

000 001 REST-KV: ROBUST KV CACHE EVICTION WITH 002 LAYER-WISE OUTPUT RECONSTRUCTION AND 003 SPATIAL-TEMPORAL SMOOTHING 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010

011 ABSTRACT 012

013 Large language models (LLMs) face growing challenges in efficient generative in-
014 ference due to the increasing memory demands of Key-Value (KV) caches, espe-
015 cially for long sequences. Existing eviction methods typically retain KV pairs with
016 high attention weights but overlook the impact of attention redistribution caused
017 by token removal, as well as the spatial-temporal dynamics in KV selection. In this
018 paper, we propose **ReST-KV**, a robust KV eviction method that combines layer-
019 wise output **Re**construction and **S**tatial-**T**emporal smoothing to provide a more
020 comprehensive perspective for the KV cache eviction task. Specifically, ReST-KV
021 formulates KV cache eviction as an optimization problem that minimizes output
022 discrepancies through efficient layer-wise reconstruction. By directly modeling
023 how each tokens removal affects the model output, our method naturally captures
024 attention redistribution effects, going beyond simplistic reliance on raw attention
025 weights. To further enhance robustness, we design exponential moving average
026 smoothing to handle temporal variations and an adaptive window-based mecha-
027 nism to capture spatial patterns. Our method, ReST-KV, significantly advances
028 performance on long-context benchmarks. It surpasses state-of-the-art baselines
029 by 2.58% on LongBench and 15.2% on RULER. Additionally, ReST-KV consis-
030 tently outperforms existing methods on Needle-in-a-Haystack and InfiniteBench,
031 all while achieving a remarkable $10.61 \times$ reduction in decoding latency at 128k
032 context length. The code is included in the supplementary material and is de-
033 signed for easy reproduction.
034

035 1 INTRODUCTION 036

037 Large language models (LLMs)(Achiam et al., 2023; Anthropic, 2023; Dubey et al., 2024; Mis-
038 tralAI, 2023) have significantly advanced natural language processing (NLP). These models have
039 enabled breakthroughs in various tasks, such as document summarization(Zhang et al., 2024a),
040 multi-turn dialogues (Du et al., 2021), retrieval augmentation (Yao et al., 2022), and code genera-
041 tion (Roziere et al., 2023). Recent models like GPT-4 (Achiam et al., 2023), Claude 3.5 (Anthropic,
042 2023), and Llama-3.1 (Dubey et al., 2024) have extended their context lengths beyond 128K tokens,
043 allowing for long-context applications. However, as context length increases, the memory required
044 to store KV cache grows rapidly, potentially reaching hundreds of gigabytes when handling longer
045 sequences. Thus, optimizing KV cache during inference, without retraining, is crucial for improving
046 both efficiency and scalability.

047 KV cache eviction, which identifies and removes less important KV pairs, is a promising approach
048 to reduce memory consumption and enhance computational efficiency (Li et al., 2024a). Current
049 methods typically rely on fixed attention patterns (Han et al., 2024; Ge et al., 2023) or use statistical
050 information from attention weights (Zhang et al., 2023; Li et al., 2024b; Cai et al., 2024) to estimate
051 the importance of KV pairs. However, as shown in Figure 1, these approaches focus solely on
052 retaining query-key pairs with high similarity scores, while ignoring the attention redistribution
053 effects caused by removing certain pairs. This redistribution can alter the overall attention landscape,
054 leading to suboptimal retention decisions and degraded performance, especially under tight cache
055 constraints.

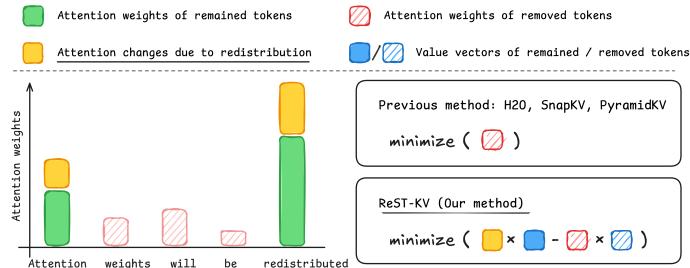


Figure 1: Comparison between ReST-KV and existing methods. Unlike prior approaches that overlook attention redistribution, ReST-KV considers its impact to improve KV retention.

In this paper, we propose ReST-KV, a robust KV cache eviction method that accounts for the effects of attention redistribution and the spatial-temporal dynamics in KV selection. We revisit the KV cache eviction problem and reformulate it as preserving the attention output at each layer under fixed memory constraints. Specifically, we measure the reconstruction loss caused by removing each individual KV pair, and use it as an eviction indicator: the larger the loss, the more important the KV pair. This loss implicitly captures the impact of attention redistribution caused by the removal. Moreover, our empirical observations show that KV importance varies significantly across both time and space. To further improve robustness, we introduce two smoothing mechanisms: (1) an exponential moving average to model temporal dynamics by emphasizing more recent KV pairs, and (2) an adaptive window-based spatial smoothing method, which adjusts for varying window sizes and offsets by estimating the spatial dynamics.

By evaluating on a wide range of downstream tasks including LongBench, RULER, Needle-in-a-Haystack, and InfiniteBench, we demonstrate that ReST-KV consistently outperforms state-of-the-art baselines, especially under low cache budgets and demonstrates more robustness in multi-turn dialogue scenarios. We extensively evaluate ReST-KV on challenging long-context benchmarks such as LongBench, RULER, Needle-in-a-Haystack, and InfiniteBench. Our results show it consistently surpasses state-of-the-art baselines, with particularly strong gains of 2.58% on LongBench and 15.2% on RULER. ReST-KV also exhibits greater robustness in multi-turn dialogue and efficiency under constrained cache budgets. For decoding, it achieves a $10.61 \times$ latency reduction at 128k context length when integrated with FlashAttention-2. Importantly, ReST-KV is fully compatible with existing prefill sparse attention methods, leading to a $2.37 \times$ TTFT speedup. In summary, we make the following contributions:

- A novel formulation of KV eviction treating it as layer-wise output reconstruction, enabling a new importance indicator that captures attention redistribution effects.
- A spatial-temporal smoothing mechanism combining exponential moving average and adaptive windowing, significantly enhancing robustness in KV selection.
- Extensive experiments show that ReST-KV outperforms state-of-the-art baselines under low cache budgets and reduces decoding latency by up to $10 \times$ at a 128k context length.

2 RELATED WORK

2.1 KV CACHE EVICTION

KV cache eviction, a prominent method for optimizing KV cache during inference without retraining, alleviates memory and latency issues in long-context LLMs (Li et al., 2024a). Early eviction methods focused on specific attention patterns, such as StreamingLLM (Xiao et al., 2023) and LM-Infinite (Han et al., 2024), retain only the initial and local tokens. While more flexible approaches like FastGen (Ge et al., 2023) and RazorAttention (Tang et al., 2024) were developed, they still rely on predefined patterns and risk ignoring important tokens. Subsequent studies introduced eviction indicators to assess the importance of KV cache entries, often using attention weights. For instance, H2O (Zhang et al., 2023) uses cumulative attention weights, and SnapKV (Li et al., 2024b) pools the average attention weight over the last window. In addition to indicator improvements, some research has explored non-uniform layer-wise and head-wise budget allocation strategies. PyramidKV (Cai et al., 2024) and PyramidInfer (Yang et al., 2024) allocate budget in a pyramid fashion, while DynamicKV (Zhou et al., 2024), D2O (Wan et al., 2024) and CAKE (Qin et al., 2025) adaptively allocate budget based on layer-specific information. AdaKV (Feng et al., 2024) adjusts the

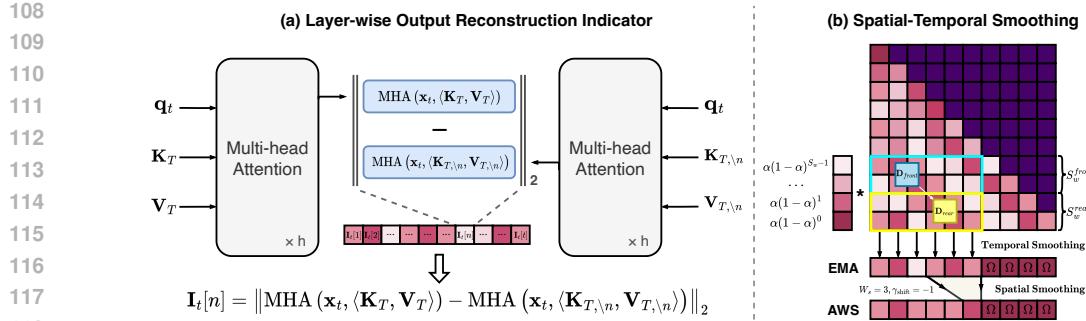


Figure 2: Overview of ReST-KV. (a) Layer-wise output reconstruction quantifies each KV pairs impact on output error as its eviction indicator. (b) Two smoothing mechanisms enhance robustness: exponential moving average for temporal smoothing and an adaptive window-based approach for spatial smoothing.

budget per head based on output ℓ_1 loss bounds. Our work focuses on the limitations of existing eviction indicators, which primarily rely on attention weights derived from query-key interactions and overlook the combined impact of value vectors and spatial-temporal dynamics. Furthermore, our approach is fully compatible with existing layer-wise and head-wise budget allocation strategies.

2.2 ATTENTION DYNAMICS

While attention is central to the success of Transformers, it also poses scalability challenges in long-context settings due to its quadratic complexity. Recent work has therefore investigated attention dynamics specifically, the spatiotemporal patterns and redistribution of attention weights as a means to enable more efficient inference.

Several studies reveal structured attention behaviors. MIference (Jiang et al., 2024) discovers a "vertical-slash" pattern, where attention gradually shifts across tokens over time, indicating evolving token importance. FlexPrefill (Lai et al., 2025) similarly identifies consistent attention trajectories during prefill. Keyformer (Adnan et al., 2024) examines how KV eviction distorts attention distributions and proposes normalization to mitigate such shifts.

Distinct from the above methods, we reformulate KV cache eviction by explicitly modeling attention redistribution and spatiotemporal dynamics. Rather than relying solely on static attention weights, our approach captures temporal evolution and layer-wise shifts in attention, enabling more robust importance estimation and significantly improving performance under memory constraints.

3 METHODOLOGY

3.1 PRELIMINARY

LLMs typically decode text in an auto-regressive manner, which allows them to generate high-quality, contextually coherent text. However, this decoding process is computationally expensive, as it involves a high degree of repetitive calculations, making it challenging to apply in real-time or large-scale scenarios.

KV cache, a widely recognized technique, reduces redundant computation by storing previously computed keys and values. In this section, we describe the attention computation under the KV cache framework, laying the foundation for our discussion on KV cache eviction. For clarity, we focus on a single attention head and layer, omitting footnotes. At each decoding step t , the KV cache stores previously computed keys and values $\langle \mathbf{K}_{1:t-1}, \mathbf{V}_{1:t-1} \rangle$ for $X[1:t-1]$, enabling reuse in future steps. For convenience, we denote $\mathbf{K}_{1:t-1}$ as \mathbf{K}_{T-1} and $\mathbf{V}_{1:t-1}$ as \mathbf{V}_{T-1} . Consequently, the model requires only the current token \mathbf{x}_t to generate \mathbf{x}_{t+1} , rather than the full sequence $X = [\mathbf{x}_1, \dots, \mathbf{x}_t]$. Formally, at step t , the query \mathbf{q}_t , key \mathbf{k}_t , and value \mathbf{v}_t are computed as:

$$\mathbf{q}_t = \mathbf{x}_t \mathbf{W}_Q, \mathbf{k}_t = \mathbf{x}_t \mathbf{W}_K, \mathbf{v}_t = \mathbf{x}_t \mathbf{W}_V, \quad (1)$$

where $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$ are the components of the $\mathbf{Q}, \mathbf{K}, \mathbf{V}$ weight matrices corresponding to a single attention head. The currently computed \mathbf{k}_t and \mathbf{v}_t will be concatenated with the previously

162 cached keys and values, and used in the attention computation for decoding step t :
 163

$$\mathbf{K}_T = \text{Concat}(\mathbf{K}_{T-1}, \mathbf{k}_t), \mathbf{V}_T = \text{Concat}(\mathbf{V}_{T-1}, \mathbf{v}_t), \quad (2)$$

164 where \mathbf{K}_T and \mathbf{V}_T are the entire sequences of keys and values at decoding step t . The attention
 165 output \mathbf{z}_t for the token \mathbf{x}_t at step t is calculated as:
 166

$$\mathbf{z}_t = \text{softmax} \left(\frac{\mathbf{q}_t \mathbf{K}_T^\top}{\sqrt{d_k}} \right) \mathbf{V}_T = \mathbf{A}_t \mathbf{V}_T, \quad (3)$$

167 where \mathbf{A}_t represents the attention weights for the token \mathbf{x}_t and is used by existing methods to
 168 compute eviction indicators. d_k represents the dimension of the key vectors in the attention mechanism.
 169

170 Finally, the output of a single head in the multi-head attention can be expressed as:
 171

$$\text{MHA}(\mathbf{x}_t, \langle \mathbf{K}_T, \mathbf{V}_T \rangle) = \mathbf{z}_t \mathbf{W}_O, \quad (4)$$

172 where \mathbf{W}_O is the weight matrix of output projection corresponding to a single attention head.
 173

175 3.2 LAYER-WISE RECONSTRUCTION INDICATOR

177 We reformulate KV cache eviction as preserving the attention output distribution at each layer under
 178 fixed memory constraints, naturally capturing the effects of attention redistribution. We formalize
 179 this paradigm as *layer-wise reconstruction*, a framework that aligns with the transformer’s inherent
 180 layer-wise computation flow. Specifically, for a single layer, the subproblem is expressed as:
 181

182 **Definition 3.1.** Given a cache budget B for a single layer, the task is to select a series of important
 183 KV cache entries $\langle \hat{\mathbf{K}}_T, \hat{\mathbf{V}}_T \rangle$ containing up to B elements from the total cache entries $\langle \mathbf{K}_T, \mathbf{V}_T \rangle$ at
 184 the step t , with the goal of maximizing the retention of the original MHA output. We use ℓ_2 distance
 185 to calculate reconstruction error, the objective for a single attention head can be defined as:
 186

$$\begin{aligned} \underset{(\hat{\mathbf{K}}_T, \hat{\mathbf{V}}_T)}{\text{argmin}} \quad & \left\| \text{MHA}(\mathbf{x}_t, \langle \mathbf{K}_T, \mathbf{V}_T \rangle) - \text{MHA}(\mathbf{x}_t, \langle \hat{\mathbf{K}}_T, \hat{\mathbf{V}}_T \rangle) \right\|_2 \\ \text{s.t.} \quad & \left| \langle \hat{\mathbf{K}}_T, \hat{\mathbf{V}}_T \rangle \right| \leq B, \end{aligned} \quad (5)$$

187 where $\left| \langle \hat{\mathbf{K}}_T, \hat{\mathbf{V}}_T \rangle \right|$ is the number of selected KV pairs.
 188

189 To efficiently compute Eq.5, we adopt a greedy selection strategy that retains the top- B KV pairs
 190 estimated to have the greatest impact on the attention output. Specifically, for the n -th KV pair, its
 191 importance is measured by the increase in reconstruction error when it is removed, which based on
 192 the local linearity assumptions (Molchanov et al., 2016). The eviction indicator is defined as:
 193

$$\begin{aligned} \mathbf{I}_t[n] = & \left\| \text{MHA}(\mathbf{x}_t, \langle \mathbf{K}_T, \mathbf{V}_T \rangle) \right. \\ & \left. - \text{MHA}(\mathbf{x}_t, \langle \mathbf{K}_{T, \setminus n}, \mathbf{V}_{T, \setminus n} \rangle) \right\|_2, \end{aligned} \quad (6)$$

194 where $\langle \mathbf{K}_{T, \setminus n}, \mathbf{V}_{T, \setminus n} \rangle$ represents the set of cache with the n -th KV pair removed.
 195

196 By introducing Eq. 3 and Eq. 4 for derivation, Eq. 6 can be simplified as follows:
 197

$$\mathbf{I}_t[n] = \frac{\mathbf{A}_t[n]}{1 - \mathbf{A}_t[n]} \left\| \text{MHA}(\mathbf{x}_t, \langle \mathbf{K}_T, \mathbf{V}_T \rangle) - \mathbf{v}_n \mathbf{W}_O \right\|_2, \quad (7)$$

198 where $\mathbf{A}_t[n]$ represents the attention weights of the query \mathbf{q}_t with respect to the key \mathbf{k}_n , and \mathbf{v}_n
 199 represents the n -th value in the value cache \mathbf{V}_T .
 200

201 Traditional eviction indicators only considered $\mathbf{A}_t[n]$, neglecting the effects of attention redistribu-
 202 tion. Eq. 7 demonstrates that the importance of a KV pair depends on two mechanisms:
 203

- 204 • **Nonlinear Attention Reweighting:** The first term $\frac{\mathbf{A}_t[n]}{1 - \mathbf{A}_t[n]}$ acts as a monotonic nonlinear
 205 amplifier in $(0, 1)$. While preserving the conventional principle that higher attention weights
 206 $\mathbf{A}_t[n]$ indicate stronger retention priority, this transformation introduces curvature to better
 207 discriminate between high-competition KV pairs compared to linear scaling in prior methods.
 208
- 209 • **Redistribution Sensitivity:** The second term $\left\| \text{MHA}(\cdot) - \mathbf{v}_n \mathbf{W}_O \right\|_2$ captures the redistribu-
 210 tion of attention after removing the n -th KV pair. It reflects how much the remaining KV
 211 pairs fail to compensate for the excluded value in reconstructing the MHA output. A smaller
 212 discrepancy indicates that attention can be effectively redistributed to preserve the output, thus
 213 signaling lower importance of the removed KV pair.
 214

215 The additional analysis and the derivation of Eq. 7 can be found in Appendix A and Eq. 21.

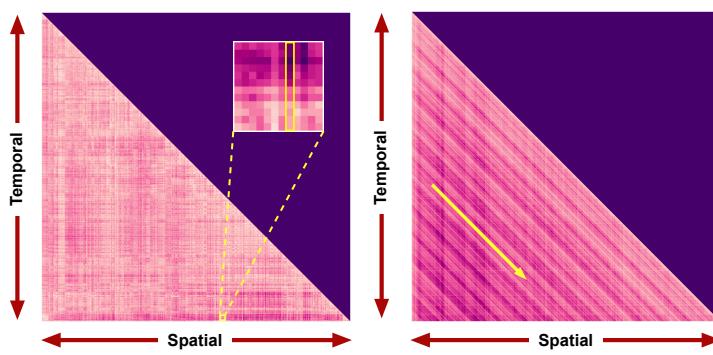


Figure 3: Visualization analysis of the spatial-temporal dynamics of the output reconstruction indicator. The left plot shows dynamic temporal variations in KV pair importance over steps, with the zoomed-in view highlighting a KV pairs gradual decline in importance. The right plot reveals spatial shifts, where similar importance patterns emerge at shifted positions.

3.3 SPATIAL-TEMPORAL SMOOTHING

To enhance the robustness of KV pair selection during the prefill stage, we analyze the spatial-temporal dynamics of the KV pairs’ reconstruction error (Eq. 7). From Figure 3, we observe two key characteristics: (1) The importance of KV pairs exhibits dynamic temporal variations (i.e., the fluctuating patterns of $\mathbf{I}_1[n], \mathbf{I}_2[n], \dots, \mathbf{I}_t[n]$ along the temporal dimension, and (2) simultaneously demonstrates dynamic spatial shifts where similar importance distributions emerge across shifted positions (e.g., $\mathbf{I}_{t-k}[n - kN], \dots, \mathbf{I}_{t-1}[n - N], \mathbf{I}_t[n]$ exhibit analogous patterns).

Leveraging these observations, we introduce two novel smoothing mechanisms to enhance the robustness of KV pair selection, as illustrated in Figure 2(b). These mechanisms address temporal variations and spatial shifts in KV pair importance, ensuring a more stable and reliable selection process. By applying these techniques, we aim to reduce short-term fluctuations and capture long-term trends, ultimately improving the performance of the KV cache eviction.

Exponential Moving Average Temporal Smoothing. Inspired by SnapKV (Li et al., 2024b), we use a recent query window S_w to assess the importance of KV pairs. To model temporal dynamics, we apply exponential moving average (EMA) smoothing to the importance of KV pairs, which assigns higher weights to recent queries while dampening earlier fluctuations. To apply this smoothing over a limited window of recent queries, we define the temporal smoothing as:

$$\hat{\mathbf{I}}_t[n] = \begin{cases} \text{EMA}(\mathbf{I}_{t-S_w:t}[n]), & \text{if } n < t - S_w, \\ \Omega, & \text{otherwise,} \end{cases} \quad (8)$$

where $\hat{\mathbf{I}}_t[n]$ represents the eviction indicator with temporal smoothing. $\text{EMA}(\cdot)$ captures the temporal variation in importance. We assign an arbitrarily large value Ω to the most recent S_w tokens to ensure their preservation.

The exponential moving average $\text{EMA}(\cdot)$ is defined as:

$$\text{EMA}(\mathbf{I}_{t_1:t_2}[n]) = \begin{cases} \alpha \mathbf{I}_{t_2}[n] + (1 - \alpha) \text{EMA}(\mathbf{I}_{t_1:t_2-1}[n]), & \text{if } t_1 < t_2, \\ \mathbf{I}_{t_1}[n], & \text{elif } t_1 = t_2, \end{cases} \quad (9)$$

where $\text{EMA}(\mathbf{I}_{t_1:t_2}[n])$ represents the exponential moving average of the reconstruction errors $\mathbf{I}_{t_1}[n], \dots, \mathbf{I}_{t_2}[n]$ computed over the steps from t_1 to t_2 . α is the smoothing factor that controls the weight of the current reconstruction error $\mathbf{I}_{t_2}[n]$ relative to the previous error $\text{EMA}(\mathbf{I}_{t_1:t_2-1}[n])$ in the update process.

Adaptive Window-Based Spatial Smoothing. To capture spatial shifts in KV importance over time, we split the observation window into two halves: S_w^{front} and S_w^{rear} . For each half, we compute the average index of the top- B important KV pairs:

$$\mathbf{D}_{\text{front}} = \frac{2}{B \cdot S_w} \sum_{t \in S_w^{\text{front}}} \sum_B \text{argmax}_B (\mathbf{I}_t), \quad (10)$$

270 where $\frac{2}{B \cdot S_w}$ is a normalization factor. S_w^{front} denotes the first half of queries within the input window
 271 S_w . \mathbf{D}_{rear} is computed similarly for the second half of the queries. The difference $\Delta D = \mathbf{D}_{\text{rear}} -$
 272 $\mathbf{D}_{\text{front}}$ reflects how KV importance shifts across positions. We use this signal to adaptively adjust
 273 both the window size and shift:

$$274 \quad W_s = 2 \cdot \left\lfloor \frac{|\mathbf{D}_{\text{rear}} - \mathbf{D}_{\text{front}}|}{\beta} \right\rfloor + 1, \quad (11)$$

$$277 \quad \gamma_{\text{shift}} = \begin{cases} \lfloor \frac{D_{\text{front}} - D_{\text{rear}}}{\beta} \rfloor, & \text{if } D_{\text{front}} - D_{\text{rear}} > 0, \\ \lfloor \frac{D_{\text{front}} - D_{\text{rear}}}{\beta} \rfloor + 1, & \text{if } D_{\text{front}} - D_{\text{rear}} \leq 0, \end{cases} \quad (12)$$

280 where W_s is the window size and γ_{shift} is the shift of the sliding window. β is a scaling factor that
 281 determines the granularity of the sliding window's movement, controlling the size of the steps taken
 282 when calculating the window shift and size. $\lfloor \cdot \rfloor$ represents the floor function, which rounds a number
 283 down to the nearest integer.

284 In summary, the final eviction indicator, which incorporates both layer-wise output reconstruction
 285 and spatial-temporal smoothing, is as follows:

$$286 \quad 287 \quad \mathcal{I}_t[n] = \frac{\sum_{k=-\lfloor W_s/2 \rfloor + \gamma_{\text{shift}}}^{\lfloor W_s/2 \rfloor + \gamma_{\text{shift}}} \hat{\mathbf{I}}_t[k]}{W_s}. \quad (13)$$

289 The selected $\langle \hat{\mathbf{K}}_T, \hat{\mathbf{V}}_T \rangle$ is the subset of the original KV pairs, defined as:
 290

$$291 \quad \hat{\mathbf{K}}_T = \mathbf{K}_T[\mathbf{D}_t, :], \quad \hat{\mathbf{V}}_T = \mathbf{V}_T[\mathbf{D}_t, :], \quad \mathbf{D}_t = \operatorname{argmax}_B (\mathcal{I}_t), \quad (14)$$

293 where \mathbf{D}_t denotes the indices of the top B KV pairs based on the eviction indicator \mathcal{I}_t . The same
 294 operation is applied to each head and layer, and different KV pairs can be selected for different heads
 295 in each layer.

296 4 EXPERIMENTS

298 4.1 EXPERIMENTAL SETTINGS

300 **Backbone LLMs.** We evaluate ReST-KV on five open-source LLMs spanning two mainstream
 301 attention architectures: (1) **Multi-head attention**, Llama2-Chat (Touvron et al., 2023) and Gemma-
 302 Instruct (Team et al., 2024); (2) **Grouped-query attention**, Llama3-Instruct (Dubey et al., 2024),
 303 Mistral-Instruct-v0.3 (Jiang et al., 2023), and Qwen2.5-Instruct (Team, 2024).

304 **Baseline Methods.** We compare ReST-KV with four baselines: (1) Fixed Attention Patterns:
 305 StreamingLLM (Xiao et al., 2023); (2) Eviction Indicator: H2O (Zhang et al., 2023), TOVA (Oren
 306 et al., 2024), SnapKV (Li et al., 2024b). We also incorporate adaptive budget strategies from Pyra-
 307 midKV (Cai et al., 2024) and AdaKV (Feng et al., 2024) into our method to show compatibility.

309 **Evaluating Tasks.** We evaluate ReST-KV on three prominent benchmarks: (1) LongBench (Bai
 310 et al., 2023), which tests long-context understanding across 16 datasets spanning six categories; and
 311 (2) RULER (Hsieh et al., 2024), a challenging long-context benchmark consisting of 4 categories
 312 and 13 complex tasks; (3) Needle-in-a-Haystack (Liu et al., 2024a), designed to assess the ability
 313 of models to retrieve key information from long sequences; (4) InfiniteBench (Zhang et al., 2024b),
 314 includes 10 tasks designed to test various aspects of long-context processing. Detailed results are
 315 reported in Appendix J.

316 **Implementation Details.** We evaluate ReST-KV and all baselines under varying cache budgets
 317 ($B_{\text{total}} = nL$, with $n \in [64, 1024]$), where n denotes the number of KV pairs per layer across L
 318 layers. To ensure fairness, token eviction is performed only once during the prefilling phase. All
 319 methods, except TOVA, are implemented based on the codebase from (Cai, 2023). Experiments are
 320 run on NVIDIA A800 80GB GPUs. Further details are provided in Appendix B.

321 4.2 EVALUATIONS ON LONGBENCH DATASET

323 We evaluate ReST-KV on 16 datasets from LongBench. As shown in Figure 4, ReST-KV consis-
 324 tently outperforms all baselines across different cache budget settings, with especially strong gains

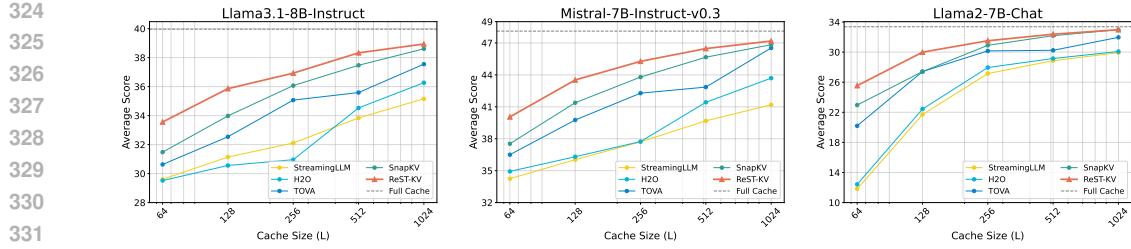


Figure 4: Average score across 16 datasets of LongBench under various cache budgets. ReST-KV outperforms the baseline across different models and settings.

Table 1: Performance comparison across 16 datasets of LongBench. The best result is highlighted in **bold**, and the second-best is underlined. ReST-KV achieves the best performance in most cases.

Method	Single-Document QA				Multi-Document QA				Summarization				Few-shot Learning				Synthetic		Code	
	NtrvQA	Qasper	MF-een	HotpotQA	2WikiMOA	Musique	GovReport	QMSam	MultiNews	TREC	TriviaQA	SAMSum	PCount	Pre	Lcc	RB ^{XP}	Avg.			
Llama-3.1-8B-Instruct, $B_{\text{total}} = 64L$																				
StreamingLLM	7.65	5.08	14.14	10.93	12.64	6.86	16.57	18.93	16.30	38.50	83.13	34.65	9.78	96.28	54.16	48.21	29.61			
H2O	12.23	5.12	15.12	11.51	10.14	6.23	17.23	19.51	17.79	39.15	81.51	36.12	8.12	95.12	51.25	47.12	29.52			
TOVA	18.52	6.12	17.32	12.15	12.51	7.35	16.24	20.41	16.34	38.41	82.61	36.16	8.14	95.23	55.21	47.35	30.63			
SnapKV	<u>19.90</u>	5.78	<u>18.38</u>	<u>13.51</u>	<u>14.42</u>	8.52	<u>17.35</u>	<u>20.44</u>	<u>17.33</u>	41.00	<u>85.37</u>	<u>37.63</u>	<u>8.93</u>	91.08	55.09	48.88	<u>31.48</u>			
ReST-KV	22.43	7.19	19.25	14.11	15.04	<u>7.97</u>	20.56	21.10	19.15	53.50	88.23	40.21	8.46	93.90	56.74	<u>48.77</u>	<u>33.54</u>			
Llama-3.1-8B-Instruct, $B_{\text{total}} = 512L$																				
StreamingLLM	19.15	6.47	15.02	10.94	12.58	6.23	23.66	20.05	23.31	57.50	87.70	41.86	10.25	90.74	62.39	53.61	33.84			
H2O	26.23	7.34	20.51	11.52	13.52	7.34	23.23	21.24	23.14	58.50	86.12	40.15	7.25	91.02	61.23	54.12	34.53			
TOVA	27.34	8.34	22.45	12.25	14.51	8.42	24.23	22.13	22.25	58.50	89.31	40.51	8.24	93.14	62.23	55.61	35.59			
SnapKV	<u>28.02</u>	9.83	24.84	13.77	15.40	<u>10.21</u>	<u>25.13</u>	<u>22.73</u>	<u>24.25</u>	65.00	92.34	41.69	8.42	96.31	64.30	57.28	37.47			
ReST-KV	32.01	10.73	25.23	15.91	15.85	10.25	26.47	23.23	24.79	69.00	<u>91.62</u>	42.59	8.40	97.66	<u>63.48</u>	<u>56.03</u>	<u>38.33</u>			
Full	32.02	13.12	27.52	16.60	16.41	11.41	34.59	23.41	26.89	73.00	91.65	43.80	7.18	97.73	65.12	58.89	39.96			
Mistral-7B-Instruct-v0.3, $B_{\text{total}} = 64L$																				
StreamingLLM	20.37	20.56	24.62	38.87	32.47	17.68	15.48	19.84	15.81	<u>39.50</u>	82.77	36.72	5.50	80.00	49.77	47.90	34.24			
H2O	20.51	21.52	25.12	40.12	33.12	18.34	16.23	19.12	16.24	38.50	83.12	37.23	6.00	85.50	50.12	48.12	34.93			
TOVA	<u>22.51</u>	22.24	37.23	41.12	34.10	19.52	17.21	19.23	16.27	38.50	85.12	38.51	<u>6.50</u>	86.50	51.04	48.42	36.50			
SnapKV	19.39	<u>23.62</u>	38.66	<u>43.26</u>	34.72	<u>21.33</u>	<u>17.59</u>	<u>20.93</u>	<u>17.06</u>	38.50	86.96	<u>39.61</u>	7.00	90.50	<u>51.63</u>	<u>49.73</u>	<u>37.53</u>			
ReST-KV	25.65	26.58	42.71	46.11	36.43	24.34	19.80	21.65	18.90	51.50	87.88	41.54	4.00	90.50	52.39	50.75	40.05			
Mistral-7B-Instruct-v0.3, $B_{\text{total}} = 512L$																				
StreamingLLM	24.19	25.97	30.14	40.75	31.90	17.35	22.18	20.30	23.22	65.50	86.95	43.75	6.00	81.00	59.35	56.36	39.68			
H2O	25.23	30.41	40.32	42.52	35.23	18.23	24.23	21.24	23.21	66.50	86.71	43.15	5.00	82.52	<u>60.13</u>	58.15	41.42			
TOVA	25.23	32.52	46.24	45.23	36.23	20.32	24.53	22.53	23.64	66.50	87.24	44.21	6.00	<u>85.62</u>	59.35	60.24	42.85			
SnapKV	<u>26.84</u>	<u>35.51</u>	<u>53.12</u>	49.56	37.72	<u>26.54</u>	<u>25.06</u>	<u>24.03</u>	<u>24.76</u>	<u>67.50</u>	<u>89.36</u>	<u>44.82</u>	<u>5.50</u>	98.50	60.44	61.22	<u>45.66</u>			
ReST-KV	28.60	35.86	53.37	<u>49.13</u>	<u>38.70</u>	27.94	<u>26.05</u>	<u>24.37</u>	<u>25.09</u>	73.50	89.66	46.27	<u>5.50</u>	98.50	60.13	60.84	<u>46.47</u>			
Full	29.07	41.54	52.88	49.37	39.01	28.58	35.07	25.71	27.73	76.00	88.59	47.51	6.00	98.50	61.48	62.68	48.11			

under tight memory constraints. Unlike prior methods that rely solely on the rank of query-key similarities, our approach accounts the impact of attention redistribution, ensuring that the most critical information is retained. Moreover, we verify the compatibility of ReST-KV with non-uniform budget strategies such as PyramidKV and AdaKV, with results presented in Appendix C. Compatibility with KV cache quantization techniques is also evaluated, as shown in Appendix I.

Table 1 provides a detailed comparison under two cache budgets: low ($B_{\text{total}} = 64L$) and high ($B_{\text{total}} = 512L$), with full results in Appendix D.1. ReST-KV consistently ranks among the top performers across tasks, achieving up to a 2.58% improvement under low budgets with the Mistral model. These results highlight the effectiveness of our eviction indicator and spatio-temporal smoothing in enhancing KV selection robustness. Additional evaluations across different models and sizes further confirm this conclusion (Appendix D.2, D.3).

4.3 EVALUATIONS ON RULER BENCHMARK

We evaluate ReST-KV on 11 tasks from the RULER benchmark using the Llama3.1-8B-Instruct model, with a fixed cache budget of $B_{\text{total}} = 1024L$ applied across all methods. Table 2 summarizes the average accuracy across varying context lengths, from 4k to 128k context length. Existing KV cache eviction methods suffer from substantial performance degradation as the context length increases, highlighting their limited robustness in long-context and complex retrieval scenarios. In contrast, ReST-KV consistently achieves strong results across all lengths, with an average accuracy improvement of 15.2% over prior methods. Notably, even at the 128k context length where less than 1% of the original cache is retained, ReST-KV maintains effective retrieval capabilities. Detailed results for individual tasks are provided in Appendix E.

378
379
Table 2: Performance comparison on RULER benchmark across different context lengths.

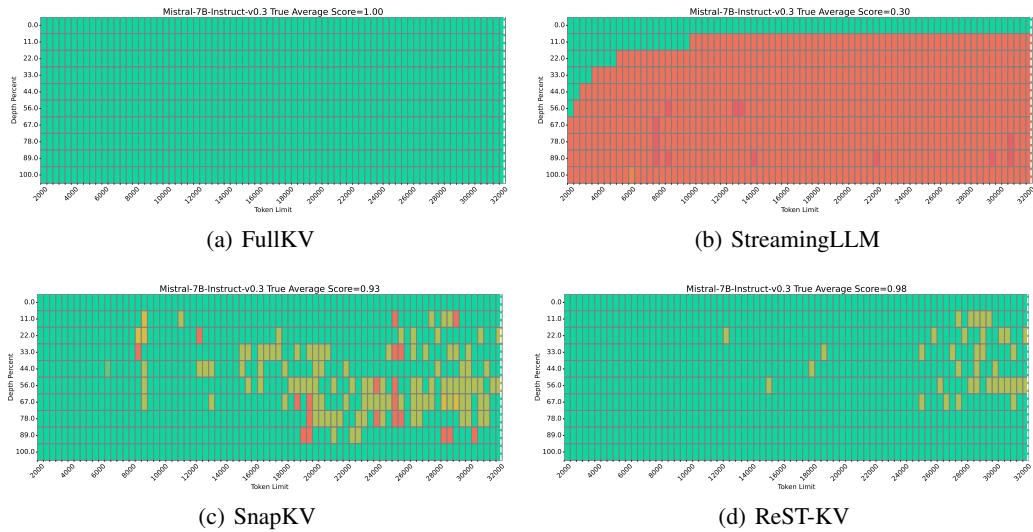
Method	4K	8K	16K	32K	64K	128K	Avg.
Full	99.34	98.83	98.55	94.89	89.85	79.32	93.46
Streaming	39.81	18.42	12.10	10.57	9.91	8.18	16.50
SnapKV	83.60	75.54	71.12	66.95	57.47	47.99	67.11
PyramidKV	81.35	73.66	70.23	69.83	57.84	48.93	66.97
ReST-KV	94.01	86.66	84.12	81.87	78.65	68.28	82.27

380
381
382
383
384
385
386
387
388
389
Table 3: Ablation results of ReST-KV.

Method	Avg. Acc
Attention weight Top-k	32.98
ReST-KV	35.86
ReST-KV w/o LOR	33.95 (-1.91)
ReST-KV w/o EMA	34.02 (-1.84)
ReST-KV w/o AWS	33.50 (-2.36)

390
391
392
393
394
395
396
397
4.4 VISUALIZATION ON NEEDLE-IN-A-HAYSTACK TEST
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

The needle-in-a-haystack test (Liu et al., 2024a) involves inserting key information at random positions within long contexts and serves as a benchmark to assess the ability of LLMs to accurately retrieve critical information. To further demonstrate the effectiveness and adaptability of our method, we conducted experiments on the Mistral-7B-Instruct-v0.3 model with a cache budget set to $B_{\text{total}} = 1024L$. As shown in Figure 5, even under such a strict cache budget, ReST-KV maintains 98% of the model’s performance, significantly outperforming other methods. This underscores ReST-KV’s ability to efficiently prioritize and retain the most relevant KV pairs. Additional visualization graphs can be found in Appendix F.

428
429
430
Figure 5: Performance comparison on the Needle in a Haystack Test using Mistral-7B-Instruct-v0.3 with $B_{\text{total}} = 1024L$. Even with a strict cache budget, ReST-KV retains 98% of the model’s performance, outperforming other methods in retrieving critical information.431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
123100
123101
123102
123103
123104
123105
123106
123107
123108
123109
123110
123111
123112
123113
123114
123115
123116
123117
123118
123119
123120
123121
123122
123123
123124
123125
123126
123127
123128
123129
123130
123131
123132
123133
123134
123135
123136
123137
123138
123139
123140
123141
123142
123143
123144
123145
123146
123147
123148
123149
123150
123151
123152
123153
123154
123155
123156
123157
123158
123159
123160
123161
123162
123163
123164
123165
123166
123167
123168
123169
123170
123171
123172
123173
123174
123175
123176
123177
123178
123179
123180
123181
123182
123183
123184
123185
123186
123187
123188
123189
123190
123191
123192
123193
123194
123195
123196
123197
123198
123199
123200
123201
123202
123203
123204
123205
123206
123207
123208
123209
123210
123211
123212
123213
123214
123215
123216
123217
123218
123219
123220
123221
123222
123223
123224
123225
123226
123227
123228
123229
123230
123231
123232
123233
123234
123235
123236
123237
123238
123239
123240
123241
123242
123243
123244
123245
123246
123247
123248
123249
123250
123251
123252
123253
123254
123255
123256
123257
123258
123259
123260
123261
123262
123263
123264
123265
123266
123267
123268
123269
123270
123271
123272
123273
123274
123275
123276
123277
123278
123279
123280
123281
123282
123283
123284
123285
123286
123287
123288
123289
123290
123291
123292
123293
123294
123295
123296
123297
123298
123299
123300
123301
123302
123303
123304
123305
123306
123307
123308
123309
123310
123311
123312
123313
123314
123315
123316
123317
123318
123319
123320
123321
123322
123323
123324
123325
123326
123327
123328
123329
123330
123331
123332
123333
123334
123335
123336
123337
123338
123339
123340
123341
123342
123343
123344
123345
123346
123347
123348
123349
123350
123351
123352
123353
123354
123355
123356
123357
123358
123359
123360
123361
123362
123363
123364
123365
123366
123367
123368
123369
123370
123371
123372
123373
123374
123375
123376
123377
123378
123379
123380
123381
123382
123383
123384
123385
123386
123387
123388
123389
123390
123391
123392
123393
123394
123395
123396
123397
123398
123399
123400
123401
123402
123403
123404
123405
123406
123407
123408
123409
123410
123411
123412
123413
123414
123415
123416
123417
123418
123419
123420
123421
123422
123423
123424
123425
123426
123427
123428
123429
123430
123431
123432
123433
123434
123435
123436
123437
123438
123439
123440
123441
123442
123443
123444
123445
123446
123447
123448
123449
123450
123451
123452
123453
123454
123455
123456
123457
123458
123459
123460
123461
123462
123463
123464
123465
123466
123467
123468
123469
123470
123471
123472
123473
123474
123475
123476
123477
123478
123479
123480
123481
123482
123483
123484
123485
123486
123487
123488
123489
123490
123491
123492
123493
123494
123495
123496
123497
123498
123499
123500
123501
123502
123503
123504
123505
123506
123507
123508
123509
123510
123511
123512
123513
123514
123515
123516
123517
123518
123519
123520
123521
123522
123523
123524
123525
123526
123527
123528
123529
123530
123531
123532
123533
123534
123535
123536
123537
123538
123539
123540
123541
123542
123543
123544
123545
123546
123547
123548
123549
123550
123551
123552
123553
123554
123555
123556
123557
123558
123559
123560
123561
123562
123563
123564
123565
123566
123567
123568
123569
123570
123571
123572
123573
123574
123575
123576
123577
123578
123579
123580
123581
123582
123583
123584
123585
123586
123587
123588
123589
123590
123591
123592
123593
123594
123595
123596
123597
123598
123599
123600
123601
123602
123603
123604
123605
123606
123607
123608
123609
123610
123611
123612
123613
123614
123615
123616
123617
123618
123619
123620
123621
123622
123623
123624
123625
1236

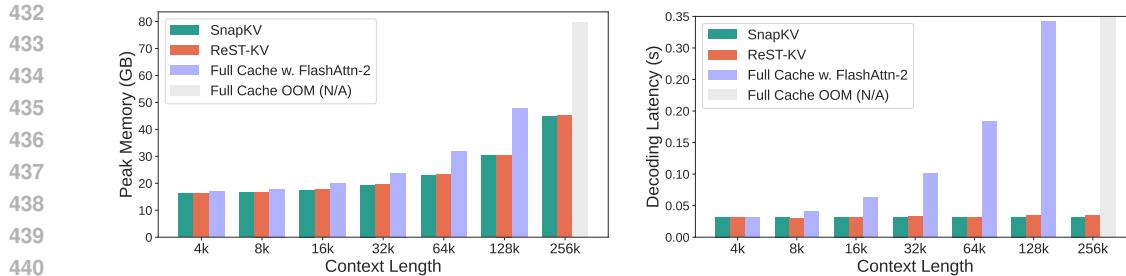


Figure 6: Peak memory usage and decoding latency on NVIDIA A800 80GB GPU. ReST-KV reduces peak memory by 36.0% and achieves up to a 10× speedup at 128k context length compared to full cache.

- Without the LOR indicator, the model misses attention redistribution effects, making it harder to identify truly critical KV pairs. This is especially harmful under tight budgets like $B_{\text{total}} = 128L$, causing a 1.91% drop in accuracy.
- Without EMA temporal smoothing: The model lacks awareness of temporal changes in importance, making it less capable of retaining KV pairs crucial for future queries. This results in a 1.84% performance degradation.
- Without AWS spatial smoothing: Without capturing spatial offset patterns (e.g., vertical-slash structures), the model tends to retain suboptimal KV pairs, causing a 2.36% accuracy drop.

Detailed ablation of each module and sensitivity analysis can be found in Appendix G.

4.6 EVALUATION OF MEMORY AND THROUGHPUT

To evaluate the effectiveness and efficiency of our method in reducing memory consumption and enhancing LLM inference, we analyze peak memory usage and decoding latency on the Llama-3.1-8B-Instruct model implemented with FlashAttention-2 (Dao, 2023).

Peak Memory Usage. As shown in Figure 6(a), ReST-KV significantly reduces peak memory usage, performing comparably to other KV cache eviction methods. Compared to full cache, ReST-KV achieves approximately 36.0% reduction in peak memory usage at a context length of 128k.

Latency Analysis. As shown in Figure 6(b), the decoding latency of the standard full cache method, even with FlashAttention-2, grows rapidly with input length. In contrast, ReST-KV maintains high efficiency by using a fixed cache budget to limit the number of KV pairs. This approach overcomes the latency bottleneck for long sequences, achieving an approximate 10.61× speedup over the full cache method at a 128K context length.

Furthermore, ReST-KV is compatible with prefill sparse attention approaches, yielding a Time-To-First-Token (TTFT) speedup of up to **3.42**×. This efficiency is achieved because our method only requires computing attention outputs within a small query window, resulting in **a computational complexity comparable to that of SnapKV**. For a detailed analysis, please see Appendix H.

5 CONCLUSION

In this paper, we propose ReST-KV, a novel KV cache eviction method that reformulates eviction as a layer-wise output reconstruction task, effectively capturing attention redistribution effects beyond conventional attention-weight heuristics. To enhance robustness, ReST-KV integrates a spatial-temporal smoothing mechanism using exponential moving averages for temporal stability and adaptive windowing for spatial awareness. Extensive evaluations on LongBench, Needle-in-a-Haystack, and RULER demonstrate that ReST-KV consistently surpasses state-of-the-art methods under low memory budgets and significantly reduces decoding latency achieving up to 10× speedups at 128k context lengths. Our method is model-agnostic and compatible with existing budget strategies, offering a practical and principled solution for efficient long-context generative inference. Future work will explore tighter integration with adaptive allocation strategies and extensions to multi-modal or structured memory scenarios.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J Nair, Ilya Soloveychik, and Pu-
492 rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
493 generative inference. *Proceedings of Machine Learning and Systems*, 6:114–127, 2024.

494 Anthropic. Claude 3: A next-generation language model, 2023. URL https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf. Accessed: 2025-01-21.

495 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
496 Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
500 context understanding. *arXiv preprint arXiv:2308.14508*, 2023.

501 Zefan Cai. Kvcache-factory, 2023. URL <https://github.com/Zefan-Cai/KVCache-Factory>.
502 Accessed: 2025-01-21.

503 Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
504 Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
505 information funneling. *arXiv preprint arXiv:2406.02069*, 2024.

506 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv
507 preprint arXiv:2307.08691*, 2023.

508 Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang.
509 Glm: General language model pretraining with autoregressive blank infilling. *arXiv preprint
510 arXiv:2103.10360*, 2021.

511 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
512 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
513 *arXiv preprint arXiv:2407.21783*, 2024.

514 Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache evic-
515 tion by adaptive budget allocation for efficient llm inference. *arXiv preprint arXiv:2407.11550*,
516 2024.

517 Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
518 you what to discard: Adaptive kv cache compression for llms. *arXiv preprint arXiv:2310.01801*,
519 2023.

520 Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
521 importance indicator in kv cache reduction: Value also matters. *arXiv preprint arXiv:2406.12335*,
522 2024.

523 Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-
524 infinite: Zero-shot extreme length generalization for large language models, 2024. URL <https://arxiv.org/abs/2308.16137>.

525 Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Sophia Shao, Kurt
526 Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
527 cache quantization. *Advances in Neural Information Processing Systems*, 37:1270–1303, 2024.

528 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
529 Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
530 models? *arXiv preprint arXiv:2404.06654*, 2024.

531 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
532 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
533 Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.

540 Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
 541 Han, Amir Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
 542 for long-context llms via dynamic sparse attention. *Advances in Neural Information Processing
 543 Systems*, 37:52481–52515, 2024.

544 Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
 545 attention mechanism for efficient long-sequence inference. *arXiv preprint arXiv:2502.20766*,
 546 2025.

548 Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei
 549 Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache
 550 management. *arXiv preprint arXiv:2412.19442*, 2024a.

551 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
 552 Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
 553 generation. *arXiv preprint arXiv:2404.14469*, 2024b.

555 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 556 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the
 557 Association for Computational Linguistics*, 12:157–173, 2024a.

558 Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
 559 Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. *arXiv preprint
 560 arXiv:2402.02750*, 2024b.

561 MistralAI. Mistral large 2407: A new milestone in open-source language models, 2023. URL
 562 <https://mistral.ai/news/mistral-large-2407/>. Accessed: 2025-01-21.

564 Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
 565 neural networks for resource efficient inference. *arXiv preprint arXiv:1611.06440*, 2016.

567 Matan Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
 568 state rnns. *arXiv preprint arXiv:2401.06104*, 2024.

569 Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
 570 Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. *arXiv preprint
 571 arXiv:2503.12491*, 2025.

573 Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
 574 Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
 575 code. *arXiv preprint arXiv:2308.12950*, 2023.

576 Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang.
 577 Razorattention: Efficient kv cache compression through retrieval heads. *arXiv preprint
 578 arXiv:2407.15891*, 2024.

580 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
 581 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
 582 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

583 Qwen Team. Qwen2. 5: A party of foundation models. *Qwen (Sept. 2024)*. url: <https://qwenlm.github.io/blog/qwen2>, 5, 2024.

586 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 587 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 588 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

589 Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo,
 590 Jing Xiong, and Mi Zhang. D2o: Dynamic discriminative operations for efficient generative
 591 inference of large language models. *arXiv preprint arXiv:2406.13035*, 2024.

593 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023.

594 Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
 595 mid kv cache compression for high-throughput llm inference. *arXiv preprint arXiv:2405.12532*,
 596 2024.

597 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 598 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 599 2022.

600 Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
 601 Hashimoto. Benchmarking large language models for news summarization. *Transactions of the*
 602 *Association for Computational Linguistics*, 12:39–57, 2024a.

603 Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
 604 Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al. mftybench: Extending long context evaluation
 605 beyond 100k tokens. In *ACL (1)*, 2024b.

606 Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
 607 Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
 608 erative inference of large language models. *Advances in Neural Information Processing Systems*,
 609 36:34661–34710, 2023.

610 Xiabin Zhou, Wenbin Wang, Minyan Zeng, Jiaxian Guo, Xuebo Liu, Li Shen, Min Zhang, and
 611 Liang Ding. Dynamickv: Task-aware adaptive kv cache compression for long context llms. *arXiv*
 612 *preprint arXiv:2412.14838*, 2024.

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
 649 **A DERIVATION AND ANALYSIS OF THE OUTPUT RECONSTRUCTION**
 650 **INDICATOR**

651 We define the eviction indicator $\mathbf{I}_t[n]$ as the reconstruction error of the MHA output caused by
 652 removing the n -th KV pair. Specifically, the eviction indicator is given by:
 653

$$654 \quad \mathbf{I}_t[n] = \|\text{MHA}(\mathbf{x}_t, \langle \mathbf{K}_T, \mathbf{V}_T \rangle) - \text{MHA}(\mathbf{x}_t, \langle \mathbf{K}_{T, \setminus n}, \mathbf{V}_{T, \setminus n} \rangle)\|_2, \quad (15)$$

655 where $\mathbf{K}_{T, \setminus n}$ and $\mathbf{V}_{T, \setminus n}$ represent the set of cache keys and values with the n -th KV pair removed.
 656

657 Using Eq. 3 and Eq. 4, we can expand Eq. 15 as follows:
 658

$$658 \quad \mathbf{I}_t[n] = \|\mathbf{A}_t \mathbf{V}_T \mathbf{W}_O - \mathbf{A}_{t, \setminus n} \mathbf{V}_{T, \setminus n} \mathbf{W}_O\|_2 \quad (16)$$

659 where $\mathbf{A}_{t, \setminus n}$ represents the attention weights with the n -th KV pair removed, and $\mathbf{V}_{T, \setminus n}$ represents
 660 the values corresponding to the remaining cache sets after the removal of the n -th KV pair.
 661

662 Further, we expand the matrix computation into a weighted sum form as:
 663

$$664 \quad \mathbf{I}_t[n] = \left\| \sum_m \mathbf{A}_t[m] \mathbf{v}_m \mathbf{W}_O - \sum_{m \neq n} \mathbf{A}_{t, \setminus n}[m] \mathbf{v}_m \mathbf{W}_O \right\|_2 \quad (17)$$

667 where $\mathbf{A}_t[m]$ and $\mathbf{A}_{t, \setminus n}[m]$ represent the attention weights for the m -th query in the presence and
 668 absence of the n -th KV pair, respectively.
 669

670 Compared to $\mathbf{A}_t[m]$, $\mathbf{A}_{t, \setminus n}[m]$ is missing the component related to \mathbf{k}_n in the denominator. Therefore,
 671 the relationship between the two is given by:
 672

$$673 \quad \mathbf{A}_{t, \setminus n}[m] = \frac{\mathbf{A}_t[m]}{1 - \mathbf{A}_t[n]} \quad (18)$$

674 Substituting Eq. 18 into Eq. 17 and performing step-by-step simplifications, we get:
 675

$$676 \quad \mathbf{I}_t[n] = \left\| \sum_m \mathbf{A}_t[m] \mathbf{v}_m \mathbf{W}_O - \sum_{m \neq n} \frac{\mathbf{A}_t[m]}{1 - \mathbf{A}_t[n]} \mathbf{v}_m \mathbf{W}_O \right\|_2, \quad (19)$$

$$677 \quad = \left\| \sum_m \mathbf{A}_t[m] \mathbf{v}_m \mathbf{W}_O - \left(\sum_m \frac{\mathbf{A}_t[m]}{1 - \mathbf{A}_t[n]} \mathbf{v}_m \mathbf{W}_O - \frac{\mathbf{A}_t[n]}{1 - \mathbf{A}_t[n]} \mathbf{v}_n \mathbf{W}_O \right) \right\|_2, \quad (20)$$

$$678 \quad = \left\| \underbrace{\frac{\mathbf{A}_t[n]}{1 - \mathbf{A}_t[n]} \mathbf{v}_n \mathbf{W}_O}_{\text{the } n\text{-th KV pair removed's loss}} - \underbrace{\sum_m \frac{\mathbf{A}_t[n]}{1 - \mathbf{A}_t[n]} \cdot \mathbf{A}_t[m] \mathbf{v}_m \mathbf{W}_O}_{\text{the increase of other components after removing the } n\text{-th KV pair}} \right\|_2, \quad (21)$$

$$679 \quad = \frac{\mathbf{A}_t[n]}{1 - \mathbf{A}_t[n]} \cdot \left\| \mathbf{v}_n \mathbf{W}_O - \sum_m \mathbf{A}_t[m] \mathbf{v}_m \mathbf{W}_O \right\|_2, \quad (22)$$

$$680 \quad = \frac{\mathbf{A}_t[n]}{1 - \mathbf{A}_t[n]} \cdot \|\text{MHA}(\mathbf{x}_t, \langle \mathbf{K}_T, \mathbf{V}_T \rangle) - \mathbf{v}_n \mathbf{W}_O\|_2, \quad (23)$$

681 From Eq. 21, we can see that the layer-wise output reconstruction indicator can be divided into two
 682 parts. One part is the loss due to the removal of the n -th KV pair, and the other part is the increase
 683 in the contribution of the other components after removing the n -th KV pair. Together, these two
 684 parts determine the importance of a KV pair.
 685

686 **B MORE IMPLEMENTATION DETAILS**

687 In this section, we provide additional details regarding the implementation of ReST-KV. Our method
 688 operates in two main phases: *prompt prefilling* and *token decoding*. During the prompt prefilling

stage, we employ Eq. 13 from Section 3.3 as the eviction indicator. This formula integrates both the layer-wise output reconstruction indicator and spatial-temporal smoothing. According to Eq. 14, we select a set of KV pairs based on the cache budget from the prompt. Specifically, for the Exponential Moving Average (EMA) Temporal Smoothing, the smoothing factor α is set to 0.3. In the case of the Adaptive Window-Based Spatial Smoothing, the scaling factor β is set to 2000. Following SnapKV (Li et al., 2024b), we adopt a fixed observation window of size $S_w = 32$ and kernel size $k = 5$ for SnapKV, PyramidKV, and our proposed ReST-KV. To better capture important information, we set the kernel size to 21 on the RULER and InfiniteBench datasets. The StreamingLLM method retains the first 4 tokens as an attention sink, ensuring efficient processing within the token flow. In the token decoding phase, we utilize the KV cache compressed during the prefilling stage, along with a newly updated KV cache, to perform decoding. Notably, no further compression is applied during this phase.

C COMPATIBILITY WITH BUDGET ALLOCATION STRATEGIES

In this section, we evaluate the compatibility of our method with existing budget allocation strategies. Specifically, we choose PyramidKV (Cai et al., 2024) as a representative of layer-wise budget allocation strategies and AdaKV (Feng et al., 2024) as a representative of head-wise budget allocation strategies. We compared the average accuracy results of the Llama2-7B-Chat model on the LongBench datasets under varying total cache budgets (ranging from $64L$ to $1024L$). Our experiments demonstrate that, when combined with these strategies, our method achieves similar or slightly improved performance compared to SnapKV combined with the same strategies.

Table 4: Performance comparison of SnapKV and our method with Pyramid layer-wise budget allocation strategies across varying cache budgets.

Method	Cache Budget B_{total}					Avg. Acc
	$64L$	$128L$	$256L$	$512L$	$1024L$	
SnapKV	22.96	28.31	30.90	32.18	32.99	29.47
PyramidKV	24.67	29.58	31.04	32.32	32.95	30.11 ($\uparrow 0.64\%$)
ReST-KV	25.54	29.99	31.51	32.38	32.97	30.48
ReST-KV w. Pyramid	26.88	30.47	31.74	32.48	33.05	30.93 ($\uparrow 0.45\%$)

Table 4 illustrates the results of applying Pyramid layer-wise budget allocation strategies to both SnapKV and our method, comparing the performance differences before and after the addition of the strategy. As shown, the accuracy improvements are modest but consistent across different cache budget sizes. For instance, our method combined with layer-wise budget allocation strategies achieves a 0.45% increase in average accuracy across different cache budgets.

Table 5: Performance comparison of SnapKV and our method with Ada head-wise budget allocation strategies across varying cache budgets.

Method	Cache Budget B_{total}					Avg. Acc
	$64L$	$128L$	$256L$	$512L$	$1024L$	
SnapKV	22.96	28.31	30.90	32.18	32.99	29.47
Ada-SnapKV	24.89	29.93	31.21	32.28	33.01	30.26 ($\uparrow 0.79\%$)
ReST-KV	25.54	29.99	31.51	32.38	32.97	30.48
Ada-ReST-KV	27.35	31.27	31.84	32.51	33.02	31.20 ($\uparrow 0.72\%$)

Table 5 presents the results of applying head-wise budget allocation strategies to both SnapKV and our method, comparing the performance differences before and after the addition of the strategy. The results show that our method combined with AdaKV achieves a 0.72% increase in average accuracy across all cache budgets. These results highlight that our method is compatible with existing budget allocation strategies.

756 Table 6: Performance comparison across 16 datasets of LongBench on Llama3.1-8B-Instruct for
 757 cache budgets from $64L$ to $1024L$. The best result is highlighted in **bold**, and the second-best is
 758 underlined.

Method	Single-Document QA				Multi-Document QA				Summarization				Few-shot Learning				Synthetic		Code	
	NrtvQA	Qasper	MF-en	HotpotQA	2WikiQA	2WikiMOA	Musique	GovReport	QMSum	MultiNews	TREC	TriviaQA	SAMSum	PCount	PRe	Lcc	RB-P	Avg.		
	Llama3.1-8B-Instruct, $B_{\text{total}} = \text{Full}$																			
Full	32.02	13.12	27.52	16.60	16.41	11.41	34.59	23.41	26.89	73.00	91.65	43.80	7.18	97.73	65.12	58.89	39.96			
Llama3.1-8B-Instruct, $B_{\text{total}} = 64L$																				
StreamingLLM	7.65	5.08	14.14	10.93	12.64	6.86	16.57	18.93	16.30	38.50	83.13	34.65	9.78	96.28	54.16	48.21	29.61			
H2O	12.23	5.12	15.12	11.51	10.14	6.23	17.23	19.51	16.79	39.15	81.51	36.12	8.12	95.12	51.25	47.12	29.52			
TOVA	18.52	6.12	17.32	12.15	12.51	7.35	16.24	20.41	16.34	38.41	82.61	36.16	8.14	95.23	55.21	47.35	30.63			
SnapKV	19.90	5.78	18.38	13.51	14.42	8.52	17.35	20.44	17.33	41.00	85.37	37.63	8.93	91.08	55.09	48.88	31.48			
ReST-KV	22.43	7.19	19.25	14.11	15.04	7.97	20.56	21.10	19.15	53.50	88.23	40.21	8.46	93.90	56.74	48.77	33.54			
Llama3.1-8B-Instruct, $B_{\text{total}} = 128L$																				
StreamingLLM	16.07	5.34	14.82	11.01	12.38	6.61	17.99	19.06	18.69	40.50	85.57	38.24	9.20	94.11	58.97	49.70	31.14			
H2O	14.00	5.45	16.62	12.83	10.87	6.94	17.29	20.88	16.96	40.27	82.15	37.61	9.12	96.13	52.13	48.16	30.46			
TOVA	21.63	8.11	18.70	14.31	14.44	9.46	19.22	22.97	17.60	40.76	84.40	39.21	11.24	96.67	58.25	48.91	32.87			
SnapKV	25.20	7.23	20.89	13.60	14.61	8.49	20.95	21.42	21.28	48.00	89.38	40.08	7.29	93.78	59.31	52.12	33.98			
ReST-KV	27.88	8.29	22.22	14.65	14.70	9.32	22.26	22.95	22.16	65.00	91.03	41.26	8.20	93.59	58.78	51.50	35.86			
Llama3.1-8B-Instruct, $B_{\text{total}} = 256L$																				
StreamingLLM	16.03	5.50	14.96	10.38	12.25	7.01	20.38	19.48	20.63	46.00	87.49	41.02	9.57	90.53	61.13	51.44	32.11			
H2O	13.99	6.48	17.76	13.41	11.10	7.38	17.64	21.74	18.21	40.29	82.22	38.11	8.90	96.89	51.53	49.14	30.92			
TOVA	24.05	11.17	21.30	17.61	17.50	12.84	21.93	26.16	20.58	43.69	87.29	42.52	14.21	99.26	60.92	51.65	35.79			
SnapKV	27.83	9.12	22.21	13.68	14.52	10.20	23.02	23.14	22.51	56.50	90.63	40.79	7.89	97.56	62.05	55.47	36.07			
ReST-KV	29.14	9.54	23.61	14.27	14.61	9.31	24.32	23.59	23.47	67.00	92.13	42.04	8.09	94.51	61.56	53.62	36.93			
Llama3.1-8B-Instruct, $B_{\text{total}} = 512L$																				
StreamingLLM	19.15	6.47	15.02	10.94	12.58	6.23	23.66	20.05	23.31	57.50	87.70	41.86	10.25	90.74	62.39	53.61	33.84			
H2O	26.23	7.34	20.51	11.52	13.52	7.34	23.23	21.24	23.14	58.50	86.12	40.15	7.25	91.02	61.23	54.12	34.53			
TOVA	27.34	8.34	22.45	12.25	14.51	8.42	24.23	22.13	22.25	58.50	89.31	40.51	8.24	93.14	62.23	55.61	35.59			
SnapKV	28.02	9.83	24.84	13.77	15.40	10.21	25.13	22.73	24.25	65.00	92.34	41.69	8.42	96.31	64.30	57.28	37.47			
ReST-KV	32.01	10.73	25.23	15.91	15.85	10.25	26.47	23.23	24.79	69.00	91.62	42.59	8.40	97.66	63.48	56.03	38.33			
Llama3.1-8B-Instruct, $B_{\text{total}} = 1024L$																				
StreamingLLM	20.50	8.08	15.72	11.61	12.39	6.71	25.76	20.18	25.44	63.50	88.84	42.61	10.03	92.10	63.15	55.88	35.16			
H2O	27.63	8.84	21.98	12.99	15.91	8.23	23.96	23.77	24.20	59.79	86.97	41.52	9.07	93.01	63.59	56.08	36.10			
TOVA	29.82	9.73	25.10	14.92	17.53	10.20	27.06	23.20	24.78	59.89	92.21	43.49	10.38	95.86	64.08	57.47	37.86			
SnapKV	31.95	11.26	25.56	15.13	16.18	10.79	26.97	23.06	25.89	67.50	91.90	42.88	7.67	98.16	64.53	58.30	38.61			
ReST-KV	31.83	11.61	26.51	15.85	15.48	10.83	28.20	24.00	26.18	70.50	91.73	42.70	8.02	97.79	64.24	57.56	38.94			

D ADDITIONAL EXPERIMENTS ON LONGBENCH

In this section, we provide comprehensive experimental results on LongBench (Bai et al., 2023), a benchmark focused on long-context understanding, with input lengths ranging from 1235 to 18409 tokens. We perform detailed performance evaluations for three base models with cache budgets ranging from $64L$ to $1024L$: Llama2-7B-Chat (Touvron et al., 2023), Llama3.1-8B-Instruct (Dubey et al., 2024), and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) (Appendix D.1). To demonstrate the generality of ReST-KV, we also conduct experiments across different models and sizes. In Appendix D.2, we report additional experiments on the Qwen2.5-7B-Instruct (Team, 2024) and Gemma-7B-Instruct (Team et al., 2024) model architectures, and in Appendix D.3, we present experiments on the Llama2-13B-Chat and Llama3-70B-Instruct model sizes.

D.1 DETAILED PERFORMANCE ACROSS CACHE BUDGETS

Tables 6, 7, and 8 present the detailed LongBench results of ReST-KV and comparative methods applied to Llama3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, and Llama2-7B-Chat, respectively. Overall, the results demonstrate that, compared to other methods, ReST-KV consistently outperforms all baselines across all tasks in LongBench when applied to the test models with cache budgets ranging from $64L$ to $1024L$. This proves the effectiveness and wide applicability of ReST-KV in efficient long-context processing using KV caches in open-source LLMs across domains.

D.2 ADDITIONAL EXPERIMENTS ON MORE MODEL ARCHITECTURES

To further validate the versatility of ReST-KV across different model architectures, we performed additional experiments on the Qwen2.5-7B-Instruct and Gemma-7B-Instruct models. The experiments were conducted in two distinct memory configurations: a low-memory setting ($B_{\text{total}} = 64L$) and a high-memory setting ($B_{\text{total}} = 512L$). As shown in Table 9, ReST-KV consistently out-

810
 811 Table 7: Performance comparison across 16 datasets of LongBench on Mistral-7B-Instruct-v0.3 for
 812 cache budgets from $64L$ to $1024L$. The best result is highlighted in **bold**, and the second-best is
 813 underlined.

Method	Single-Document QA			Multi-Document QA			Summarization			Few-shot Learning			Synthetic		Code		
	NrtvQA	Qasper	MF-en	HotpotQA	2WikiQA	Musique	GovReport	QMSum	MultiNews	TREC	TriviaQA	SAMSum	PCount	PRe	Lcc	RB-P	Avg.
	Mistral-7B-Instruct-v0.3, $B_{\text{total}} = Full$																
Full	29.07	41.54	52.88	49.37	39.01	28.58	35.07	25.71	27.73	76.00	88.59	47.51	6.00	98.50	61.48	62.68	48.11
Mistral-7B-Instruct-v0.3, $B_{\text{total}} = 64L$																	
StreamingLLM	20.37	20.56	24.62	38.87	32.47	17.68	15.48	19.84	15.81	39.50	82.77	36.72	5.50	80.00	49.77	47.90	34.24
H2O	20.51	21.52	25.12	40.12	33.12	18.34	16.23	19.12	16.24	38.50	83.12	37.23	6.00	85.50	50.12	48.12	34.93
TOVA	<u>22.51</u>	22.24	37.23	41.12	34.10	19.52	17.21	19.23	16.27	38.50	85.12	38.51	<u>6.50</u>	<u>86.50</u>	51.04	48.42	36.50
SnapKV	19.39	<u>23.62</u>	<u>38.66</u>	43.26	<u>34.72</u>	<u>21.33</u>	<u>17.59</u>	20.93	<u>17.06</u>	38.50	86.96	<u>39.61</u>	7.00	90.50	<u>51.63</u>	49.73	37.53
ReST-KV	25.65	26.58	42.71	46.11	36.43	24.34	19.80	21.65	18.90	51.50	87.88	41.54	4.00	90.50	52.39	50.75	40.05
Mistral-7B-Instruct-v0.3, $B_{\text{total}} = 128L$																	
StreamingLLM	21.39	22.05	26.73	37.25	32.81	17.61	16.76	19.69	17.98	45.50	85.64	40.49	<u>5.50</u>	80.00	55.01	52.12	36.03
H2O	22.39	22.98	26.92	42.51	33.19	19.20	16.90	20.70	16.82	41.12	87.10	39.76	8.58	86.19	50.81	53.01	36.76
TOVA	22.48	28.78	48.71	47.58	34.26	21.96	<u>21.67</u>	21.75	<u>21.68</u>	42.23	87.04	42.10	2.08	94.58	56.97	54.76	40.54
SnapKV	<u>25.04</u>	28.42	47.88	46.23	<u>36.47</u>	24.60	21.22	22.74	21.15	45.00	88.74	<u>43.07</u>	4.00	<u>95.00</u>	56.81	55.75	41.38
ReST-KV	26.58	29.60	49.23	47.46	37.18	25.16	22.44	<u>22.43</u>	<u>21.77</u>	69.00	<u>88.18</u>	43.84	<u>5.50</u>	96.50	56.29	<u>55.13</u>	43.52
Mistral-7B-Instruct-v0.3, $B_{\text{total}} = 256L$																	
StreamingLLM	22.46	23.32	29.63	39.62	32.01	16.71	19.13	19.30	20.14	45.40	85.12	43.21	<u>5.50</u>	80.00	57.72	55.03	37.71
H2O	24.31	23.78	27.97	43.90	33.95	19.87	17.42	<u>23.36</u>	17.32	43.74	91.10	40.17	11.88	86.92	51.54	54.24	38.22
TOVA	28.17	29.93	51.01	46.26	36.55	26.65	22.76	22.31	21.24	54.34	88.00	42.45	2.16	94.49	57.39	58.04	42.61
SnapKV	26.88	<u>31.72</u>	<u>51.40</u>	48.89	<u>36.80</u>	27.33	<u>22.85</u>	23.66	23.15	57.00	89.01	<u>43.60</u>	5.00	96.50	58.64	<u>58.21</u>	43.79
ReST-KV	<u>27.43</u>	34.24	52.11	48.81	<u>38.25</u>	<u>27.20</u>	24.31	23.33	<u>23.24</u>	72.50	88.59	44.61	<u>5.50</u>	96.50	<u>58.41</u>	59.21	45.27
Mistral-7B-Instruct-v0.3, $B_{\text{total}} = 512L$																	
StreamingLLM	24.19	25.97	30.14	40.75	31.90	17.35	22.18	20.30	23.22	65.50	86.95	43.75	6.00	81.00	59.35	56.36	39.68
H2O	25.23	30.41	40.32	42.52	35.23	18.23	24.23	21.24	23.21	66.50	86.71	43.15	5.00	82.52	<u>60.13</u>	58.15	41.42
TOVA	25.23	32.52	46.24	45.23	36.23	20.32	24.53	22.53	23.64	66.50	87.24	44.21	6.00	<u>85.62</u>	59.35	60.24	42.85
SnapKV	<u>26.84</u>	<u>35.51</u>	<u>53.12</u>	49.56	<u>37.72</u>	<u>26.54</u>	<u>25.06</u>	24.03	<u>24.76</u>	67.50	89.36	44.82	<u>5.50</u>	98.50	60.44	61.22	45.66
ReST-KV	28.60	<u>35.86</u>	<u>53.37</u>	<u>49.13</u>	38.70	27.94	26.05	24.37	<u>25.09</u>	73.50	<u>89.66</u>	46.27	<u>5.50</u>	98.50	<u>60.13</u>	<u>60.84</u>	46.47
Mistral-7B-Instruct-v0.3, $B_{\text{total}} = 1024L$																	
StreamingLLM	24.81	27.98	31.09	42.93	32.65	18.03	24.57	20.74	25.42	68.50	88.71	45.37	<u>5.50</u>	82.50	61.07	59.21	41.19
H2O	28.23	32.61	42.96	45.03	38.39	20.56	26.50	24.01	25.10	69.37	88.49	45.60	8.11	83.81	62.79	59.90	43.84
TOVA	29.10	36.82	53.78	<u>49.25</u>	38.39	28.33	<u>27.17</u>	23.75	25.53	70.39	88.28	45.24	4.85	100.47	60.40	62.25	46.50
SnapKV	29.31	<u>37.25</u>	<u>53.55</u>	<u>49.25</u>	<u>38.54</u>	28.28	26.90	<u>24.49</u>	<u>26.27</u>	72.50	89.11	46.08	<u>5.50</u>	99.00	61.45	61.76	46.83
ReST-KV	<u>29.20</u>	37.72	52.56	50.50	38.89	28.69	28.03	24.71	26.76	74.00	89.41	47.08	<u>5.50</u>	<u>99.00</u>	61.10	61.66	47.18

830
 831 performs baseline methods in both the low and high memory settings for the Qwen and Gemma
 832 architectures, similar to the results observed with the Llama and Mistral models. These findings
 833 further confirm the adaptability of ReST-KV across various model architectures, demonstrating its
 834 robust performance advantage regardless of the underlying design of the models.

D.3 ADDITIONAL EXPERIMENTS ON LARGER-SCALE MODELS

846 To assess the scalability of ReST-KV on larger models, we conducted additional experiments on
 847 Llama2-13B-Chat and Llama3-70B-Instruct. These experiments were performed under two dif-
 848 ferent memory configurations: a low-memory setting ($B_{\text{total}} = 64L$) and a high-memory setting
 849 ($B_{\text{total}} = 512L$). As shown in Table 10, ReST-KV consistently outperforms baseline methods in
 850 both low and high memory settings for the Llama2-13B-Chat and Llama3-70B-Instruct models.
 851 These results further demonstrate the scalability and effectiveness of ReST-KV when applied to
 852 larger-scale models, highlighting its continued performance advantage regardless of the model size.

E ADDITIONAL EXPERIMENTS ON RULER BENCHMARK

856 In this section, we present a detailed evaluation of ReST-KV on the various subtasks of the RULER
 857 benchmark (Hsieh et al., 2024). RULER is specifically designed to assess the core capabilities of
 858 LLMs in long-context scenarios through a diverse suite of tasks.

859 The retrieval suite includes four variants of the needle-in-a-haystack (NIAH) testSingle-Needle (S-
 860 NIAH), Multi-Key (MK-NIAH), Multi-Query (MQ-NIAH), and Multi-Value (MV-NIAH) to evaluate
 861 recall accuracy under diverse distractor settings and query formulations. Beyond retrieval, the
 862 Variable Tracking (VT) task measures multi-hop reasoning by requiring models to resolve transitive
 863 variable references scattered throughout the input. Lastly, aggregation tasks such as Common Word
 864 Extraction (CWE) and Frequent Word Extraction (FWE) test a model’s ability to compress and

864
865 Table 8: Performance comparison across 16 datasets of LongBench on Llama2-7B-Chat for cache
866 budgets from 64L to 1024. The best result is highlighted in **bold**, and the second-best is underlined.
867

868 Method	Single-Document QA			Multi-Document QA			Summarization			Few-shot Learning			Synthetic		Code		
	NrtvQA	Qasper	MF-en	HotpotQA	2WikiQA	Musique	GovReport	QMSum	MultiNews	TREC	TriviaQA	SAMSum	PCount	Pre	Lcc	RB-P	Avg.
869 Llama2-7B-Chat, $B_{\text{total}} = \text{Full}$																	
870 Full	18.39	20.11	<u>35.67</u>	31.25	25.50	10.14	25.68	20.93	26.27	64.00	83.38	40.99	5.50	10.00	60.81	55.27	33.37
871 Llama2-7B-Chat, $B_{\text{total}} = 64L$																	
872 StreamingLLM	5.61	15.51	6.42	14.14	16.77	1.36	12.09	16.46	12.83	17.25	15.12	10.93	4.50	3.00	22.00	15.24	11.83
873 H2O	4.46	12.14	8.85	12.11	13.34	2.36	13.06	16.63	16.89	19.50	20.69	10.45	<u>2.70</u>	3.00	26.50	16.06	12.42
874 TOVA	8.26	14.34	12.64	13.52	13.25	3.53	11.64	16.67	13.35	<u>36.00</u>	72.64	32.72	2.00	<u>4.00</u>	36.15	32.53	20.20
875 SnapKV	<u>10.83</u>	<u>16.38</u>	<u>17.53</u>	<u>22.81</u>	<u>23.24</u>	<u>5.06</u>	<u>13.12</u>	<u>18.38</u>	14.17	34.50	69.45	33.43	5.50	7.00	39.99	36.04	22.96
876 ReST-KV	12.72	17.17	24.09	24.71	23.80	5.55	19.71	17.45	43.50	76.17	<u>33.42</u>	5.50	<u>4.00</u>	45.00	40.61	25.54	
877 Llama2-7B-Chat, $B_{\text{total}} = 128L$																	
878 StreamingLLM	8.45	14.87	12.68	19.98	22.14	5.17	13.99	<u>19.74</u>	16.02	28.50	60.96	30.61	5.00	5.00	44.44	39.53	21.69
879 H2O	7.60	9.53	9.92	18.35	15.64	3.30	<u>17.75</u>	14.71	21.45	28.00	39.61	13.85	4.17	3.56	29.92	25.53	16.43
880 TOVA	12.26	14.66	25.72	26.08	24.21	6.90	15.28	18.30	17.61	42.44	80.12	35.25	<u>5.05</u>	6.93	52.48	49.17	27.03
881 SnapKV	<u>13.32</u>	<u>16.28</u>	<u>27.23</u>	<u>27.23</u>	<u>24.37</u>	<u>7.17</u>	16.97	19.65	19.38	44.00	81.88	<u>36.82</u>	6.00	<u>8.00</u>	54.02	50.66	<u>28.31</u>
882 ReST-KV	15.55	17.78	27.24	27.72	24.62	<u>8.93</u>	17.88	<u>20.13</u>	<u>20.92</u>	60.00	82.48	<u>37.35</u>	6.00	<u>9.50</u>	<u>53.45</u>	<u>50.24</u>	29.99
883 Llama2-7B-Chat, $B_{\text{total}} = 256L$																	
884 StreamingLLM	13.81	15.51	17.63	25.81	24.48	7.70	16.16	19.33	18.78	44.00	78.87	37.63	<u>5.50</u>	5.00	54.57	49.68	27.15
885 H2O	8.82	11.73	10.11	15.54	13.70	3.78	19.29	19.13	23.36	34.00	35.61	20.26	<u>4.75</u>	3.57	23.74	23.75	16.95
886 TOVA	14.12	16.82	29.15	27.69	24.82	6.89	18.04	18.67	21.79	57.01	83.48	37.74	5.06	8.71	56.51	52.99	29.97
887 SnapKV	15.45	<u>17.57</u>	<u>29.44</u>	<u>29.53</u>	<u>24.94</u>	<u>8.69</u>	18.78	<u>20.48</u>	22.15	<u>57.50</u>	<u>83.76</u>	<u>38.25</u>	6.00	<u>10.50</u>	<u>57.75</u>	<u>53.59</u>	30.90
888 ReST-KV	<u>15.23</u>	18.57	30.46	31.53	25.85	9.09	<u>19.13</u>	20.83	<u>22.28</u>	63.00	82.57	<u>39.05</u>	6.00	<u>11.50</u>	<u>57.16</u>	<u>51.91</u>	31.51
889 Llama2-7B-Chat, $B_{\text{total}} = 512L$																	
890 StreamingLLM	15.30	15.53	20.16	26.59	25.05	5.65	18.30	19.28	21.84	54.50	82.23	38.07	<u>5.50</u>	5.00	56.80	51.95	28.86
891 H2O	9.68	8.67	6.86	10.85	8.71	1.31	20.04	18.72	24.91	18.00	17.09	18.99	<u>3.75</u>	2.30	20.87	14.87	12.85
892 TOVA	13.53	15.46	26.44	26.12	31.02	7.12	18.25	18.64	22.34	<u>62.50</u>	<u>83.10</u>	40.61	3.00	8.00	56.14	51.53	30.24
893 SnapKV	<u>16.22</u>	<u>19.57</u>	<u>32.32</u>	<u>31.87</u>	24.97	<u>9.66</u>	<u>20.19</u>	20.77	<u>23.85</u>	62.00	82.24	39.18	6.00	<u>10.50</u>	<u>59.49</u>	<u>56.06</u>	<u>32.18</u>
894 ReST-KV	17.15	19.88	32.71	31.94	25.62	9.97	20.52	<u>20.68</u>	23.59	63.50	83.30	<u>39.29</u>	6.00	<u>11.50</u>	<u>58.65</u>	<u>53.81</u>	<u>32.38</u>
895 Llama2-7B-Chat, $B_{\text{total}} = 1024L$																	
896 StreamingLLM	15.12	17.35	22.21	26.76	24.43	6.52	21.15	19.16	24.67	61.00	82.16	39.69	6.00	1.50	57.73	53.24	29.92
897 H2O	6.55	11.17	8.96	13.56	9.57	1.80	<u>22.43</u>	19.74	26.07	18.50	15.59	36.61	4.43	1.08	29.96	15.24	15.08
898 TOVA	16.84	19.32	34.90	31.07	25.24	9.51	20.36	20.34	23.42	62.38	81.31	39.68	4.03	<u>10.05</u>	58.13	54.73	31.96
899 SnapKV	<u>17.41</u>	19.74	35.92	31.82	26.00	<u>10.09</u>	22.06	20.43	24.88	<u>63.50</u>	82.77	40.52	6.00	<u>10.50</u>	60.10	56.05	32.99
900 ReST-KV	17.39	<u>20.01</u>	35.33	<u>31.71</u>	25.33	9.60	22.30	<u>20.85</u>	24.91	<u>63.50</u>	83.73	<u>40.76</u>	6.00	<u>10.50</u>	<u>60.57</u>	54.95	32.97

901 synthesizes high-density signal distributed across long contexts. These tasks collectively pose distinct challenges for context retention, salience estimation, and compositional reasoning, providing a holistic benchmark for evaluating memory management strategies like ReST-KV.

902 We evaluate ReST-KV using the LLaMA-3.1-8B-Instruct model with a maximum context window of $B = 1024L$, across input lengths ranging from 4k to 128k tokens. The evaluation compares ReST-KV with several representative KV cache eviction baselines: Full KV cache (oracle), StreamingLLM (Xiao et al., 2023), SnapKV (Li et al., 2024b), and PyramidKV (Cai et al., 2024).

903 As reported in Table 11, ReST-KV consistently achieves higher average accuracy than all alternative 904 eviction strategies across all context lengths. For instance, at 4k tokens, ReST-KV achieves an average 905 accuracy of 94.01%, substantially outperforming SnapKV (83.60%) and PyramidKV (85.21%). While 906 all methods exhibit declining performance as the context length increases, ReST-KV maintains a clear and 907 consistent margin over the baselines, demonstrating its robustness in extended-context scenarios.

908 A breakdown by task category reveals that ReST-KV performs particularly well on retrieval tasks 909 (S-NIAH, MQ-NIAH, MV-NIAH) and multi-hop reasoning (VT), often approaching the accuracy 910 levels of the full KV cache. These results indicate that ReST-KV is effective at preserving semantically 911 salient tokens under constrained memory. More challenging tasks, such as MK-NIAH-3 and the 912 CWE aggregation task with uniform word distributions, remain difficult across all methods. 913 Nonetheless, ReST-KV continues to outperform other eviction baselines in these settings, suggesting 914 stronger resilience to task complexity and noise.

F ADDITIONAL EXPERIMENTS ON NEEDLE-IN-A-HAYSTACK TEST

915 In this section, we present additional experiments to further evaluate the effectiveness of our method 916 on the Needle-in-a-Haystack test. This benchmark assesses a model’s ability to retrieve critical 917 information embedded within long contexts. While Section 4.4 already provides results for Mistral-7B-

918
919 Table 9: Performance comparison across 16 datasets of LongBench on Qwen2.5-7B-Instruct and
920 Gemma-7B-Instruct. The best result is highlighted in **bold**, and the second-best is underlined.
921

Method	Single-Document QA				Multi-Document QA				Summarization				Few-shot Learning				Synthetic		Code	
	NrtvQA	Qasper	MF-en	HotpotQA	2WikiQA	Musique	GovReport	QMSum	MultiNews	TREC	TriviaQA	SAMSum	PCount	Pre	Lcc	RB-P	Avg.			
	Qwen2.5-7B-Instruct, $B_{\text{total}} = \text{Full}$																			
Full	3.82	10.75	24.24	10.23	9.30	6.97	32.54	17.84	22.46	71.50	89.32	46.16	4.35	98.83	61.93	68.2	36.15			
Qwen2.5-7B-Instruct, $B_{\text{total}} = 64L$																				
StreamingLLM	2.74	5.53	13.16	7.62	7.70	4.35	14.98	12.70	11.96	38.50	77.44	37.51	6.29	26.29	44.14	44.40	22.21			
H2O	1.09	3.46	17.22	6.57	6.33	4.23	14.50	11.67	10.29	37.38	76.86	37.81	7.76	83.84	46.11	49.59	25.92			
TOVA	2.19	3.58	17.34	8.23	8.14	5.96	16.48	13.38	11.36	37.94	78.75	39.12	7.79	85.47	47.93	50.24	27.12			
SnapKV	<u>2.86</u>	<u>5.58</u>	<u>18.71</u>	<u>8.59</u>	<u>8.41</u>	<u>6.01</u>	<u>16.96</u>	<u>13.67</u>	<u>12.21</u>	<u>39.50</u>	<u>79.09</u>	<u>40.39</u>	<u>7.92</u>	<u>87.02</u>	<u>48.10</u>	<u>51.52</u>	<u>27.97</u>			
ReST-KV	<u>3.27</u>	6.69	18.95	<u>9.57</u>	8.79	6.03	18.77	14.99	15.19	50.50	<u>79.07</u>	41.28	4.73	93.00	48.47	50.03	29.33			
Qwen2.5-7B-Instruct, $B_{\text{total}} = 512L$																				
StreamingLLM	2.98	6.70	15.29	8.28	8.27	4.15	22.54	13.15	18.90	56.00	85.96	43.43	6.84	36.21	54.08	53.69	27.28			
H2O	1.16	6.46	21.50	8.05	8.50	6.00	23.09	15.25	17.63	63.65	81.84	43.52	2.03	93.33	57.68	61.67	31.96			
TOVA	2.70	7.99	21.77	8.61	8.57	6.61	23.44	16.34	19.42	64.28	82.98	44.41	2.35	94.70	59.23	63.58	32.94			
SnapKV	3.57	8.90	22.88	<u>10.34</u>	<u>9.57</u>	<u>6.74</u>	<u>24.73</u>	<u>17.58</u>	<u>19.56</u>	<u>64.50</u>	83.49	45.08	<u>4.32</u>	96.67	59.93	64.54	33.90			
ReST-KV	<u>3.53</u>	9.46	23.66	10.91	<u>9.76</u>	<u>7.24</u>	<u>25.65</u>	17.76	20.23	67.50	86.73	<u>44.93</u>	3.83	98.08	60.14	63.56	34.56			
Gemma-7B-Instruct, $B_{\text{total}} = \text{Full}$																				
Full	14.28	33.12	41.08	30.75	26.11	15.47	23.95	19.31	23.86	69.50	81.28	36.22	4.00	35.92	48.47	48.79	34.51			
Gemma-7B-Instruct, $B_{\text{total}} = 64L$																				
StreamingLLM	<u>11.31</u>	16.54	22.96	21.87	23.25	10.18	12.47	16.80	12.74	38.50	70.94	29.79	2.50	20.50	44.67	48.75	25.24			
H2O	10.37	15.93	33.33	26.09	23.65	12.52	12.49	16.94	12.99	39.15	80.42	32.23	3.20	24.41	46.00	49.03	27.42			
TOVA	10.53	16.58	33.81	27.05	24.56	12.66	13.26	17.19	13.76	39.68	80.69	32.67	<u>3.68</u>	25.29	46.01	49.94	27.96			
SnapKV	11.05	17.06	34.22	27.41	<u>25.32</u>	<u>13.52</u>	<u>13.98</u>	<u>17.35</u>	<u>14.03</u>	40.50	<u>81.42</u>	32.90	3.83	26.00	46.34	49.95	28.43			
ReST-KV	13.10	22.90	36.78	28.36	25.90	15.13	15.39	18.09	15.68	44.50	82.55	<u>32.77</u>	3.33	36.25	47.92	48.70	30.46			
Gemma-7B-Instruct, $B_{\text{total}} = 512L$																				
StreamingLLM	11.58	20.76	26.09	24.06	23.36	10.62	17.49	17.01	20.12	60.50	78.20	<u>37.45</u>	1.83	25.17	49.88	52.64	29.80			
H2O	12.70	29.01	38.66	28.71	25.10	14.19	17.53	17.70	20.09	60.94	80.75	35.24	3.15	34.02	47.44	49.01	32.14			
TOVA	13.23	29.30	39.32	29.63	25.57	<u>14.55</u>	18.12	18.32	21.01	61.13	81.49	35.78	<u>3.61</u>	34.46	48.39	50.00	32.74			
SnapKV	<u>13.36</u>	29.43	39.80	30.24	<u>26.01</u>	14.82	<u>18.30</u>	18.86	<u>21.23</u>	62.00	<u>81.51</u>	36.04	4.33	35.08	49.16	50.73	33.18			
ReST-KV	13.70	30.33	42.08	<u>30.13</u>	26.06	14.37	<u>18.82</u>	<u>18.60</u>	22.38	69.00	<u>81.72</u>	37.55	<u>4.33</u>	35.21	48.67	49.48	33.90			
Gemma-7B-Instruct, $B_{\text{total}} = 512L$																				
StreamingLLM	6.95	15.50	16.08	24.30	26.66	7.49	0.98	17.89	2.17	29.50	55.63	16.70	3.00	5.50	34.05	29.27	18.23			
H2O	14.00	<u>18.17</u>	21.78	30.62	<u>28.77</u>	9.93	14.88	<u>19.17</u>	<u>17.97</u>	<u>35.00</u>	80.11	28.97	3.87	6.50	37.50	30.11	24.83			
TOVA	<u>15.10</u>	17.12	24.22	34.11	28.32	10.69	14.60	18.89	16.83	33.57	86.42	29.99	3.13	9.79	40.48	38.05	26.33			
SnapKV	16.05	17.20	<u>24.85</u>	<u>34.51</u>	28.72	<u>11.52</u>	<u>15.39</u>	19.34	16.89	34.50	86.87	30.94	<u>3.54</u>	10.00	40.65	<u>38.22</u>	<u>26.82</u>			
ReST-KV	14.97	20.02	32.61	35.27	29.15	<u>10.71</u>	<u>17.21</u>	19.12	<u>18.39</u>	42.00	85.35	<u>30.57</u>	<u>3.54</u>	12.00	40.01	41.41	28.27			
Llama2-13B-Chat, $B_{\text{total}} = 64L$																				
Full	19.19	25.86	37.04	36.65	33.22	14.02	25.92	20.24	26.02	65.00	87.70	35.60	3.60	11.00	51.26	53.15	34.09			
Llama2-13B-Chat, $B_{\text{total}} = 512L$																				
StreamingLLM	6.95	15.50	16.08	24.30	26.66	7.49	0.98	17.89	2.17	29.50	55.63	16.70	3.00	5.50	34.05	29.27	18.23			
H2O	14.00	<u>18.17</u>	21.78	30.62	<u>28.77</u>	9.93	14.88	<u>19.17</u>	<u>17.97</u>	<u>35.00</u>	80.11	28.97	3.87	6.50	37.50	30.11	24.83			
TOVA	<u>15.10</u>	17.12	24.22	34.11	28.32	10.69	14.60	18.89	16.83	33.57	86.42	29.99	3.13	9.79	40.48	38.05	26.33			
SnapKV	16.05	17.20	<u>24.85</u>	<u>34.51</u>	28.72	<u>11.52</u>	<u>15.39</u>	19.34	16.89	34.50	86.87	30.94	<u>3.54</u>	10.00	40.65	<u>38.22</u>	<u>26.82</u>			
ReST-KV	14.97	20.02	32.61	35.27	29.15	<u>10.71</u>	<u>17.21</u>	19.12	<u>18.39</u>	42.00	85.35	<u>30.57</u>	<u>3.54</u>	12.00	40.01	41.41	28.27			
Llama2-13B-Chat, $B_{\text{total}} = 512L$																				
Full	27.75	46.48	49.68	52.04	54.90	30.44	32.37	22.20	27.62	73.50	92.46	45.72	12.00	72.50	41.70	69.06	46.90			
Llama3-70B-Instruct, $B_{\text{total}} = 64L$																				
StreamingLLM	24.11	27.63	25.53	41.00	48.39	23.77	16.92	20.14	17.07	40.00	77.20	37.10	12.00	72.50	44.88	58.88	36.69			
H2O	24.07	31.33	27.49	44.83	49.09	25.14	22.31	20.59	24.30	49.50	91.45	40.29	12.00	72.50	44.97	60.63	40.03			
TOVA	<u>24.53</u>	30.43	27.56	45.29	49.64	25.93	<u>22.30</u>	20.08	<u>23.46</u>	48.66	91.18	40.23	11.85	72.50	44.31	60.65	39.91			
SnapKV	23.97	32.92	34.96	<u>46.35</u>	52.90	26.05	18.33	<u>21.55</u>	19.98	43.00	88.83	41.18	12.00	72.50	44.42	61.63	40.04			
ReST-KV	26.32	36.38	38.44	49.51	53.18	26.20	20.02	21.81	21.48	59.75	88.51	<u>40.51</u>	12.05	<u>71.50</u>	45.22	61.22	42.01			
Llama3-70B-Instruct, $B_{\text{total}} = 512L$																				
StreamingLLM	24.62	31.89	31.23	44.91	47.51	25.91	23.08	19.76	24.15	62.50	88.14	43.36	12.00	72.50	48.71	66.04	41.64			
H2O	27.56	42.91	36.19	50.40	49.87	25.98	28.82	21.67	<u>27.06</u>	72.00	91.88	44.57	12.00	<u>72.00</u>	42.65	67.87	44.59			

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 11: Performance comparison of ReST-KV and baseline eviction strategies on the RULER benchmark across multiple context lengths (4k to 128k tokens). Results are reported as average accuracy (%) over subtasks. ReST-KV consistently outperforms other methods, particularly on retrieval and multi-hop reasoning tasks. The best result is highlighted in **bold**, and the second-best is underlined.

Method	S-NIAH-1	S-NIAH-2	S-NIAH-3	MK-NIAH-1	MK-NIAH-2	MK-NIAH-3	MQ-NIAH	MV-NIAH	CWE	FWE	VT	Avg. Acc
Llama-3.1-8B-Instruct, $B_{\text{total}} = 1024L$, context length=4k												
Full	100.0	100.0	99.60	100.0	100.0	99.60	99.90	96.25	99.78	97.67	99.96	99.34
StreamingLLM	27.8	30.6	<u>31.40</u>	34.2	26.2	29.6	28.7	30.05	73.2	96.13	30.0	39.81
SnapKV	100.00	99.0	20.6	99.6	93.0	<u>31.00</u>	99.2	90.45	<u>91.46</u>	95.33	99.96	<u>83.60</u>
PyramidKV	100.00	99.80	9.6	100.00	96.80	26.2	<u>99.70</u>	93.60	74.88	94.33	99.92	81.35
ReST-KV	100.00	100.00	99.60	100.00	49.80	99.95	97.00	91.78	<u>96.07</u>	99.92	94.01	
Llama-3.1-8B-Instruct, $B_{\text{total}} = 1024L$, context length=8k												
Full	100.0	100.0	100.0	100.0	99.80	98.80	100.0	95.75	97.62	95.27	99.92	98.83
StreamingLLM	11.0	12.0	<u>13.00</u>	14.2	11.0	<u>11.80</u>	12.35	12.45	4.36	86.93	13.56	18.42
SnapKV	100.00	98.4	12.0	98.0	85.6	7.6	97.8	87.45	56.06	88.27	99.76	<u>75.54</u>
PyramidKV	100.00	99.80	3.0	<u>99.20</u>	<u>87.80</u>	5.2	<u>98.05</u>	<u>88.25</u>	40.24	<u>89.00</u>	99.68	73.66
ReST-KV	100.00	100.00	95.60	100.00	99.80	19.60	100.00	95.80	<u>51.16</u>	<u>91.53</u>	99.76	86.66
Llama-3.1-8B-Instruct, $B_{\text{total}} = 1024L$, context length=16k												
Full	100.0	100.0	100.0	99.60	100.0	99.00	99.85	98.25	90.90	96.67	99.80	98.55
StreamingLLM	5.6	6.4	<u>5.80</u>	7.2	6.0	<u>5.00</u>	5.2	6.7	0.18	78.53	6.52	12.1
SnapKV	100.00	97.0	4.0	97.8	74.0	3.8	<u>97.25</u>	<u>88.95</u>	27.36	92.6	99.6	<u>71.12</u>
PyramidKV	100.00	97.40	1.2	98.00	<u>75.20</u>	3.4	97.0	86.5	18.98	<u>95.07</u>	99.80	70.23
ReST-KV	100.00	100.00	93.00	99.60	99.80	17.00	100.00	96.10	<u>22.86</u>	<u>97.13</u>	99.80	84.12
Llama-3.1-8B-Instruct, $B_{\text{total}} = 1024L$, context length=32k												
Full	100.0	100.0	100.0	100.0	100.0	99.60	99.90	98.95	48.60	97.07	99.68	94.89
StreamingLLM	3.6	1.8	2.4	3.0	3.8	<u>2.00</u>	2.5	2.45	0.12	91.13	3.52	10.57
SnapKV	100.00	97.20	6.20	99.40	61.00	2.0	96.5	<u>87.25</u>	16.96	71.27	98.64	<u>66.95</u>
PyramidKV	100.00	97.2	2.8	99.2	59.2	1.8	<u>96.55</u>	85.2	<u>10.52</u>	75.2	<u>98.60</u>	66.02
ReST-KV	100.00	100.00	98.20	99.60	99.00	15.20	99.95	97.60	9.36	<u>83.53</u>	98.16	81.87
Llama-3.1-8B-Instruct, $B_{\text{total}} = 1024L$, context length=64k												
Full	100.0	100.0	99.80	99.80	99.20	94.00	99.75	98.95	7.96	90.60	98.32	89.85
StreamingLLM	2.0	1.6	2.4	2.6	2.0	<u>0.80</u>	2.05	2.8	0.14	90.87	1.76	9.91
SnapKV	100.00	96.4	<u>3.20</u>	<u>99.00</u>	32.2	0.2	91.7	<u>58.45</u>	2.86	54.53	<u>93.60</u>	57.47
PyramidKV	100.00	96.80	1.0	99.0	<u>36.80</u>	0.2	<u>92.10</u>	58.25	<u>1.66</u>	55.87	94.56	<u>57.84</u>
ReST-KV	100.00	100.00	90.80	100.00	96.80	15.60	98.95	97.30	1.3	<u>71.67</u>	92.68	78.65
Llama-3.1-8B-Instruct, $B_{\text{total}} = 1024L$, context length=128k												
Full	97.40	97.80	95.20	96.20	87.00	63.20	95.85	94.95	0.06	64.73	80.08	79.32
StreamingLLM	0.4	2.0	<u>3.00</u>	2.4	0.6	<u>0.80</u>	1.95	2.35	1.26	74.73	0.52	8.18
SnapKV	97.40	96.80	1.4	93.8	25.6	0.0	80.6	27.0	0.08	30.47	74.76	47.99
PyramidKV	97.40	96.8	0.2	<u>94.20</u>	<u>30.80</u>	0.4	80.95	<u>29.20</u>	0.14	32.07	76.08	<u>48.93</u>
ReST-KV	97.40	98.00	75.80	95.40	74.00	3.60	92.15	93.70	0.16	47.73	73.12	68.28

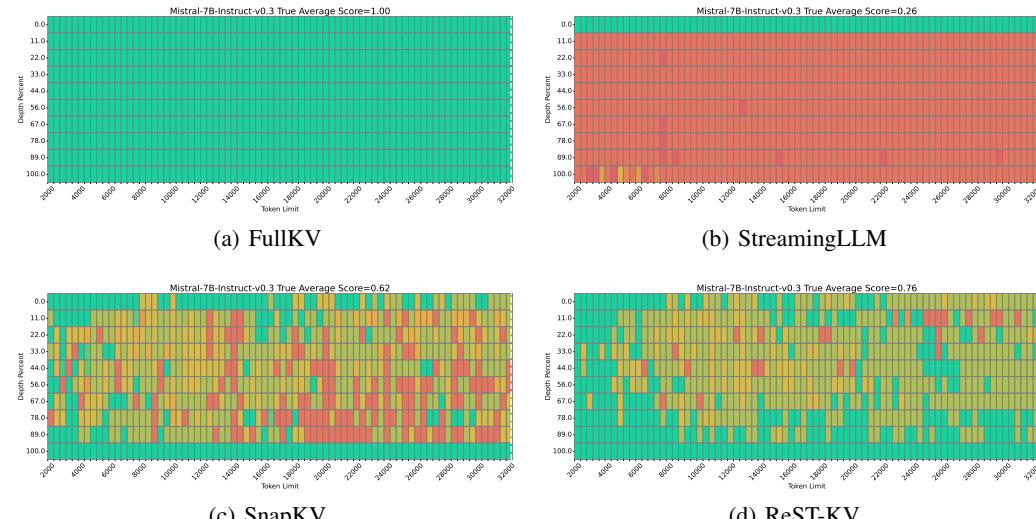


Figure 7: Performance comparison on the Needle in a Haystack Test using Mistral-7B-Instruct-v0.3 with $B_{\text{total}} = 128L$.

Figures 7, 8 and 9 illustrate the performance comparison under these settings. We observe the following key insights:

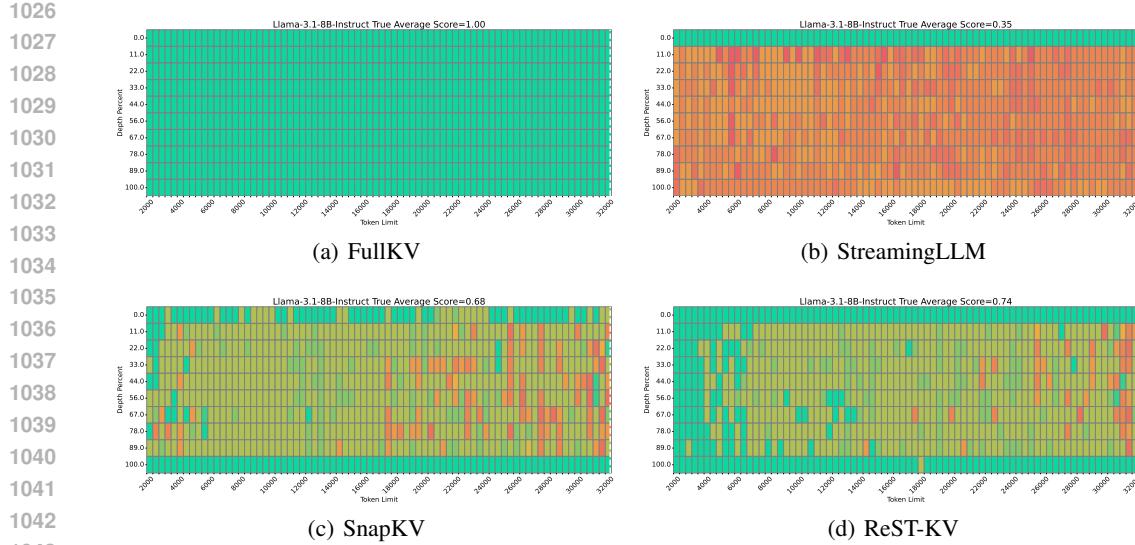


Figure 8: Performance comparison on the Needle in a Haystack Test using Llama3.1-8B-Instruct with $B_{\text{total}} = 128L$.

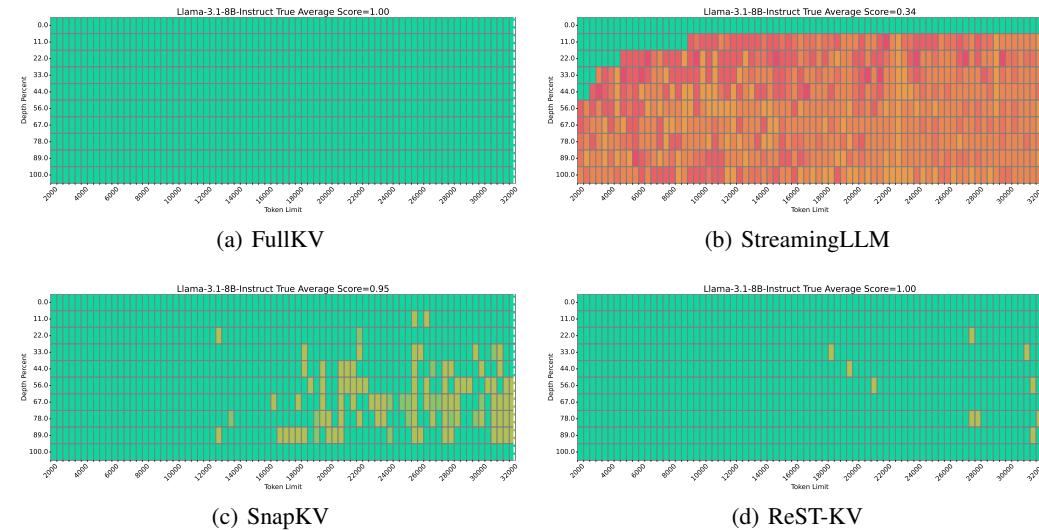


Figure 9: Performance comparison on the Needle in a Haystack Test using Llama3.1-8B-Instruct with $B_{\text{total}} = 1024L$.

- **Mistral-7B-Instruct-v0.3** ($B = 128L$) retains **76%** of the original accuracy, outperforming SnapKV by **14%**. This demonstrates that our method maintains strong retrieval capability even under severe cache constraints.
- **Llama3.1-8B-Instruct** ($B = 128L$) achieves **74%** accuracy, surpassing SnapKV by **6%**, indicating its robustness in preserving key-value pairs under limited cache budgets.
- **Llama3.1-8B-Instruct** ($B = 1024L$) attains **100%** accuracy, meaning it can match full KV cache performance while storing only **1/32** of the original tokens. This highlights the efficiency of our approach in long-context retrieval with minimal memory usage.

These results further validate the robustness and efficiency of our method in selecting the most relevant KV pairs while minimizing memory overhead. Notably, even with a significantly reduced cache budget, our approach consistently outperforms prior methods, ensuring reliable long-context retrieval across different models and settings.

1080 **G ADDITIONAL EXPERIMENTS ON ABLATION STUDY**
10811082 In this section, we conduct additional ablation experiments to rigorously analyze the effectiveness
1083 of core components in ReST-KV and assess its sensitivity to key hyper-parameters.
10841085 **G.1 EFFICACY OF THE PROPOSED OUTPUT RECONSTRUCTION INDICATOR**
10861087 To evaluate the proposed eviction indicator, we compare it with different types of eviction indicators
1088 under the same baseline, including random selection, attention weights, attention weights weighted
1089 by the values’s norm ($\mathbf{A}_t[n] \cdot \|\mathbf{v}_n\|_2$), similar to the VATP method (Guo et al., 2024), and our
1090 output reconstruction. As shown in Table 12, directly weighting attention weights by the values’s
1091 norm does not effectively incorporate the values information. Our method significantly outperforms
1092 all baselines, indicating that the layer-wise output reconstruction perspective better assesses the
1093 importance of KV cache.
10941095 Table 12: Ablation study on different types of information considered by the eviction indicator. Us-
1096 ing output reconstruction as the eviction criterion achieves the best performance, surpassing methods
1097 based on attention weights or their combinations.
1098

Information Considered by Eviction Indicator	Avg.
Random	6.83 ± 0.20
Attention weights (SnapKV)	33.95
Attention weights and values (VATP)	33.88
Output reconstruction (Eq. equation 7)	35.86

1104 **G.2 EFFICACY OF THE PROPOSED SPATIAL-TEMPORAL SMOOTHING**
11051106 To assess the effectiveness of the spatial-temporal smoothing mechanism, we perform an ablation
1107 study to examine the impact of different smoothing methods. As shown in the left part of Table 13,
1108 various temporal smoothing techniques, including Mean, Inv-EMA, and EMA, are tested. Notably,
1109 EMA smoothing achieves the best performance, surpassing other baselines, which demonstrates its
1110 effectiveness in capturing temporal variations by giving higher weights to more recent KV pairs.
11111112 Table 13: Ablation study on the effect of different temporal and spatial smoothing methods in the
1113 eviction indicator. EMA refers to our proposed exponential moving average temporal smoothing,
1114 while AWS represents our adaptive window-based spatial smoothing.
1115

Temporal Smoothing	Avg.	Spatial Smoothing	Avg.
None	35.22	None	33.50
Mean	34.02	Avgpool	35.69
Inv-EMA	31.25	Maxpool	35.59
EMA (Ours)	35.86	AWS (Ours)	35.86

1122 In addition, we evaluate the spatial smoothing methods, as detailed in the right part of Table 13.
1123 Methods such as Avgpool, Maxpool, and our adaptive window-based smoothing (AWS) are com-
1124 pared, with AWS achieving the highest average performance. This suggests that the adaptive
1125 window-based approach, significantly enhances the eviction indicators ability to adjust for vary-
1126 ing window sizes and offsets, thereby improving the assessment of the importance of KV pairs in
1127 the spatial-temporal context.
11281129 **G.3 HYPER-PARAMETER SENSITIVITY ANALYSIS**
11301131 To assess the robustness of ReST-KV, we examine its sensitivity to two primary hyper-parameters:
1132 the temporal smoothing factor α and the spatial smoothing scaling factor β .
1133Figure 10 illustrates the performance variation with respect to α (left panel) and β (right panel). The
observed stability in accuracy across the tested ranges for both parameters indicates that ReST-KV

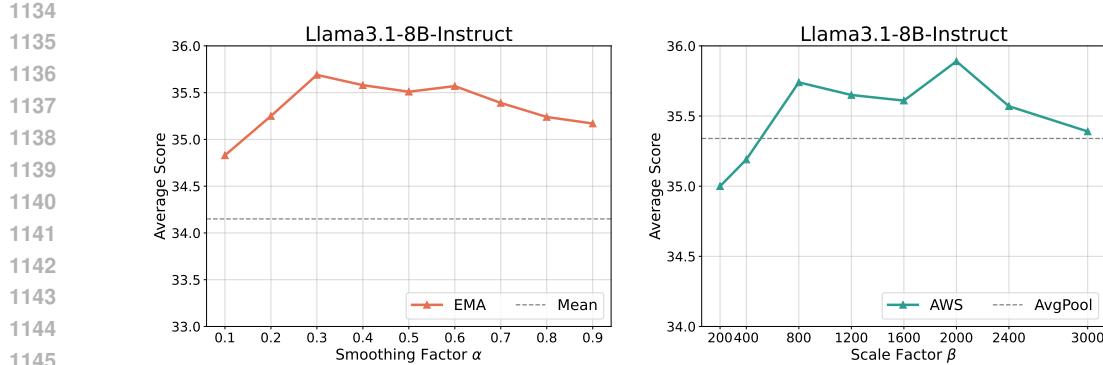


Figure 10: Sensitivity analysis of the smoothing factor α (left) and scaling factor β (right). The performance remains relatively stable across different settings of both hyperparameters, mostly outperforming the baseline.

exhibits low sensitivity to their specific values. This robustness offers considerable flexibility in hyper-parameter configuration without substantial performance degradation.

H ADDITIONAL EXPERIMENTS ON EFFICIENCY

In this section, we investigate the integration of ReST-KV with prefill optimization techniques exemplified by Minference (Jiang et al., 2024) and FlexPrefill to assess potential improvements in Time To First Token (TTFT). To this end, we conduct additional experiments on the RULER 128k benchmark using the LLaMA3.1-8B-Instruct model, focusing on the efficiency of our proposed KV cache eviction method, particularly its impact on TTFT and decoding latency. Results are summarized in Table 14.

Table 14: Efficiency analysis on RULER 128k. All results are normalized to the Full KV caching baseline.

Method	128k Avg. Acc.	TTFT	Decoding Latency
Full	79.32	1 \times	1 \times
ReST-KV	68.28	0.97 \times	10.61 \times
ReST-KV+Minference	53.71	2.99 \times	10.41 \times
ReST-KV+FlexPrefill($\gamma = 0.9$)	67.16	3.42 \times	10.46 \times
ReST-KV+FlexPrefill($\gamma = 0.95$)	68.12	2.37 \times	10.54 \times

Our method is a KV cache eviction strategy that achieves a substantial improvement in decoding latency over 10 \times speedup while maintaining a comparable TTFT (0.97 \times) to full KV caching. Importantly, it maintains a high level of accuracy (68.28%), demonstrating that our eviction strategy preserves model performance effectively even under long context scenarios.

Furthermore, our method is orthogonal and compatible with sparse prefilling techniques such as Minference (Jiang et al., 2024) and FlexPrefill (Lai et al., 2025). When combined with these methods, we observe additional gains in TTFT. For example, integrating FlexPrefill with $\gamma = 0.95$ achieves a 2.37 \times TTFT speedup while retaining high decoding efficiency (10.54 \times latency speedup) and competitive accuracy (68.12%). This shows that our approach not only accelerates decoding but also enables efficient and flexible integration with other prefill optimization techniques.

I INTEGRATION WITH KV CACHE QUANTIZATION

In this section, we further investigate the interplay between ReST-KV and established KV cache quantization techniques, specifically KIVI (Liu et al., 2024b) and KVQuant (Hooper et al., 2024).

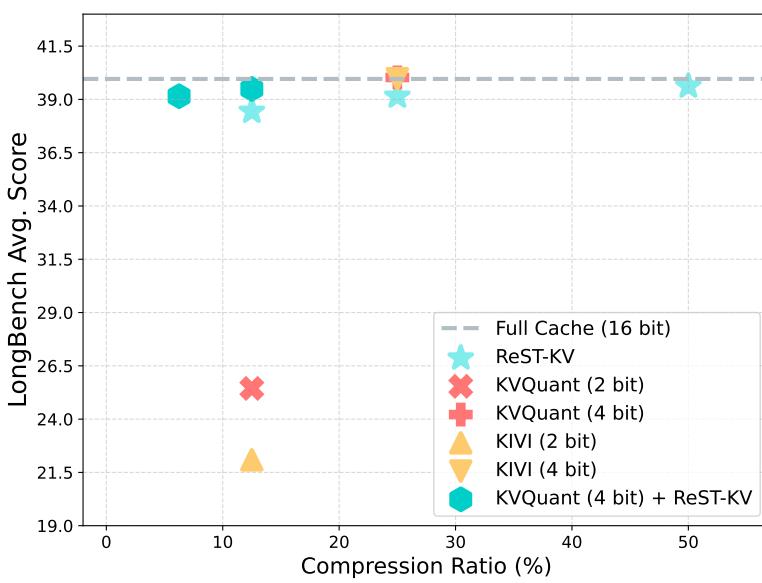


Figure 11: Comparison of ReST-KV, KV cache quantization methods (KIVI and KVQuant), and their combination on Llama3.1-8B-Instruct using LongBench dataset.

Our goal is to evaluate whether combining ReST-KVa KV eviction method that accounts for the effects of attention redistribution and the spatial-temporal dynamics in KV selection can synergize with quantization or even outperform aggressive quantization applied to a full, non-evicted KV cache under similar overall compression ratios.

To this end, we compare ReST-KV, both in isolation and combined with KIVI and KVQuant, against a baseline using full KV cache with various bit-width quantizations. Figure 11 visually summarizes the results.

In particular, even with a stringent total compression ratio of 6.25%, achieved by combining ReST-KV with moderate 4-bit quantization, ReST-KV retains high average accuracy. In contrast, applying more aggressive 2-bit KIVI or KVQuant directly to the full KV cache results in significantly lower accuracy.

These results suggest that eviction strategies which explicitly account for attention redistribution and spatial-temporal token redundancy can provide a more effective pathway to KV cache compression than quantization-only approaches. The combination of ReST-KV and lightweight quantization thus offers a practical and robust solution for efficient inference under tight memory constraints.

J ADDITIONAL EXPERIMENTS ON INFINITEBENCH

In this section, we evaluate ReST-KV on the InfiniteBench benchmark (Zhang et al., 2024b) to further assess its long-context capabilities. InfiniteBench tests LLM performance on extremely long sequences through a diverse set of tasks. These tasks include realistic scenarios such as novel-based reasoning (summarization, QA, multiple-choice, using novels with key entity replacement), dialogue understanding, and code debugging. Additionally, synthetic tests probe specific long-context abilities like retrieval, state preservation, and sequential processing.

Experiments are conducted on the Llama3.1 model. We compare ReST-KV against SnapKV (Li et al., 2024b), as both are post-prefill KV eviction strategies. To ensure a direct comparison of their eviction effectiveness, both methods retain a fixed KV cache budget of 1024 tokens post-eviction, regardless of the initial input context length.

Table 15 details the average performance across InfiniteBench subtasks. ReST-KV achieves a notably higher overall average accuracy than SnapKV (e.g., 38.8% vs. 36.8%). This performance advantage is particularly evident in retrieval-focused tasks (Retrieve.PassKey, Retrieve.Number, Retrieve.KV), where SnapKV can exhibit critical failures on some subtasks. ReST-KV also gen-

1242
 1243 erally demonstrates stronger results in question answering (En.QA, Zh.QA) and Math.Find. While
 1244 SnapKV may be competitive on select tasks like En.Sum, the consistent and superior performance of
 1245 ReST-KV across a wider range of demanding retrieval and reasoning tasks contributes to its substan-
 1246 tially higher overall average. These findings underscore the efficacy of ReST-KV’s reconstruc-
 1247 tion-aware eviction strategy when applied to the challenging long-context scenarios presented by In-
 1248 finiteBench.

1249
 1250

Table 15: Performance of different methods on InfiniteBench.

Methods	Retr.PassKey	Retr.Num	Retr.KV	En.Dia	En.Sum	En.MC	En.QA	Zh.QA	Math.Find	Debug	Avg.
ReST-KV	100.0	93.7	11.4	10.5	22.9	67.2	13.2	13.1	34.0	22.3	38.8
SnapKV	100.0	87.1	0.0	10.0	23.7	67.7	11.3	12.2	34.0	22.3	36.8

1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295