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ABSTRACT

Large language models (LLMs) face growing challenges in efficient generative in-
ference due to the increasing memory demands of Key-Value (KV) caches, espe-
cially for long sequences. Existing eviction methods typically retain KV pairs with
high attention weights but overlook the impact of attention redistribution caused
by token removal, as well as the spatial-temporal dynamics in KV selection. In this
paper, we propose ReST-KV, a robust KV eviction method that combines layer-
wise output Reconstruction and Spatial-Temporal smoothing to provide a more
comprehensive perspective for the KV cache eviction task. Specifically, ReST-KV
formulates KV cache eviction as an optimization problem that minimizes output
discrepancies through efficient layer-wise reconstruction. By directly modeling
how each tokens removal affects the model output, our method naturally captures
attention redistribution effects, going beyond simplistic reliance on raw attention
weights. To further enhance robustness, we design exponential moving average
smoothing to handle temporal variations and an adaptive window-based mecha-
nism to capture spatial patterns. Our method, ReST-KYV, significantly advances
performance on long-context benchmarks. It surpasses state-of-the-art baselines
by 2.58% on LongBench and 15.2% on RULER. Additionally, ReST-KV consis-
tently outperforms existing methods on Needle-in-a-Haystack and InfiniteBench,
all while achieving a remarkable 10.61x reduction in decoding latency at 128k
context length. The code is included in the supplementary material and is de-
signed for easy reproduction.

1 INTRODUCTION

Large language models (LLMs)(Achiam_ef all, P073; Anthropid, Z023; Dubey et all, 2074; MisA
fralAl, P073) have significantly advanced natural language processing (NLP). These models have
enabled breakthroughs in various tasks, such as document summarization(Zhang et all, 20744),
multi-turn dialogues (IDu_ef-all, PO21), retrieval augmentation (Yao_ef-all, P077), and code genera-
tion (Roziere ef all, 20773). Recent models like GPT-4 (Achiam_efall, P(173), Claude 3.5 (Anthropid,
2073), and Llama-3.1 (Dubey et all, 2024)) have extended their context lengths beyond 128K tokens,
allowing for long-context applications. However, as context length increases, the memory required
to store KV cache grows rapidly, potentially reaching hundreds of gigabytes when handling longer
sequences. Thus, optimizing KV cache during inference, without retraining, is crucial for improving
both efficiency and scalability.

KV cache eviction, which identifies and removes less important KV pairs, is a promising approach
to reduce memory consumption and enhance computational efficiency (Cief-all, 20744d). Current
methods typically rely on fixed attention patterns (Han ef-all, P074); Ge_ef-all, PO73) or use statistical
information from attention weights (Zhang et all, 2023; Ciefall, P074K; Caref all, 2074) to estimate
the importance of KV pairs. However, as shown in Figure [0, these approaches focus solely on
retaining query-key pairs with high similarity scores, while ignoring the attention redistribution
effects caused by removing certain pairs. This redistribution can alter the overall attention landscape,
leading to suboptimal retention decisions and degraded performance, especially under tight cache
constraints.
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Figure 1: Comparison between ReST-KV and existing methods. Unlike prior approaches that over-
look attention redistribution, ReST-KV considers its impact to improve KV retention.

In this paper, we propose ReST-KV, a robust KV cache eviction method that accounts for the effects
of attention redistribution and the spatial-temporal dynamics in KV selection. We revisit the KV
cache eviction problem and reformulate it as preserving the attention output at each layer under
fixed memory constraints. Specifically, we measure the reconstruction loss caused by removing each
individual KV pair, and use it as an eviction indicator: the larger the loss, the more important the
KV pair. This loss implicitly captures the impact of attention redistribution caused by the removal.
Moreover, our empirical observations show that KV importance varies significantly across both
time and space. To further improve robustness, we introduce two smoothing mechanisms: (1) an
exponential moving average to model temporal dynamics by emphasizing more recent KV pairs, and
(2) an adaptive window-based spatial smoothing method, which adjusts for varying window sizes
and offsets by estimating the spatial dynamics.

By evaluating on a wide range of downstream tasks including LongBench, RULER, Needle-in-a-
Haystack, and InfiniteBench, we demonstrate that ReST-KV consistently outperforms state-of-the-
art baselines, especially under low cache budgets and demonstrates more robustness in multi-turn
dialogue scenarios. We extensively evaluate ReST-KV on challenging long-context benchmarks
such as LongBench, RULER, Needle-in-a-Haystack, and InfiniteBench. Our results show it con-
sistently surpasses state-of-the-art baselines, with particularly strong gains of 2.58% on LongBench
and 15.2% on RULER. ReST-KV also exhibits greater robustness in multi-turn dialogue and effi-
ciency under constrained cache budgets. For decoding, it achieves a 10.61 x latency reduction at
128k context length when integrated with FlashAttention-2. Importantly, ReST-KV is fully compat-
ible with existing prefill sparse attention methods, leading to a 2.37x TTFT speedup. In summary,
we make the following contributions:

* A novel formulation of KV eviction treating it as layer-wise output reconstruction, enabling a
new importance indicator that captures attention redistribution effects.

* A spatial-temporal smoothing mechanism combining exponential moving average and adap-
tive windowing, significantly enhancing robustness in KV selection.

» Extensive experiments show that ReST-KV outperforms state-of-the-art baselines under low
cache budgets and reduces decoding latency by up to 10x at a 128k context length.

2 RELATED WORK

2.1 KV CACHE EVICTION

KV cache eviction, a prominent method for optimizing KV cache during inference without retrain-
ing, alleviates memory and latency issues in long-context LLMs (LCiefall, P00744). Early eviction
methods focused on specific attention patterns, such as Streamingl.LM (Xiao'ef all, P073) and LM-
Infinite (Han“ef"all, P(174), retain only the initial and local tokens. While more flexible approaches
like FastGen (Geef all, 2023) and RazorAttention ([lang et all, 2024)) were developed, they still rely
on predefined patterns and risk ignoring important tokens. Subsequent studies introduced eviction
indicators to assess the importance of KV cache entries, often using attention weights. For instance,
H20 (Zhang et all, 2023) uses cumulative attention weights, and SnapKV (LCief-all, 2024R) pools
the average attention weight over the last window. In addition to indicator improvements, some
research has explored non-uniform layer-wise and head-wise budget allocation strategies. Pyra-
midKV (Caiefall, 2074) and PyramidInfer ([Yang et all, 2074) allocate budget in a pyramid fashion,
while DynamicKV (Zhon“efall, 20724)), D20 (Wan_ef all, 2074)) and CAKE (Qin et all, P075) adap-
tively allocate budget based on layer-specific information. AdaKV (Feng et all, 2024 adjusts the
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Figure 2: Overview of ReST-KV. (a) Layer-wise output reconstruction quantifies each KV pairs
impact on output error as its eviction indicator. (b) Two smoothing mechanisms enhance robustness:
exponential moving average for temporal smoothing and an adaptive window-based approach for
spatial smoothing.

budget per head based on output ¢; loss bounds. Our work focuses on the limitations of existing
eviction indicators, which primarily rely on attention weights derived from query-key interactions
and overlook the combined impact of value vectors and spatial-temporal dynamics. Furthermore,
our approach is fully compatible with existing layer-wise and head-wise budget allocation strategies.

2.2 ATTENTION DYNAMICS

While attention is central to the success of Transformers, it also poses scalability challenges in long-
context settings due to its quadratic complexity. Recent work has therefore investigated attention
dynamicsspecifically, the spatiotemporal patterns and redistribution of attention weightsas a means
to enable more efficient inference.

Several studies reveal structured attention behaviors. Mlnference (Jiang et all, Z024) discovers a
"vertical-slash" pattern, where attention gradually shifts across tokens over time, indicating evolv-
ing token importance. FlexPrefill (Cai_ef-all, P079) similarly identifies consistent attention trajec-
tories during prefill. Keyformer (Adnan_ef-all, P074) examines how KV eviction distorts attention
distributions and proposes normalization to mitigate such shifts.

Distinct from the above methods, we reformulate KV cache eviction by explicitly modeling attention
redistribution and spatiotemporal dynamics. Rather than relying solely on static attention weights,
our approach captures temporal evolution and layer-wise shifts in attention, enabling more robust
importance estimation and significantly improving performance under memory constraints.

3 METHODOLOGY

3.1 PRELIMINARY

LLMs typically decode text in an auto-regressive manner, which allows them to generate high-
quality, contextually coherent text. However, this decoding process is computationally expensive,
as it involves a high degree of repetitive calculations, making it challenging to apply in real-time or
large-scale scenarios.

KV cache, a widely recognized technique, reduces redundant computation by storing previously
computed keys and values. In this section, we describe the attention computation under the KV cache
framework, laying the foundation for our discussion on KV cache eviction. For clarity, we focus on
a single attention head and layer, omitting footnotes. At each decoding step ¢, the KV cache stores
previously computed keys and values (Kj.;—1, V1.¢—1) for X[1 : ¢ — 1], enabling reuse in future
steps. For convenience, we denote Ky.;—1 as K71 and V.41 as V7 _1. Consequently, the model
requires only the current token x; to generate x; 1, rather than the full sequence X = [x1,...,Xy].
Formally, at step ¢, the query q;, key k¢, and value v; are computed as:

a =xtWo, ki = x;Wg, vi = x; Wy, (D

where W, Wi, Wy, are the components of the Q, K,V weight matrices corresponding to a
single attention head. The currently computed k; and v; will be concatenated with the previously
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cached keys and values, and used in the attention computation for decoding step ¢:
K7 = Concat (Kr—_1,k:), Vr = Concat (Vr_1,v¢), 2)

where K1 and V1 are the entire sequences of keys and values at decoding step ¢. The attention
output z; for the token x; at step ¢ is calculated as:
KT
z; = softmax (q\t/diT Vr=A;Vrp, 3)
k
where A, represents the attention weights for the token x; and is used by existing methods to com-
pute eviction indicators. dj, represents the dimension of the key vectors in the attention mechanism.

Finally, the output of a single head in the multi-head attention can be expressed as:
MHA (Xta <KT7 VT>) = thO7 (4)
where Wy is the weight matrix of output projection corresponding to a single attention head.

3.2 LAYER-WISE RECONSTRUCTION INDICATOR

We reformulate KV cache eviction as preserving the attention output distribution at each layer under
fixed memory constraints, naturally capturing the effects of attention redistribution. We formalize
this paradigm as layer-wise reconstruction, a framework that aligns with the transformer’s inherent
layer-wise computation flow. Specifically, for a single layer, the subproblem is expressed as:

Definition 3.1. Given a cache budget B for a single layer, the task is to select a series of important

KV cache entries (K7, V) containing up to B elements from the total cache entries (K7, V) at
the step ¢, with the goal of maximizing the retention of the orignial MHA output. We use - distance
to calculate reconstruction error, the objective for a single attention head can be defined as:

argmin HMHA (x¢, (K7, Vr)) — MHA (Xh <KT7VT>) HQ

(K7, V) 5)

S.t. ‘<KT,VT>‘ < B,
where ’(KT, VT>‘ is the number of selected KV pairs.

To efficiently compute Eq.B, we adopt a greedy selection strategy that retains the top-B KV pairs
estimated to have the greatest impact on the attention output. Specifically, for the n-th KV pair, its
importance is measured by the increase in reconstruction error when it is removed, which based on
the local linearity assumptions (Molchanov ef all, Z0T6). The eviction indicator is defined as:

L(n] = || MHA(x, (K7, V7))
— MHA (x¢, (K7 \ns Vo) ||, (6)
where (KT,\n, VT7\71> represents the set of cache with the n-th KV pair removed.
By introducing Eq. B and Eq. @ for derivation, Eq. B can be simplified as follows:

_ Al
Liln) = AL ]
where A.[n] represents the attention weights of the query q; with respect to the key k,,, and v,
represents the n-th value in the value cache V.

IMHA (x¢, (K7, V1)) — v Wol|,, @)

Traditional eviction indicators only considered A;[n], neglecting the effects of attention redistribu-
tion. Eq. [ demonstrates that the importance of a KV pair depends on two mechanisms:
Aq[n]
1—A¢[n]
amplifier in (0, 1). While preserving the conventional principle that higher attention weights
A,[n] indicate stronger retention priority, this transformation introduces curvature to better
discriminate between high-competition KV pairs compared to linear scaling in prior methods.
* Redistribution Sensitivity: The second term || MHA(-) — v, W ||, captures the redistribu-
tion of attention after removing the n-th KV pair. It reflects how much the remaining KV
pairs fail to compensate for the excluded value in reconstructing the MHA output. A smaller
discrepancy indicates that attention can be effectively redistributed to preserve the output, thus
signaling lower importance of the removed KV pair.

¢ Nonlinear Attention Reweighting: The first term acts as a monotonic nonlinear

The additional analysis and the derivation of Eq. [ can be found in Appendix Al and Eq. 1.
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Figure 3: Visualization analysis of the spatial-temporal dynamics of the output reconstruction in-
dicator. The left plot shows dynamic temporal variations in KV pair importance over steps, with
the zoomed-in view highlighting a KV pairs gradual decline in importance. The right plot reveals
spatial shifts, where similar importance patterns emerge at shifted positions.

3.3 SPATIAL-TEMPORAL SMOOTHING

To enhance the robustness of KV pair selection during the prefill stage, we analyze the spatial-
temporal dynamics of the KV pairs’ reconstruction error (Eq. ). From Figure B, we observe two
key characteristics: (1) The importance of KV pairs exhibits dynamic temporal variations (i.e., the

fluctuating patterns of I [n], I[n], ..., I;[n] along the temporal dimension, and (2) simultaneously
demonstrates dynamic spatial shifts where similar importance distributions emerge across shifted
positions (e.g., I;_g[n — kN],...,L;_1[n — N],I;[n] exhibit analogous patterns).

Leveraging these observations, we introduce two novel smoothing mechanisms to enhance the ro-
bustness of KV pair selection, as illustrated in Figure D(b). These mechanisms address temporal
variations and spatial shifts in KV pair importance, ensuring a more stable and reliable selection
process. By applying these techniques, we aim to reduce short-term fluctuations and capture long-
term trends, ultimately improving the performance of the KV cache eviction.

Exponential Moving Average Temporal Smoothing. Inspired by SnapKV (LCiefall, 2074R), we
use a recent query window S, to assess the importance of KV pairs. To model temporal dynamics,
we apply exponential moving average (EMA) smoothing to the importance of KV pairs, which as-
signs higher weights to recent queries while dampening earlier fluctuations. To apply this smoothing
over a limited window of recent queries, we define the temporal smoothing as:
. {EMA(It_sw;t[n]), ifn <t— S,

I [n] = (8)

Q, otherwise,
where I, [n] represents the eviction indicator with temporal smoothing. EMA(-) captures the tem-
poral variation in importance. We assign an arbitrarily large value (2 to the most recent .S,, tokens
to ensure their preservation.

The exponential moving average EMA () is defined as:

aly, [n] + (1 — ) EMA(IL, .0, -1 [n]),
EMA(Itl;tz [n]) = if t1 < ta, (9)
It1 [n], elif tl = tz,

where EMA (I, .4,[n]) represents the exponential moving average of the reconstruction errors
L, [n],...,1;,[n] computed over the steps from ¢; to 5. « is the smoothing factor that controls
the weight of the current reconstruction error I, [n] relative to the previous error EMA (I, .+, —1[n])
in the update process.

Adaptive Window-Based Spatial Smoothing. To capture spatial shifts in KV importance over
time, we split the observation window into two halves: S{;O“t and S;2*. For each half, we compute
the average index of the top-B important KV pairs:

2
Dfront = W Z Z argglax (It) ) (10)

W tegton B
w
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where %& is a normalization factor. ST denotes the first half of queries within the input window
Sw- Diear 1s computed similarly for the second half of the queries. The difference AD = Dy —
Dyone reflects how KV importance shifts across positions. We use this signal to adaptively adjust
both the window size and shift:

WSZQ-{DRQH;%MJ+1: a
| PePuss | i Dgo — Dy > 0, (12)
“Yshift LWJ + 1, if Dgont — Drear < 0,

where W is the window size and ~gps is the shift of the sliding window. [ is a scaling factor that
determines the granularity of the sliding window’s movement, controlling the size of the steps taken
when calculating the window shift and size. | -| represents the floor function, which rounds a number
down to the nearest integer.

In summary, the final eviction indicator, which incorporates both layer-wise output reconstruction
and spatial-temporal smoothing, is as follows:

W /2] 4+~enite At [k]
It [TL] _ k:—LWinIiJ —+Yshife ) (13)

The selected <KT, VT> is the subset of the original KV pairs, defined as:

Kr = Kr[Dy,:], Vr = Vr[D,,:], D; = argmax (Z;) (14)
B

where D, denotes the indices of the top B KV pairs based on the eviction indicator Z;. The same
operation is applied to each head and layer, and different KV pairs can be selected for different heads
in each layer.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Backbone LLMs. We evaluate ReST-KV on five open-source LLMs spanning two mainstream
attention architectures: (1) Multi-head attention, Llama2-Chat (lonvron ef all, 2073) and Gemma-
Instruct (Team_ef all, 2074); (2) Grouped-query attention, Llama3-Instruct (Dubey et all, 20074)),
Mistral-Instruct-v0.3 (Jiang et all, 2023), and Qwen2.5-Instruct (Teand, 2074).

Baseline Methods. We compare ReST-KV with four baselines: (1) Fixed Attention Patterns:
StreamingLLM (Xiaoef-all, 20273); (2) Eviction Indicator: H20 (Zhang et al], 2023), TOVA (Oren
efall, 2024), SnapKV (LCiefall, D0174H). We also incorporate adaptive budget strategies from Pyra-
midKV (Carefall, P074) and AdaKV (Feng et all, 7074)) into our method to show compatibility.

Evaluating Tasks. We evaluate ReST-KV on three prominent benchmarks: (1) LongBench (Bai
ef-all, P01773), which tests long-context understanding across 16 datasets spanning six categories; and
(2) RULER (Hsieh“efall, 20724)), a challenging long-context benchmark consisting of 4 categories
and 13 complex tasks; (3) Needle-in-a-Haystack (Ciu“ef-all, P00744), designed to assess the ability
of models to retrieve key information from long sequences; (4) InfiniteBench (Zhang et all, P0274H),
includes 10 tasks designed to test various aspects of long-context processing. Detailed results are
reported in Appendix [.

Implementation Details. We evaluate ReST-KV and all baselines under varying cache budgets
(Biota = nL, with n € [64,1024]), where n denotes the number of KV pairs per layer across L
layers. To ensure fairness, token eviction is performed only once during the prefilling phase. All
methods, except TOVA, are implemented based on the codebase from (Cai, 2023). Experiments are
run on NVIDIA A800 80GB GPUs. Further details are provided in Appendix B.

4.2 EVALUATIONS ON LONGBENCH DATASET

We evaluate ReST-KV on 16 datasets from LongBench. As shown in Figure B, ReST-KV consis-
tently outperforms all baselines across different cache budget settings, with especially strong gains
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Figure 4: Average score across 16 datasets of LongBench under various cache budgets. ReST-KV
outperforms the baseline across different models and settings.

Table 1: Performance comparison across 16 datasets of LongBench. The best result is highlighted
in bold, and the second-best is underlined. ReST-KV achieves the best performance in most cases.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method P SN Q@ W o T SRR R s Q Ave
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Llama-3.1-8B-Instruct, By = 64L
StreamingLLM 7.65  5.08 14.14 1093 12.64 6.86 16.57 1893 16.30 38.50 83.13  34.65 9.78 96.28 54.16 48.21 29.61

H20 1223 512 1512 11.51 10.14 6.23 17.23 19.51 16.79 39.1581.51  36.12  8.12  95.1251.2547.12 29.52
TOVA 1852 6.12 1732 1215 1251 7.35 16.24 2041 1634 38.4182.61 36.16 8.14 95.23 55.21 47.35 30.63
SnapKV 19.90 578 18.38 13.51 14.42 8.52 17.35 2044 17.33 41.00 85.37 37.63 8.93 91.08 55.09 48.88 31.48

ReST-KV 2243 7.19 1925 1411 15.04 797 20.56 21.10 19.15 53.50 88.23  40.21 846 93.9056.74 48.77 33.54
Llama-3.1-8B-Instruct, By = 512L
StreamingLLM 19.15  6.47 15.02 10.94 12.58 6.23  23.66 20.05 2331 57.50 87.70  41.86  10.25 90.74 62.39 53.61 33.84

H20 2623 7.34 2051 1152 13.52 7.34 2323 21.24 23.14 5850 86.12  40.15 7.25 91.0261.23 54.12 34.53
TOVA 27.34 834 2245 1225 14.51 842 2423 2213 2225 58.50 89.31 4051 824  93.14 62.23 55.61 35.59
SnapKV 28.02 9.83 24.84 13.77 15.40 10.21  25.13 22.73 2425 65.00 92.34  41.69 842 96.31 64.30 57.28 37.47
ReST-KV 32.01  10.73 2523 1591 15.85 1025 26.47 23.23 2479 69.00 91.62 4259 840  97.66 63.48 56.03 38.33
CFull 32,02 131272752 1660 1641 1141 3459 2341 2689  73.0091.65 4380 7.18 97.7365.1258.8939.96

Mistral-7B-Instruct-v0.3, By = 64L
StreamingLLM 20.37 20.56 24.62  38.87 3247 17.68 15.48 19.84 15.81 39.50 82.77  36.72 550  80.00 49.77 47.90 34.24

H20 20.51 21.52 2512 40.12 33.12 18.34 1623 19.12 16.24 38.5083.12 3723  6.00 85.5050.1248.1234.93
TOVA 22.51 2224 3723 41.12 34.10 19.52 1721 19.23  16.27 38.5085.12 3851  6.50 86.50 51.04 48.42 36.50
SnapKV 19.39 23.62 38.66 43.26 34.72 21.33  17.59 2093 17.06 38.50 86.96 39.61 7.00 90.50 51.63 49.73 37.53

ReST-KV 25.65 26.58 42.71 46.11 36.43 24.34 19.80 21.65 18.90 51.50 87.88  41.54  4.00  90.50 52.39 50.75 40.05
Mistral-7B-Instruct-v0.3, By = 512L
StreamingLLM 24.19 25.97 30.14  40.75 31.90 17.35 22.18 2030 2322 65.50 86.95 4375  6.00  81.00 59.35 56.36 39.68

H20 25.23 3041 4032 4252 35.23 18.23 24.23 21.24 2321 66.50 86.71  43.15 5.00 82.5260.13 58.15 41.42
TOVA 2523 3252 4624 4523 36.23 2032 2453 22.53 23.64 66.50 87.24 4421  6.00  85.62 59.35 60.24 42.85
SnapKV 26.84 3551 53.12 49.56 37.72 26.54 25.06 24.03 2476 67.50 89.36  44.82 550  98.50 60.44 61.22 45.66
ReST-KV 28.60 35.86 53.37 49.13 38.70 27.94 26.05 24.37 25.09 73.50 89.66  46.27 5.50 98.50 60.13 60.84 46.47
CFull T 29.07 4154 5288 4937 © 3901 2858 3507 2571 2773  76.00 8859 4751  6.00 98.50 61.4862.68 48.11 -

under tight memory constraints. Unlike prior methods that rely solely on the rank of query-key sim-
ilarities, our approach accounts the impact of attention redistribution, ensuring that the most critical
information is retained. Moreover, we verify the compatibility of ReST-KV with non-uniform bud-
get strategies such as PyramidKV and AdaKYV, with results presented in Appendix 0. Compatibility
with KV cache quantization techniques is also evaluated, as shown in Appendix .

Table [ provides a detailed comparison under two cache budgets: low (B = 64L) and high
(Biota = H12L), with full results in Appendix D ReST-KV consistently ranks among the top
performers across tasks, achieving up to a 2.58% improvement under low budgets with the Mis-
tral model. These results highlight the effectiveness of our eviction indicator and spatio-temporal
smoothing in enhancing KV selection robustness. Additional evaluations across different models
and sizes further confirm this conclusion (Appendix D2, D3).

4.3 EVALUATIONS ON RULER BENCHMARK

We evaluate ReST-KV on 11 tasks from the RULER benchmark using the Llama3.1-8B-Instruct
model, with a fixed cache budget of By, = 1024 L applied across all methods. Table @ summarizes
the average accuracy across varying context lengths, from 4k to 128k context length. Existing
KV cache eviction methods suffer from substantial performance degradation as the context length
increases, highlighting their limited robustness in long-context and complex retrieval scenarios. In
contrast, ReST-KV consistently achieves strong results across all lengths, with an average accuracy
improvement of 15.2% over prior methods. Notably, even at the 128k context lengthwhere less than
1% of the original cache is retained, ReST-KV maintains effective retrieval capabilities. Detailed
results for individual tasks are provided in Appendix E.



Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on RULER bench- Table 3: Ablation results of ReST-KV.
mark across different context lengths.

Method 4K 8K 16K 32K 64K 128K Avg. Method Avg. Ace
Full 99.34 98.83 98.55 94.89 89.85 79.32 93.46 Altention weight Top-k  32.98
Streaming  39.81 18.42 12.10 10.57 9.91 8.18 16.50 ReST-KV 35.86
SnapKV  83.60 75.54 71.12 66.95 57.47 47.99 67.11 ReST-KV w/o LOR  33.95 (-1.91)
PyramidKV 81.35 73.66 70.23 69.83 57.84 48.93 66.97 ReST-KV w/o EMA  34.02 (-1.84)
ReST-KV  94.01 86.66 84.12 $1.87 78.65 68.28 82.27 ReST-KV w/o AWS  33.50 (-2.36)

4.4 VISUALIZATION ON NEEDLE-IN-A-HAYSTACK TEST

The needle-in-a-haystack test (Lin“ef-all, 20074a) involves inserting key information at random po-
sitions within long contexts and serves as a benchmark to assess the ability of LLMs to accu-
rately retrieve critical information. To further demonstrate the effectiveness and adaptability of
our method, we conducted experiments on the Mistral-7B-Instruct-v0.3 model with a cache budget
set t0 By = 1024L. As shown in Figure B, even under such a strict cache budget, ReST-KV
maintains 98% of the model’s performance, significantly outperforming other methods. This under-
scores ReST-KV’s ability to efficiently prioritize and retain the most relevant KV pairs. Additional
visualization graphs can be found in Appendix BE.

Mistral-7B-Instruct-v0.3 True Average Score=1.00 Mistral-7B-Instruct-v0.3 True Average Score=0.30

Token Limit

(a) FullKV (b) StreamingLLLM

Mistral-7B-Instruct-v0.3 True Average Score=0.93 Mistral-7B-Instruct-v0.3 True Average Score=0.98

S ® s
& o & & & o e & S
R A R S A R

(c) SnapKV (d) ReST-KV

Figure 5: Performance comparison on the Needle in a Haystack Test using Mistral-7B-Instruct-
v0.3 with By = 1024L. Even with a strict cache budget, ReST-KV retains 98% of the model’s
performance, outperforming other methods in retrieving critical information.

4.5 ABLATION STUDIES

We conduct ablation studies on LongBench to evaluate the contribution of each component in our
KV cache management strategy: layer-wise output reconstruction (LOR) indicator, exponential
moving average (EMA) temporal smoothing, and adaptive window-based spatial smoothing (AWS).
We adopt the Llama3.1-8B-Instruct model with a cache budget of By, = 128L as the default
configuration.

Table B systematically presents the results. The baseline using vanilla attention-weight-based top-
k selection yields only 32.98 accuracy, as it ignores attention redistribution and fails to capture
the spatial-temporal dynamics of KV pairs. In contrast, our ReST-KV framework achieves 35.86
accuracy, representing a significant improvement.

To further understand the effectiveness of each module, we ablate them individually:
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Figure 6: Peak memory usage and decoding latency on NVIDIA A800 80GB GPU. ReST-KV re-
duces peak memory by 36.0% and achieves up to a 10x speedup at 128k context length compared
to full cache.

» Without the LOR indicator, the model misses attention redistribution effects, making it harder
to identify truly critical KV pairs. This is especially harmful under tight budgets like B =
128L, causing a 1.91% drop in accuracy.

* Without EMA temporal smoothing: The model lacks awareness of temporal changes in im-
portance, making it less capable of retaining KV pairs crucial for future queries. This results
in a 1.84% performance degradation.

» Without AWS spatial smoothing: Without capturing spatial offset patterns (e.g., vertical-slash
structures), the model tends to retain suboptimal KV pairs, causing a 2.36% accuracy drop.

Detailed ablation of each module and sensitivity analysis can be found in Appendix G.
4.6 EVALUATION OF MEMORY AND THROUGHPUT

To evaluate the effectiveness and efficiency of our method in reducing memory consumption and
enhancing LLM inference, we analyze peak memory usage and decoding latency on the Llama-3.1-
8B-Instruct model implemented with FlashAttention-2 (Dad, PZ023).

Peak Memory Usage. As shown in Figure B(a), ReST-KV significantly reduces peak memory
usage, performing comparably to other KV cache eviction methods. Compared to full cache, ReST-
KV achieves approximately 36.0% reduction in peak memory usage at a context length of 128k.

Latency Analysis. As shown in Figure B(b), the decoding latency of the standard full cache
method, even with FlashAttention-2, grows rapidly with input length. In contrast, ReST-KV main-
tains high efficiency by using a fixed cache budget to limit the number of KV pairs. This approach
overcomes the latency bottleneck for long sequences, achieving an approximate 10.61x speedup
over the full cache method at a 128K context length.

Furthermore, ReST-KV is compatible with prefill sparse attention approaches, yielding a Time-To-
First-Token (TTFT) speedup of up to 3.42x. This efficiency is achieved because our method only
requires computing attention outputs within a small query window, resulting in a computational
complexity comparable to that of SnapKYV. For a detailed analysis, please see Appendix H.

5 CONCLUSION

In this paper, we propose ReST-KV, a novel KV cache eviction method that reformulates eviction
as a layer-wise output reconstruction task, effectively capturing attention redistribution effects be-
yond conventional attention-weight heuristics. To enhance robustness, ReST-KV integrates a spatial-
temporal smoothing mechanism using exponential moving averages for temporal stability and adap-
tive windowing for spatial awareness. Extensive evaluations on LongBench, Needle-in-a-Haystack,
and RULER demonstrate that ReST-KV consistently surpasses state-of-the-art methods under low
memory budgets and significantly reduces decoding latencyachieving up to 10x speedups at 128k
context lengths. Our method is model-agnostic and compatible with existing budget strategies, of-
fering a practical and principled solution for efficient long-context generative inference. Future work
will explore tighter integration with adaptive allocation strategies and extensions to multi-modal or
structured memory scenarios.
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A DERIVATION AND ANALYSIS OF THE OUTPUT RECONSTRUCTION
INDICATOR

We define the eviction indicator I;[n] as the reconstruction error of the MHA output caused by
removing the n-th KV pair. Specifically, the eviction indicator is given by:

I;[n] = | MHA (x;, (K7, V1)) = MHA (x4, (K7 \ns Vo) ||, » (15)
where K, \,, and V, \,, represent the set of cache keys and values with the n-th KV pair removed.
Using Eq. B and Eq. B, we can expand Eq. 3 as follows:

L[n] = |A:VrWo — A\ Vo Wol, (16)

where A, \,, represents the attention weights with the n-th KV pair removed, and V7 \,, represents
the values corresponding to the remaining cache sets after the removal of the n-th KV pair.

Further, we expand the matrix computation into a weighted sum form as:

Lin] = > AfmlvinWo — > Ay almlviaWo (17)

m#n 9

where A;[m] and A\, [m] represent the attention weights for the m-th query in the presence and
absence of the n-th KV pair, respectively.

Compared to Ay[m], A, \,[m] is missing the component related to k,, in the denominator. There-
fore, the relationship between the two is given by:

Ailm)]
A = — 1
t,\n [m] 1— At [TL] ( 8)
Substituting Eq. 8 into Eq. [ and performing step-by-step simplifications, we get:
Ailm]
Li[n] = E Ai[m]v,,Wo — E mvm Woll » (19)
m m#n 2
Aylm) Ailn]
= E A Wo — g — v, Wop — ————v,,W 20
At [TL] At [TL]
= —v, W — — A m W , 21
1= A " © Zm T— A, AdmlveWo @D
the no-th K'V" pair removed’s loss the increase of other components after removing the n-th K'V' pair|| o
At [’I’L]
= —— 7 [|[vnWo — § A m W ; 22
AV We 2 Admin Wol o
At [’I’L}
= ——— . |MHA Kr,V —v, W , 23
].—At[’fL] || (Xta< T, T>) v OH2 ( )

From Eq. I, we can see that the layer-wise output reconstruction indicator can be divided into two
parts. One part is the loss due to the removal of the n-th KV pair, and the other part is the increase
in the contribution of the other components after removing the n-th KV pair. Together, these two
parts determine the importance of a KV pair.

B MORE IMPLEMENTATION DETAILS

In this section, we provide additional details regarding the implementation of ReST-KV. Our method
operates in two main phases: prompt prefilling and token decoding. During the prompt prefilling
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stage, we employ Eq. [[3 from Section B3 as the eviction indicator. This formula integrates both the
layer-wise output reconstruction indicator and spatial-temporal smoothing. According to Eq. 4, we
select a set of KV pairs based on the cache budget from the prompt. Specifically, for the Exponential
Moving Average (EMA) Temporal Smoothing, the smoothing factor « is set to 0.3. In the case
of the Adaptive Window-Based Spatial Smoothing, the scaling factor 3 is set to 2000. Following
SnapKV (Liefall, 2074K), we adopt a fixed observation window of size S,, = 32 and kernel size k =
5 for SnapKV, PyramidKYV, and our proposed ReST-KV. To better capture important information,
we set the kernel size to 21 on the RULER and InfiniteBench datasets. The StreamingLLM method
retains the first 4 tokens as an attention sink, ensuring efficient processing within the token flow. In
the token decoding phase, we utilize the KV cache compressed during the prefilling stage, along
with a newly updated KV cache, to perform decoding. Notably, no further compression is applied
during this phase.

C COMPATIBILITY WITH BUDGET ALLOCATION STRATEGIES

In this section, we evaluate the compatibility of our method with existing budget allocation strate-
gies. Specifically, we choose PyramidKV (Caiefall, P074)) as a representative of layer-wise budget
allocation strategies and AdaKV (Feng et all, Z024) as a representative of head-wise budget al-
location strategies. We compared the average accuracy results of the Llama2-7B-Chat model on
the LongBench datasets under varying total cache budgets (ranging from 64L to 1024L). Our ex-
periments demonstrate that, when combined with these strategies, our method achieves similar or
slightly improved performance compared to SnapKV combined with the same strategies.

Table 4: Performance comparison of SnapKV and our method with Pyramid layer-wise budget
allocation strategies across varying cache budgets.

Method Cache Budget Buow Avg. Acc
64L 128L  256L 512L 1024L

SnapKV 2296 2831 3090 32.18 32.99 29.47

PyramidKV 24.67 29.58 31.04 3232 3295 30.11(10.64%)

ReST-KV 25.54 2999 3151 3238 3297 30.48

ReST-KV w. Pyramid  26.88 30.47 31.74 3248 33.05 30.93 (1 0.45%)

Table B illustrates the results of applying Pyramid layer-wise budget allocation strategies to both
SnapKV and our method, comparing the performance differences before and after the addition
of the strategy. As shown, the accuracy improvements are modest but consistent across different
cache budget sizes. For instance, our method combined with layer-wise budget allocation strategies
achieves a 0.45% increase in average accuracy across different cache budgets.

Table 5: Performance comparison of SnapKV and our method with Ada head-wise budget allocation
strategies across varying cache budgets.

Method Cache Budget Bio Avg. Acc
64L 128L 256L 512L 1024L

SnapKV 2296 2831 3090 32.18 32.99 29.47

Ada-SnapKV 24.89 2993 3121 3228 33.01 30.26 (1 0.79%)

ReST-KV 25.54 2999 3151 3238 32.97 30.48

Ada-ReST-KV  27.35 31.27 31.84 3251 33.02 31.20 (1 0.72%)

Table B presents the results of applying head-wise budget allocation strategies to both SnapKV and
our method, comparing the performance differences before and after the addition of the strategy. The
results show that our method combined with AdaKV achieves a 0.72% increase in average accuracy
across all cache budgets. These results highlight that our method is compatible with existing budget
allocation strategies.
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Table 6: Performance comparison across 16 datasets of LongBench on Llama3.1-8B-Instruct for
cache budgets from 64L to 1024 L. The best result is highlighted in bold, and the second-best is
underlined.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

[N Qd Q@ o ¢« ¢ Q> & .
M T (0 @ e T g8 (8 e o e e et

Llama3.1-8B-Instruct, By = Full

Full 3202 13.12 2752 16.60 16.41 11.41 3459 2341 26.89 73.00 91.65 43.80 7.18 97.73 65.12 58.89 39.96
Llama3.1-8B-Instruct, By = 64L

StreamingLLM 7.65  5.08 14.14  10.93 12.64 6.86  16.57 18.93 1630 38.5083.13  34.65 9.78  96.28 54.16 48.21 29.61

H20 1223 512 1512 1151 10.14 6.23 17.23 19.51 16.79 39.1581.51  36.12  8.12  95.1251.2547.12 29.52
TOVA 1852 6.12 17.32 1215 12.51 7.35 16.24 2041 1634 38.4182.61 36.16 8.14 95.23 55.21 47.35 30.63
SnapKV 1990 5.78 1838 13.51 14.42 8.52 17.35 2044 1733 41.00 85.37 37.63 893 91.08 55.09 48.88 31.48

ReST-KV 2243 719 1925 1411 15.04 797  20.56 21.10 19.15 53.50 88.23  40.21 846  93.90 56.74 48.77 33.54
Llama3.1-8B-Instruct, By = 128L
StreamingLLM 16.07 534 1482 11.01 12.38 6.61 17.99 19.06  18.69 40.50 85.57 38.24 920 94.11 58.97 49.70 31.14

H20 1400 545 16.62 12.83 10.87 6.94 17.29 20.88 16.96 40.27 82.15  37.61  9.12  96.13 52.13 48.16 30.46
TOVA 21.63 8.11 18.70 14.31 14.44 9.46 19.22 2297 17.60 40.76 84.40  39.21  11.24 96.67 58.25 48.91 32.87
SnapKV 2520 7.23 20.89 13.60 14.61 8.49 2095 2142 21.28 48.00 89.38  40.08 729  93.78 59.31 52.12 33.98

ReST-KV 27.88 8.29 2222 14.65 14.70 9.32  22.26 2295 22.16 65.00 91.03  41.26 820  93.59 58.78 51.50 35.86
Llama3.1-8B-Instruct, By = 256L
StreamingLLM 16.03 5.50 14.96 10.38 12.25 7.01 20.38 19.48  20.63 46.00 87.49  41.02 9.57 90.5361.1351.4432.11

H20 13.99 648 1776  13.41 11.10 7.38 17.64 21.74 1821 40298222 38.11 890 96.8951.53 49.14 30.92
TOVA 2405 11.17 21.30 17.61 17.50 12.84 2193 26.16 20.58 43.69 87.29 4252 14.21 99.26 60.92 51.65 35.79
SnapKV 27.83 9.12 2221 13.68 14.52 1020 23.02 23.14 2251 56.50 90.63  40.79  7.89  97.56 62.05 55.47 36.07

ReST-KV 29.14 9.54 23.61 1427 14.61 9.31 24.32 23.59 2347 67.00 92.13  42.04 8.09 94.51 61.56 53.62 36.93
Llama3.1-8B-Instruct, By = 512L
StreamingLLM 19.15 6.47 15.02 10.94 12.58 6.23  23.66 20.05 2331 57.50 87.70  41.86  10.25 90.74 62.39 53.61 33.84

H20 2623 7.34 2051 11.52 13.52 7.34 2323 21.24 23.14 5850 86.12  40.15 7.25 91.0261.23 54.12 34.53
TOVA 27.34 834 2245 1225 14.51 842 2423 2213 2225 58.50 89.31 4051 824 93.14 62.23 55.61 35.59
SnapKV 28.02 9.83 24.84 13.77 15.40 1021 25.13 22.73 2425 65.00 92.34  41.69 842 96.3164.30 57.28 37.47

ReST-KV 32.01 10.73 25.23 1591 15.85 10.25 2647 23.23 2479 69.00 91.62 4259 840  97.66 63.48 56.03 38.33
Llama3.1-8B-Instruct, Bio = 1024L
StreamingLLM 20.50 8.08 15.72 11.61 12.39 6.71 25.76 20.18 2544 63.50 88.84  42.61 10.03 92.10 63.15 55.88 35.16

H20 27.63 884 2198 12.99 15.91 823  23.96 2377 24.20 59.79 86.97 41.52  9.07 93.01 63.59 56.08 36.10
TOVA 29.82 9.73 2510 1492 17.53 1020 27.06 23.20 2478 59.8992.21 4349 10.38 95.86 64.08 57.47 37.86
SnapKV 3195 1126 25.56 15.13 16.18 10.79 2697 23.06 25.89 67.5091.90 4288  7.67 98.16 64.53 58.30 38.61

ReST-KV 31.83 11.61 26.51 15.85 15.48 10.83  28.20 24.00 26.18 70.50 91.73 4270  8.02  97.79 64.24 57.56 38.94

D ADDITIONAL EXPERIMENTS ON LONGBENCH

In this section, we provide comprehensive experimental results on LongBench (Baiefall, 2023), a
benchmark focused on long-context understanding, with input lengths ranging from 1235 to 18409
tokens. We perform detailed performance evaluations for three base models with cache budgets
ranging from 64L to 1024 L: Llama2-7B-Chat (Touvron_efall, 2073), Llama3.1-8B-Instruct (Dubey
ef—all, P0724), and Mistral-7B-Instruct-v0.3 (Jiang et all, P023) (Appendix D). To demonstrate
the generality of ReST-KV, we also conduct experiments across different models and sizes. In
Appendix D72, we report additional experiments on the Qwen2.5-7B-Instruct (Team, 2024) and
Gemma-7B-Instruct (Team_ef-all, 2024) model architectures, and in Appendix D3, we present ex-
periments on the Llama2-13B-Chat and Llama3-70B-Instruct model sizes.

D.1 DETAILED PERFORMANCE ACROSS CACHE BUDGETS

Tables B, [, and B present the detailed LongBench results of ReST-KV and comparative meth-
ods applied to Llama3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, and Llama2-7B-Chat, respectively.
Overall, the results demonstrate that, compared to other methods, ReST-KV consistently outper-
forms all baselines across all tasks in LongBench when applied to the test models with cache bud-
gets ranging from 64 L to 1024 L. This proves the effectiveness and wide applicability of ReST-KV
in efficient long-context processing using KV caches in open-source LLMs across domains.

D.2 ADDITIONAL EXPERIMENTS ON MORE MODEL ARCHITECTURES

To further validate the versatility of ReST-KV across different model architectures, we performed
additional experiments on the Qwen2.5-7B-Instruct and Gemma-7B-Instruct models. The experi-
ments were conducted in two distinct memory configurations: a low-memory setting (B = 64L)
and a high-memory setting (B = 512L). As shown in Table B, ReST-KV consistently out-
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Table 7: Performance comparison across 16 datasets of LongBench on Mistral-7B-Instruct-v0.3 for
cache budgets from 64L to 1024 L. The best result is highlighted in bold, and the second-best is
underlined.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
Method P SPN Q> @ S I LN R | R 3 Avg.
“\wﬁl o \xo\QO\ NX\\&I\ ﬂ\\ﬁ& 00*@@? Q@\% \I\"\\\$ @S‘z «\*\a %?&[@ QC}’“ B ®
Mistral-7B-Instruct-v0.3, By = Full
Full 29.07 41.54 52.88  49.37 39.01 28.58 35.07 25.71 27.73 76.00 88.59 4751  6.00 98.50 61.48 62.68 48.11

Mistral-7B-Instruct-v0.3, By = 64L
StreamingLLM 20.37 20.56 24.62  38.87 3247 17.68 1548 19.84 15.81 39.50 82.77 36.72 550 80.00 49.77 47.90 34.24

H20 20.51 21.52 25.12  40.12 33.12 18.34  16.23 19.12  16.24 38.5083.12 3723  6.00 8550 50.1248.12 34.93
TOVA 22.51 2224 3723 41.12 34.10 19.52 1721 19.23  16.27 38.50 85.12 3851 6.50 86.50 51.04 48.4236.50
SnapKV 19.39 23.62 38.66 43.26 34.72 21.33  17.59 20.93 17.06 38.50 86.96 39.61 7.00 90.50 51.63 49.73 37.53

ReST-KV 25.65 26.58 42.71 46.11 36.43 2434 19.80 21.65 18.90 51.50 87.88 41.54 4.00 90.50 52.39 50.75 40.05
Mistral-7B-Instruct-v0.3, By = 1281

StreamingLLM 21.39  22.05 26.73  37.25 32.81 17.61 16.76 19.69 17.98 45.50 85.64 4049 550 80.00 55.0152.1236.03
H20 2239 2298 2692 4251 33.19 19.20  16.90 20.70  16.82 41.1287.10 39.76  8.58 86.19 50.8153.01 36.76
TOVA 2248 28.78 48.71 47.58 34.26 21.96 21.67 21.75 21.68 4223 87.04 4210 2.08 94.58 56.97 54.76 40.54
SnapKV 25.04 2842 47.88 46.23 36.47 24.60 21.22 22.74 21.15 45.00 88.74  43.07 4.00 95.00 56.8155.7541.38

ReST-KV 26.58 29.60 49.23 47.46 37.18 2516 224 2243 21.77 69.00 88.18 43.84 550 96.50 56.29 55.13 43.52
Mistral-7B-Instruct-v0.3, By = 256L
StreamingLLM 22.46 23.32 29.63  39.62 32.01 16.71 19.13 19.30 20.14 54.50 85.12 4321 5.50 80.00 57.7255.03 37.71

H20 2431 23.78 2797 43.90 33.95 19.87  17.42 2336 17.32 43.7491.10  40.17 11.88 86.92 51.54 54.24 38.22
TOVA 28.17 29.93 51.01 46.26 36.55 26.65 22.76 2231 21.24 54.34 88.00 4245 216 9449 57.3958.04 42.61
SnapKV 26.88 31.72 51.40 48.89 36.80 27.33 22.85 23.66 23.15 57.00 89.01 43.60 500 96.50 58.64 58.2143.79

ReST-KV 2743 34.24 5211 48.81 38.25 27.20 24.31 2333 23.24 72.50 88.59 44.61 550 96.50 58.4159.2145.27
Mistral-7B-Instruct-v0.3, By = 5121
StreamingLLM 24.19 2597 30.14  40.75 31.90 17.35 22.18 20.30 23.22 65.50 86.95 43.75 6.00 81.00 59.3556.36 39.68

H20 25.23 3041 4032 4252 35.23 18.23 2423 2124 2321 66.50 86.71  43.15 500 82.52 60.13 58.15 41.42
TOVA 2523 3252 4624 4523 36.23 2032 24.53 22.53  23.64 66.50 87.24 4421 6.00 85.62 59.3560.24 42.85
SnapKV 26.84 35.51 53.12  49.56 37.72 26.54 25.06 24.03 24.76 67.50 89.36  44.82 550 98.50 60.44 61.22 45.66

ReST-KV 28.60 35.86 53.37 49.13 38.70 2794  26.05 24.37 25.09 73.50 89.66 46.27 5.50 98.50 60.13 60.84 46.47
Mistral-7B-Instruct-v0.3, By = 1024L
StreamingLLM 24.81 27.98 31.09 42.93 32.65 18.03  24.57 20.74 2542 68.50 88.71 4537 5.50 8250 61.0759.2141.19

H20 28.23 32.61 42.96 45.03 38.39 20.56  26.50 2401 25.10 69.37 8849 4560 811 83.81 62.79 59.90 43.84
TOVA 29.10 36.82 53.78  49.25 38.39 28.33  27.17 2375 2553 70.39 88.28 4524  4.85  100.47 60.40 62.25 46.50
SnapKV 29.31 37.25 53.55 49.25 38.54 2828  26.90 2449 26.27 7250 89.11  46.08 550 99.00 61.4561.76 46.83

ReST-KV 2920 37.72 52.56  50.50 38.89 28.69 28.03 2471 26.76 74.00 89.41 47.08 5.50 99.00 61.1061.66 47.18

performs baseline methods in both the low and high memory settings for the Qwen and Gemma
architectures, similar to the results observed with the Llama and Mistral models. These findings
further confirm the adaptability of ReST-KV across various model architectures, demonstrating its
robust performance advantage regardless of the underlying design of the models.

D.3 ADDITIONAL EXPERIMENTS ON LARGER-SCALE MODELS

To assess the scalability of ReST-KV on larger models, we conducted additional experiments on
Llama2-13B-Chat and Llama3-70B-Instruct. These experiments were performed under two dif-
ferent memory configurations: a low-memory setting (Bio1 = 64L) and a high-memory setting
(Biotat = 512L). As shown in Table [, ReST-KV consistently outperforms baseline methods in
both low and high memory settings for the Llama2-13B-Chat and Llama3-70B-Instruct models.
These results further demonstrate the scalability and effectiveness of ReST-KV when applied to
larger-scale models, highlighting its continued performance advantage regardless of the model size.

E ADDITIONAL EXPERIMENTS ON RULER BENCHMARK

In this section, we present a detailed evaluation of ReST-KV on the various subtasks of the RULER
benchmark (Hsieh_ef-all, 2024). RULER is specifically designed to assess the core capabilities of
LLMs in long-context scenarios through a diverse suite of tasks.

The retrieval suite includes four variants of the needle-in-a-haystack (NIAH) testSingle-Needle (S-
NIAH), Multi-Key (MK-NIAH), Multi-Query (MQ-NIAH), and Multi-Value (MV-NIAH)to evalu-
ate recall accuracy under diverse distractor settings and query formulations. Beyond retrieval, the
Variable Tracking (VT) task measures multi-hop reasoning by requiring models to resolve transitive
variable references scattered throughout the input. Lastly, aggregation tasks such as Common Word
Extraction (CWE) and Frequent Word Extraction (FWE) test a model’s ability to compress and
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Table 8: Performance comparison across 16 datasets of LongBench on Llama2-7B-Chat for cache
budgets from 64 L to 1024. The best result is highlighted in bold, and the second-best is underlined.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Method b e o> @ Sy A RIS | RS S 2 Ave.
etho \“\QQ Q%&% &,e \XO\QQ\ ’N‘,\\‘L\\\]\ VNﬁ\O‘ QOS&Q QVI\%O Vl\\‘\“ge "QSO (‘{\Q@Q %PS]\% ?00\30 RIS Y&Q v

Llama2-7B-Chat, Biw = Full
Full 18.39 20.11 35.67 31.25 25.50 10.14  25.68 2093  26.27 64.00 83.38  40.99 550 10.00 60.81 55.27 33.37
Llama2-7B-Chat, By, = 64L
StreamingLLM 5.61 15.51 6.42 14.14 16.77 1.36 12.09 16.46  12.83 17.25 1512 1093 450 3.00 22.0015.24 11.83

H20 446 1214 8.85 12.11 13.34 2.36 13.06 16.63  16.89 19.5020.69 1045 270 3.00 26.50 16.06 12.42
TOVA 826 1434 1264 1352 13.25 3.53 11.64 16.67 13.35 36.00 72.64 32.72 2.00 4.00 36.1532.5320.20
SnapKV 10.83 16.38 17.53 2281 23.24 5.06 13.12 18.38 14.17 3450 69.45 3343 550 7.00 39.99 36.04 22.96

ReST-KV 1272 1717 2409 2471 2380 555 1518 1971 1745 43507617 3342 550 4.00 45.00 40.61 25.54
Llama2-7B-Chat, By = 128L
StreamingLLM 8.45  14.87 1268 1998 2214 517 1399 1974 1602 2850 60.96 30.61 500 500 44.4439.5321.69

H20 7.60 9.53 9.92 18.35 15.64 3.30 17.75 1471 2145 28.00 39.61  13.85 417 3.56 29.9225.5316.43
TOVA 12.26  14.66 25.72  26.08 2421 6.90 15.28 18.30 17.61 4244 80.12 3525 5.05 6.93 52.4849.1727.03
SnapKV 1332 16.28 27.23 27.23 24.37 7117 16.97 19.65 19.38 44.00 81.88  36.82  6.00 8.00 54.02 50.66 28.31

ReST-KV 1555 17.78 27.24 27.72  24.62 893 17.88 20.13 2092 60.00 82.48 37.35 6.00 9.50 53.4550.24 29.99
Llama2-7B-Chat, By = 256 L
StreamingLLM 13.81 15.51 17.63  25.81 24.48 770 16.16 1933 18.78 44.00 78.87 37.63 550 5.00 54.5749.68 27.15

H20 882 11.73 10.11 15.54 13.70 3.78 19.29 19.13  23.36 34.00 35.61 2026 475 3.57 23.7423.7516.95
TOVA 1412 16.82 29.15  27.69 24.82 6.89 18.04 18.67 21.79 57.01 8348 3774 506 8.71 56.5152.9929.97
SnapKV 1545 17.57 29.44 29.53 24.94 8.69 18.78 2048 22.15 57.50 83.76  38.25  6.00 10.50 57.75 53.59 30.90
ReST-KV 1523 18.57 30.46 31.53 25.85 9.09 19.13 20.83 2228 63.00 82.57  39.05 6.00 11.5057.16 51.91 31.51

Llama2-7B-Chat, By = 512L
StreamingLLM 1530 1553 20.16 2659 2505 565 1830 1928 21.84 54508223 3807 550 5.00 56.8051.9528.86

H20 9.68 8.67 6.86 10.85 8.71 1.31 20.04 18.72 2491 18.00 17.09  18.99  3.75 230 20.87 14.87 12.85
TOVA 13.53 1546 2644  26.12 31.02 7.12 18.25 18.64 2234 62.50 83.10 40.61 3.00 8.00 56.14 51.5330.24
SnapKV 16.22 19.57 3232 31.87 24.97 9.66  20.19 20.77 23.85 62.00 82.24  39.18  6.00  10.50 59.49 56.06 32.18

ReST-KV 17.15 19.88 32.71 31.94 25.62 997  20.52 20.68 23.59 63.50 83.30  39.29 6.00 11.50 58.65 53.81 32.38
Llama2-7B-Chat, By = 1024L
StreamingLLM 15.12  17.35 2221  26.76 24.43 6.52 2115 19.16  24.67 61.00 82.16  39.69  6.00 1.50 57.73 53.24 29.92

H20 6.55 11.17 8.96 13.56 9.57 1.80 2243 19.74  26.07 18.50 15.59  36.61 443 1.08 29.96 15.24 15.08
TOVA 16.84 19.32 3490 31.07 25.24 9.51 20.36 2034 2342 6238 81.31  39.68 4.03  10.0558.13 54.73 31.96
SnapKV 1741 19.74 3592 31.82 26.00 10.09 22.06 2043 2488 63.50 82.77  40.52  6.00  10.50 60.10 56.05 32.99
ReST-KV 17.39 20.01 3533 31.71 25.33 9.60 2230 20.85 2491 63.50 83.73 4076  6.00  10.50 60.57 54.95 32.97

synthesize high-density signal distributed across long contexts.These tasks collectively pose dis-
tinct challenges for context retention, salience estimation, and compositional reasoning, providing a
holistic benchmark for evaluating memory management strategies like ReST-KV.

We evaluate ReST-KV using the LLaMA-3.1-8B-Instruct model with a maximum context window of
B = 1024L, across input lengths ranging from 4k to 128k tokens. The evaluation compares ReST-
KV with several representative KV cache eviction baselines: Full KV cache (oracle), Streamingl. LM
(Xiao'efall, 2073), SnapKV (Liefall, 2074K), and PyramidKV (Caiefall, 2024).

As reported in Table [, ReST-KV consistently achieves higher average accuracy than all alternative
eviction strategies across all context lengths. For instance, at 4k tokens, ReST-KV achieves an aver-
age accuracy of 94.01%, substantially outperforming SnapKV (83.60%) and PyramidKV (85.21%).
While all methods exhibit declining performance as the context length increases, ReST-KV main-
tains a clear and consistent margin over the baselines, demonstrating its robustness in extended-
context scenarios.

A breakdown by task category reveals that ReST-KV performs particularly well on retrieval tasks
(S-NIAH, MQ-NIAH, MV-NIAH) and multi-hop reasoning (VT), often approaching the accuracy
levels of the full KV cache. These results indicate that ReST-KV is effective at preserving seman-
tically salient tokens under constrained memory. More challenging tasks, such as MK-NIAH-3
and the CWE aggregation task with uniform word distributions, remain difficult across all methods.
Nonetheless, ReST-KV continues to outperform other eviction baselines in these settings, suggesting
stronger resilience to task complexity and noise.

F ADDITIONAL EXPERIMENTS ON NEEDLE-IN-A-HAYSTACK TEST

In this section, we present additional experiments to further evaluate the effectiveness of our method
on the Needle-in-a-Haystack test. This benchmark assesses a model’s ability to retrieve critical infor-
mation embedded within long contexts. While Section B4 already provides results for Mistral-7B-
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Table 9: Performance comparison across 16 datasets of LongBench on Qwen2.5-7B-Instruct and
Gemma-7B-Instruct. The best result is highlighted in bold, and the second-best is underlined.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
> 6 o > S
Method Qd & o Q> .\\]\Q o & IR sC o Q o o e o R Avg.
et \xo\Qo ,,:}\"\‘“\ N c,o*q’ o R T e gPSI\ PN LRSI X
Qwen2.5-7B-Instruct, By = Full
Full 3.82 1075 2424 1023 9.30 6.97 32.54 17.84 22.46 71.50 89.32  46.16 435 98.8361.9368.2 36.15

Qwen2.5-7B-Instruct, B = 64L
StreamingLLM 2.74 553 13.16 7.62 7.70 4.35 14.98 1270 11.96 38.50 7744 3751 629  26.2944.14 44.40 22.21

H20 1.09 346 1722 6.57 6.33 4.23 14.50 11.67 10.29 37.3876.86  37.81 7.76  83.8446.11 49.59 25.92
TOVA 2.19 358 1734 823 8.14 5.96 16.48 13.38  11.36 37947875 39.12 7.79 85.47 47.93 50.24 27.12
SnapKV 2.86 5.58 1871 8.9 8.41 6.01 16.96 13.67 13.21 39.50 79.09  40.39 7.92 87.02 48.10 51.52 27.97
ReST-KV 327 6.69 1895 9.57 8.79 6.03  18.77 1499 1519 50.50 79.07 41.28 473 93.00 48.47 50.03 29.33
Qwen?2.5-7B-Instruct, B = 512L
StreamingLLM 2.98  6.70 1529 828 8.27 415 2254 13.15 18.90 56.00 85.96 4343  6.84 36.21 54.08 53.69 27.28
H20 1.16 646 2150 8.05 8.50 6.00  23.09 1525 17.63 63.65 81.84 4352  2.03 93.3357.68 61.67 31.96
TOVA 270 799 21.77 8.61 8.57 6.61 23.44 16.34  19.42 64.28 82.98 4441 235 9470 59.23 63.58 32.94
SnapKV 357 890 22.88 10.34 9.57 6.74 2473 17.58 19.56 64.50 83.49  45.08 4.32  96.67 59.93 64.54 33.90

ReST-KV 3.53 946 23.66 1091 9.76 724 25.65 17.76  20.23 67.50 86.73  44.93 3.83  98.08 60.14 63.56 34.56
Gemma-7B-Instruct, By = Full

Full 1428 33.12 41.08 30.75 26.11 1547 2395 19.31 23.86 69.50 81.28  36.22  4.00 35.9248.4748.79 34.51
Gemma-7B-Instruct, By, = 64L

StreamingLLM 11.31 16.54 2296 21.87 23.25 10.18 1247 16.80 12.74 38.5070.94 29.79  2.50  20.50 44.67 48.75 25.24

H20 10.37 15.93 3333  26.09 23.65 1252 12.49 16.94 12,99 39.1580.42 3223 320 24.4146.00 49.03 27.42
TOVA 10.53 16.58 33.81  27.05 24.56 12.66 13.26 17.19 13.76 39.68 80.69  32.67 3.68  25.29 46.01 49.94 27.96
SnapKV 11.05 17.06 3422 27.41 25.32 13.52 1398 17.35 14.03 40.50 81.42 3290 3.83  26.00 46.34 49.95 28.43

ReST-KV 13.10 2290 36.78 28.36 25.90 15.13  15.39 18.09 15.68 44.50 82.55 3277 3.33  36.2547.92 48.70 30.46
Gemma-7B-Instruct, B = 512L
StreamingLLM 11.58 20.76 26.09 24.06  23.36 10.62  17.49 17.01  20.12 60.50 78.20 3745 1.83  25.17 49.88 52.64 29.80

H20 1270 29.01 38.66  28.71 25.10 14.19 1753 1770 20.09 60.94 80.75 3524  3.15 34.0247.4449.01 32.14
TOVA 13.23  29.30 39.32  29.63 25.57 14.55 18.12 18.32  21.01 61.1381.49 3578  3.61 34.4648.39 50.00 32.74
SnapKV 13.36  29.43 39.80 30.24 26.01 14.82 1830 18.86 21.23 62.00 81.51 36.04 4.33 35.08 49.16 50.73 33.18
ReST-KV 13.70  30.33 42.08 30.13 26.06 1437 18.82 18.60 22.38 69.00 81.72  37.55 433  35.2148.67 49.48 33.90

Table 10: Performance comparison across 16 datasets of LongBench on Llama models from 13B to
70B. The best result is highlighted in bold, and the second-best is underlined.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
Method S S QW@ S T P ORI | RS 3 Avg.
\A(\QQ Q@Q wf@ \XO\QO . \ﬂ.w\*]\ @\ﬁ\(\ 0083& QV!\% §I\“\‘$ "?g, «{\*"A %P&I\s QC°° L o g
Llama2-13B-Chat, By = Full
Full 19.19 25.86 37.04 36.65 33.22 14.02 2592 20.24  26.02 65.00 87.70  35.60 3.60 11.00 51.26 53.15 34.09

Llama2-13B-Chat, By = 64L
StreamingLLM 6.95  15.50 16.08 24.30  26.66 749 098 17.89  2.17 29.50 55.63 1670  3.00 5.50 34.0529.27 18.23

H20 1400 18.17 21.78  30.62 28.77 9.93 14.88 19.17  17.97 35.00 80.11 2897 3.87 6.50 37.5030.1124.83
TOVA 15.10 17.12 2422 34.11 28.32 10.69  14.60 18.89 16.83 33.5786.42 2999 313 9.79 40.48 38.05 26.33
SnapKV 16.05 1720 24.85 34.51 28.72 1152 1539 19.34 16.89 34.50 86.87  30.94 3.54  10.00 40.65 38.22 26.82
ReST-KV 1497 20.02 32.61 3527 29.15 10.71  17.21 19.12  18.39 42.00 8535 30.57 3.54 12.0040.01 41.41 28.27

Llama2-13B-Chat, By = 512L
StreamingLLM 14.80 19.01 2158 33.08 2892 1243 2027 1827 1982 56508598 3302 405 7.50 49.2147.8329.52

H20 17.28 2094 27.81 3298 29.39 10.66 21.57 19.50 24.49 61.50 82.61 3451 434 9.50 47.5845.4130.63
TOVA 1695 2197 33.18 3551 31.11 13.94  20.33 19.74 2294 62.33 8554 35.06 294 10.57 49.60 49.80 31.97
SnapKV 1746 2246 33.79 36.39 31.37 1446 20.51 19.81 23.76 62.50 8598 3588 3.55 11.5050.12 50.08 32.48

ReST-KV 18.00 23.72 3449 3621  32.55 1543 20.67 20.20 2424 66.50 87.37 35.01 4.04 11.5049.90 50.89 33.17
Llama3-70B-Instruct, By = Full

Full 2775 4648 49.68 52.04 54.90 3044 3237 2220 27.62 73.5092.46 4572 12.00 72.50 41.70 69.06 46.90
Llama3-70B-Instruct, By, = 64L

StreamingLLM 24.11 27.63 25.53 41.00  48.39 23.77 1692 20.14 17.07 40.00 77.20  37.10  12.00 72.50 44.82 58.88 36.69

H20 24.07 31.33 2749 44.83 49.09 25.14 2231 20.59 24.30 49.5091.45 40.29  12.00 72.5044.97 60.63 40.03
TOVA 24.53 3043 27.56 4529 49.64 2593 2230 20.08 23.46 48.66 91.18  40.23  11.85 72.50 44.31 60.65 39.91
SnapKV 2397 3292 3496 4635 52.90 26.05 18.33 21.55 1998 43.00 88.83  41.18  12.00 72.50 44.42 61.63 40.04

ReST-KV 26.32 36.38 3844 49.51 53.18 2620 20.02 21.81 2148 59.75 88.51  40.51 12.05 71.50 45.22 61.22 42.01
Llama3-70B-Instruct, B = 512L
StreamingLLM 24.62 31.89 31.23 4491 47.51 2591 23.08 19.76  24.15 62.50 88.14 4336  12.00 72.50 48.71 66.04 41.64

H20 27.56 4291 36.19 50.40 49.87 2598 28.82 21.67 27.06 72.00 91.88 4457  12.00 72.00 42.65 67.87 44.59
TOVA 27.51 4249 3571 51.02 50.42 2512 27.88 21.60 27.28 72.04 92.04 45.13  12.89 71.18 43.51 68.53 44.65
SnapKV 27.67 44.58 48.00 51.66 53.73 30.61 24.80 22.82 2589 70.00 92.63  45.14  12.00 72.50 44.59 69.20 45.99

ReST-KV 27.85 4521 50.06 51.55 54.45 29.83 25.77 22.54 2583 72.50 92.63  46.59  12.00 72.50 43.44 68.95 46.36

Instruct-v0.3 with a cache budget of B = 1024L, we extend our analysis by considering additional
settings: (1) Mistral-7B-Instruct-v0.3 with a reduced cache budget of B = 128L, (2) Llama3.1-8B-
Instruct under both B = 128L and B = 1024L.
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Table 11: Performance comparison of ReST-KV and baseline eviction strategies on the RULER
benchmark across multiple context lengths (4k to 128k tokens). Results are reported as average
accuracy (%) over subtasks. ReST-KV consistently outperforms other methods, particularly on
retrieval and multi-hop reasoning tasks. The best result is highlighted in bold, and the second-best

is underlined.

A a2 5y o Y\:L ﬂé’% Pg\ Pg\
Method N\ N\ ¥ N\ N N\t O O «® O Avg Ace
R A R W W W o o
Llama-3.1-8B-Instruct, By = 1024 L, context length=4k
Full 100.0 100.0 99.60 100.0 100.0 99.60 99.90 96.25 99.78 97.67 99.96 99.34
StreamingLLM 27.8 30.6 31.40 342 26.2 29.6 28.7 30.05 732 9613  30.0 39.81
SnapKV 100.00 99.0 20.6 99.6 93.0 31.00 99.2 90.45 9146 9533 99.96 83.60
PyramidKV 100.00 99.80 9.6 100.00 96.80 26.2 99.70 93.60 74.88 9433 99.92 81.35
ReST-KV 100.00 100.00 99.60 100.00 100.00 49.80 99.95 97.00 91.78 96.07 99.92 94.01
Llama-3.1-8B-Instruct, By, = 1024 L, context length=8k
Full 100.0 100.0 100.0 100.0 99.80 98.80 100.0 95.75 97.62 9527 99.92 98.83
StreamingLLM 11.0 12.0 13.00 142 11.0 11.80 12.35 12.45 436 8693 13.56 18.42
SnapKV 100.00 98.4 12.0 98.0 85.6 7.6 97.8 87.45 56.06 88.27 99.76 75.54
PyramidKV 100.00 99.80 3.0 99.20 87.80 5.2 98.05 88.25 4024  89.00 99.68 73.66
ReST-KV 100.00 100.00 95.60 100.00 99.80 19.60 100.00 95.80 5116 91.53  99.76 86.66
Llama-3.1-8B-Instruct, By = 1024 L, context length=16k
Full 100.0 100.0 100.0 99.60 100.0 99.00 99.85 98.25 90.90 96.67 99.80 98.55
StreamingLLM 5.6 6.4 5.80 72 6.0 5.00 52 6.7 0.18 7853 6.52 12.1
SnapKV 100.00 97.0 4.0 97.8 74.0 3.8 97.25 88.95 2736 926  99.6 71.12
PyramidKV 100.00 97.40 1.2 98.00 75.20 34 97.0 86.5 18.98 95.07 99.80 70.23
ReST-KV 100.00 100.00 93.00 99.60 99.80 17.00 100.00 96.10 2286 97.13 99.80 84.12
Llama-3.1-8B-Instruct, By, = 1024 L, context length=32k
Full 100.0 100.0 100.0 100.0 100.0 99.60 99.90 98.95 48.60 97.07 99.68 94.89
StreamingLLM 3.6 1.8 24 3.0 3.8 2.00 2.5 245 0.12 9113 352 10.57
SnapKV 100.00 97.20 6.20 99.40 61.00 2.0 96.5 87.25 16.96 71.27 98.64 66.95
PyramidKV 100.00 97.2 2.8 99.2 59.2 1.8 96.55 852 10.52 752 98.60 66.02
ReST-KV 100.00 100.00 98.20 99.60 99.00 15.20 99.95 97.60 936 83.53 98.16 81.87
Llama-3.1-8B-Instruct, By = 1024 L, context length=64k
Full 100.0 100.0 99.80 99.80 99.20 94.00 99.75 98.95 7.96  90.60 98.32 89.85
StreamingLLM 2.0 1.6 2.4 2.6 2.0 0.80 2.05 2.8 0.14 90.87 1.76 9.91
SnapKV 100.00 96.4 3.20 99.00 322 0.2 91.7 58.45 2.86 5453 93.60 57.47
PyramidKV 100.00 96.80 1.0 99.0 36.80 0.2 92.10 58.25 1.66 5587 94.56 57.84
ReST-KV 100.00 100.00 90.80 100.00 96.80 15.60 98.95 97.30 1.3 7167 92.68 78.65
Llama-3.1-8B-Instruct, By, = 1024 L, context length=128k
Full 97.40 97.80 95.20 96.20 87.00 63.20 95.85 94.95 0.06 64.73 80.08 79.32
StreamingLLM 0.4 2.0 3.00 2.4 0.6 0.80 1.95 2.35 126 7473 052 8.18
SnapKV 97.40 96.80 1.4 93.8 25.6 0.0 80.6 27.0 0.08 3047 74.76 47.99
PyramidKV 97.40 96.8 0.2 94.20 30.80 0.4 80.95 29.20 0.14  32.07 76.08 48.93
ReST-KV 97.40 98.00 75.80 95.40 74.00 3.60 92.15 93.70 016 4773 73.12 68.28
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Figure 7: Performance comparison on the Needle in a Haystack Test using Mistral-7B-Instruct-v0.3

with By = 128L.

Figures [, B and B illustrate the performance comparison under these settings. We observe the
following key insights:
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Figure 8: Performance comparison on the Needle in a Haystack Test using Llama3.1-8B-Instruct
with Btotal = 128L.
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Figure 9: Performance comparison on the Needle in a Haystack Test using Llama3.1-8B-Instruct
with Btotal = 1024L.

* Mistral-7B-Instruct-v0.3 (B = 128L) retains 76 % of the original accuracy, outperform-
ing SnapKV by 14%. This demonstrates that our method maintains strong retrieval capa-
bility even under severe cache constraints.

* Llama3.1-8B-Instruct (B = 128L) achieves 74% accuracy, surpassing SnapKV by 6%,
indicating its robustness in preserving key-value pairs under limited cache budgets.

e Llama3.1-8B-Instruct (B = 1024L) attains 100% accuracy, meaning it can match full
KV cache performance while storing only 1/32 of the original tokens. This highlights the
efficiency of our approach in long-context retrieval with minimal memory usage.

These results further validate the robustness and efficiency of our method in selecting the most
relevant KV pairs while minimizing memory overhead. Notably, even with a significantly reduced
cache budget, our approach consistently outperforms prior methods, ensuring reliable long-context
retrieval across different models and settings.
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G ADDITIONAL EXPERIMENTS ON ABLATION STUDY

In this section, we conduct additional ablation experiments to rigorously analyze the effectiveness
of core components in ReST-KV and assess its sensitivity to key hyper-parameters.

G.1 EFFICACY OF THE PROPOSED OUTPUT RECONSTRUCTION INDICATOR

To evaluate the proposed eviction indicator, we compare it with different types of eviction indicators
under the same baseline, including random selection, attention weights, attention weights weighted
by the values’s norm (A¢[n] - ||vy]|2), similar to the VATP method (Guo“efall, D0024), and our
output reconstruction. As shown in Table I3, directly weighting attention weights by the values’s
norm does not effectively incorporate the values information. Our method significantly outperforms
all baselines, indicating that the layer-wise output reconstruction perspective better assesses the
importance of KV cache.

Table 12: Ablation study on different types of information considered by the eviction indicator. Us-
ing output reconstruction as the eviction criterion achieves the best performance, surpassing methods
based on attention weights or their combinations.

Information Considered by Eviction Indicator Avg.
Random 6.83 +0.20
Attention weights (SnapKV) 33.95
Attention weights and values (VATP) 33.88
Output reconstruction (Eq. equation ) 35.86

G.2 EFFICACY OF THE PROPOSED SPATIAL-TEMPORAL SMOOTHING

To assess the effectiveness of the spatial-temporal smoothing mechanism, we perform an ablation
study to examine the impact of different smoothing methods. As shown in the left part of Table 3,
various temporal smoothing techniques, including Mean, Inv-EMA, and EMA, are tested. Notably,
EMA smoothing achieves the best performance, surpassing other baselines, which demonstrates its
effectiveness in capturing temporal variations by giving higher weights to more recent KV pairs.

Table 13: Ablation study on the effect of different temporal and spatial smoothing methods in the
eviction indicator. EMA refers to our proposed exponential moving average temporal smoothing,
while AWS represents our adaptive window-based spatial smoothing.

Temporal Smoothing  Avg.  Spatial Smoothing  Avg.

None 35.22 | None 33.50
Mean 34.02 | Avgpool 35.69
Inv-EMA 31.25 | Maxpool 35.59
EMA (Ours) 35.86 | AWS (Ours) 35.86

In addition, we evaluate the spatial smoothing methods, as detailed in the right part of Table 3.
Methods such as Avgpool, Maxpool, and our adaptive window-based smoothing (AWS) are com-
pared, with AWS achieving the highest average performance. This suggests that the adaptive
window-based approach, significantly enhances the eviction indicators ability to adjust for vary-
ing window sizes and offsets, thereby improving the assessment of the importance of KV pairs in
the spatial-temporal context.

G.3 HYPER-PARAMETER SENSITIVITY ANALYSIS

To assess the robustness of ReST-KV, we examine its sensitivity to two primary hyper-parameters:
the temporal smoothing factor a and the spatial smoothing scaling factor 5.

Figure M illustrates the performance variation with respect to « (left panel) and 3 (right panel). The
observed stability in accuracy across the tested ranges for both parameters indicates that ReST-KV
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Figure 10: Sensitivity analysis of the smoothing factor « (left) and scaling factor 3 (right). The
performance remains relatively stable across different settings of both hyperparameters, mostly out-
performing the baseline.

exhibits low sensitivity to their specific values. This robustness offers considerable flexibility in
hyper-parameter configuration without substantial performance degradation.

H ADDITIONAL EXPERIMENTS ON EFFICIENCY

In this section, we investigate the integration of ReST-KV with prefill optimization techniquesex-
emplified by Minference (Jiang et all, Z024) and FlexPrefill to assess potential improvements in
Time To First Token (TTFT). To this end, we conduct additional experiments on the RULER 128k
benchmark using the LLaMA3.1-8B-Instruct model, focusing on the efficiency of our proposed
KV cache eviction method, particularly its impact on TTFT and decoding latency. Results are sum-
marized in Table 4.

Table 14: Efficiency analysis on RULER 128k. All results are normalized to the Full KV caching
baseline.

Method 128k Avg. Acc. TTFT Decoding Latency
Full 79.32 Ix 1%
ReST-KV 68.28 0.97x 10.61 x
ReST-KV+MlInference 53.71 2.99x 10.41x
ReST-KV+FlexPrefill(y = 0.9) 67.16 3.42x 10.46x
ReST-KV+FlexPrefill(y = 0.95) 68.12 2.37x 10.54 %

Our method is a KV cache eviction strategy that achieves a substantial improvement in decoding
latencyover 10x speedupwhile maintaining a comparable TTFT (0.97() to full KV caching. Im-
portantly, it maintains a high level of accuracy (68.28%), demonstrating that our eviction strategy
preserves model performance effectively even under long context scenarios.

Furthermore, our method is orthogonal and compatible with sparse prefilling techniques such as
Minference (Jiang et all, 2024) and FlexPrefill (Caief-all, 2025). When combined with these meth-
ods, we observe additional gains in TTFT. For example, integrating FlexPrefill with v = 0.95
achieves a 2.37(E TTFT speedup while retaining high decoding efficiency (10.54(E latency speedup)
and competitive accuracy (68.12%). This shows that our approach not only accelerates decoding but
also enables efficient and flexible integration with other prefill optimization techniques.

I INTEGRATION WITH KV CACHE QUANTIZATION

In this section, we further investigate the interplay between ReST-KV and established KV cache
quantization techniques, specifically KIVI (Ciief-all, 2074H) and KVQuant (Hooper et all, 2074)).
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Figure 11: Comparison of ReST-KV, KV cache quantization methods (KIVI and KVQuant), and
their combination on Llama3.1-8B-Instruct using LongBench dataset.

Our goal is to evaluate whether combining ReST-KVa KV eviction method that accounts for the
effects of attention redistribution and the spatial-temporal dynamics in KV selection can synergize
with quantization or even outperform aggressive quantization applied to a full, non-evicted KV
cache under similar overall compression ratios.

To this end, we compare ReST-KYV, both in isolation and combined with KIVI and KVQuant, against
a baseline using full KV cache with various bit-width quantizations. Figure [l visually summarizes
the results.

In particular, even with a stringent total compression ratio of 6.25%, achieved by combining ReST-
KV with moderate 4-bit quantization, ReST-KV retains high average accuracy. In contrast, applying
more aggressive 2-bit KIVI or KVQuant directly to the full KV cache results in significantly lower
accuracy.

These results suggest that eviction strategies which explicitly account for attention redistribution and
spatial-temporal token redundancy can provide a more effective pathway to KV cache compression
than quantization-only approaches. The combination of ReST-KV and lightweight quantization thus
offers a practical and robust solution for efficient inference under tight memory constraints.

J  ADDITIONAL EXPERIMENTS ON INFINITEBENCH

In this section, we evaluate ReST-KV on the InfiniteBench benchmark (Zhang et all, 2074R) to fur-
ther assess its long-context capabilities. InfiniteBench tests LLM performance on extremely long
sequences through a diverse set of tasks. These tasks include realistic scenarios such as novel-based
reasoning (summarization, QA, multiple-choice, using novels with key entity replacement), dia-
logue understanding, and code debugging. Additionally, synthetic tests probe specific long-context
abilities like retrieval, state preservation, and sequential processing.

Experiments are conducted on the Llama3.1 model. We compare ReST-KV against SnapKV (Li
ef-all, D074R), as both are post-prefill KV eviction strategies. To ensure a direct comparison of their
eviction effectiveness, both methods retain a fixed KV cache budget of 1024 tokens post-eviction,
regardless of the initial input context length.

Table 3 details the average performance across InfiniteBench subtasks. ReST-KV achieves a no-
tably higher overall average accuracy than SnapKV (e.g., 38.8% vs. 36.8%). This performance
advantage is particularly evident in retrieval-focused tasks (Retrieve.PassKey, Retrieve.Number,
Retrieve.KV), where SnapKV can exhibit critical failures on some subtasks. ReST-KV also gen-
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erally demonstrates stronger results in question answering (En.QA, Zh.QA) and Math.Find. While
SnapKV may be competitive on select tasks like En.Sum, the consistent and superior performance of
ReST-KV across a wider range of demanding retrieval and reasoning tasks contributes to its substan-
tially higher overall average. These findings underscore the efficacy of ReST-KV’s reconstruction-
aware eviction strategy when applied to the challenging long-context scenarios presented by In-
finiteBench.

Table 15: Performance of different methods on InfiniteBench.

Methods Retr.PassKey RetrNum RetrKV EnDia EnSum EnMC En.QA Zh.QA Math.Find Debug Avg.

ReST-KV 100.0 93.7 114 10.5 229 67.2 13.2 13.1 34.0 223 388
SnapKV 100.0 87.1 0.0 10.0 23.7 67.7 11.3 12.2 34.0 22.3 36.8
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