xt−1|xt) until t = 1.140

Diffusion modes typically require multi-step conditional sampling to gradually obtain the target141

sample point x0. However, recent studies [15, 18, 22] have highlighted that multi-step inference pro-142

cesses involve substantial redundant feature computations, particularly in noise prediction networks143

like UNet and Transformer. For example, in Stable Diffusion 1.4 models with 25 steps, Multiply-144

Accumulate Operations (MACs) of UNet can comprise up to 87.2% of the total computational load145

[16]. This underscores significant potential for accelerating inference by effectively eliminating146

these redundancies. In this work, we propose accelerating the diffusion model by integrating a147

differentiable pruning network designed to identify and remove these redundant computations.148

3.2 SuperNet and SubNet of Diffusion Model149

Our goal is to identify and remove unimportant blocks during inference to accelerate the process.150

To achieve this, we introduce a SuperNet based on the diffusion model. This SuperNet is designed151

to facilitate block removal while ensuring the pruned model maintains inference capability through152

additional connections. Our approach effectively eliminates unimportant blocks during inference,153

essentially deriving a SubNet from the SuperNet by skipping these unnecessary components. Thus,154

the pruning process can be conceptualized as a SubNet search within the SuperNet framework.155

How to Construct a SuperNet. Recent studies [15, 18, 22] have observed that diffusion models often156

exhibit similar feature patterns across adjacent timesteps during inference. Building on this insight,157

we enhance the standard diffusion model’s inference phase by introducing additional connections158

from the current timestep to the previous one. These connections serve as backups for blocks that159

may be removed, ensuring each block retains valid inputs even if its dependent blocks are eliminated160

for acceleration. Specifically, for all inputs of each block across all timesteps except the inital step161

during inference, we establish a backup input connection to the corresponding block in the previous162

timestep, as illustrated in Figure 1.

c) SubNeta) Standard Diffusion Model

𝒙𝒕

b) SuperNet

Removed DependencesPruned Blocks Original Connections Potential Backup Connections

𝒙𝒕−𝟏 𝒙𝒕−𝟐 𝒙𝒕 𝒙𝒕−𝟏 𝒙𝒕−𝟐 𝒙𝒕 𝒙𝒕−𝟏 𝒙𝒕−𝟐

Searched Backup Connections

Figure 1: Overview of the SuperNet and SubNet. Standard diffusion models execute the full inference
path step by step. In our framework, we propose a SuperNet based on the original flow and integrate
backup connections to facilitate block removal. This allows the partial inference SubNet to efficiently
eliminate redundant computational costs.

163

How to Obtain a SubNet. To construct the SuperNet for the standard diffusion model, we introduce164

additional connections that ensure a valid SubNet selects either the original input connection or165

the backup input connection, but not both simultaneously. This design principle mandates that if166

a dependent block is pruned, its original input connection is also eliminated to reflect the block’s167

removal. Conversely, if the dependent block is retained, the backup input connection is removed to168

maintain efficient inference, as depicted in Figure 1.169

We draw inspiration from the Lottery Ticket Hypothesis (LTH) [46], which posits the existence170

of a sub-network capable of achieving comparable performance to the original over-parameterized171

network for a given task, but with fewer unnecessary weights. Moreover, prior work [22] has explored172

manually removing redundant computations by caching features across adjacent steps. Thus, our173
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Figure 2: Overview of our diffusion pruner. a) DiP-GO employs a pruner network to learn the
importance scores of blocks in the diffusion sampling process. It takes N × T queries as input
and passes them through stacked self-attention (SA) and fully connected (FC) layers to capture the
structural information in existing diffusion models. The network predicts the partial inference paths
based on the N × T importance scores and is optimized by consistent and sparse loss. b) Once
trained, the pruner network is discarded. We can infer the optimal partial inference path with expected
computational costs via post-processing based on the predicted importance scores.

approach seeks to identify an optimal SubNet from the SuperNet, maximizing diffusion model174

acceleration while minimizing any loss in generation quality.175

Hard to Obtain an Optimal SubNet. The challenge of obtaining an optimal SubNet is compounded176

by the large number of blocks expanded during inference. In a diffusion pipeline with N × T blocks177

(where N is the number of blocks per timestep and T is the number of timesteps), each block’s178

decision to be kept or removed results in 2N×T possible configurations. For instance, a 50-step179

PLMS setup [27], considering 9 blocks in the U-Net, yields 2450 choices (> 10135). Traditional search180

methods like random search and genetic algorithms [47] often struggle in such vast search spaces.181

Gradient-based optimization offers a promising approach to tackle this challenge. However, there are182

significant hurdles to overcome. First, effectively modeling discrete block states (kept or removed)183

with parametric methods poses difficulties. Second, training the entire model, comprising both the184

parametric model and the expanded diffusion model with denoising timesteps, risks encountering185

out-of-memory (OOM) issues.186

3.3 Our DiP-GO Approach187

In this study, we introduce a diffusion pruner network designed to predict importance scores for all188

blocks during reverse sampling as depicted in Figure 2. To optimize the pruner network effectively,189

we employ two key optimization losses: consistency and sparsity losses, leveraging few-step gradient190

optimization. Addressing the OOM issue inherent in such computations, we implement gradient191

checkpointing and half-precision floating-point representation techniques, enabling efficient search192

processes on a single GPU. Once the pruner network trained, we extract predicted importance scores193

for all blocks. Subsequently, we devise a post-processing algorithm to utilize these scores, generating194

pruned SubNets of diffusion models that satisfy specific pruning criteria.195

Pruner Network. Our pruner network comprises three main components: N × T learnable queries,196

a query encoder, and a prediction head. We design the learnable queries to match the number of all197

blocks during inference. These queries are optimized with sparsity and consistency loss constraints to198

learn the contextual information necessary for predicting the importance score of each block. For the199

query encoder, we provide two options: a simple version with several stacked linear layers, and a more200

complex version with several stacked self-attention layers to facilitate interaction among the learnable201

queries. Our experiments demonstrate that both versions can effectively obtain optimal SubNets202
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in various diffusion models under different pruning requirements. The prediction head consists of203

N × T simple branches, each containing two stacked linear layers followed by a softmax operation.204

The final linear layer has a dimension of 2, and the softmax output represents the importance scores of205

a block. During training or inference, the query embeddings are transformed into output embeddings206

via the query encoder. These embeddings are then independently decoded into binary vectors by the207

multi-layer prediction head, resulting in N × T importance scores for all blocks.208

Optimization Losses. The k-th predicted binary vector of importance score, denoted as sk, represents209

the likelihood of its corresponding block being removed or kept in the denoising process. A gate210

g ∈ {0, 1}TN is derived based on s, where gk = 0 or gk = 1 indicate removing or keeping the k-th211

computation block, respectively. Only the blocks that are kept according to g will be calculated in the212

denoising process. However, directly converting predicted probabilities s into discrete gates g with213

argmax is non-differentiable. To address this issue, we utilize the Straight-Through (ST) Estimator214

[48] to approximate the real gradient∇θg with the gradient of the soft prediction∇θs. To encourage215

both high-fidelity predictions and minimal computation block usage, we design our training objective216

function as a combination of consistent loss Lc and sparse loss Ls, formulated as follows:217

L(xT ; θ,W ) = Lc + αsLs =

{
f(xp

0,x
gt
0 ) + αs

NT

∑NT
k γkgk if sparsity < τ

f(xp
0,x

gt
0 ) if sparsity ≥ τ

(3)

Here, αs represents a hyperparameter used to balance the consistent and sparse losses. θ and W denote218

the pruner network and pretrained diffusion model, respectively. f(·) denotes a distance function219

that evaluates the consistency between the generated clean data point xp
0 from partial inference of the220

pruned SubNet and the xgt
0 from full inference. This function can be any distance measure, and in221

this work, we utilize a negative SSIM loss [49]. The sparse loss encourages minimal computational222

usage and is weighted by the computational flops proportion γk of the k-th block, thereby imposing a223

greater penalty on heavier blocks. The calculation of γ takes into account the cascading relationships224

between blocks. Specifically, when a block is pruned, the associated dependent blocks will also225

pruned. Therefore, the flops reduction from pruning a block includes the block itself and its dependent226

blocks. We denote the flops reduction ratio after pruning the k-th block as γk. The sparse loss is227

only introduced when the sparsity (pruning ratio) is below a certain threshold τ . This compound loss228

controls the trade-off between efficiency (block usage) and accuracy (generation quality).229

Post-Processing Algorithm. After training the pruner network, our diffusion pruner is able to230

predict which computation blocks during inference contribute less to generation quality based on the231

importance scores for all the blocks. As the importance scores are continuous values in inference232

phase, they can not be utilized directly to identify which blocks should be removed to meet given233

pruning requirements. Therefore, we present a post-process algorithm to obtain an appropriate234

threshold for these importance score to meet the pruning requirements as shown in Algorithm 1235

in Appendix B. Considering the required pruning sparsity, we use bisection lookup to select the236

appropriate threshold value to identify which blocks should be removed to meet the pruning ratio.237

Specifically, the blocks whose important scores below the threshold should be removed and the kept238

blocks should update their input connections as mentioned in Section 3.2 to maintain the pruned239

model inference. Thus a pruned model met the pruning ratio has been obtained.240

Training and Inference Details. In the training phase, the prompt inputs are fed into the diffusion241

model to obtain two kinds of outputs, one is generated by the baseline diffusion model and the other242

is generated by the pruned model obtained via the current predictions of the pruner network. Then243

our proposed losses are utilized to optimize the pruner network to enable distinguishing the less244

important blocks. In the pruner’s network, we initialize the weight of the last linear layer’s output245

channel to 0 and its bias to 1. This setup ensures that at the beginning of training, the consistency loss246

is 0 and the sparsity loss is 1, facilitating smooth training. As training progresses, the sparsity loss247

gradually decreases while the number of pruned blocks increases, causing the consistency loss to rise.248

To maintain network fidelity after pruning, we switch to training only with the consistency loss once249

the sparsity loss reaches 0.2, continuing until training is complete. Once the pruner is well trained,250

we can obtain pruned models to meet the pruning requirements via our post-process algorithm.251
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4 Experiments252

4.1 Experimental Setup253

Pre-trained Model and Datasets. We select four official pretrained Diffusion Models (i.e., SD-1.5254

[2], SD-2.1 [2], SD-XL [50] and DiT [3]) to evaluate our approach. The SD series models are255

constructed on the U-Net [51] and the DiT is constructed on the transformer [52]. We utilize a subset256

of the DiffusionDB [53] dataset comprising 1000 samples to train our pruner network, utilizing only257

textual prompts. Following previous works [29, 22], we evaluate the DiP-GO on three public datasets,258

i.e., PartiPrompts [54], MS-COCO 2017 [55] and ImageNet [56].259

Evaluation Metrics. We employ the Fréchet Inception Distance (FID) [57] metrics to assess the260

quality of images created by the generative models. FID quantifies the dissimilarity between the261

Gaussian distributions of synthetic and real images. A lower FID score indicates a closer resemblance262

to real images in the generative model. Additionally, we utilize the CLIP Score [58] (ViT-g/14) to263

evaluate the relational compatibility between images and text.264

Implementation Details. For Stable Diffusion models, we utilize the SGD optimizer with a cosine265

learning schedule for 1000 steps of training. The batch size, learning rate, and weight decay are set to266

1, 0.1, and 1× 10−4, respectively. The hyperparameters αs, τ , and the query embedding dimension267

d, along with the encoder layer number L, are set to 1, 0.2, 512, and 1, respectively. For the Diffusion268

Transformer model, we use the same experimental configuration as for the stable diffusion model,269

except that the learning rate set to 10. To evaluate the inference efficiency, we evaluate the Multiply270

Accumulate Calculation (MACs), Parameters (Params), and Speedup for all models with batchsize of271

1 in the PyTorch 2.1 environment on the AMD MI250 platform. Besides, we report MACs in those272

tables, which refer to the totals MACs for all steps.273

Table 1: Comparison with PLMS, BK-SDM and DeepCache on SD-1.5. We utilize prompts in
PartiPrompt and COCO2017 validation set.

PartiPrompts COCO2017
Method Pruning Type MACs ↓ Speedup ↑ CLIP Score ↑ MACs ↓ Speedup ↑ CLIP Score ↑
PLMS - 50 steps Baseline 16.94T 1.00× 29.51 16.94T 1.00× 30.30

BK-SDM - Base Structured 11.19T 1.49× 28.88 11.19T 1.45× 29.47
PLMS - 25 steps Fast Sampler 8.47T 2.04× 29.33 8.47T 1.91× 29.99
PLMS - Skip - Interval=2 Structured 8.47T 2.04× 19.74 8.47T 1.91× 16.78
DeepCache Structured 6.52T 2.15× 29.46 6.52T 2.11× 30.23
Ours (w/ Pruned-0.80) Structured 3.38T 4.43× 29.51 3.38T 4.40× 30.29

BK-SDM - Small Structured 10.88T 1.75× 27.94 10.88T 1.68× 27.96
PLMS - 15 steps Fast Sampler 5.08T 2.89× 28.58 5.08T 2.59× 29.39
Ours (w/ Pruned-0.85) Structured 2.54T 5.52× 29.07 2.54T 5.46× 29.84

Table 2: Comparison of computational complexity, inference speed, CLIP Score and FID on the
MS-COCO 2017 validation set on SD-2.1.

Inference Method MACs↓ Speedup↑ CLIP Score ↑ FID-5K ↓
SD-2.1-50 steps [2] 38.04T 1.00× 31.55 27.29

SD-2.1-20 steps [2] 15.21T 2.49× 31.53 27.83
Ours (w/ Pruned-0.7) 11.42T 3.02× 31.50 25.98
Ours (w/ Pruned-0.8) 7.61T 3.81× 30.92 27.69

4.2 Comparison with State-of-the-Art Methods on Different Base Models274

Stable Diffusion on PartiPrompt and COCO2017. We compare our method with the state-of-the-275

art (SOTA) compression methods on Stable Diffusion 1.5 (SD-1.5), and the results are summarized in276

Table 1. Compared to the SOTA DeepCache [22], our approach demonstrates significant performance277

improvements, achieving nearly 2× fewer MACs while maintaining better CLIP Scores. Our method278

can achieve 4.4× speedup compared to the baseline model. Furthermore, our method does not require279

training the diffusion model, which preserves the pre-trained knowledge of the diffusion model. Also,280

we apply our method on the SD-2.1 model to verify the effectiveness, as shown in Table 2 , our281

method achieves significant acceleration while maintaining generation quality, demonstrating its282

superiority.283

Diffusion Transformers on ImageNet. To the best of our knowledge, we are the first to apply pruning284

to DiT [3] model. Therefore, we have replicated a training-free acceleration method, DeepCache285
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Table 3: Comparison of pruning type, computational complexity, FID and inference speed on the
ImageNet validation datasets on DiT. * denotes the results reproduced with diffusers [59].

Method Pruning Type MACs ↓ FID-50K ↓ Speedup ↑
DiT-XL/2-250 steps - 29.66T 2.27 1.00×
DiT-XL/2*-250 steps Baseline 29.66T 2.97 1.00×
DiT-XL/2*-110 steps Fast Sampler 13.05T 3.06 2.13×
DiT-XL/2*-100 steps Fast Sampler 11.86T 3.17 2.46×

DeepCache(DiT-XL/2*)-N=2 Structured Pruning 15.88T 3.07 1.76×
Ours (DiT-XL/2* w/ Pruned-0.6) Structured Pruning 11.86T 3.01 2.43×

DiT-XL/2*-70 steps Fast Sampler 8.30T 3.35 3.49×
DeepCache(DiT-XL/2*)-N=5 Structured Pruning 6.77T 3.20 3.44×

Ours (DiT-XL/2* w/ Pruned-0.75) Structured Pruning 7.40T 3.14 3.60×

with intervals = 2 and 5, on DiT for comparison. The results in Table 3 show that our method can286

speed up the original DiT model by a factor of 2.4 with minimal performance loss, while DeepCache287

has a lower speedup ratio when applied to the DiT model. This can be attributed to DeepCache’s288

overreliance on pre-defined structures, whereas our method can automatically learn the optimal289

pruning strategy for the given model, thereby achieving superior performance.290

4.3 Compatibility with Fast Sampler291

We investigate the compatibility of DiP-GO with methods that prioritize reducing sampling steps292

using faster samplers: DDIM [15], DPM-Solver [25], and LCM [18]. As shown in Table 4, it indicates293

that our method further improves computational efficiency on existing fast samplers. Specifically,294

we reduce MACs by a factor of 5 on the SD-1.5 with DDIM sampler and by 3.36× on the SD-2.1295

with DPM-Solver. Our method achieves nearly unchanged performance with significant acceleration.296

Additionally, our method benefits from information redundancy in multi-step optimization processes,297

showing relatively limited acceleration performance on fewer-step LCM due to its low redundancy in298

features across adjacent timesteps.299

Table 4: Comparison with PLMS, SSIM, and LCM samplers. We evaluate the effectiveness of our
methods on COCO2017 validation set.

Sampler Base Model Ours
MACs ↓ CLIP Score ↑ MACs ↓ CLIP Score ↑

DDIM (SD-1.5 w/ 50 steps) 16.94T 30.30 3.38T 30.29
DPM (SD-2.1 w/ 50 steps) 38.04T 31.55 11.42T 31.50
LCM (SD-XL w/ 4 steps) 11.95T 31.92 11.58T 31.30

4.4 Ablation Study300

Compared with Different Consistent Constraints. We further compare other alternatives explored301

for our consistent loss designs, we further scrutinize additional options, including L1, L2, SSIM,302

and L1+SSIM losses, as depicted in Table 5. The results demonstrate that SSIM emerges as the303

most effective choice, boasting the highest CLIP-Score. In contrast, the L1 loss function often304

results in image blurring or distortion due to its sensitivity to pixel-level differences, the L2 loss may305

yield overly smoothed images by penalizing squared differences between pixels. Conversely, the306

combination of L1+SSIM loss attempts to address these limitations but can complicate the training307

process and suffer from trade-offs. Therefore, SSIM emerges as the preferred choice in our consistent308

loss designs, offering superior accuracy and stability while preserving image quality.309

Table 5: Comparison with different consistent loss types. Here we conduct pruning experiments with
80% sparsity on COCO2017 validation using SD-1.5.

Loss Type L1 L2 SSIM L1 + SSIM
CLIP Score↑ 29.94 29.71 30.29 29.77

Effect of Gradient Optimization. As the traditional search algorithm can also obtain SubNets from310

our proposed SuperNet. It is crucial to validate whether traditional search-based algorithms yield311
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positive effectiveness. We assess two search algorithms: random search and genetic algorithm-based312

search [47] in Table 6. We have iterated the search 1000 times using the first 500 images of the test set313

as a calibration dataset. Remarkably, we observe that the search time of traditional search algorithms314

is significantly longer than the training time of our method due to a large number of evaluations.315

Moreover, due to the vast search space, traditional search algorithms struggle to achieve satisfactory316

results. Additionally, traditional search algorithms lack the “once-for-all” characteristic, requiring317

re-execution when faced with deployment scenarios demanding different computational resources. In318

contrast, leveraging the parametric pruner network, our method achieves superior performance with319

reduced running time and is more adaptable to diverse development scenarios.320

Table 6: Comparison of cost time, computational complexity and CLIP-Score between Random
Search and GA search strategies on Stable Diffusion 1.5.

Method Cost GPU Hours ↓ Pruning Ratio MACs ↓ CLIP Score ↑
PLMS-50 steps - - 16.94T 30.30

Random Search 25 0.80 2.96T 28.73
GA Search 25 0.80 3.34T 29.37

Ours 2.3 0.80 3.38T 30.29
Random Search 24 0.85 2.90T 27.22

GA Search 24 0.85 2.73T 28.61
Ours 2.2 0.85 2.54T 29.84

Random Search 23 0.90 1.94T 24.07
GA Search 23 0.90 2.04T 25.14

Ours 2.2 0.90 1.69T 28.72

Qualitative Analysis of Increased Prune Ratio. In Figure 3, we visualize the generated images321

as we increase the pruning ratio. With the increase in pruning ratio, the model’s inference speed322

significantly improves, allowing us to achieve up to a fourfold increase in inference speed. However,323

as the pruning ratio increases, some patterns in the image content deviate from those in the original324

images. Nevertheless, our main objects in the figures consistently adhere to the textual conditions.325

Subtle changes in background details typically do not compromise image quality, as quantitatively326

analyzed in Table 1.327

a castle and the big 

ben clocktower next 

to a river

Prune 0.3Original Prune 0.4 Prune 0.5 Prune 0.6 Prune 0.7 Prune 0.8

Time: 5.01s Time: 3.59s Time: 3.13s Time: 2.65s Time: 2.18s Time: 1.70s Time: 1.23s 

A train traveling 

down tracks next to 

lights

A old television set is 

displaying an old 

computer game in 

front of two 

bookshelves

Figure 3: Visualization of generated images. It shows evolving patterns as pruning ratios increase.
Despite these changes, main objects in the images remain consistent with the textual conditions.

5 Conclusion328

This work explores resolving diffusion accelerating tasks by reducing redundant feature calculations329

across adjacent timesteps. We present a novel diffusion pruning framework and cast the model pruning330

process as a SubNet search problem. Our approach introduces a plugin pruner network that identifies331

an optimal SubNet through few-step gradient optimization. Results on a wide range of Stable332

Diffusion (SD) and DiT series models verify the effectiveness of our method. We achieve a 4.4×333

speedup on Stable Diffusion 1.5 and effectively prune the DiT model with few step optimizations.334
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A Memory Optimization Details503

Gradient Checkpointing. Due to the multi-step Markovian nature of sampling in diffusion models,504

updating the entire sampling process using gradient accumulation incurs significant memory costs,505

even with a batch size of 1. To mitigate this issue, we employ Gradient Checkpointing and half-506

precision floating-point training to reduce memory consumption. The core idea behind Gradient507

Checkpointing is to selectively preserve a portion of activation values during forward propagation,508

discarding the rest. During backpropagation, the gradients of the discarded activation values are509

computed using the saved gradients of the preserved nodes, effectively reducing memory usage.510

Additionally, we use gradient accumulation, wherein gradients computed over multiple iterations511

are accumulated and then backpropagated in a single batch for parameter updates, thus allowing for512

larger batch sizes under limited memory usage.513

B Pseudo Code514

Here, we show the details of our proposed post-process algorithm via pseudo code as followings.515

Algorithm 1 Diffusion Pruner
Input: A pretrained diffusion model M , importance scores S, a pruning ratio p
Output: The pruned diffusion model M∗

1: left← 0.0
2: right← 1.0
3: while True do
4: current← (left + right)/2
5: S∗ ← S
6: for t in [0, 1, 2, ..., T ] do
7: for each block score s in S∗ do
8: if s < current then
9: s← 0

10: end if
11: end for
12: end for
13: update_scores_of_blocks (S∗) // remove dependent blocks to set them zeros.
14: p∗,M∗ ← prune_diffusion_model(S∗,M) // obtain the pruned ratio and the pruned model.
15: if abs(p∗ − p) < 0.0125 then
16: break
17: else if p∗ < p then
18: left← current
19: else
20: right← current
21: end if
22: T ← T /2
23: end while
24: return M∗
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C Additional Experiment Results516

Original

Ours (Pruned-0.6)

Original

Ours (Pruned-0.6)

Figure 4: Visualization of DiT model generated images: samples using DDIM-250 steps (uplink) and
pruned 60% MACs (downlink). The speedup ratio here is 2.4× .

We provide the original unpruned DiT model and a version pruned by 0.6 ratio to generate comparison517

images in Figure 4. It can be observed that the plots generated by the pruned model are almost518

identical to those produced by the original model. Although there are slight differences in details,519

such as the appearance of the dog’s eyes, these do not significantly affect the overall image quality.520

D Limitations521

A limitation of our method arises from its training process of the pruner network. Our method522

necessitates tuning an additional pruner network for the pre-trained diffusion model. This may entail523

users investing additional time when adapting our method to specific diffusion models. For example,524

we train DiP-GO for SD-1.5 on a single AMD Instinct MI250 GPU for ∼ 2.5 hours. However, we525

note that the introduced time is small compared to training a lightweight diffusion model. Besides,526

same as existing work, our method struggles to maintain performance with extremely high pruning527

ratios, presenting a challenge for deploying diffusion models in scenarios with severely limited528

computational resources.529

E Social Impact530

Generative models have demonstrated promising results in content generation [50, 60, 2]. However,531

due to the high inference costs, current methods struggle to achieve rapid application and deployment.532

Our approach introduces an efficient acceleration method for diffusion models, enabling nearly533

lossless speedup. Moreover, our method does not require retraining of the pretrained models and is534

compatible with various diffusion models, making it highly generalizable. This makes it suitable for535

rapid deployment of generative models on mobile and edge devices.536

Nevertheless, since generative models are pretrained on large-scale internet datasets, the data they537

generate may contain inherent social biases and stereotypes [61, 62, 63]. Additionally, there is a538

risk of misuse, such as in the creation of DeepFakes [64], which could pose significant social harm.539

While reducing the usage cost, it is crucial to prevent the low-cost generative models from being540

misused, leading to negative societal impacts. Therefore, it is necessary to establish relevant laws541

and regulations, create a well-regulated community environment, and provide guidelines to ensure542

responsible dissemination and use of generative models.543
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Question: Does the paper discuss the limitations of the work performed by the authors?563

Answer: [Yes]564

Justification: In Limitation Section in Appendix D, we expound upon the limitations of the565

work conducted and provide a brief discussion thereof.566

Guidelines:567

• The answer NA means that the paper has no limitation while the answer No means that568

the paper has limitations, but those are not discussed in the paper.569

• The authors are encouraged to create a separate "Limitations" section in their paper.570

• The paper should point out any strong assumptions and how robust the results are to571

violations of these assumptions (e.g., independence assumptions, noiseless settings,572

model well-specification, asymptotic approximations only holding locally). The authors573

should reflect on how these assumptions might be violated in practice and what the574

implications would be.575

• The authors should reflect on the scope of the claims made, e.g., if the approach was576

only tested on a few datasets or with a few runs. In general, empirical results often577

depend on implicit assumptions, which should be articulated.578

• The authors should reflect on the factors that influence the performance of the approach.579

For example, a facial recognition algorithm may perform poorly when image resolution580

is low or images are taken in low lighting. Or a speech-to-text system might not be581

used reliably to provide closed captions for online lectures because it fails to handle582

technical jargon.583

• The authors should discuss the computational efficiency of the proposed algorithms584

and how they scale with dataset size.585

• If applicable, the authors should discuss possible limitations of their approach to586

address problems of privacy and fairness.587

• While the authors might fear that complete honesty about limitations might be used by588

reviewers as grounds for rejection, a worse outcome might be that reviewers discover589

limitations that aren’t acknowledged in the paper. The authors should use their best590

judgment and recognize that individual actions in favor of transparency play an impor-591

tant role in developing norms that preserve the integrity of the community. Reviewers592

will be specifically instructed to not penalize honesty concerning limitations.593

3. Theory Assumptions and Proofs594

Question: For each theoretical result, does the paper provide the full set of assumptions and595

a complete (and correct) proof?596
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Answer: [No]597

Justification: None.598

Guidelines:599

• The answer NA means that the paper does not include theoretical results.600

• All the theorems, formulas, and proofs in the paper should be numbered and cross-601

referenced.602

• All assumptions should be clearly stated or referenced in the statement of any theorems.603

• The proofs can either appear in the main paper or the supplemental material, but if604

they appear in the supplemental material, the authors are encouraged to provide a short605

proof sketch to provide intuition.606

• Inversely, any informal proof provided in the core of the paper should be complemented607

by formal proofs provided in appendix or supplemental material.608

• Theorems and Lemmas that the proof relies upon should be properly referenced.609

4. Experimental Result Reproducibility610

Question: Does the paper fully disclose all the information needed to reproduce the main ex-611

perimental results of the paper to the extent that it affects the main claims and/or conclusions612

of the paper (regardless of whether the code and data are provided or not)?613

Answer: [Yes]614

Justification: In Section 4.1, we introduced the details of experimental setup and model615

training to ensure reproducibility.616

Guidelines:617

• The answer NA means that the paper does not include experiments.618

• If the paper includes experiments, a No answer to this question will not be perceived619

well by the reviewers: Making the paper reproducible is important, regardless of620

whether the code and data are provided or not.621

• If the contribution is a dataset and/or model, the authors should describe the steps taken622

to make their results reproducible or verifiable.623

• Depending on the contribution, reproducibility can be accomplished in various ways.624

For example, if the contribution is a novel architecture, describing the architecture fully625

might suffice, or if the contribution is a specific model and empirical evaluation, it may626

be necessary to either make it possible for others to replicate the model with the same627

dataset, or provide access to the model. In general. releasing code and data is often628

one good way to accomplish this, but reproducibility can also be provided via detailed629

instructions for how to replicate the results, access to a hosted model (e.g., in the case630

of a large language model), releasing of a model checkpoint, or other means that are631

appropriate to the research performed.632

• While NeurIPS does not require releasing code, the conference does require all submis-633

sions to provide some reasonable avenue for reproducibility, which may depend on the634

nature of the contribution. For example635

(a) If the contribution is primarily a new algorithm, the paper should make it clear how636

to reproduce that algorithm.637

(b) If the contribution is primarily a new model architecture, the paper should describe638

the architecture clearly and fully.639

(c) If the contribution is a new model (e.g., a large language model), then there should640

either be a way to access this model for reproducing the results or a way to reproduce641

the model (e.g., with an open-source dataset or instructions for how to construct642

the dataset).643

(d) We recognize that reproducibility may be tricky in some cases, in which case644

authors are welcome to describe the particular way they provide for reproducibility.645

In the case of closed-source models, it may be that access to the model is limited in646

some way (e.g., to registered users), but it should be possible for other researchers647

to have some path to reproducing or verifying the results.648

5. Open access to data and code649
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Question: Does the paper provide open access to the data and code, with sufficient instruc-650

tions to faithfully reproduce the main experimental results, as described in supplemental651

material?652

Answer: [No]653

Justification: The code will be released once the submission is accepted.654

Guidelines:655

• The answer NA means that paper does not include experiments requiring code.656

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/657

public/guides/CodeSubmissionPolicy) for more details.658

• While we encourage the release of code and data, we understand that this might not be659

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not660

including code, unless this is central to the contribution (e.g., for a new open-source661

benchmark).662

• The instructions should contain the exact command and environment needed to run to663

reproduce the results. See the NeurIPS code and data submission guidelines (https:664

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.665

• The authors should provide instructions on data access and preparation, including how666

to access the raw data, preprocessed data, intermediate data, and generated data, etc.667

• The authors should provide scripts to reproduce all experimental results for the new668

proposed method and baselines. If only a subset of experiments are reproducible, they669

should state which ones are omitted from the script and why.670

• At submission time, to preserve anonymity, the authors should release anonymized671

versions (if applicable).672

• Providing as much information as possible in supplemental material (appended to the673

paper) is recommended, but including URLs to data and code is permitted.674

6. Experimental Setting/Details675

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-676

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the677

results?678

Answer: [Yes]679

Justification: In Section 4.1, we introduced the details of experimental setup and model680

training and testing.681

Guidelines:682

• The answer NA means that the paper does not include experiments.683

• The experimental setting should be presented in the core of the paper to a level of detail684

that is necessary to appreciate the results and make sense of them.685

• The full details can be provided either with the code, in appendix, or as supplemental686

material.687

7. Experiment Statistical Significance688

Question: Does the paper report error bars suitably and correctly defined or other appropriate689

information about the statistical significance of the experiments?690

Answer: [No]691

Justification: The experiments conducted in our paper do not involve the use of error bars or692

statistical significance analysis, thus this aspect is not applicable to our study.693

Guidelines:694

• The answer NA means that the paper does not include experiments.695

• The authors should answer "Yes" if the results are accompanied by error bars, confi-696

dence intervals, or statistical significance tests, at least for the experiments that support697

the main claims of the paper.698

• The factors of variability that the error bars are capturing should be clearly stated (for699

example, train/test split, initialization, random drawing of some parameter, or overall700

run with given experimental conditions).701
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• The method for calculating the error bars should be explained (closed form formula,702

call to a library function, bootstrap, etc.)703

• The assumptions made should be given (e.g., Normally distributed errors).704

• It should be clear whether the error bar is the standard deviation or the standard error705

of the mean.706

• It is OK to report 1-sigma error bars, but one should state it. The authors should707

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis708

of Normality of errors is not verified.709

• For asymmetric distributions, the authors should be careful not to show in tables or710

figures symmetric error bars that would yield results that are out of range (e.g. negative711

error rates).712

• If error bars are reported in tables or plots, The authors should explain in the text how713

they were calculated and reference the corresponding figures or tables in the text.714

8. Experiments Compute Resources715

Question: For each experiment, does the paper provide sufficient information on the com-716

puter resources (type of compute workers, memory, time of execution) needed to reproduce717

the experiments?718

Answer: [Yes]719

Justification: For our experiments, we furnished detailed specifications of the GPU models720

used along with their corresponding tasks. Furthermore, we included specific information721

regarding the model training batch size and the number of training iterations.722

Guidelines:723

• The answer NA means that the paper does not include experiments.724

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,725

or cloud provider, including relevant memory and storage.726

• The paper should provide the amount of compute required for each of the individual727

experimental runs as well as estimate the total compute.728

• The paper should disclose whether the full research project required more compute729

than the experiments reported in the paper (e.g., preliminary or failed experiments that730

didn’t make it into the paper).731

9. Code Of Ethics732

Question: Does the research conducted in the paper conform, in every respect, with the733

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?734

Answer: [Yes]735

Justification: We have carefully reviewed the NeurIPS Code of Ethics and adhere to its736

principles.737

Guidelines:738

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.739

• If the authors answer No, they should explain the special circumstances that require a740

deviation from the Code of Ethics.741

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-742

eration due to laws or regulations in their jurisdiction).743

10. Broader Impacts744

Question: Does the paper discuss both potential positive societal impacts and negative745

societal impacts of the work performed?746

Answer: [Yes]747

Justification: We discuss both potential positive societal impacts and negative societal748

impacts of the work performed in Appendix.749

Guidelines:750

• The answer NA means that there is no societal impact of the work performed.751
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• If the authors answer NA or No, they should explain why their work has no societal752

impact or why the paper does not address societal impact.753

• Examples of negative societal impacts include potential malicious or unintended uses754

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations755

(e.g., deployment of technologies that could make decisions that unfairly impact specific756

groups), privacy considerations, and security considerations.757

• The conference expects that many papers will be foundational research and not tied758

to particular applications, let alone deployments. However, if there is a direct path to759

any negative applications, the authors should point it out. For example, it is legitimate760

to point out that an improvement in the quality of generative models could be used to761

generate deepfakes for disinformation. On the other hand, it is not needed to point out762

that a generic algorithm for optimizing neural networks could enable people to train763

models that generate Deepfakes faster.764

• The authors should consider possible harms that could arise when the technology is765

being used as intended and functioning correctly, harms that could arise when the766

technology is being used as intended but gives incorrect results, and harms following767

from (intentional or unintentional) misuse of the technology.768

• If there are negative societal impacts, the authors could also discuss possible mitigation769

strategies (e.g., gated release of models, providing defenses in addition to attacks,770

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from771

feedback over time, improving the efficiency and accessibility of ML).772

11. Safeguards773

Question: Does the paper describe safeguards that have been put in place for responsible774

release of data or models that have a high risk for misuse (e.g., pretrained language models,775

image generators, or scraped datasets)?776

Answer: [NA]777

Justification: Our paper poses no such risks.778

Guidelines:779

• The answer NA means that the paper poses no such risks.780

• Released models that have a high risk for misuse or dual-use should be released with781

necessary safeguards to allow for controlled use of the model, for example by requiring782

that users adhere to usage guidelines or restrictions to access the model or implementing783

safety filters.784

• Datasets that have been scraped from the Internet could pose safety risks. The authors785

should describe how they avoided releasing unsafe images.786

• We recognize that providing effective safeguards is challenging, and many papers do787

not require this, but we encourage authors to take this into account and make a best788

faith effort.789

12. Licenses for existing assets790

Question: Are the creators or original owners of assets (e.g., code, data, models), used in791

the paper, properly credited and are the license and terms of use explicitly mentioned and792

properly respected?793

Answer: [Yes]794

Justification: The creators or original owners of assets, such as code, data, or models, used795

in the paper, are properly credited. Additionally, the license and terms of use associated796

with these assets are explicitly mentioned and respected in accordance with ethical and legal797

standards.798

Guidelines:799

• The answer NA means that the paper does not use existing assets.800

• The authors should cite the original paper that produced the code package or dataset.801

• The authors should state which version of the asset is used and, if possible, include a802

URL.803

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.804
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• For scraped data from a particular source (e.g., website), the copyright and terms of805

service of that source should be provided.806

• If assets are released, the license, copyright information, and terms of use in the807

package should be provided. For popular datasets, paperswithcode.com/datasets808

has curated licenses for some datasets. Their licensing guide can help determine the809

license of a dataset.810

• For existing datasets that are re-packaged, both the original license and the license of811

the derived asset (if it has changed) should be provided.812

• If this information is not available online, the authors are encouraged to reach out to813

the asset’s creators.814

13. New Assets815

Question: Are new assets introduced in the paper well documented and is the documentation816

provided alongside the assets?817

Answer: [NA]818

Justification: Our paper does not release new assets.819

Guidelines:820

• The answer NA means that the paper does not release new assets.821

• Researchers should communicate the details of the dataset/code/model as part of their822

submissions via structured templates. This includes details about training, license,823

limitations, etc.824

• The paper should discuss whether and how consent was obtained from people whose825

asset is used.826

• At submission time, remember to anonymize your assets (if applicable). You can either827

create an anonymized URL or include an anonymized zip file.828

14. Crowdsourcing and Research with Human Subjects829

Question: For crowdsourcing experiments and research with human subjects, does the paper830

include the full text of instructions given to participants and screenshots, if applicable, as831

well as details about compensation (if any)?832

Answer: [NA]833

Justification: Our paper does not involve crowdsourcing nor research with human subjects.834

Guidelines:835

• The answer NA means that the paper does not involve crowdsourcing nor research with836

human subjects.837

• Including this information in the supplemental material is fine, but if the main contribu-838

tion of the paper involves human subjects, then as much detail as possible should be839

included in the main paper.840

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,841

or other labor should be paid at least the minimum wage in the country of the data842

collector.843

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human844

Subjects845

Question: Does the paper describe potential risks incurred by study participants, whether846

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)847

approvals (or an equivalent approval/review based on the requirements of your country or848

institution) were obtained?849

Answer: [NA]850

Justification: Our paper does not involve crowdsourcing nor research with human subjects.851

Guidelines:852

• The answer NA means that the paper does not involve crowdsourcing nor research with853

human subjects.854
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• Depending on the country in which research is conducted, IRB approval (or equivalent)855

may be required for any human subjects research. If you obtained IRB approval, you856

should clearly state this in the paper.857

• We recognize that the procedures for this may vary significantly between institutions858

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the859

guidelines for their institution.860

• For initial submissions, do not include any information that would break anonymity (if861

applicable), such as the institution conducting the review.862
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