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Abstract
A compelling use case of offline reinforcement
learning (RL) is to obtain an effective policy ini-
tialization from existing datasets, which allows
efficient fine-tuning with limited amounts of ac-
tive online interaction in the environment. Many
existing offline RL methods tend to exhibit poor
fine-tuning performance. On the contrary, while
naïve online RL methods achieve compelling em-
pirical performance, online methods suffer from
a large sample complexity without a good policy
initialization from the offline data. Our goal in this
paper is to devise an approach for learning an ef-
fective offline initialization that also unlocks fast
online fine-tuning capabilities. Our approach, cal-
ibrated Q-learning (Cal-QL) accomplishes this by
learning a conservative value function initializa-
tion that underestimates the value of the learned
policy from offline data, while also being cali-
brated, meaning that the learned value estimation
still upper-bounds the ground-truth value of some
other reference policy (e.g., the behavior policy).
Both theoretically and empirically, we show that
imposing these conditions speeds up online fine-
tuning, and brings in benefits of the offline data.
In practice, Cal-QL can be implemented on top
of existing offline RL methods without any extra
hyperparameter tuning. Empirically, Cal-QL out-
performs state-of-the-art methods on a wide range
of fine-tuning tasks from both state and visual ob-
servations, across several benchmarks.

1. Introduction
Modern machine learning successes across many domains
follow a common recipe: first pre-training large and expres-
sive neural network models on general-purpose, internet-
scale data, followed by fine-tuning the pre-trained initializa-
tion on a limited amount of data for the task of interest (He
et al., 2022; Devlin et al., 2018). How can we translate such
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Figure 1. We study the problem of online fine-tuning followed
by offline RL pre-training. Some prior offline RL methods tend
to exhibit slow performance improvement in this setting (yellow),
resulting in worse asymptotic performance, while others suffer
from initial performance degradation (red), resulting in a high
regret. We develop an approach that “calibrates” the learned value
function estimates to enable the best of both worlds (blue).

a recipe to sequential decision-making? A natural way to
instantiate this paradigm is to utilize offline reinforcement
learning (RL) algorithms (Levine et al., 2020) for initializ-
ing value functions and policies from previously collected
static datasets, followed by task-specific online fine-tuning
that aims to improve this initialization with the smallest
amount of active interaction. If successful, such a recipe
might enable effective and generalizable online RL with
significantly fewer samples than current RL methods that
learn from scratch.
Many algorithms for offline RL have been applied to online
fine-tuning. Empirical results across prior works suggest a
counter-intuitive trend: policy initializations obtained from
more effective offline RL methods tend to exhibit worse on-
line fine-tuning performance (see Table 2 of Kostrikov et al.
(2021b) & Figure 4 of Anonymous (2023)). On the other
end, naïve online RL methods training from scratch (or RL
from demonstrations (Vecerik et al., 2017), where the replay
buffer of a standard online RL algorithm is seeded with
the offline data) seem to improve online at a significantly
faster rate. But these online methods require actively col-
lecting data by rolling out policies in the environment from
scratch, which inherits similar limitations of naïve online
RL methods in problems where data collection is expensive
or dangerous. Overall, these results suggest that it is diffi-
cult to devise an offline RL algorithm that both acquires a
good initialization from prior data but also enables efficient
fine-tuning.
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How can we devise a method to learn an effective policy
initialization that also improves during fine-tuning? Kumar
et al. (2020) has shown that one can learn a good policy ini-
tialization by optimizing the policy against a conservative
value function obtained using the offline dataset. But, we
find in Section 4.1 that, conservatism alone is not sufficient
for efficient online fine-tuning as these methods often tend
to unlearn the policy initialization learned from offline data
and “waste” samples collected via online interaction in re-
covering this initialization, after which fine-tuning proceeds
normally. Our analysis reveals that this is a result of the
fact that value estimates produced via conservative methods
can be arbitrarily smaller than the ground truth return of
any valid policy. Such Q-value estimates that do not lie on
a similar scale as the return of a valid policy in the MDP
are problematic – once fine-tuning begins, actions executed
in the environment that are actually worse than the policy
learned from offline data will erroneously appear better if
their ground-truth return value is larger than the learned con-
servative value estimate. Subsequent policy improvement
will begin to lose the initialization in favor of such a worse
policy until the method recovers.

If we can also ensure that the conservative value estimate
learned using the offline data is calibrated, meaning that
the value estimate is on a similar scale as return values on
the task, and larger than the ground-truth return of policies
worse than the learned policy initialization, then we can
avoid this issue. Of course, we cannot enforce such a condi-
tion perfectly. Therefore, we choose to enforce the learned
value estimates to be larger than the ground-truth values
of only a reference policy whose value is known or can be
estimated easily, such as the behavior policy. Even though
this condition is not perfect, we show that it still leads to
sample efficient online fine-tuning. Our practical method,
calibrated Q-learning (Cal-QL), learns conservative value
functions using a conservative Q-learning (CQL) (Kumar
et al., 2020) like training objective, while also explicitly
forcing them to be calibrated against the behavior policy.
Our main contribution is an approach, Cal-QL, for acquir-
ing an offline initialization that facilitates sample efficient
online fine-tuning. Cal-QL aims to learn conservative value
functions, that are also calibrated with respect to a refer-
ence policy (e.g., the behavior policy in our experiments).
Our analysis of Cal-QL shows that both theoretically and
empirically, Cal-QL attains stronger guarantees on cumula-
tive regret during fine-tuning. In practice, Cal-QL can be
implemented over conservative Q-learning, a prior offline
RL method, without any additional hyperparameters. We
empirically evaluate Cal-QL across a range of benchmark
tasks from Fu et al. (2020) and Nair et al. (2020a), including
dexterous manipulation, navigation, and robotic manipula-
tion tasks, and find that it matches or outperforms the best
methods on all tasks, in some cases by 30-40%.

2. Related Work
Recent works in theory and practice both suggest that online
RL methods typically require a large number of samples (Sil-
ver et al., 2016; Berner et al., 2019; Vinyals et al., 2019;
Ye et al., 2020; Kakade & Langford, 2002; Agarwal et al.,
2019; Zhai et al., 2022; Gupta et al., 2022; Li et al., 2022)
to learn from scratch. Instead, we can utilize offline data
to accelerate online off-policy RL algorithms. Prior works
instantiate this idea in a variety of ways: incorporating the
offline data into the replay buffer of online RL (Schaal,
1996; Vecerik et al., 2017; Hester et al., 2018; Song et al.,
2022), utilizing auxiliary behavioral cloning losses along-
side policy-gradients (Rajeswaran et al., 2017; Kang et al.,
2018; Zhu et al., 2018; 2019), or extracting a high-level
skill space for downstream online RL (Gupta et al., 2019;
Ajay et al., 2020). While these prior methods substantially
improve the sample efficiency of running online RL from
scratch, as we will also show in our results, they do not
eliminate the need to actively roll out dangerous or poor
policies for data collection.

To address this issue, a different line of work aims to first
run offline RL for learning a good policy and value ini-
tialization from the offline data, followed by online fine-
tuning (Nair et al., 2020b; Kostrikov et al., 2021a; Lyu et al.,
2022; Beeson & Montana, 2022; Wu et al., 2022; Lee et al.,
2022; Mark et al.). These approaches typically employ
existing offline RL methods based on policy constraints (Fu-
jimoto et al., 2018a; Siegel et al., 2020; Guo et al., 2020;
Ghasemipour et al., 2021; Kostrikov et al., 2021a) or pes-
simism on the offline data for some training epochs, then
continue training with the same method on a combination
of offline and online data once fine-tuning begins (Nachum
et al., 2019; Kidambi et al., 2020; Yu et al., 2020; Kumar
et al., 2020; Buckman et al., 2020). Although pessimism is
crucial for offline RL (Jin et al., 2021b; Cheng et al., 2022),
using pessimism or constraints for fine-tuning (Nair et al.,
2020b; Kostrikov et al., 2021a; Lyu et al., 2022; Beeson &
Montana, 2022) slows down fine-tuning or leads to initial
unlearning, as we will show in Section 4.1. In effect, these
prior methods either fail to improve as fast as online RL or
lose the initialization from offline RL. We aim to address
this limitation by understanding some conditions on the of-
fline initialization that enable fast fine-tuning and then turn
these conditions into a fine-tuning method – Cal-QL.

Perhaps the most closely related to this work are methods
that utilize a naïve pessimistic offline RL method for of-
fline training, but incorporate optimism in fine-tuning (Lee
et al., 2022; Mark et al.; Wu et al., 2022). In contrast, our
method, Cal-QL aims to learn a better offline initialization
that enjoys the benefits of offline RL pre-training but is more
amenable to naïve fine-tuning. Our approach fine-tunes
naïvely without ensembles (Lee et al., 2022) or exploration
bonuses (Mark et al.), but attains good performance by learn-



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning

ing an offline initialization that satisfies certain conditions.

3. Preliminaries and Background
The goal in RL is to learn the optimal policy for an
MDP M = (S,A, P, r, ρ, γ). S,A denote the state and
action spaces. P (s′|s, a) and r(s, a) are the dynamics and
reward functions. ρ(s) denotes the initial state distribution.
γ ∈ (0, 1) denotes the discount factor. Formally, the
goal is to learn a policy π : S 7→ A that maximizes
cumulative discounted value function, denoted by V π(s) =
1

1−γ

∑
t Eat∼π(st) [γ

tr(st, at)|s0 = s]. We also adopt the
conventional definition for Q-functions w.r.t. a policy π as
Qπ(s, a) = 1

1−γ

∑
t Eat∼π(st) [γ

tr(st, at)|s0 = s, a0 = a],
and we use Qπ

θ to denote an estimated Q-function (i.e., by a
neural network) w.r.t. policy π.

Given access to an offline dataset collected using a behav-
ior policy πβ , D = {(s, a, r, s′)}, we aim to first train
the best possible policy and value function using the of-
fline dataset D alone, followed by an online phase that
utilizes online interaction in M. Our goal in this fine-tuning
phase is to obtain the optimal policy with the fewest num-
ber of online samples. This can be expressed as minimiz-
ing the cumulative regret over rounds of online interac-
tion: Reg(T ) := Es∼ρ

∑T
t=1 [V

⋆(s)− V πt(s)]. As we
will demonstrate in Section 7, existing methods targeted to
this setting often tend to attain regret that shrinks slowly.

Our approach will build upon the conservative Q-learning
(CQL) (Kumar et al., 2020) algorithm. CQL imposes an ad-
ditional regularizer that penalizes the learned Q-function on
out-of-distribution (OOD) actions while compensating for
this pessimism on actions seen within the training dataset.
Assuming that the value function is represented by a func-
tion, Qθ, the training objective of CQL is given by

min
θ

α (Es∼D,a∼π [Qθ(s, a)]− Es,a∼D [Qθ(s, a)])︸ ︷︷ ︸
Conservative regularizer R(θ)

+
1

2
Es,a,s′∼D

[(
Qθ(s, a)− BπQ̄(s, a)

)2]
, (3.1)

where BπQ̄(s, a) is the Bellman backup operator applied
to a delayed target Q-network, Q̄: BπQ̄(s, a) := r(s, a) +
γEa′∼π(a′|s′)[Q̄(s′, a′)]. The second term is the standard
TD error (Lillicrap et al., 2015; Fujimoto et al., 2018b;
Haarnoja et al., 2018b). The first term R(θ) (in blue) is a
conservative regularizer that aims to prevent overestimation
in the Q-values for OOD actions by minimizing the Q-values
under the policy π(a|s), which picks actions with high Q-
values Qθ(s, a), and counterbalances by maximizing the
Q-values of the actions in the dataset.

4. Which Offline RL Initializations Enable
Fast Online Fine-Tuning?

A natural starting point for a method that pre-trains a value
function from offline data and then performs online RL fine-

tuning is to simply initialize the value function with one that
is produced by an existing offline RL method. However,
in this section, we will show that initializations learned by
many offline RL algorithms tend to perform poorly in online
fine-tuning. We will study the reasons for this poor perfor-
mance for the class of conservative methods to motivate our
approach and then use the resulting insights to develop our
method, calibrated Q-learning.

4.1. Empirical Analysis
To motivate certain conditions that give rise to our method,
we seek to understand the limitations of existing offline RL
approaches for online fine-tuning. The analysis of Nair et al.
(2020b) highlights the limitations of explicit policy con-
straint methods for fine-tuning, therefore, in this section, we
study a representative implicit policy constraint method, im-
plicit Q-learning (IQL) (Kostrikov et al., 2021a) that attains
good performance on benchmark tasks, and a conserva-
tive method, conservative Q-learning (CQL) (Kumar et al.,
2020). We study the task of fine-tuning a robot policy on
a visual pick-and-place task with a distractor object and
sparse binary rewards (the performance of any policy is
upper-bounded by +1) from prior work (Singh et al., 2020).
More details about the offline dataset are in Appendix C.

Figure 2. CQL and IQL
during online fine-tuning,
which begins at step 0 right
after offline training. While
CQL suffers from initial
policy unlearning, IQL im-
proves slowly throughout
fine-tuning.

We show the learning curves
for both methods in online
fine-tuning in Figure 2. While
the offline Q-function initial-
ization obtained from both
approaches attains a similar
(normalized) return of around
0.5, neither of these meth-
ods performs well during fine-
tuning: IQL improves steadily
but slowly and cannot outper-
form CQL asymptotically. De-
spite the better asymptotic per-
formance, CQL first unlearns
the offline initialization and
spends about 5K samples to
recover before it begins to improve. This shows how nei-
ther of these approaches enables both a steady improvement
through learning and a better asymptotic performance on
this task. In this work, we restrict our focus to developing
effective fine-tuning strategies on top of conservative meth-
ods. Since these methods already attain good performance
asymptotically but exhibit initial unlearning, we wish to
now understand the potential reasons behind the initial un-
learning in CQL to develop a practical approach. As a side
note, we also investigate certain reasons that could explain
the speed of IQL in Appendix E.

Why does CQL unlearn initially? To understand why this
happens, we inspect the Q-values averaged over the dataset
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Figure 3. The evolution of the average Q-value and the success
rate of CQL over the course of offline pre-training and online
fine-tuning. Fine-tuning begins at 50K steps. The red-colored part
denotes the period of performance recovery which also coincides
with the period of Q-value adjustment.

in Figure 3. Note that the Q-values learned by CQL in the
offline phase are much smaller than their ground-truth value
as expected, but these Q-values drastically jump and adjust
in scale when online fine-tuning begins. In fact, we observe
that performance recovery (red segment in Figure 3) coin-
cides with a period where the range of Q-values changes to
match the true range. This is expected: as a conservative
Q-function experiences new online data actions much worse
than the offline initialization on the rollout states appear
to attain higher rewards compared to the highly underesti-
mated Q-function initialization, which in turn deceives the
policy optimizer into unlearning the initial policy. Once the
Q-function has adjusted and the range of Q-values more
closely matches the true range, then fine-tuning can proceed
normally, after recovering from the dip.

To summarize, our analysis indicates that methods such as
IQL that are based on policy constraints can lead to slower
asymptotic performance. Whereas conservative methods
can attain good asymptotic performance, but “waste” sam-
ples to correct the learned Q-function. Thus, in this paper
we attempt to develop a good fine-tuning method that builds
on top of existing conservative offline RL methods (to attain
good asymptotic performance), but aims to “calibrate” the
Q-function so that the initial dip in performance is avoided.

4.2. Conditions That Enable Fast Fine-Tuning
Empirical observations from the preceding discussion moti-
vate two conditions on the offline Q-function initialization to
enable fast fine-tuning: (a) if the Q-function is conservative,
then we can attain good asymptotic performance, and (b) if
the Q-function is calibrated, i.e., the learned Q-values are
larger than the ground-truth return of policies worse than the
offline initialization, then online fine-tuning does not need
to devote samples to first unlearn the offline initialization,
correct the Q-value scale and recover the performance of
the offline initialization again, before fine-tuning proceeds
normally. We define this notion of “calibration” below, then
present our method to enforce this condition next, and fi-
nally, in Section 6 show that this enables fast fine-tuning.

Definition 4.1 (Calibration). An estimated Q-function Qπ
θ

for a given policy π is said to be calibrated with respect to a
reference policy µ if Qπ

θ (s, a) ≥ Qµ(s, a),∀(s, a) ∈ S×A.

If the learned Q-function Qθ is calibrated with respect to
any policy µ that performs worse than π, it would prevent
unlearning during fine-tuning that we observed in the case
of CQL: the policy optimizer would not unlearn π in fa-
vor of a worse µ upon observing new online data since
π still attains a larger value under the learned Qθ function:
Qθ(s, a) ≥ Qµ(s, a). However, such a condition is impossi-
ble to impose as it requires estimating returns of all policies.
Therefore, our approach Cal-QL will enforce calibration
only with respect to policies µ whose Q-value, Qµ(s, a),
can be estimated reliably (e.g., the behavior policy induced
by the dataset). This is the key idea behind our method.

5. Cal-QL: Calibrated Q-Learning
Our approach, calibrated Q-learning (Cal-QL), aims to learn
conservative and calibrated value function initializations
from an offline dataset. To this end, Cal-QL builds on con-
servative Q-learning (CQL) (Kumar et al., 2020). We then
constrain the learned Q-function to produce Q-values larger
than the Q-value of a reference policy per Definition 4.1. In
principle, our approach can utilize many different choices of
reference policies, but for developing a practical method, we
simply utilize the behavior policy as our reference policy.

Estimating Qµ(s, a). We first need to devise a method for
obtaining an estimator of Qµ(s, a) and a way to constrain
Qπ

θ (s, a), the conservative Q-function learned by CQL to
Qµ. For estimating Qµ(s, a), we utilize the Monte-Carlo
return estimator for environments that end in a terminal and
fit a function approximator Qµ

θ to the return-to-go estimators
via supervised regression for other environments.

Incorporating calibration into CQL. Next, we find a way
to constrain the learned Q-function Qπ

θ to be larger than
Qµ. This property can be enforced via a simple change to
Equation 3.1 by masking out the push down of the learned
Q-value on out-of-distribution (OOD) actions in CQL (i.e.,
a sampled from the learned policy) if the Q-function is not
calibrated, i.e., if Qπ

θ (s, a) ≤ Qµ(s, a). Cal-QL modifies
the CQL regularizer, R(θ) in this manner:

Es∼D,a∼π [max (Qθ, Q
µ)]− Es,a∼D [Qθ(s, a)] , (5.1)

where the changes from standard CQL are depicted in red.
As long as α (in Equation 3.1) is large, for any state-action
pair where the learned Q-value is smaller than Qµ, the
Q-function learned by Equation 5.1 is guaranteed to be
upper bound Qµ in a tabular setting. Of course, as with
any practical RL method, with function approximators and
gradient-based optimizers, we cannot guarantee that we
can enforce this condition for every state-action pair, but in
our experiments, we find that Equation 5.1 is sufficient to
enforce the calibration in expectation over the states in the
dataset.

Pseudo-code and implementation details. Our implemen-
tation of Cal-QL directly builds on the implementation of
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CQL from Geng (2022). We present a pseudo-code for
Cal-QL in Algorithm 1. Additionally, we list the hyper-
parameters α for the CQL algorithm and our baselines for
each suite of tasks in Appendix D. Following the protocol in
prior work (Kostrikov et al., 2021a), the practical implemen-
tation of Cal-QL trains on a mixture of the offline data and
the new online data, weighted in some proportion during
fine-tuning. We show in our experiments in Section 7, how
this simple one-line code change to the training objective
drastically improves fine-tuning results compared to prior
methods, while being grounded in theory.

6. Theoretical Analysis of Cal-QL
In this section, we will analyze the cumulative regret at-
tained over the course of online fine-tuning, when the value
function is pre-trained with Cal-QL, and show that enforcing
both conservatism and calibration (Defintion 4.1) leads to
a favorable regret bound during the online phase compared
to utilizing naïve uncalibrated conservative methods. Our
analysis utilizes tools from Song et al. (2022), but analyzes
a different algorithm that runs conservative offline RL with
calibration for offline training and online fine-tuning.

Notation & terminology. To set up notation and termi-
nology for our analysis, we will consider an idealized ver-
sion of Cal-QL for simplicity. Specifically, following prior
work (Song et al., 2022), we will operate in a finite-horizon
setting with a horizon H . We denote the learned Q-function
at any learning iteration t, for a given (s, a) pair and time-
step h by Qt

θ(s, a). For any given policy π, let Cπ ≥ 1
denote the concentrability coefficient, i.e., a coefficient that
quantifies the distribution shift between the policy π and the
dataset D, in terms of the ratio of Bellman errors averaged
under π and the dataset D. We also use Cµ

π to denote the
concentrability coefficient over a subset of the Q-function
class induced by a reference policy µ, which intuitively pro-
vides Cµ

π ≤ Cπ. Let dµ denote the intrinsic dimension of
Cµ, the Q-function class w.r.t. the reference policy µ and let
d denote the intrinsic dimension of C, the Q-function class
w.r.t. all policies π. Intuitively, we have Cµ ⊂ C, which
implies that dµ < d. The formal definitions are provided in
Appendix B.2. This version of Cal-QL will first run fitted Q-
iteration while enforcing an upper bound on the difference
between Q-values at policy actions and dataset actions as
a constraint, and then impose Condition 4.1 against the Q-
function of a reference policy, Qµ(s, a), which we assume
is known apriori for simplicity of our analysis. We will use
πt to denote the arg-max policy induced by Qt.

We first informally discuss our proof insight, aiming to
intuitively convey how calibration and conservatism enable
Cal-QL to attain a smaller regret compared to not imposing
either condition. Then, we present our main formal bound.

Intuition. Our goal is to bound the cumulative regret of on-
line fine-tuning, Reg(T ) =

∑
t Es0∼ρ[V

π⋆

(s0)−V πt

(s0)].

We can decompose this expression of regret into two terms:

Reg(T ) =
T∑

t=1

Es0∼ρ

[
V ⋆(s0)−max

a
Qt

θ(s0, a)
]

︸ ︷︷ ︸
(i) := miscalibration

+
T∑

t=1

Es0∼ρ

[
max

a
Qt

θ(s0, a)− V πt

(s0)
]

︸ ︷︷ ︸
(ii) := optimism

. (6.1)

This decomposition of regret into terms (i) and (ii) is instruc-
tive. Term (ii) corresponds to the amount of over-estimation
in the learned value function, which is expected to be small
if a conservative RL algorithm is used for training. Term
(i) is the difference between the ground-truth value of the
optimal policy and the learned Q-function and is negative if
the learned Q-function were calibrated against the optimal
policy (per Definition 4.1). Of course, this is not always
possible, but note that when Cal-QL utilizes a reference
policy µ with a high value V µ, close to V ⋆, then the learned
Q-function Qθ is calibrated with respect to Qµ per Con-
dition 4.1 and term (i) can still be controlled. Therefore,
controlling this regret requires striking a balance between
learning a calibrated (term (i)) and conservative (term (ii))
Q-function. We now formalize this intuition.
Theorem 6.1 (Informal regret bound of Cal-QL). With high
probability, Cal-QL obtains the following bound on total
regret accumulated during online fine-tuning:

Õ
(
min

{
Cµ

π⋆H
√
dT , TEρ[V

⋆(s0)− V µ(s0)] +H
√

dµT
})

.

A formal version and the proof is provided in Appendix B.4.

Comparison to Song et al. (2022). Song et al. (2022)
analyzes an online RL algorithm that utilizes offline data
without imposing conservatism or calibration. We now com-
pare Theorem 6.1 to Theorem 1 of Song et al. (2022) to
understand the impact of these conditions on the final re-
gret guarantee. Theorem 1 of Song et al. (2022) presents
a regret bound: Reg(T ) = Õ

(
Cπ⋆H

√
dT
)

and we note
some improvements in our guarantee, that we also verify
via experiments in Section 7.2: (a) for the setting when the
reference policy µ is the behavior policy, and this policy ex-
hibits near-optimal behavior, i.e., V ⋆−V µ ≲ O(H

√
d/T ),

then Cal-QL can enable a tighter regret guarantee compared
to Song et al. (2022); (b) as we show in Appendix B.3, the
concentrability coefficient Cµ

π⋆ appearing in our guarantee
is already smaller than the one that appears in Theorem
1 of Song et al. (2022), providing another source of im-
provement; and (c) finally, in the worst possible case, where
the reference policy is diverse and highly sub-optimal, Cal-
QL reverts back to the guarantee from Song et al. (2022)
meaning that Cal-QL is not any worse than this prior work.

7. Experimental Evaluation
The goal of our experimental evaluation is to study how
well Cal-QL can learn value functions from offline data
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that facilitate sample-efficient online fine-tuning. To this
end, we study the performance of Cal-QL in comparison
with several other state-of-the-art methods on a variety of
offline RL benchmark tasks from D4RL (Fu et al., 2020)
and Nair et al. (2020b), evaluating performance before and
after online fine-tuning. We also study the effectiveness
of Cal-QL on higher-dimensional tasks, where the policy
and value function must process raw image observations.
Finally, we perform several empirical studies to understand
the efficacy of Cal-QL with different dataset compositions
and to understand the impact of errors in reference function
value estimation on Cal-QL.

Figure 4. Tasks: We evaluate Cal-QL on a diverse set of bench-
mark problems: Frankakitchen and AntMaze domains from
Fu et al. (2020), Adroit tasks from Nair et al. (2020b) and a
vision-based robotic manipulation task from Kumar et al. (2022).

Offline RL tasks and datasets. We evaluate Cal-QL on a
number of benchmark tasks and datasets, previously used by
prior works (Kostrikov et al., 2021a; Nair et al., 2020b) to
evaluate fine-tuning performance: (1) the AntMaze tasks
from D4RL (Fu et al., 2020) that require controlling an
8-DoF ant quadruped robot to navigate from a starting
point to a desired goal location in a maze. The reward
is +1 if the agent reaches within a pre-specified small radius
around the goal and 0 otherwise. We consider two kinds
of maze layouts (medium and large mazes from Fu et al.
(2020)) and two data compositions: play and diverse that
vary in coverage of actions at different regions of the state
space and sub-optimality of the behavior policy; (2) the
FrankaKitchen tasks from D4RL require controlling
a 9-DoF Franka robot to attain a desired configuration of
a kitchen. To succeed, a policy must complete four sub-
tasks in the kitchen within a single rollout, and it receives
a binary reward of +1 for every sub-task it completes; (3)
three Adroit dexterous manipulation tasks (Rajeswaran
et al., 2018; Kostrikov et al., 2021a; Nair et al., 2020b) that
require learning complex manipulation skills on a 28-DoF
five-fingered hand to (a) manipulate a pen in-hand to a de-
sired configuration (pen-binary), (b) open a door by
unlatching the handle (door-binary), and (c) relocating
a ball to a desired location (relocate-binary). An
agent obtains a sparse binary +1/0 reward if it succeeds
in solving the task. Each of these tasks only provides an
extremely narrow offline dataset consisting of 25 demonstra-
tions collected via human teleoperation. Finally to evaluate
the efficacy of Cal-QL on more challenging tasks where
we must learn from raw visual observations, we study (4)
a pick-and-place task from prior work (Kumar et al., 2022;
Singh et al., 2020) that requires learning to pick a ball and

place it in a bowl, in the presence of distractors.

Comparisons, prior methods, and evaluation protocol.
We compare Cal-QL to running online SAC (Haarnoja
et al., 2018c) from scratch, as well as prior approaches
that leverage offline data. This includes fine-tuning with
CQL (Kumar et al., 2020) after offline pre-training, as
well as with IQL (Kostrikov et al., 2021a), which were
specifically proposed as effective offline pre-training / on-
line fine-tuning methods. We also compare to a baseline
that trains SAC (Haarnoja et al., 2018c) using both online
data and offline data (denoted by “SAC + offline data”).
This simple and pragmatic approach most closely matches
DDPGfD (Vecerik et al., 2017), updated to use the stronger
online off-policy RL algorithm (SAC). Note that in con-
trast to DDPGfD, we are using the offline data provided in
each benchmark task, which is not necessarily demonstra-
tion data. We present learning curves for online fine-tuning
and also quantitatively evaluate each method on its abil-
ity to improve the initialization learned from offline data
measured in terms of final performance after a pre-defined
number of steps per domain, as well as the cumulative regret
accumulated over the course of online fine-tuning which
measures the speed of fine-tuning over the course of online
interaction.

7.1. Empirical Results
We first present a quantitative comparison of Cal-QL in
terms of the normalized performance obtained before and
after fine-tuning in Table 1 and the cumulative regret accu-
mulated in a fixed number of steps of environment interac-
tion in Table 2. Following the protocol of Fu et al. (2020),
we normalize the average return values for each domain with
respect to the highest possible return (+4 in FrankaKitchen;
+1 in other tasks; see Appendix D.1 for more details).

Cal-QL improves the offline initialization significantly.
Observe in Table 1 and Figure 5 that while the performance
of offline initialization acquired by Cal-QL performs about
comparably (or slightly worse) to the initialization acquired
by other methods such as IQL, Cal-QL is able to improve
over its offline initialization by over 2x outperforming the
next best method (IQL and CQL) on 8/11 tasks, by about
32% in terms of aggregate performance after fine-tuning.

Cal-QL enables fast fine-tuning. To understand the effi-
cacy of Cal-QL in enabling learning quickly during online
fine-tuning, we measure the cumulative regret accumulated
over the course of fine-tuning. Observe in Table 2 that
Cal-QL consistently achieves a smaller regret of 0.22 on
9/11 tasks, improving over the next best method by 43%.
In tasks such as relocate-binary, Cal-QL enjoys the
fast online learning benefits associated with naïve online
RL methods that incorporate the offline data in the replay
buffer (SAC + offline data and Cal-QL are the only two
methods to attain a score of ≥ 99% on this task) unlike prior



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning

Figure 5. Online fine-tuning after offline initialization on the benchmark tasks. The plots show the online fine-tuning phase after
pre-training for each method (except SAC-based approaches which are not pre-trained). We use more than 3 seeds for each method.
Observe that Cal-QL consistently matches or exceeds the learning speed and final performance of the best prior method and is the only
algorithm to do so across all tasks.

offline RL methods such as IQL. As shown in Figure 5, in
the kitchen and antmaze domains, Cal-QL brings the
benefits of fast online learning together with a good offline
initialization, improving drastically on the regret metric. Fi-
nally, observe that the initial unlearning at the beginning
of fine-tuning with conservative methods observed in Sec-
tion 4.1 is greatly alleviated in all tasks: especially note that
this unlearning disappears completely on the visual pick and
place task studied previously in Section 4.1.

7.2. Understanding the Behavior of Cal-QL
In this section, we aim to understand the behavior of Cal-
QL by performing controlled experiments that modify the
dataset composition, and by investigating various metrics
to understand the properties of scenarios where utilizing
Cal-QL is especially important.

Effect of data composition. To understand the efficacy
of Cal-QL with different data compositions, we ran it
on a newly constructed fine-tuning task on the medium-
size AntMaze domain with a low-coverage offline dataset,
which is generated via a scripted controller that starts from
a fixed initial position and navigates the ant to a fixed goal
position. In Figure 6, we plot the performance of Cal-QL
and baseline CQL (for comparison) on this task, alongside
the trend of average Q-values over the course of offline
pre-training (to the left of the dashed vertical line, before
250 training epochs) and online fine-tuning (to the right of
the vertical dashed line, after 250 training epochs), and the
trend of bounding rate, i.e., the fraction of transitions in
the data-buffer for which the constraint in Cal-QL actively

lower-bounds the learned Q-function with the reference Q-
value. For comparison, we also plot these quantities for
a diverse dataset with high coverage on the task (we use
the antmaze-medium-diverse-v2 from Fu et al. (2020) as a
representative diverse dataset) in Figure 6.

Observe that for the diverse dataset, both naïve CQL and
Cal-QL perform similarly, and indeed, the learned Q-values
behave similarly for both of these methods. In this setting,
online learning doesn’t waste any samples to correct the
Q-function when fine-tuning begins leading to a low bound-
ing rate, almost always close to 0. Instead, with the narrow
dataset, we observe that the Q-values learned by naïve CQL
are much smaller, and are corrected once fine-tuning be-
gins. This correction co-occurs with a drop in performance
(solid blue line on left), and naïve CQL is unable to re-
cover from this drop. Cal-QL which calibrates the scale of
the Q-function by lower bounding the Q-values for many
more samples in the dataset, stably transitions to online
fine-tuning phase with no unlearning (solid red line on left).

The study reveals the behavior of Cal-QL: in settings with
narrow datasets (e.g., in the experiment above and in the
adroit and visual-manipulation domains from
Figure 5), Q-values learned by naïve conservative meth-
ods are more likely to be smaller than the ground-truth
Q-function of the behavior policy due to function approxi-
mation errors, in which case utilizing Cal-QL to calibrate the
Q-function against the behavior policy can be significantly
helpful. On the other hand, with significantly high-coverage
datasets, especially in problems where the behavior policy
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Domain Task IQL CQL SAC + offline data SAC Cal-QL (Ours)

antmaze large-diverse 0.41 → 0.64 0.32 → 0.81 0.00 → 0.00 0.00 → 0.00 0.27 → 0.91
large-play 0.43 → 0.57 0.28 → 0.60 0.00 → 0.00 0.00 → 0.00 0.29 → 0.90
medium-diverse 0.75 → 0.91 0.74 → 0.98 0.00 → 0.05 0.00 → 0.00 0.74 → 0.99
medium-play 0.70 → 0.97 0.51 → 0.98 0.00 → 0.51 0.00 → 0.00 0.60 → 0.97

kitchen partial 0.40 → 0.47 0.70 → 0.68 0.00 → 0.00 0.00 → 0.08 0.66 → 0.78
mixed 0.48 → 0.57 0.62 → 0.56 0.00 → 0.01 0.00 → 0.12 0.37 → 0.81
complete 0.63 → 0.37 0.14 → 0.39 0.00 → 0.00 0.00 → 0.09 0.22 → 0.67

adroit pen-binary 0.90 → 0.90 0.20 → 0.20 0.09 → 0.43 0.00 → 0.00 0.80 → 0.85
door-binary 0.42 → 0.88 0.13 → 0.63 0.00 → 0.93 0.00 → 0.00 0.40 → 0.94
relocate-binary 0.04 → 0.34 0.09 → 0.67 0.00 → 1.00 0.00 → 0.00 0.03 → 0.99

COG visual-manipulation 0.49 → 0.70 0.50 → 0.86 0.00 → 0.01 0.00 → 0.00 0.49 → 0.93
average 0.51 → 0.67 (+ 31.3%) 0.38 → 0.67 (+ 76.3%) N/A → 0.27 N/A → 0.03 0.44 → 0.89 (+ 102.3%)

Table 1. Normalized score before and after the online fine-tuning. We trained each method for 1M environment steps on antmaze,
door-binary, and relocate-binary tasks, 200K steps on pen-binary, 1.25M steps on kitchen tasks, and 40K steps on
visual-manipulation. Observe that Cal-QL improves over the best prior fine-tuning method and attains a much larger performance
improvement over the course of online fine-tuning.

Task IQL CQL SAC+od SAC Cal-QL
large-diverse 0.43 0.41 1.00 1.00 0.21
large-play 0.47 0.45 1.00 1.00 0.24
medium-diverse 0.09 0.06 0.99 1.00 0.06
medium-play 0.10 0.12 0.84 1.00 0.09
partial 0.53 0.33 0.98 0.94 0.27
mixed 0.53 0.49 0.99 0.90 0.29
complete 0.52 0.65 0.99 0.93 0.44
pen-binary 0.10 0.91 0.56 1.00 0.16
door-binary 0.37 0.53 0.93 1.00 0.18
relocate-binary 0.70 0.67 0.20 1.00 0.28
visual-manipulation 0.43 0.30 1.00 1.00 0.23
average 0.39 0.45 0.86 0.98 0.22

Table 2. Cumulative regret averaged over the steps of online
fine-tuning. The smaller the better, worst case is 1.00. Note that
Cal-QL attains the smallest regret in aggregate, improving over the
best prior method in 9/11 tasks that we study.

is also random and sub-optimal, Q-values learned by naïve
methods are likely to already be calibrated with respect
to those of the behavior policy, and no explicit calibration
might be needed (and indeed, the bounding rate tends to
be very close to 0 in Figure 6). In this case, Cal-QL will
revert back to standard CQL, as we observe in the case of
the diverse dataset above. This intuition is also reflected in
Theorem 6.1: when the reference policy µ is close to a nar-
row, expert policy, we would expect Cal-QL to be especially
effective in controlling the efficiency of online fine-tuning.

Estimation errors in the reference value function do not
affect performance significantly. In our experiments, we
compute the reference value functions using Monte-Carlo
return estimates. However, this may not be available in
all tasks. How does Cal-QL behave when reference value
functions must be estimated using the offline dataset itself?

Figure 6. Performance of Cal-QL with different data compo-
sitions. Cal-QL is most effective with narrow datasets, where
Q-values need to be corrected at the beginning of fine-tuning.

To answer this, we ran an experiment on the kitchen
domain, where instead of using an estimate for Qµ based
on the Monte-Carlo return, we train a neural network func-
tion approximator Qµ

θ to approximate Qµ via supervised
regression on to Monte-Carlo return, which is then utilized
by Cal-QL. Observe in Figure 7, that the performance of
Cal-QL largely remains unaltered. This implies as long as
we can obtain a reasonable function approximator to esti-
mate the Q-function of the reference policy (in this case, the
behavior policy), errors in this reference Q-function do not
affect the performance of Cal-QL significantly.

8. Discussion

Figure 7. The performance of
Cal-QL using a neural network
approximator for the reference
value function is comparable
to using the Monte-Carlo re-
turn. This indicates that errors in
the reference Q-function do not
negatively impact the online fine-
tuning performance.

In this work we developed,
Cal-QL a method for ac-
quiring offline initializations
that facilitate fast online fine-
tuning. Cal-QL learns con-
servative value functions, but
additionally constrains to be
larger than the value function
of a reference policy. This
form of calibration of the Q-
function allows us to avoid
initial unlearning in online
fine-tuning with conservative
methods, while also retain-
ing effective asymptotic per-
formance that these methods
typically exhibit. Our theoret-
ical and experimental results
highlight the benefit of Cal-QL in enabling fast online fine-
tuning. While Cal-QL already outperforms prior methods,
we believe there is a scope for developing even more prac-
tically effective methods by carefully adjusting calibration
and conservatism (see Theorem 6.1). Another interesting
direction for future work is to extend Cal-QL to settings
with different pre-training and fine-tuning tasks that appear
real-world problems.
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Appendices
A. Implementation details of Cal-QL
Our algorithm, Cal-QL is illustrated in Algorithm 1. A complete implementation of the functions in python-style is provided
in Appendix A.2.

A.1. Cal-QL Algorithm

Algorithm 1 Cal-QL pseudo-code
1: Initialize Q-function, Qθ, a policy, πϕ

2: for step t in {1, . . . , N} do
3: Train the Q-function using JQ(θ) in Eq. 5.1:

θt := θt−1 − ηQ∇θJQ(θ) (A.1)

4: Improve policy πϕ with SAC-style update:

ϕt := ϕt−1 + ηπEs∼D,a∼πϕ(·|s)[Qθ(s, a)−log πϕ(a|s)] (A.2)

5: If the online phase begins, change CQL regularizer coefficient α
from αoffline to αonline.

6: end for

A.2. Python Implementation

Listing 1. Training Q networks given a batch of data
cql_alpha = self.online_alpha if training_phase == ’online’ else self.offline_alpha
q_data = critic(batch[’observations’], batch[’actions’])

next_dist = actor(batch[’next_observations’])
next_pi_actions, next_log_pis = next_dist.sample()

target_qval = target_critic(batch[’observations’], next_pi_actions)
target_qval = batch[’rewards’] + self.gamma * (1 - batch[’dones’]) * target_qval

td_loss = mse_loss(q_data, target_qval)

num_samples = 4
random_actions = uniform((num_samples, batch_size, action_dim), min=-1, max=1)
random_pi = 0.5 ** batch[’actions’].shape[-1]

pi_actions, log_pis = actor(batch[’observations’])

q_rand_is = critic(batch[’observations’], random_actions) - random_pi
q_pi_is = critic(batch[’observations’], pi_actions) - log_pis

mc_return = batch[’mc_return’].repeat(num_samples)
q_rand_is = max(q_rand_is, mc_return)
q_pi_is = max(q_rand_is, mc_return)

cat_q = concatenate([q_rand_is, q_pi_is], new_axis=True)
cat_q = logsumexp(cat_q, axis=0) # sum over num_samples
critic_loss = td_loss + ((cat_q - q_data).mean() * cql_alpha)

critic_optimizer.zero_grad()
critic_loss.backward()
critic_optimizer.step()
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Listing 2. Training the policy (or the actor) given a batch of data
# return distribution of actions
pi_actions, log_pis = actor(batch[’observations’])

# calculate q value of actor actions
qpi = critic(batch[’observations’], actions)
qpi = qpi.min(axis=0)

# same objective as CQL (kumar et al.)
actor_loss = (log_pis * self.alpha - qpi).mean()

# optimize loss
actor_optimizer.zero_grad()
actor_loss.backward()
actor_optimizer.step()

B. Regret Analysis of Cal-QL
We provide a theoretical version of Cal-QLin Algorithm 2. Policy fine-tuning has been studied in different settings (Xie
et al., 2021; Song et al., 2022; Wagenmaker & Pacchiano, 2022). Our analysis largely adopts the settings and results in Song
et al. (2022), with additional changes in Assumption B.1, Assumption B.2, and Definition B.3. Note that the goal of this
proof is to demonstrate that a pessimistic functional class (Assumption B.1) allows one to utilize the offline data efficiently,
rather than providing a new analytical technique for regret analysis. See comparisons between Section B.3 and Section G.1.
Note that we use f instead of Qθ in the main text to denote the estimated Q function for notation simplicity.

Algorithm 2 Theoretical version of Cal-QL
1: Input: Value function class F , # total iterations T , offline dataset Dν

h of size moff for h ∈ [H − 1].
2: Initialize f1

h(s, a) = 0,∀(s, a).
3: for t = 1, . . . , T do
4: Let πt be the greedy policy w.r.t. f t ▷ I.e.,πt

h(s) = argmaxa f
t
h(s, a).

5: For each h, collect mon online tuples Dt
h ∼ dπ

t

h ▷ online data collection
6: Set f t+1

H (s, a) = 0,∀(s, a).
7: for h = H − 1, . . . 0 do ▷ FQI with offline and online data
8: Estimate f t+1

h using conservative least squares on the aggregated data: ▷ I.e., CQL regularized class Ch

f t+1
h ← argmin

f∈Ch

{
ÊDν

h

[
f(s, a)− r −max

a′
f t+1
h+1(s

′, a′)

]2

+

t∑
τ=1

ÊDτ
h

[
f(s, a)− r −max

a′
f t+1
h+1(s

′, a′)

]2
}

(B.1)

9: f t+1
h = max{f t+1

h , Qref
h } ▷ Set the return of a reference policy as lower bound

10: end for
11: end for
12: Output: πT

B.1. Preliminaries

In this subsection, we follow most of the notations and definitions in Song et al. (2022). In particular, we consider the finite
horizon cases, where the value function and Q function are defined as:

V π
h (s) = E

[
H−1∑
τ=h

rτ |π, sh = s

]
(B.2)

Qπ
h(s, a) = E

[
H−1∑
τ=h

rτ |π, sh = s, ah = a

]
. (B.3)



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning

We also define the Bellman operator T such that ∀f : S ×A:

T f(s, a) = Es,a[R(s, a)] + Es′∼P (s,a) max
a′

f(s′, a′), ∀(s, a) ∈ S ×A, (B.4)

where R(s, a) ∈ ∆[0, 1] represents a stochastic reward function.

B.2. Notations

• Feature covariance matrix Σt;h:

Σt;h =

t∑
τ=1

Xh(f
τ )(Xh(f

τ ))⊤ + λI (B.5)

• Matrix Norm Zanette et al. (2021): for a matrix Σ, the matrix norm ∥u∥Σ is defined as:

∥u∥Σ =
√
uΣu⊤ (B.6)

• Weighted ℓ2 norm: for a given distribution β ∈ ∆(S ×A) and a function f : S ×A 7→ R, we denote the weighted ℓ2

norm as:
∥f∥22,β :=

√
Es,a∼βf2(s, a) (B.7)

• A stochastic reward function R(s, a) ∈ ∆([0, 1])

• For each offline data distribution ν = {ν0, . . . , νH−1}, the offline data set at time step h (νh) contains data samples
(s, a, r, s′), where (s, a) ∼ νh, r ∈ R(s, a), s′ ∼ P (s, a).

• Given a policy π := {π0, . . . , πH−1}, where πh : S 7→ ∆(A), dπh ∈ ∆(s, a) denotes the state-action occupancy
induced by π at step h.

• We consider the value-based function approximation setting, where we are given a function class C = C0 × . . . CH−1

with Ch ⊂ S ×A 7→ [0, Vmax].

• A policy πf is defined as the greedy policy w.r.t. f : πf
h(s) = argmaxa fh(s, a). Specifically, at iteration t, we use πt

to denote the greedy policy w.r.t. f t.

B.3. Assumptions and Defintions

Assumption B.1 (Pessimistic Realizability and Completeness). For any policy πe, we say Ch is a pessimistic function
class w.r.t. πe, if for any h, we have Qπe

h ∈ Ch, and additionally, for any fh+1 ∈ Ch+1, we have T fh+1 ∈ Ch and
fh(s, a) ≤ Qπe

h (s, a),∀(s, a) ∈ S ×A.

Assumption B.2 (Bilinear Rank of Reference Policies). Suppose Qref ∈ Cref ⊂ C, where Cref is the function class of our
reference policy, we assume the Bilinear rank of Cref is dref and dref ≤ d.

Definition B.3 (Bellman error transfer coefficient). For any policy π, we define the transfer coefficient on C as

Cπ := max
f∈C

∑H−1
h=0 Es,a∼dπ

h
[T fh+1(s, a)− fh(s, a)]√∑H−1

h=0 Es,a∼νh
(T fh+1(s, a)− fh(s, a))2

. (B.8)

Definition B.4 (Calibrated Bellman error transfer coefficient). For any policy π, we define the calibrated transfer coefficient
w.r.t. to a reference policy πref as

Cref
π := max

f∈C,f(s,a)≥Qref (s,a)

∑H−1
h=0 Es,a∼dπ

h
[T fh+1(s, a)− fh(s, a)]√∑H−1

h=0 Es,a∼νh
(T fh+1(s, a)− fh(s, a))2

, (B.9)

where Qref = Qπref

.

By the definition of Cref
π and Cπ , we naturally have Cref

π ≤ Cπ .
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B.4. Our Results

Theorem B.5 (Formal Result of Theorem 6.1). Fix δ ∈ (0, 1),moff = T,mon = 1, suppose and the function class C
follows Assumption B.1 w.r.t. πe. Suppose the underlying MDP admits Bilinear rank d on function class C and dref on Cref ,
respectively, then with probability at least 1− δ, Algorithm 2 obtains the following bound on cumulative suboptimality w.r.t.
any comparator policy πe:

T∑
t=1

V πe

− V πt

= Õ
(
min

{
Cref

πe H
√
dT , T

(
V πe

− V ref
)
+H

√
drefT

})
(B.10)

where T1 =
∑T

t=1 1
{
f t
0(s, a) > Qref(s, a)

}
and T2 =

∑T
t=1 1

{
f t
0(s, a) ≤ Qref(s, a)

}
.

Note that Theorem B.5 provides a guarantee for any comparator policy πe, which can be directly applied to π⋆ described
in our informal result (Theorem 6.1). We also change the notation for the reference policy from µ in Theorem 6.1 to
πref (similarly, dref , V ref , Cref

πe correspond to dµ, V
µ, Cµ

πe in Theorem 6.1) for notation consistency in the proof. Our
proof of Theorem B.5 largely follows the proof of Theorem 1 of (Song et al., 2022), and the major changes are caused by
Assumption B.1, Assumption B.2, Definition B.3, and Definition B.4.

Proof. Let V ref(s) = maxa Q
ref(s, a), we start by noting that

T∑
t=1

V πe

− V πft

=

T∑
t=1

Es∼ρ

[
V πe

0 (s)− V πft

0 (s)
]

=

T∑
t=1

Es∼ρ

[
1
{
Ēt
}(

V πe

0 (s)− V ref(s)
)]

︸ ︷︷ ︸
Γ0

+

T∑
t=1

Es∼ρ

[
1
{
Ēt
}(

V ref(s)−max
a

f t
0(s, a)

)]
︸ ︷︷ ︸

=0,by the definition of Ēt

+

T∑
t=1

Es∼ρ

[
1
{
Ēt
}(

max
a

f t
0(s, a)− V πft

0 (s)
)]

︸ ︷︷ ︸
Γ1

+

T∑
t=1

Es∼ρ

[
1 {Et}

(
V πe

0 (s)−max
a

f t
0(s, a)

)]
︸ ︷︷ ︸

Γ2

+

T∑
t=1

Es∼ρ

[
1 {Et}

(
max

a
f t
0(s, a)− V πft

0 (s)
)]

︸ ︷︷ ︸
Γ3

.

(B.11)

For Γ0, we have

Γ0 = T2Es∼ρ

(
V πe

(s)− V ref(s)
)
. (B.12)

For Γ2, we have

Γ2 =

T∑
t=1

Es∼ρ

[
1 {Et}

(
V πe

0 (s)−max
a

f t
0(s, a)

)] (i)

≤
T∑

t=1

1 {Et}
H−1∑
h=0

Es,a∼dπe

h

[
T f t

h+1(s, a)− f t
h(s, a)

]
(ii)

≤
T∑

t=1

Cref
πe · 1 {Et}

√√√√H−1∑
h=0

Es,a∼νh

[(
f t
h(s, a)− T f t

h+1(s, a)
)2] (iii)

≤ T1C
ref
πe

√
H ·∆off ,

(B.13)

where inequality (i) holds because of Lemma G.6, inequality (ii) holds by the definition of Cref
πe (Definition B.4), inequality

(iii) holds by Lemma G.5, and Assumption B.3. Note that the telescoping decomposition technique in the above equation
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also appears in (Xie & Jiang, 2020; Jin et al., 2021a; Du et al., 2021). Next, we will bound Γ1 + Γ3:

Γ1 + Γ3 =

T∑
t=1

(
1 {Et}+ 1

{
Ēt
})

Es∼d0

[
max

a
f t
0(s, a)− V πft

0 (s)
]

(i)

≤
T∑

t=1

(
1 {Et}+ 1

{
Ēt
})H−1∑

h=0

∣∣∣E
s,a∼dπft

h

[
f t
h(s, a)− T f t

h+1(s, a)
]∣∣∣

(ii)
=

T∑
t=1

[(
1 {Et}+ 1

{
Ēt
})H−1∑

h=0

∣∣〈Xh(f
t),Wh(f

t)
〉∣∣]

(iii)

≤
T∑

t=1

[(
1 {Et}+ 1

{
Ēt
})H−1∑

h=0

∥∥Xh(f
t)
∥∥
Σ−1

t−1;h

√
∆on + λB2

W

]
,

(B.14)

where inequality (i) holds by Lemma G.7, equation (ii) holds by the definition of Bilinear model (equation G.2 in
Definition G.2), inequality (ii) holds by Lemma G.8. Using Lemma G.9, we have that

Γ1 + Γ3 ≤
T∑

t=1

[(
1 {Et}+ 1

{
Ēt
})H−1∑

h=0

∥∥Xh(f
t)
∥∥
Σ−1

t−1;h

√
∆on + λB2

W

]
(i)

≤H

√
2d log

(
1 +

T1B2
X

λd

)
· (∆on + λB2

W ) · T1 +H

√
2dref log

(
1 +

T2B2
X

λdref

)
· (∆on + λB2

W ) · T2

(ii)

≤H

(√
2d log

(
1 +

T1

d

)
· (∆on +B2

XB2
W ) · T1 +

√
2dref log

(
1 +

T2

dref

)
· (∆on +B2

XB2
W ) · T2

)
,

(B.15)

where inequality (i) holds by the assumption that Cref has bilinear rank dref , and inequality (ii) holds by plugging in
λ = B2

X . Substituting equation B.12, inequality B.13, and inequality equation B.15 into equation B.11, we have
T∑

t=1

V πe

− V πft

≤ Γ0 + Γ2 + Γ1 + Γ3 ≤ T2

(
V πe

(s)− V ref(s)
)
+ T1C

ref
πe

√
H ·∆off

+H

(√
2d log

(
1 +

T1

d

)
· (∆on +B2

XB2
W ) · T1 +

√
2dref log

(
1 +

T2

dref

)
· (∆on +B2

XB2
W ) · T2

) (B.16)

Plugging in the values of ∆on,∆off from equation G.5 and equation G.6, and using the subadditivity of the square root
function, we have

T∑
t=1

V πe

− V πft

≤ T2

(
V πe

(s)− V ref(s)
)
+ 16VmaxC

ref
πe T1

√
H

moff
log

(
2HT1|F|

δ

)

+

(
16Vmax

√
1

mon
log

(
2HT1|F|

δ

)
+BXBW

)
·H

√
2dT1 log

(
1 +

T1

d

)

+

(
16Vmax

√
1

mon
log

(
2HT2|F|

δ

)
+BXBW

)
·H

√
2drefT2 log

(
1 +

T2

dref

)
(B.17)

Setting moff = T,mon = 1 in the above equation completes the proof, we have
T∑

t=1

V πe

− V πt

≤ Õ
(
Cref

πe

√
HT1

)
+ Õ

(
H
√

dT1

)
+ T2

(
V πe

(s)− V ref(s)
)
+ Õ

(
H
√
drefT2

)
≤

{
Õ
(
Cref

πe H
√
dT1

)
if T1 ≫ T2,

Õ
(
T2

(
V πe − V ref

)
+H

√
drefT2

)
otherwise.

≤ Õ
(
min

{
Cref

πe H
√
dT , T

(
V πe

− V ref
)
+H

√
drefT

})
,

(B.18)

where the last inequality holds because T1, T2 ≤ T , which completes the proof.
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C. Environment Details
Antmaze. The antmaze navigation tasks aim to control an 8-DoF ant quadruped robot to move from a starting point to
a desired goal in a maze. The agent will receive sparse 0-1 rewards depending on whether it reaches the goal or not. We
study each method on “medium” and “hard” (shown in Figure 4) mazes which are difficult to solve, using the following
datasets from D4RL (Fu et al., 2020): large-diverse, large-play, medium-diverse, and medium-play.
The difference between “diverse” and “play” datasets is the optimality of the trajectories they contain. The “diverse” datasets
contain the trajectories commanded to a random goal from random starting points, while the “play” datasets contain the
trajectories commanded to specific locations which are not necessarily the goal. For Cal-QL, CQL and IQL, we pre-trained
the agent using the offline dataset for 1M steps. For the online learning phase, each method was trained for 1M environment
steps, taking 1 update per environment step.

Franka Kitchen. The kitchen tasks require controlling a 9-DoF Franka robot to arrange a kitchen environment into
a desired configuration. The configuration is decomposed into 4 subtasks, and the agent will receive rewards of 0, +1,
+2, +3, or +4 depending on how many subtasks it has managed to solve. To solve the whole task and reach the desired
configuration, it is important to learn not only how to solve each subtask, but also to figure out the correct order to solve.
We study this domain using datasets with three different optimalities: kitchen-complete, kitchen-partial, and
kitchen-mixed. The “complete” dataset contains the trajectories of the robot performing the whole task completely.
The “partial” dataset partially contains some complete demonstrations, while others are incomplete demonstrations solving
the subtasks. The “mixed” dataset only contains incomplete data without any complete demonstrations, which is hard and
requires the highest degree of stitching and generalization ability. For Cal-QL, CQL, and IQL, we pre-trained the agent
using the offline dataset for 500K steps. Each method was then trained for a total of 1.25M environment steps on each of the
3 kitchen tasks, taking 1 update per environment step.

Adroit. The Adroit domain involves controlling a 24-DoF shadow hand robot. There are 3 tasks we consider in this domain:
pen-binary, relocate-binary, relocate-binary. These tasks comprise a limited set of narrow human expert
data distributions (∼ 25) with additional trajectories collected by a behavior-cloned policy. We used the positive segments of
each trajectory (when the positive reward signal is found) for all methods. This domain has a very narrow dataset distribution
and a large action space. In addition, learning in this domain is made more difficult due to the sparse reward formulation,
which leads to exploration challenges. We utilized a variant of the dataset used in prior work (Nair et al., 2020a) to have a
standard comparison with SOTA offline finetuning experiments that consider this domain. For the offline learning phase,
we pre-trained the agent for 20K steps. For the online phase, the door-binary and relocate-binary tasks were
trained for 1M environment steps for each method. For the pen-binary task, each method was trained for 200k steps.
We take 1 update per environment step.

Robotic Manipulation Domain. The Robotic Manipulation domain consists of a pick-and-place task. This task is a
multitask formulation explored in the work, Pretraining for Robots (PTR) (Kumar et al., 2022). Here each task is defined as
placing an object in a bin. A distractor object was present in the scene as an adversarial object which the agent had to avoid
picking. There were 10 unique objects and no overlap between the task objects and the interfering/distractor objects. For the
offline phase, we pre-trained the policy with offline data for 50K steps. For the online phase, there were 40K environment
steps taken for each of the methods in the visual manipulation domain. Here we take 5 updates per environment step.

D. Experiment Details
D.1. Normalized Scores for all Tasks

The visual-manipulation, adroit, and antmaze domains are all goal-oriented, sparse reward tasks. In these
domains, we computed the normalized metric as simply the goal achieved rate for each method. For example, in the visual
manipulation environment, if the object was placed successfully in the bin, a +1 reward was given to the agent and the task
is completed. Similarly, for the door-binary task in the adroit tasks, we considered the success rate of opening the door.

For the kitchen task, the task is to solve a series of 4 sub-tasks that need to be solved in an iterative manner. The
normalized score is computed simply as #tasks solved

total tasks .
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D.2. Mixing Ratio Hyperparameter

In this work, we explore the mixing ratio m. The mixing ratio is either a value in the range [0, 1] or the value -1. Note that in
our formulation, you are able to see the experience from offline trajectories to ground learning and prevent forgetfulness of
your pre-trained representation. If this mixing ratio is within [0, 1], it represents what percentage of offline and online data is
seen in each batch when fine-tuning. Each element of the batch independently is chosen to be from the offline or online
dataset with weight m. This constructed batch is used to train the agent. Instead, if the mixing ratio is -1, the buffers are
appended to each other and sampled uniformly.

D.3. Update to Data Ratio, UTD

In the visual-manipulation task, we also explored the update to data ratio (UTD) for each approach to see if having
more gradient steps per environment step would aid learning by requiring fewer samples. We see that for Cal-QL, UTD 5 is
more sample efficient than UTD 1 and thus included that result in the main paper. However, for alternative approaches such
as IQL, we don’t see any change in the sample efficiency when learning with a different UTD ratio, which is also discussed
in Section E. In Figure 8, you could see the performance for both UTD 1 and 5 for Cal-QL and baseline methods.

Figure 8. UTD Abalation: We show how the change in the update to target ratio can lead to higher sample efficiency for Cal-QL but lead
to similar sample efficiency for alternative approaches.

D.4. Hyperparameters for CQL and Cal-QL

For the domains we tested on, our architecture and learning rate design choices matched for Cal-QL and CQL (Kumar et al.,
2020). Below, we will describe some of the design choices we considered and ablated over for these two method types.

Adroit domains. In the Adroit tasks, we ablated over the value of the penalty of the CQL regularizer R(θ) with the dual
version of CQL. The network architecture was a 3-hidden layer for the critic and a 2-hidden layer for the actor networks
with a hidden dimension size of 512. A critic learning rate of 3e-4 and an actor learning rate of 1e-4 were used. We utilized
a variant of Bellman backup that computes the target value by performing a maximization over target values computed for
k = 10 actions sampled from the policy at the next state. In the table below, we describe hyperparameters that were swept
over for the method(s) across 6 seeds.

Table 3. CQL, Cal-QL Adroit Hyperparameters

Hyperparameters Values

offline α 0.1, 1, 5, 10, 20
online α 0.1, 1, 5, 10, 20
mixing ratio 0, 0.25, 0.5



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning

Antmaze domains. In the antmaze tasks, we ablated over the value of the threshold of the CQL regularizer R(θ) with
the dual version of CQL. We used 4-hidden layer critic and 2-hidden layer actor networks with layers of size 256, a critic
learning rate of 3e-4, and an actor learning rate of 1e-4. We utilized the Bellman backup that computes the target value by
performing a maximization over target values computed for k = 10 actions sampled from the policy at the next state. We
ablated over the following remaining set of Hyperparameters:

Table 4. CQL, Cal-QL Antmaze Hyperparameters

Hyperparameters Values

offline τ 0.1, 0.4, 0.8
online τ 0.1, 0.4, 0.8
mixing ratio 0.5

Visual Robotic Domains. For the visual pick and place domains, we follow exactly the same hyperparameters as the CQL
implementation from COG (Singh et al., 2020): a critic learning rate of 3e-4, an actor learning rate of 1e-4, using k = 4
actions from the policy for computing the target values for computing the TD error, and using k = 4 actions to compute the
log-sum-exp in CQL. We ablated over the following remaining set of Hyperparameters:

Table 5. CQL/CalQL Robotic Hyperparameters

Hyperparameters Values

offline α 1, 10
online α 0.1, 0.5, 1, 2, 5, 10, 20
mixing ratio 0, 0.25, 0.5

D.4.1. HYPERPARAMETERS FOR IQL

Adroit domains. In the Adroit tasks, we ablated over the value of the expectile τ and temperature β. The network
architecture was a 2-hidden layer that was used for both the critic and actor networks with a hidden dimension size of 256.
A critic learning rate of 3e-4 and an actor learning rate of 1e-4 were used. In the table below, we describe hyperparameters
that were swept over for the method(s) across 6 seeds. For this domain, we utilized the author’s recommended parameters
which they swept and abalated over in their work. Below are those chosen parameters and others we swept over.

Table 6. IQL Adroit Hyperparameters

Hyperparameters Values

expectile τ 0.7
temperature β 3.0
mixing ratio 0, 0.25, 0.5, -1

Antmaze domains. In the AntMaze tasks, we ablated over the value of the expectile τ and temperature β. Following the
original IQL paper, we used author suggested hyperparameters: 2-hidden layer critic and actor networks with layers of size
256, a critic learning rate of 3e-4 and an actor learning rate of 1e-4. The others are shown below:
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Table 7. IQL Antmaze Hyperparameters

Hyperparameters Values

expectile τ 0.9
temperature β 10
mixing ratio 0, 0.25, 0.5, -1

Visual Robotic Domains. For the visual pick and place domains, we follow exactly the same hyperparameters for IQL with
respect to architecture and hyperparameter choices as CQL. This includes a critic learning rate of 3e-4, and actor learning
rate of 1e-4, with the ConvNet architecture choice from COG (Singh et al., 2020). We ablated over the following remaining
set of hyperparameters:

Table 8. IQL Robotic Hyperparameters

Hyperparameters Values

expectile τ 0.8, 0.9, 0.95, 0.99
temperature β 1, 2, 3, 5, 10, 25, 50, 100
mixing ratio 0, 0.25, 0.5, -1

Below, we will show an ablation study detailing how the tuning of the temperature β value in the offline and online phases
leads to changes in performance. In Figure 9, we see that we have extensively swept over several temperature values to
choose the optimal checkpoint for downstream evaluation.

Figure 9. IQL Abalation: We show how the change in the policy temperature β has little to no effect on the ultimate policy performance.

D.4.2. HYPERPARAMETERS FOR SAC, SAC + ONLINE DATA

We use the standard hyperparameters for SAC as derived from the original implementation in (Haarnoja et al., 2018a). We
used the same network architecture choice (including hyperparameters) as CQL. We used automatic entropy tuning for the
policy and critic entropy terms, with a target entropy of the negative action dimension.
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E. Extended Discussion on Limitations of Existing Fine-Tuning Methods

Figure 10. IQL and CQL: Step 0 on the x-axis is the performance after offline pre-training. Observe while CQL suffers from initial
policy unlearning, IQL improves slower throughout fine-tuning.

In this section, we aim to highlight some potential reasons behind the slow improvement of IQL in our empirical analysis
experiment in Section 4.1. A natural hypothesis is that IQL improves slowly because we are not making enough updates per
unit of data collected by the environment. To investigate this, we ran IQL with (a) five times as many gradient steps per
step of data collection, and (b) with a more aggressive policy update. Observe in Figure 10 that (a) does not improve the
asymptotic performance of IQL, although it does improve CQL meaning that there is room for improvement on this task by
making more gradient updates. Observe in Figure 10 that (b) often induces to policy unlearning, similar to the failure mode
in CQL. These two observations together indicate that a policy constraint approach can slow down learning asymptotically,
and we cannot increase the speed by making more aggressive updates as this causes the policy to find erroneously optimistic
out-of-distribution actions, and unlearn the policy learned from offline data. An alternative would be for our method to
altogether avoid policy constraints.

F. Discussion of Policy Unlearning in Fine-Tuning
F.1. Bellman Consistency Equation of CQL
To analyze policy unlearning with conservative methods at the beginning of online fine-tuning, we consider a tabular
setting, where we are learning conservative value functions using a generic policy-iteration style offline RL method based
on CQL (Kumar et al., 2020). Our goal is to understand the differences in a policy obtained by running one round of
policy improvement with and without additional online data. Key to our analysis is the Bellman backup induced by CQL
(Equation 3.1):

Qπ(s, a) = (BπQπ) (s, a)− α

[
π(a|s)
πβ(a|s)

− 1

]
. (F.1)

By expanding Bπ , Equation F.1 can also be interpreted as running standard Q-iteration in an MDP with a pessimistic reward
function, which depends upon the learned policy π, the behavior policy πβ induced by the dataset, and the coefficient α

from Equation 3.1: rπα,β(s, a) = r(s, a)− α
[

π(a|s)
πβ(a|s) − 1

]
. This means that once online fine-tuning commences with a new

regularizer α, and a new behavior policy πβ′ induced by online data added to the buffer, the pessimistic reward function
rπα,β may bias towards rπα′,β′ . Hence, the policy improvement on the resulting Q-function with the online data may simply
not lead to any policy improvement on the ground-truth reward function. We will first provide a condition such that the
pessimistic Q-function is invariant to such reward bias during the online fine-tuning, and then show how our approach
alleviates the reward bias.

Performance difference during fine-tuning. Consider the fixed points from solving Equation F.1 w.r.t. the biased rewards
rπα,β and rπα′,β′ , Theorem F.1 provides a necessary and sufficient condition for the fixed points to be invariant to reward bias.

Theorem F.1 (Invariant Conservative Q Functions). Let Q and Q′ denote the conservative value function from solving
the fixed point Equation F.1 with regularizers α, α′ and behavior policies πβ , πβ′ respectively. Then for a given policy π,
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Q(s, a) = Q′(s, a),∀s ∈ S if and only if

α

πβ(a|s)
− α′

πβ′(a|s) =
α− α′

π(a|s) , ∀(s, a) ∈ S ×A. (F.2)

The proof of Theorem F.1 is provided in Appendix F.5. Theorem F.1 implies that one shall expect a performance change in
the fine-tuning phase, whenever Equation F.2 becomes invalid. Unfortunately, Equation F.2 is generally hard to enforce in
practice since the new behavior policy πβ′ and the updated policy π may be intractable, as suggested by the performance dip
in Section 4.1.

Preventing unlearning via calibration. Since the standard CQL training objective suffers from reward bias, which
may continue to deteriorate during fine-tuning. The next corollary provides a condition under which rπα,β(s, a) becomes
unbiased.
Corollary F.2. The reward function rπα,β(s, a) induced by the CQL training (Equation F.1) becomes unbiased when π = πβ:
r
πβ

α,β(s, a) = r(s, a),∀(s, a) ∈ S ×A.

The proof of Corollary F.2 is straight forward as substituting π = πβ will set
[

π(a|s)
πβ(a|s) − 1

]
= 0, which makes Equation F.1

become a Bellman backup w.r.t. the original reward r(s, a). Corollary F.2 implies that the CQL-induced Bellman backup
(Equation 3.1) becomes unbiased when the updating policy equals the behavior policy. Hence, if one aims at using a neural
network Qθ to approximate the CQL Bellman backup w.r.t. behavior policy πβ , one shall consider using Qπβ (s, a) to
calibrate the bias. This empirically implies that we shall use Qπβ (s, a) and Qπβ′ (s, a) to calibrate the Qθ during offline and
online phase, as we have presented in Definition 4.1 and Section 5.

F.2. Notations

In this subsection, we provide the notations for deriving the Bellman Consistency Equation of the conservative Bellman
Consistency equation (CQL Objective) equation F.1. Our matrix notation follows (Li et al., 2020).

• We consider the infinite horizon tabular setting where S and A are discrete and finite, γ ∈ (0, 1) is a discount factor
and r : S ×A 7→ [0, 1] is the reward function;

• The value function V π(s) of a state w.r.t. policy π is defined as

V π(s) := E

[ ∞∑
t=0

γtr(st, at)|s0 = s

]
, ∀s ∈ S; (F.3)

• The Q function Qπ(s, a) of a state action pair (s, a) w.r.t. a policy π is defined by

Qπ(s, a) := E

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
∀(s, a) ∈ S ×A; (F.4)

• P ∈ R|S||A|×|S| is a matrix of the transition kernel P ;

• Pπ ∈ R|S||A|×|S||A| and Pπ ∈ R|S|×|S| two square probability transition matrices induced by the policy π over the
state-action pair and the states respectively, defined by

Pπ := PΠπ, Pπ := ΠπP; (F.5)

• Ππ ∈ {0, 1}|S|×|S||A| is a projection matrix:

Ππ =


e⊤π(1)

e⊤π(2)
. . .

e⊤π(|S|).

 (F.6)

• r ∈ R|S||A| is the reward function

• rπ ∈ R|S| is the reward function following policy π, simply we have rπ = Ππr.
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F.3. Derivations of Conservative Bellman Consistency Equation F.1

∀(s, a) ∈ S ×A, the tabular CQL optimization (Equation 3.1) aims at solving the following optimization problem:

min
Q(s,a)

α

[
E

s∼D,a∼π
Q(s, a)− E

(s,a)∼D,a∼πβ

Q(s, a)

]
+

1

2
E

s∼D,a∼πβ

[
(Q(s, a)− BπQ(s, a))

2
]
. (F.7)

If we rewrite x = Q(s, a) and define function f(x) as

f(x) := α

[
E

s∼D,a∼π
x− E

(s,a)∼D,a∼πβ

x

]
+

1

2
E

s∼D,a∼πβ

[
(x− Bπx)

2
]
, (F.8)

setting f ′(x) = 0 yields
α (π(a|s)− πβ(a|s)) + πβ(x− Bπx) = 0, (F.9)

which leads to

x = Bπx− α

[
π(a|s)
πβ(a|s)

− 1

]
. (F.10)

F.4. Conservative Bellman Consistency Equations

Q Functions. Considering the matrix form and point-wise Bellman consistency equation, we have

Qπ = r+ γPπQπ =⇒ Qπ = (I− γPπ)
−1

r (F.11)
Qπ(s, a) = r(s, a) + γ [PπQπ](s,a) , ∀(s, a) ∈ S ×A, (F.12)

where we use [PπQπ](s,a) to denote the entries (s, a)th of the matrix PπQπ . Now recall the point-wise Bellman consistency
equation of the CQL objective equation F.1, we also have the following point-wise consistency equation:

Qπ
α,β(s, a) = r(s, a) + γ

[
PπQπ

α,β

]
(s,a)

− α

[
π(a|s)
πβ(a|s)

− 1

]
, ∀(s, a) ∈ S ×A, (F.13)

= rα,β + γ [PπQπ](s,a) , (F.14)

where

rπα,β(s, a) := r(s, a)− α

[
π(a|s)
πβ(a|s)

− 1

]
, ∀(s, a) ∈ S ×A. (F.15)

Hence, we can similarly have the bellman-consistency equation of CQL in matrix form:

Qα,β = rα,β + γPπQπ
α,β =⇒ Qπ

α,β = (I− γPπ)
−1

rα,β . (F.16)

Value Functions. Now considering the Bellman Consistency equation of the Value function, we have

Vπ = rπ + γPπV
π =⇒ Vπ = (I− γPπ)

−1rπ (F.17)

Vπ
α,β = rπα,β + γPπ =⇒ Vπ

α,β = (I− γPπ)
−1rπα,β . (F.18)

Summary. In summary, for a given reward function r, a fixed policy π, a behavior policy πβ , and a fixed constant α, the
policy evaluation for CQL satisfies:

Vπ
α,β = (I− γPπ)

−1rπα,β = (I− γPπ)
−1Ππ [r− α (π/πβ − 1)]

Qπ
α,β = (I− γPπ)

−1
rα,β = (I− γPπ)

−1
[r− α (π/πβ − 1)] .

(F.19)

where π/πβ ∈ R|S|×|A| is a vector whose (s, a) entry denotes π(a|s)/πβ(a|s) and 1 = {1, 1, . . . , 1}⊤ ∈ R|S||A|.
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F.5. Proof of Theorem F.1

Theorem F.3 (Invariant Conservative Q Functions). Let Qπ
α,β and Qπ

α′,β′ denote the conservative value function from
solving the conservative bellman consistency equation (Equation F.1 and F.19) with regularizers α, α′ and behavior policies
πβ , πβ′ respectively. Then for a given policy π, Qπ

α,β(s) = Qπ
α′,β′(s),∀s ∈ S if and only if

α

πβ(a|s)
− α′

πβ′(a|s)
=

α− α′

π(a|s)
, ∀(s, a) ∈ S ×A. (F.20)

Proof. By the conservative Bellman Consistency equation F.19, we know that changing a behavior policy from πβ to πβ′

and changing the regularize from α to α′, we have

Qπ
α,β −Qπ

α′,β′ = (I− γPπ)−1(rπα,β − rπα′,β′)

= (I− γPπ)−1

[
α

(
π

πβ
− 1

)
− α′

(
π

πβ′
− 1

)]
.

(F.21)

Since (I− γP)−1 is a square and full rank matrix, Qπ
α,β −Qπ

α′,β′ = 0 holds if and only if

α

(
π

πβ
− 1

)
− α′

(
π

πβ′
− 1

)
= 0 =⇒ α

πβ(a|s)
− α′

πβ′(a|s)
=

α− α′

π(a|s)
, ∀(s, a) ∈ S ×A, (F.22)

which finishes the proof.

G. Key Results of HyQ (Song et al., 2022)
In this section, we restate the major theoretical results of Hy-Q (Song et al., 2022) for completeness.

Algorithm 3 Hybrid Q-learning using offline and online data (Song et al., 2022)
1: Input: Value function class: F , # iterations: T , offline dataset Dν

h of size moff for h ∈ [H − 1].
2: Initialize f1

h(s, a) = 0,∀(s, a).
3: for t = 1, . . . , T do
4: Let πt be the greedy policy w.r.t. f t ▷ I.e.,πt

h(s) = argmaxa f
t
h(s, a).

5: For each h, collect mon online tuples Dt
h ∼ dπ

t

h ▷ online data collection
6: Set f t+1

H (s, a) = 0,∀(s, a).
7: for h = H − 1, . . . 0 do ▷ FQI with offline and online data
8: Estimate f t+1

h using least squares regression on the aggregated data:

f t+1
h ← argmin

f∈Fh

{
ÊDν

h

[
f(s, a)− r −max

a′
f t+1
h+1(s

′, a′)

]2

+

t∑
τ=1

ÊDτ
h

[
f(s, a)− r −max

a′
f t+1
h+1(s

′, a′)

]2
}

(G.1)

9: end for
10: end for
11: Output: πT

G.1. Assumptions

Assumption G.1 (Realizability and Bellman completeness). For any h, we have Q⋆
h ∈ Fh, and additionally, for any

fh+1 ∈ Fh+1, we have T fh+1 ∈ Fh.

Definition G.2 (Bilinear model Du et al. (2021)). We say that the MDP together with the function class F is a bilinear
model of rand d of for any h ∈ [H − 1], there exist two (known) mappings Xh,Wh : F 7→ Rd with maxf ∥Xh(f)∥2 ≤ BX

and maxf ∥Wh(f)∥2 ≤ BW such that

∀f, g ∈ F :
∣∣∣Es,a∼dπf

h

[gh(s, a)− T gh+1(s, a)]
∣∣∣ = |⟨Xh(f),Wh(g)⟩| . (G.2)
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Definition G.3 (Bellman error transfer coefficient). For any policy π, we define the transfer coefficient as

Cπ := max

0,max
f∈F

∑H−1
h=0 Es,a∼dπ

h
[T fh+1(s, a)− fh(s, a)]√∑H−1

h=0 Es,a∼νh
(T fh+1(s, a)− fh(s, a))2

 . (G.3)

G.2. Main Theorem of Hy-Q

Theorem G.4 (Theorem 1 of Song et al. (2022)). Fix δ ∈ (0, 1),moff = T,mon = 1, and suppose that the underlying
MDP admits Bilinear rank d (Definition G.2), and the function class F satisfies Assumption G.1. Then with probability at
least 1− δ, Algorithm 3 obtains the following bound on cumulative suboptimality w.r.t. any comparator policy πe:

T∑
t=1

V πe

− V πt

= Õ
(
max{Cπe , 1}VmaxBXBW

√
dH2T · log(|F|/δ)

)
. (G.4)

G.3. Key Lemmas

G.3.1. LEAST SQUARES GENERALIZATION AND APPLICATIONS

Lemma G.5 (Lemma 7 of Song et al. (2022), Online and Offline Bellman Error Bound for FQI). Let δ ∈ (0, 1) and
∀h ∈ [H − 1], t ∈ [T ], let f t+1

h be the estimated value function for time step h computed ia least square regression using
samples in the dataset {Dν

h,D1
h, . . . ,Dt

h} in equation G.1 in the iteration t of Algorithm 3. Then with probability at least
1− δ, for any h ∈ [H − 1] and t ∈ [T ], we have∥∥f t+1

h − T f t+1
h+1

∥∥2
2,νh

≤ 1

moff
256V 2

max log(2HT |F|/δ) =: ∆off (G.5)

and
t∑

τ=1

∥∥f t+1
h − T f t+1

h+1

∥∥2
2,µτ

h

≤ 1

mon
256V 2

max log(2HT |F|/δ) =: ∆on, (G.6)

where νh denotes the offline data distribution at time h, and the distribution µτ
h ∈ ∆(s, a) is defined such that s, a ∼ dπ

τ

h .

G.3.2. BOUNDING OFFLINE SUBOPTIMALITY VIA PERFORMANCE DIFFERENCE LEMMA

Lemma G.6 (Lemma 5 of Song et al. (2022), performance difference lemma of w.r.t. πe). Let πe = (πe
0, . . . , π

e
H−1) be a

comparator policy and consider any value function f = (f0, . . . , fH−1), where fh : S ×A 7→ R. Then we have

Es∼d0

[
V πe

0 (s)−max
a

f0(s, a)
]
≤

H−1∑
i=1

Es,a∼dπe
i

[T fi+1(s, a)− fi(s, a)] , (G.7)

where we define fH(s, a) = 0,∀(s, a).

G.3.3. BOUNDING ONLINE SUBOPTIMALITY VIA PERFORMANCE DIFFERENCE LEMMA

Lemma G.7 (Lemma 4 of Song et al. (2022), performance difference lemma). For any function f = (f0, . . . , fH−1) where
fh : S ×A 7→ R and h ∈ [H − 1], we have

Es∼d0

[
max

a
f0(s, a)− V πf

0 (s)
]
≤

H−1∑
h=0

∣∣∣Es,a∼dπf

h

[fh(s, a)− T fh+1(s, a)]
∣∣∣ , (G.8)

where we define fH(s, a) = 0,∀s, a.
Lemma G.8 (Lemma 8 of Song et al. (2022), upper bounding bilinear class). For any t ≥ 2 and h ∈ [H − 1], we have

∣∣〈Wh(f
t), Xh(f

t)
〉∣∣ ≤ ∥∥Xh(f

t)
∥∥
Σ−1

t−1;h

√√√√t−1∑
i=1

E
s,a∼dfi

h

[(
f t
h − T f t

h+1

)2]
+ λB2

W , (G.9)

where Σt−1;h is defined as equation B.5 and we use df
i

h to denote dπ
fi

h .
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Lemma G.9 (Lemma 6 of Song et al. (2022), bounding the inverse covariance norm). Let Xh(f
1), . . . , Xh(f

T ) ∈ Rd be a
sequence of vectors with ∥Xh(f

t)∥2 ≤ BX < ∞,∀t ≤ T . Then we have

T∑
t=1

∥∥Xh(f
t)
∥∥
Σ−1

t−1;h

≤

√
2dT log

(
1 +

TB2
X

λd

)
, (G.10)

where we define Σt;h :=
∑t

τ=1 Xh(f
τ )Xh(f

τ )T + λI and we assume λ ≥ B2
X holds ∀t ∈ [T ].


