
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REST-KV: ROBUST KV CACHE EVICTION WITH
LAYER-WISE OUTPUT RECONSTRUCTION AND
SPATIAL-TEMPORAL SMOOTHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) face growing challenges in efficient generative in-
ference due to the increasing memory demands of Key-Value (KV) caches, espe-
cially for long sequences. Existing eviction methods typically retain KV pairs with
high attention weights but overlook the impact of attention redistribution caused
by token removal, as well as the spatial-temporal dynamics in KV selection. In this
paper, we propose ReST-KV, a robust KV eviction method that combines layer-
wise output Reconstruction and Spatial-Temporal smoothing to provide a more
comprehensive perspective for the KV cache eviction task. Specifically, ReST-KV
formulates KV cache eviction as an optimization problem that minimizes output
discrepancies through efficient layer-wise reconstruction. By directly modeling
how each tokens removal affects the model output, our method naturally captures
attention redistribution effects, going beyond simplistic reliance on raw attention
weights. To further enhance robustness, we design exponential moving average
smoothing to handle temporal variations and an adaptive window-based mecha-
nism to capture spatial patterns. Our method, ReST-KV, significantly advances
performance on long-context benchmarks. It surpasses state-of-the-art baselines
by 2.58% on LongBench and 15.2% on RULER. Additionally, ReST-KV consis-
tently outperforms existing methods on Needle-in-a-Haystack and InfiniteBench,
all while achieving a remarkable 10.61× reduction in decoding latency at 128k
context length. The code is included in the supplementary material and is de-
signed for easy reproduction.

1 INTRODUCTION

Large language models (LLMs)(Achiam et al., 2023; Anthropic, 2023; Dubey et al., 2024; Mis-
tralAI, 2023) have significantly advanced natural language processing (NLP). These models have
enabled breakthroughs in various tasks, such as document summarization(Zhang et al., 2024a),
multi-turn dialogues (Du et al., 2021), retrieval augmentation (Yao et al., 2022), and code genera-
tion (Roziere et al., 2023). Recent models like GPT-4 (Achiam et al., 2023), Claude 3.5 (Anthropic,
2023), and Llama-3.1 (Dubey et al., 2024) have extended their context lengths beyond 128K tokens,
allowing for long-context applications. However, as context length increases, the memory required
to store KV cache grows rapidly, potentially reaching hundreds of gigabytes when handling longer
sequences. Thus, optimizing KV cache during inference, without retraining, is crucial for improving
both efficiency and scalability.

KV cache eviction, which identifies and removes less important KV pairs, is a promising approach
to reduce memory consumption and enhance computational efficiency (Li et al., 2024a). Current
methods typically rely on fixed attention patterns (Han et al., 2024; Ge et al., 2023) or use statistical
information from attention weights (Zhang et al., 2023; Li et al., 2024b; Cai et al., 2024) to estimate
the importance of KV pairs. However, as shown in Figure 1, these approaches focus solely on
retaining query-key pairs with high similarity scores, while ignoring the attention redistribution
effects caused by removing certain pairs. This redistribution can alter the overall attention landscape,
leading to suboptimal retention decisions and degraded performance, especially under tight cache
constraints.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison between ReST-KV and existing methods. Unlike prior approaches that over-
look attention redistribution, ReST-KV considers its impact to improve KV retention.

In this paper, we propose ReST-KV, a robust KV cache eviction method that accounts for the effects
of attention redistribution and the spatial-temporal dynamics in KV selection. We revisit the KV
cache eviction problem and reformulate it as preserving the attention output at each layer under
fixed memory constraints. Specifically, we measure the reconstruction loss caused by removing each
individual KV pair, and use it as an eviction indicator: the larger the loss, the more important the
KV pair. This loss implicitly captures the impact of attention redistribution caused by the removal.
Moreover, our empirical observations show that KV importance varies significantly across both
time and space. To further improve robustness, we introduce two smoothing mechanisms: (1) an
exponential moving average to model temporal dynamics by emphasizing more recent KV pairs, and
(2) an adaptive window-based spatial smoothing method, which adjusts for varying window sizes
and offsets by estimating the spatial dynamics.

By evaluating on a wide range of downstream tasks including LongBench, RULER, Needle-in-a-
Haystack, and InfiniteBench, we demonstrate that ReST-KV consistently outperforms state-of-the-
art baselines, especially under low cache budgets and demonstrates more robustness in multi-turn
dialogue scenarios. We extensively evaluate ReST-KV on challenging long-context benchmarks
such as LongBench, RULER, Needle-in-a-Haystack, and InfiniteBench. Our results show it con-
sistently surpasses state-of-the-art baselines, with particularly strong gains of 2.58% on LongBench
and 15.2% on RULER. ReST-KV also exhibits greater robustness in multi-turn dialogue and effi-
ciency under constrained cache budgets. For decoding, it achieves a 10.61× latency reduction at
128k context length when integrated with FlashAttention-2. Importantly, ReST-KV is fully compat-
ible with existing prefill sparse attention methods, leading to a 2.37× TTFT speedup. In summary,
we make the following contributions:

• A novel formulation of KV eviction treating it as layer-wise output reconstruction, enabling a
new importance indicator that captures attention redistribution effects.

• A spatial-temporal smoothing mechanism combining exponential moving average and adap-
tive windowing, significantly enhancing robustness in KV selection.

• Extensive experiments show that ReST-KV outperforms state-of-the-art baselines under low
cache budgets and reduces decoding latency by up to 10× at a 128k context length.

2 RELATED WORK

2.1 KV CACHE EVICTION

KV cache eviction, a prominent method for optimizing KV cache during inference without retrain-
ing, alleviates memory and latency issues in long-context LLMs (Li et al., 2024a). Early eviction
methods focused on specific attention patterns, such as StreamingLLM (Xiao et al., 2023) and LM-
Infinite (Han et al., 2024), retain only the initial and local tokens. While more flexible approaches
like FastGen (Ge et al., 2023) and RazorAttention (Tang et al., 2024) were developed, they still rely
on predefined patterns and risk ignoring important tokens. Subsequent studies introduced eviction
indicators to assess the importance of KV cache entries, often using attention weights. For instance,
H2O (Zhang et al., 2023) uses cumulative attention weights, and SnapKV (Li et al., 2024b) pools
the average attention weight over the last window. In addition to indicator improvements, some
research has explored non-uniform layer-wise and head-wise budget allocation strategies. Pyra-
midKV (Cai et al., 2024) and PyramidInfer (Yang et al., 2024) allocate budget in a pyramid fashion,
while DynamicKV (Zhou et al., 2024), D2O (Wan et al., 2024) and CAKE (Qin et al., 2025) adap-
tively allocate budget based on layer-specific information. AdaKV (Feng et al., 2024) adjusts the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(b) Spatial-Temporal Smoothing

EMA

*

AWS

Multi-head
Attention

Multi-head
Attention

(a) Layer-wise Output Reconstruction Indicator

··· ··· ··· ······ ···

—

2

× h × h

Figure 2: Overview of ReST-KV. (a) Layer-wise output reconstruction quantifies each KV pairs
impact on output error as its eviction indicator. (b) Two smoothing mechanisms enhance robustness:
exponential moving average for temporal smoothing and an adaptive window-based approach for
spatial smoothing.

budget per head based on output ℓ1 loss bounds. Our work focuses on the limitations of existing
eviction indicators, which primarily rely on attention weights derived from query-key interactions
and overlook the combined impact of value vectors and spatial-temporal dynamics. Furthermore,
our approach is fully compatible with existing layer-wise and head-wise budget allocation strategies.

2.2 ATTENTION DYNAMICS

While attention is central to the success of Transformers, it also poses scalability challenges in long-
context settings due to its quadratic complexity. Recent work has therefore investigated attention
dynamicsspecifically, the spatiotemporal patterns and redistribution of attention weightsas a means
to enable more efficient inference.

Several studies reveal structured attention behaviors. MInference (Jiang et al., 2024) discovers a
"vertical-slash" pattern, where attention gradually shifts across tokens over time, indicating evolv-
ing token importance. FlexPrefill (Lai et al., 2025) similarly identifies consistent attention trajec-
tories during prefill. Keyformer (Adnan et al., 2024) examines how KV eviction distorts attention
distributions and proposes normalization to mitigate such shifts.

Distinct from the above methods, we reformulate KV cache eviction by explicitly modeling attention
redistribution and spatiotemporal dynamics. Rather than relying solely on static attention weights,
our approach captures temporal evolution and layer-wise shifts in attention, enabling more robust
importance estimation and significantly improving performance under memory constraints.

3 METHODOLOGY

3.1 PRELIMINARY

LLMs typically decode text in an auto-regressive manner, which allows them to generate high-
quality, contextually coherent text. However, this decoding process is computationally expensive,
as it involves a high degree of repetitive calculations, making it challenging to apply in real-time or
large-scale scenarios.

KV cache, a widely recognized technique, reduces redundant computation by storing previously
computed keys and values. In this section, we describe the attention computation under the KV cache
framework, laying the foundation for our discussion on KV cache eviction. For clarity, we focus on
a single attention head and layer, omitting footnotes. At each decoding step t, the KV cache stores
previously computed keys and values ⟨K1:t−1,V1:t−1⟩ for X[1 : t − 1], enabling reuse in future
steps. For convenience, we denote K1:t−1 as KT−1 and V1:t−1 as VT−1. Consequently, the model
requires only the current token xt to generate xt+1, rather than the full sequence X = [x1, . . . ,xt].
Formally, at step t, the query qt, key kt, and value vt are computed as:

qt = xtWQ, kt = xtWK , vt = xtWV , (1)

where WQ,WK ,WV are the components of the Q,K,V weight matrices corresponding to a
single attention head. The currently computed kt and vt will be concatenated with the previously

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

cached keys and values, and used in the attention computation for decoding step t:
KT = Concat (KT−1,kt) ,VT = Concat (VT−1,vt) , (2)

where KT and VT are the entire sequences of keys and values at decoding step t. The attention
output zt for the token xt at step t is calculated as:

zt = softmax

(
qtK

⊤
T√

dk

)
VT = AtVT , (3)

where At represents the attention weights for the token xt and is used by existing methods to com-
pute eviction indicators. dk represents the dimension of the key vectors in the attention mechanism.

Finally, the output of a single head in the multi-head attention can be expressed as:
MHA(xt, ⟨KT ,VT ⟩) = ztWO, (4)

where WO is the weight matrix of output projection corresponding to a single attention head.

3.2 LAYER-WISE RECONSTRUCTION INDICATOR

We reformulate KV cache eviction as preserving the attention output distribution at each layer under
fixed memory constraints, naturally capturing the effects of attention redistribution. We formalize
this paradigm as layer-wise reconstruction, a framework that aligns with the transformer’s inherent
layer-wise computation flow. Specifically, for a single layer, the subproblem is expressed as:
Definition 3.1. Given a cache budget B for a single layer, the task is to select a series of important
KV cache entries ⟨K̂T , V̂T ⟩ containing up to B elements from the total cache entries ⟨KT ,VT ⟩ at
the step t, with the goal of maximizing the retention of the orignial MHA output. We use ℓ2 distance
to calculate reconstruction error, the objective for a single attention head can be defined as:

argmin
⟨K̂T ,V̂T ⟩

∥∥∥MHA(xt, ⟨KT ,VT ⟩)−MHA
(
xt, ⟨K̂T , V̂T ⟩

)∥∥∥
2

s.t.
∣∣∣⟨K̂T , V̂T ⟩

∣∣∣ ≤ B,

(5)

where
∣∣∣⟨K̂T , V̂T ⟩

∣∣∣ is the number of selected KV pairs.

To efficiently compute Eq.5, we adopt a greedy selection strategy that retains the top-B KV pairs
estimated to have the greatest impact on the attention output. Specifically, for the n-th KV pair, its
importance is measured by the increase in reconstruction error when it is removed, which based on
the local linearity assumptions (Molchanov et al., 2016). The eviction indicator is defined as:

It[n] =
∥∥MHA(xt, ⟨KT ,VT ⟩)
−MHA(xt, ⟨KT,\n,VT,\n⟩)

∥∥
2
, (6)

where ⟨KT,\n,VT,\n⟩ represents the set of cache with the n-th KV pair removed.

By introducing Eq. 3 and Eq. 4 for derivation, Eq. 6 can be simplified as follows:

It[n] =
At[n]

1−At[n]
∥MHA(xt, ⟨KT ,VT ⟩)− vnWO∥2 , (7)

where At[n] represents the attention weights of the query qt with respect to the key kn, and vn

represents the n-th value in the value cache VT .

Traditional eviction indicators only considered At[n], neglecting the effects of attention redistribu-
tion. Eq. 7 demonstrates that the importance of a KV pair depends on two mechanisms:

• Nonlinear Attention Reweighting: The first term At[n]
1−At[n]

acts as a monotonic nonlinear
amplifier in (0, 1). While preserving the conventional principle that higher attention weights
At[n] indicate stronger retention priority, this transformation introduces curvature to better
discriminate between high-competition KV pairs compared to linear scaling in prior methods.

• Redistribution Sensitivity: The second term ∥MHA(·)− vnWO∥2 captures the redistribu-
tion of attention after removing the n-th KV pair. It reflects how much the remaining KV
pairs fail to compensate for the excluded value in reconstructing the MHA output. A smaller
discrepancy indicates that attention can be effectively redistributed to preserve the output, thus
signaling lower importance of the removed KV pair.

The additional analysis and the derivation of Eq. 7 can be found in Appendix A and Eq. 21.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

 T
em

po
ra

l

 Spatial Spatial

 T
em

po
ra

l

Figure 3: Visualization analysis of the spatial-temporal dynamics of the output reconstruction in-
dicator. The left plot shows dynamic temporal variations in KV pair importance over steps, with
the zoomed-in view highlighting a KV pairs gradual decline in importance. The right plot reveals
spatial shifts, where similar importance patterns emerge at shifted positions.

3.3 SPATIAL-TEMPORAL SMOOTHING

To enhance the robustness of KV pair selection during the prefill stage, we analyze the spatial-
temporal dynamics of the KV pairs’ reconstruction error (Eq. 7). From Figure 3, we observe two
key characteristics: (1) The importance of KV pairs exhibits dynamic temporal variations (i.e., the
fluctuating patterns of I1[n], I2[n], . . . , It[n] along the temporal dimension, and (2) simultaneously
demonstrates dynamic spatial shifts where similar importance distributions emerge across shifted
positions (e.g., It−k[n− kN], . . . , It−1[n−N], It[n] exhibit analogous patterns).

Leveraging these observations, we introduce two novel smoothing mechanisms to enhance the ro-
bustness of KV pair selection, as illustrated in Figure 2(b). These mechanisms address temporal
variations and spatial shifts in KV pair importance, ensuring a more stable and reliable selection
process. By applying these techniques, we aim to reduce short-term fluctuations and capture long-
term trends, ultimately improving the performance of the KV cache eviction.

Exponential Moving Average Temporal Smoothing. Inspired by SnapKV (Li et al., 2024b), we
use a recent query window Sw to assess the importance of KV pairs. To model temporal dynamics,
we apply exponential moving average (EMA) smoothing to the importance of KV pairs, which as-
signs higher weights to recent queries while dampening earlier fluctuations. To apply this smoothing
over a limited window of recent queries, we define the temporal smoothing as:

Ît[n] =

{
EMA(It−Sw :t[n]), if n < t− Sw,

Ω, otherwise,
(8)

where Ît[n] represents the eviction indicator with temporal smoothing. EMA(·) captures the tem-
poral variation in importance. We assign an arbitrarily large value Ω to the most recent Sw tokens
to ensure their preservation.

The exponential moving average EMA(·) is defined as:

EMA(It1:t2 [n]) =


αIt2 [n] + (1− α) EMA(It1:t2−1[n]),

if t1 < t2,

It1 [n], elif t1 = t2,

(9)

where EMA(It1:t2 [n]) represents the exponential moving average of the reconstruction errors
It1 [n], . . . , It2 [n] computed over the steps from t1 to t2. α is the smoothing factor that controls
the weight of the current reconstruction error It2 [n] relative to the previous error EMA(It1:t2−1[n])
in the update process.

Adaptive Window-Based Spatial Smoothing. To capture spatial shifts in KV importance over
time, we split the observation window into two halves: Sfront

w and Srear
w . For each half, we compute

the average index of the top-B important KV pairs:

Dfront =
2

B · Sw

∑
t∈Sfront

w

∑
B

argmax
B

(It) , (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where 2
B·Sw

is a normalization factor. Sfront
w denotes the first half of queries within the input window

Sw. Drear is computed similarly for the second half of the queries. The difference ∆D = Drear −
Dfront reflects how KV importance shifts across positions. We use this signal to adaptively adjust
both the window size and shift:

Ws = 2 ·
⌊
|Drear −Dfront|

β

⌋
+ 1, (11)

γshift =

{
⌊Dfront−Drear

β
⌋, if Dfront −Drear > 0,

⌊Dfront−Drear
β

⌋+ 1, if Dfront −Drear ≤ 0,
(12)

where Ws is the window size and γshift is the shift of the sliding window. β is a scaling factor that
determines the granularity of the sliding window’s movement, controlling the size of the steps taken
when calculating the window shift and size. ⌊·⌋ represents the floor function, which rounds a number
down to the nearest integer.

In summary, the final eviction indicator, which incorporates both layer-wise output reconstruction
and spatial-temporal smoothing, is as follows:

It[n] =
∑⌊Ws/2⌋+γshift

k=−⌊Ws/2⌋+γshift
Ît[k]

Ws
. (13)

The selected ⟨K̂T , V̂T ⟩ is the subset of the original KV pairs, defined as:

K̂T = KT [Dt, :], V̂T = VT [Dt, :], Dt = argmax
B

(It) , (14)

where Dt denotes the indices of the top B KV pairs based on the eviction indicator It. The same
operation is applied to each head and layer, and different KV pairs can be selected for different heads
in each layer.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Backbone LLMs. We evaluate ReST-KV on five open-source LLMs spanning two mainstream
attention architectures: (1) Multi-head attention, Llama2-Chat (Touvron et al., 2023) and Gemma-
Instruct (Team et al., 2024); (2) Grouped-query attention, Llama3-Instruct (Dubey et al., 2024),
Mistral-Instruct-v0.3 (Jiang et al., 2023), and Qwen2.5-Instruct (Team, 2024).

Baseline Methods. We compare ReST-KV with four baselines: (1) Fixed Attention Patterns:
StreamingLLM (Xiao et al., 2023); (2) Eviction Indicator: H2O (Zhang et al., 2023), TOVA (Oren
et al., 2024), SnapKV (Li et al., 2024b). We also incorporate adaptive budget strategies from Pyra-
midKV (Cai et al., 2024) and AdaKV (Feng et al., 2024) into our method to show compatibility.

Evaluating Tasks. We evaluate ReST-KV on three prominent benchmarks: (1) LongBench (Bai
et al., 2023), which tests long-context understanding across 16 datasets spanning six categories; and
(2) RULER (Hsieh et al., 2024), a challenging long-context benchmark consisting of 4 categories
and 13 complex tasks; (3) Needle-in-a-Haystack (Liu et al., 2024a), designed to assess the ability
of models to retrieve key information from long sequences; (4) InfiniteBench (Zhang et al., 2024b),
includes 10 tasks designed to test various aspects of long-context processing. Detailed results are
reported in Appendix J.

Implementation Details. We evaluate ReST-KV and all baselines under varying cache budgets
(Btotal = nL, with n ∈ [64, 1024]), where n denotes the number of KV pairs per layer across L
layers. To ensure fairness, token eviction is performed only once during the prefilling phase. All
methods, except TOVA, are implemented based on the codebase from (Cai, 2023). Experiments are
run on NVIDIA A800 80GB GPUs. Further details are provided in Appendix B.

4.2 EVALUATIONS ON LONGBENCH DATASET

We evaluate ReST-KV on 16 datasets from LongBench. As shown in Figure 4, ReST-KV consis-
tently outperforms all baselines across different cache budget settings, with especially strong gains

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

64 12
8

25
6

51
2

10
24

Cache Size (L)

28

30

32

34

36

38

40

Av
er

ag
e

Sc
or

e

Llama3.1-8B-Instruct

StreamingLLM
H2O
TOVA

SnapKV
ReST-KV
Full Cache

64 12
8

25
6

51
2

10
24

Cache Size (L)

32

35

38

41

44

47

49

Av
er

ag
e

Sc
or

e

Mistral-7B-Instruct-v0.3

StreamingLLM
H2O
TOVA

SnapKV
ReST-KV
Full Cache

64 12
8

25
6

51
2

10
24

Cache Size (L)

10

14

18

22

26

30

34

Av
er

ag
e

Sc
or

e

Llama2-7B-Chat

StreamingLLM
H2O
TOVA

SnapKV
ReST-KV
Full Cache

Figure 4: Average score across 16 datasets of LongBench under various cache budgets. ReST-KV
outperforms the baseline across different models and settings.

Table 1: Performance comparison across 16 datasets of LongBench. The best result is highlighted
in bold, and the second-best is underlined. ReST-KV achieves the best performance in most cases.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Llama-3.1-8B-Instruct, Btotal = 64L

StreamingLLM 7.65 5.08 14.14 10.93 12.64 6.86 16.57 18.93 16.30 38.50 83.13 34.65 9.78 96.28 54.16 48.21 29.61
H2O 12.23 5.12 15.12 11.51 10.14 6.23 17.23 19.51 16.79 39.15 81.51 36.12 8.12 95.12 51.25 47.12 29.52
TOVA 18.52 6.12 17.32 12.15 12.51 7.35 16.24 20.41 16.34 38.41 82.61 36.16 8.14 95.23 55.21 47.35 30.63
SnapKV 19.90 5.78 18.38 13.51 14.42 8.52 17.35 20.44 17.33 41.00 85.37 37.63 8.93 91.08 55.09 48.88 31.48
ReST-KV 22.43 7.19 19.25 14.11 15.04 7.97 20.56 21.10 19.15 53.50 88.23 40.21 8.46 93.90 56.74 48.77 33.54

Llama-3.1-8B-Instruct, Btotal = 512L

StreamingLLM 19.15 6.47 15.02 10.94 12.58 6.23 23.66 20.05 23.31 57.50 87.70 41.86 10.25 90.74 62.39 53.61 33.84
H2O 26.23 7.34 20.51 11.52 13.52 7.34 23.23 21.24 23.14 58.50 86.12 40.15 7.25 91.02 61.23 54.12 34.53
TOVA 27.34 8.34 22.45 12.25 14.51 8.42 24.23 22.13 22.25 58.50 89.31 40.51 8.24 93.14 62.23 55.61 35.59
SnapKV 28.02 9.83 24.84 13.77 15.40 10.21 25.13 22.73 24.25 65.00 92.34 41.69 8.42 96.31 64.30 57.28 37.47
ReST-KV 32.01 10.73 25.23 15.91 15.85 10.25 26.47 23.23 24.79 69.00 91.62 42.59 8.40 97.66 63.48 56.03 38.33
Full 32.02 13.12 27.52 16.60 16.41 11.41 34.59 23.41 26.89 73.00 91.65 43.80 7.18 97.73 65.12 58.89 39.96

Mistral-7B-Instruct-v0.3, Btotal = 64L

StreamingLLM 20.37 20.56 24.62 38.87 32.47 17.68 15.48 19.84 15.81 39.50 82.77 36.72 5.50 80.00 49.77 47.90 34.24
H2O 20.51 21.52 25.12 40.12 33.12 18.34 16.23 19.12 16.24 38.50 83.12 37.23 6.00 85.50 50.12 48.12 34.93
TOVA 22.51 22.24 37.23 41.12 34.10 19.52 17.21 19.23 16.27 38.50 85.12 38.51 6.50 86.50 51.04 48.42 36.50
SnapKV 19.39 23.62 38.66 43.26 34.72 21.33 17.59 20.93 17.06 38.50 86.96 39.61 7.00 90.50 51.63 49.73 37.53
ReST-KV 25.65 26.58 42.71 46.11 36.43 24.34 19.80 21.65 18.90 51.50 87.88 41.54 4.00 90.50 52.39 50.75 40.05

Mistral-7B-Instruct-v0.3, Btotal = 512L

StreamingLLM 24.19 25.97 30.14 40.75 31.90 17.35 22.18 20.30 23.22 65.50 86.95 43.75 6.00 81.00 59.35 56.36 39.68
H2O 25.23 30.41 40.32 42.52 35.23 18.23 24.23 21.24 23.21 66.50 86.71 43.15 5.00 82.52 60.13 58.15 41.42
TOVA 25.23 32.52 46.24 45.23 36.23 20.32 24.53 22.53 23.64 66.50 87.24 44.21 6.00 85.62 59.35 60.24 42.85
SnapKV 26.84 35.51 53.12 49.56 37.72 26.54 25.06 24.03 24.76 67.50 89.36 44.82 5.50 98.50 60.44 61.22 45.66
ReST-KV 28.60 35.86 53.37 49.13 38.70 27.94 26.05 24.37 25.09 73.50 89.66 46.27 5.50 98.50 60.13 60.84 46.47
Full 29.07 41.54 52.88 49.37 39.01 28.58 35.07 25.71 27.73 76.00 88.59 47.51 6.00 98.50 61.48 62.68 48.11

under tight memory constraints. Unlike prior methods that rely solely on the rank of query-key sim-
ilarities, our approach accounts the impact of attention redistribution, ensuring that the most critical
information is retained. Moreover, we verify the compatibility of ReST-KV with non-uniform bud-
get strategies such as PyramidKV and AdaKV, with results presented in Appendix C. Compatibility
with KV cache quantization techniques is also evaluated, as shown in Appendix I.

Table 1 provides a detailed comparison under two cache budgets: low (Btotal = 64L) and high
(Btotal = 512L), with full results in Appendix D.1. ReST-KV consistently ranks among the top
performers across tasks, achieving up to a 2.58% improvement under low budgets with the Mis-
tral model. These results highlight the effectiveness of our eviction indicator and spatio-temporal
smoothing in enhancing KV selection robustness. Additional evaluations across different models
and sizes further confirm this conclusion (Appendix D.2, D.3).

4.3 EVALUATIONS ON RULER BENCHMARK

We evaluate ReST-KV on 11 tasks from the RULER benchmark using the Llama3.1-8B-Instruct
model, with a fixed cache budget of Btotal = 1024L applied across all methods. Table 2 summarizes
the average accuracy across varying context lengths, from 4k to 128k context length. Existing
KV cache eviction methods suffer from substantial performance degradation as the context length
increases, highlighting their limited robustness in long-context and complex retrieval scenarios. In
contrast, ReST-KV consistently achieves strong results across all lengths, with an average accuracy
improvement of 15.2% over prior methods. Notably, even at the 128k context lengthwhere less than
1% of the original cache is retained, ReST-KV maintains effective retrieval capabilities. Detailed
results for individual tasks are provided in Appendix E.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on RULER bench-
mark across different context lengths.

Method 4K 8K 16K 32K 64K 128K Avg.

Full 99.34 98.83 98.55 94.89 89.85 79.32 93.46
Streaming 39.81 18.42 12.10 10.57 9.91 8.18 16.50
SnapKV 83.60 75.54 71.12 66.95 57.47 47.99 67.11
PyramidKV 81.35 73.66 70.23 69.83 57.84 48.93 66.97
ReST-KV 94.01 86.66 84.12 81.87 78.65 68.28 82.27

Table 3: Ablation results of ReST-KV.

Method Avg. Acc

Attention weight Top-k 32.98

ReST-KV 35.86
ReST-KV w/o LOR 33.95 (-1.91)
ReST-KV w/o EMA 34.02 (-1.84)
ReST-KV w/o AWS 33.50 (-2.36)

4.4 VISUALIZATION ON NEEDLE-IN-A-HAYSTACK TEST

The needle-in-a-haystack test (Liu et al., 2024a) involves inserting key information at random po-
sitions within long contexts and serves as a benchmark to assess the ability of LLMs to accu-
rately retrieve critical information. To further demonstrate the effectiveness and adaptability of
our method, we conducted experiments on the Mistral-7B-Instruct-v0.3 model with a cache budget
set to Btotal = 1024L. As shown in Figure 5, even under such a strict cache budget, ReST-KV
maintains 98% of the model’s performance, significantly outperforming other methods. This under-
scores ReST-KV’s ability to efficiently prioritize and retain the most relevant KV pairs. Additional
visualization graphs can be found in Appendix F.

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Mistral-7B-Instruct-v0.3 True Average Score=1.00

(a) FullKV

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Mistral-7B-Instruct-v0.3 True Average Score=0.30

(b) StreamingLLM

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Mistral-7B-Instruct-v0.3 True Average Score=0.93

(c) SnapKV

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Mistral-7B-Instruct-v0.3 True Average Score=0.98

(d) ReST-KV

Figure 5: Performance comparison on the Needle in a Haystack Test using Mistral-7B-Instruct-
v0.3 with Btotal = 1024L. Even with a strict cache budget, ReST-KV retains 98% of the model’s
performance, outperforming other methods in retrieving critical information.

4.5 ABLATION STUDIES

We conduct ablation studies on LongBench to evaluate the contribution of each component in our
KV cache management strategy: layer-wise output reconstruction (LOR) indicator, exponential
moving average (EMA) temporal smoothing, and adaptive window-based spatial smoothing (AWS).
We adopt the Llama3.1-8B-Instruct model with a cache budget of Btotal = 128L as the default
configuration.

Table 3 systematically presents the results. The baseline using vanilla attention-weight-based top-
k selection yields only 32.98 accuracy, as it ignores attention redistribution and fails to capture
the spatial-temporal dynamics of KV pairs. In contrast, our ReST-KV framework achieves 35.86
accuracy, representing a significant improvement.

To further understand the effectiveness of each module, we ablate them individually:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4k 8k 16k 32k 64k 128k 256k
Context Length

0

10

20

30

40

50

60

70

80

P
ea

k
M

em
or

y
(G

B
)

SnapKV
ReST­KV
Full Cache w. FlashAttn­2
Full Cache OOM (N/A)

4k 8k 16k 32k 64k 128k 256k
Context Length

0.00

0.05

0.10

0.15

0.20

0.20

0.30

0.35

D
ec

od
in

g
La

te
nc

y
(s

)

SnapKV
ReST­KV
Full Cache w. FlashAttn­2
Full Cache OOM (N/A)

Figure 6: Peak memory usage and decoding latency on NVIDIA A800 80GB GPU. ReST-KV re-
duces peak memory by 36.0% and achieves up to a 10× speedup at 128k context length compared
to full cache.

• Without the LOR indicator, the model misses attention redistribution effects, making it harder
to identify truly critical KV pairs. This is especially harmful under tight budgets like Btotal =
128L, causing a 1.91% drop in accuracy.

• Without EMA temporal smoothing: The model lacks awareness of temporal changes in im-
portance, making it less capable of retaining KV pairs crucial for future queries. This results
in a 1.84% performance degradation.

• Without AWS spatial smoothing: Without capturing spatial offset patterns (e.g., vertical-slash
structures), the model tends to retain suboptimal KV pairs, causing a 2.36% accuracy drop.

Detailed ablation of each module and sensitivity analysis can be found in Appendix G.

4.6 EVALUATION OF MEMORY AND THROUGHPUT

To evaluate the effectiveness and efficiency of our method in reducing memory consumption and
enhancing LLM inference, we analyze peak memory usage and decoding latency on the Llama-3.1-
8B-Instruct model implemented with FlashAttention-2 (Dao, 2023).

Peak Memory Usage. As shown in Figure 6(a), ReST-KV significantly reduces peak memory
usage, performing comparably to other KV cache eviction methods. Compared to full cache, ReST-
KV achieves approximately 36.0% reduction in peak memory usage at a context length of 128k.

Latency Analysis. As shown in Figure 6(b), the decoding latency of the standard full cache
method, even with FlashAttention-2, grows rapidly with input length. In contrast, ReST-KV main-
tains high efficiency by using a fixed cache budget to limit the number of KV pairs. This approach
overcomes the latency bottleneck for long sequences, achieving an approximate 10.61× speedup
over the full cache method at a 128K context length.

Furthermore, ReST-KV is compatible with prefill sparse attention approaches, yielding a Time-To-
First-Token (TTFT) speedup of up to 3.42×. This efficiency is achieved because our method only
requires computing attention outputs within a small query window, resulting in a computational
complexity comparable to that of SnapKV. For a detailed analysis, please see Appendix H.

5 CONCLUSION

In this paper, we propose ReST-KV, a novel KV cache eviction method that reformulates eviction
as a layer-wise output reconstruction task, effectively capturing attention redistribution effects be-
yond conventional attention-weight heuristics. To enhance robustness, ReST-KV integrates a spatial-
temporal smoothing mechanism using exponential moving averages for temporal stability and adap-
tive windowing for spatial awareness. Extensive evaluations on LongBench, Needle-in-a-Haystack,
and RULER demonstrate that ReST-KV consistently surpasses state-of-the-art methods under low
memory budgets and significantly reduces decoding latencyachieving up to 10× speedups at 128k
context lengths. Our method is model-agnostic and compatible with existing budget strategies, of-
fering a practical and principled solution for efficient long-context generative inference. Future work
will explore tighter integration with adaptive allocation strategies and extensions to multi-modal or
structured memory scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

Anthropic. Claude 3: A next-generation language model, 2023. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.
pdf. Accessed: 2025-01-21.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Zefan Cai. Kvcache-factory, 2023. URL https://github.com/Zefan-Cai/KVCache-Factory.
Accessed: 2025-01-21.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang.
Glm: General language model pretraining with autoregressive blank infilling. arXiv preprint
arXiv:2103.10360, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache evic-
tion by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
importance indicator in kv cache reduction: Value also matters. arXiv preprint arXiv:2406.12335,
2024.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-
infinite: Zero-shot extreme length generalization for large language models, 2024. URL https:
//arxiv.org/abs/2308.16137.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Sophia Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://github.com/Zefan-Cai/KVCache-Factory
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 37:52481–52515, 2024.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence inference. arXiv preprint arXiv:2502.20766,
2025.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei
Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache
management. arXiv preprint arXiv:2412.19442, 2024a.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024b.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

MistralAI. Mistral large 2407: A new milestone in open-source language models, 2023. URL
https://mistral.ai/news/mistral-large-2407/. Accessed: 2025-01-21.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. arXiv preprint arXiv:2401.06104, 2024.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. arXiv preprint
arXiv:2503.12491, 2025.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang.
Razorattention: Efficient kv cache compression through retrieval heads. arXiv preprint
arXiv:2407.15891, 2024.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Qwen Team. Qwen2. 5: A party of foundation models. Qwen (Sept. 2024). url: https://qwenlm.
github. io/blog/qwen2, 5, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo,
Jing Xiong, and Mi Zhang. D2o: Dynamic discriminative operations for efficient generative
inference of large language models. arXiv preprint arXiv:2406.13035, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

11

https://mistral.ai/news/mistral-large-2407/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532,
2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024a.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al. ınftybench: Extending long context evaluation
beyond 100k tokens. In ACL (1), 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

Xiabin Zhou, Wenbin Wang, Minyan Zeng, Jiaxian Guo, Xuebo Liu, Li Shen, Min Zhang, and
Liang Ding. Dynamickv: Task-aware adaptive kv cache compression for long context llms. arXiv
preprint arXiv:2412.14838, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DERIVATION AND ANALYSIS OF THE OUTPUT RECONSTRUCTION
INDICATOR

We define the eviction indicator It[n] as the reconstruction error of the MHA output caused by
removing the n-th KV pair. Specifically, the eviction indicator is given by:

It[n] =
∥∥MHA(xt, ⟨KT ,VT ⟩)−MHA

(
xt, ⟨KT,\n,VT,\n⟩

)∥∥
2
, (15)

where Kt,\n and Vt,\n represent the set of cache keys and values with the n-th KV pair removed.

Using Eq. 3 and Eq. 4, we can expand Eq. 15 as follows:

It[n] =
∥∥AtVTWO −At,\nVT,\nWO

∥∥
2

(16)

where At,\n represents the attention weights with the n-th KV pair removed, and VT,\n represents
the values corresponding to the remaining cache sets after the removal of the n-th KV pair.

Further, we expand the matrix computation into a weighted sum form as:

It[n] =

∥∥∥∥∥∥
∑
m

At[m]vmWO −
∑
m ̸=n

At,\n[m]vmWO

∥∥∥∥∥∥
2

(17)

where At[m] and At,\n[m] represent the attention weights for the m-th query in the presence and
absence of the n-th KV pair, respectively.

Compared to At[m], At,\n[m] is missing the component related to kn in the denominator. There-
fore, the relationship between the two is given by:

At,\n[m] =
At[m]

1−At[n]
(18)

Substituting Eq. 18 into Eq. 17 and performing step-by-step simplifications, we get:

It[n] =

∥∥∥∥∥∥
∑
m

At[m]vmWO −
∑
m ̸=n

At[m]

1−At[n]
vmWO

∥∥∥∥∥∥
2

, (19)

=

∥∥∥∥∥∑
m

At[m]vmWO −

(∑
m

At[m]

1−At[n]
vmWO − At[n]

1−At[n]
vnWO

)∥∥∥∥∥
2

, (20)

=

∥∥∥∥∥∥∥∥∥∥
At[n]

1−At[n]
vnWO︸ ︷︷ ︸

the n-th KV pair removed’s loss

−
∑
m

At[n]

1−At[n]
·At[m]vmWO︸ ︷︷ ︸

the increase of other components after removing the n-th KV pair

∥∥∥∥∥∥∥∥∥∥
2

, (21)

=
At[n]

1−At[n]
·

∥∥∥∥∥vnWO −
∑
m

At[m]vmWO

∥∥∥∥∥
2

, (22)

=
At[n]

1−At[n]
· ∥MHA(xt, ⟨KT ,VT ⟩)− vnWO∥2 , (23)

From Eq. 21, we can see that the layer-wise output reconstruction indicator can be divided into two
parts. One part is the loss due to the removal of the n-th KV pair, and the other part is the increase
in the contribution of the other components after removing the n-th KV pair. Together, these two
parts determine the importance of a KV pair.

B MORE IMPLEMENTATION DETAILS

In this section, we provide additional details regarding the implementation of ReST-KV. Our method
operates in two main phases: prompt prefilling and token decoding. During the prompt prefilling

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

stage, we employ Eq. 13 from Section 3.3 as the eviction indicator. This formula integrates both the
layer-wise output reconstruction indicator and spatial-temporal smoothing. According to Eq. 14, we
select a set of KV pairs based on the cache budget from the prompt. Specifically, for the Exponential
Moving Average (EMA) Temporal Smoothing, the smoothing factor α is set to 0.3. In the case
of the Adaptive Window-Based Spatial Smoothing, the scaling factor β is set to 2000. Following
SnapKV (Li et al., 2024b), we adopt a fixed observation window of size Sw = 32 and kernel size k =
5 for SnapKV, PyramidKV, and our proposed ReST-KV. To better capture important information,
we set the kernel size to 21 on the RULER and InfiniteBench datasets. The StreamingLLM method
retains the first 4 tokens as an attention sink, ensuring efficient processing within the token flow. In
the token decoding phase, we utilize the KV cache compressed during the prefilling stage, along
with a newly updated KV cache, to perform decoding. Notably, no further compression is applied
during this phase.

C COMPATIBILITY WITH BUDGET ALLOCATION STRATEGIES

In this section, we evaluate the compatibility of our method with existing budget allocation strate-
gies. Specifically, we choose PyramidKV (Cai et al., 2024) as a representative of layer-wise budget
allocation strategies and AdaKV (Feng et al., 2024) as a representative of head-wise budget al-
location strategies. We compared the average accuracy results of the Llama2-7B-Chat model on
the LongBench datasets under varying total cache budgets (ranging from 64L to 1024L). Our ex-
periments demonstrate that, when combined with these strategies, our method achieves similar or
slightly improved performance compared to SnapKV combined with the same strategies.

Table 4: Performance comparison of SnapKV and our method with Pyramid layer-wise budget
allocation strategies across varying cache budgets.

Method Cache Budget Btotal Avg. Acc
64L 128L 256L 512L 1024L

SnapKV 22.96 28.31 30.90 32.18 32.99 29.47
PyramidKV 24.67 29.58 31.04 32.32 32.95 30.11 (↑ 0.64%)
ReST-KV 25.54 29.99 31.51 32.38 32.97 30.48
ReST-KV w. Pyramid 26.88 30.47 31.74 32.48 33.05 30.93 (↑ 0.45%)

Table 4 illustrates the results of applying Pyramid layer-wise budget allocation strategies to both
SnapKV and our method, comparing the performance differences before and after the addition
of the strategy. As shown, the accuracy improvements are modest but consistent across different
cache budget sizes. For instance, our method combined with layer-wise budget allocation strategies
achieves a 0.45% increase in average accuracy across different cache budgets.

Table 5: Performance comparison of SnapKV and our method with Ada head-wise budget allocation
strategies across varying cache budgets.

Method Cache Budget Btotal Avg. Acc
64L 128L 256L 512L 1024L

SnapKV 22.96 28.31 30.90 32.18 32.99 29.47
Ada-SnapKV 24.89 29.93 31.21 32.28 33.01 30.26 (↑ 0.79%)
ReST-KV 25.54 29.99 31.51 32.38 32.97 30.48
Ada-ReST-KV 27.35 31.27 31.84 32.51 33.02 31.20 (↑ 0.72%)

Table 5 presents the results of applying head-wise budget allocation strategies to both SnapKV and
our method, comparing the performance differences before and after the addition of the strategy. The
results show that our method combined with AdaKV achieves a 0.72% increase in average accuracy
across all cache budgets. These results highlight that our method is compatible with existing budget
allocation strategies.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Performance comparison across 16 datasets of LongBench on Llama3.1-8B-Instruct for
cache budgets from 64L to 1024L. The best result is highlighted in bold, and the second-best is
underlined.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Llama3.1-8B-Instruct, Btotal = Full

Full 32.02 13.12 27.52 16.60 16.41 11.41 34.59 23.41 26.89 73.00 91.65 43.80 7.18 97.73 65.12 58.89 39.96

Llama3.1-8B-Instruct, Btotal = 64L

StreamingLLM 7.65 5.08 14.14 10.93 12.64 6.86 16.57 18.93 16.30 38.50 83.13 34.65 9.78 96.28 54.16 48.21 29.61
H2O 12.23 5.12 15.12 11.51 10.14 6.23 17.23 19.51 16.79 39.15 81.51 36.12 8.12 95.12 51.25 47.12 29.52
TOVA 18.52 6.12 17.32 12.15 12.51 7.35 16.24 20.41 16.34 38.41 82.61 36.16 8.14 95.23 55.21 47.35 30.63
SnapKV 19.90 5.78 18.38 13.51 14.42 8.52 17.35 20.44 17.33 41.00 85.37 37.63 8.93 91.08 55.09 48.88 31.48
ReST-KV 22.43 7.19 19.25 14.11 15.04 7.97 20.56 21.10 19.15 53.50 88.23 40.21 8.46 93.90 56.74 48.77 33.54

Llama3.1-8B-Instruct, Btotal = 128L

StreamingLLM 16.07 5.34 14.82 11.01 12.38 6.61 17.99 19.06 18.69 40.50 85.57 38.24 9.20 94.11 58.97 49.70 31.14
H2O 14.00 5.45 16.62 12.83 10.87 6.94 17.29 20.88 16.96 40.27 82.15 37.61 9.12 96.13 52.13 48.16 30.46
TOVA 21.63 8.11 18.70 14.31 14.44 9.46 19.22 22.97 17.60 40.76 84.40 39.21 11.24 96.67 58.25 48.91 32.87
SnapKV 25.20 7.23 20.89 13.60 14.61 8.49 20.95 21.42 21.28 48.00 89.38 40.08 7.29 93.78 59.31 52.12 33.98
ReST-KV 27.88 8.29 22.22 14.65 14.70 9.32 22.26 22.95 22.16 65.00 91.03 41.26 8.20 93.59 58.78 51.50 35.86

Llama3.1-8B-Instruct, Btotal = 256L

StreamingLLM 16.03 5.50 14.96 10.38 12.25 7.01 20.38 19.48 20.63 46.00 87.49 41.02 9.57 90.53 61.13 51.44 32.11
H2O 13.99 6.48 17.76 13.41 11.10 7.38 17.64 21.74 18.21 40.29 82.22 38.11 8.90 96.89 51.53 49.14 30.92
TOVA 24.05 11.17 21.30 17.61 17.50 12.84 21.93 26.16 20.58 43.69 87.29 42.52 14.21 99.26 60.92 51.65 35.79
SnapKV 27.83 9.12 22.21 13.68 14.52 10.20 23.02 23.14 22.51 56.50 90.63 40.79 7.89 97.56 62.05 55.47 36.07
ReST-KV 29.14 9.54 23.61 14.27 14.61 9.31 24.32 23.59 23.47 67.00 92.13 42.04 8.09 94.51 61.56 53.62 36.93

Llama3.1-8B-Instruct, Btotal = 512L

StreamingLLM 19.15 6.47 15.02 10.94 12.58 6.23 23.66 20.05 23.31 57.50 87.70 41.86 10.25 90.74 62.39 53.61 33.84
H2O 26.23 7.34 20.51 11.52 13.52 7.34 23.23 21.24 23.14 58.50 86.12 40.15 7.25 91.02 61.23 54.12 34.53
TOVA 27.34 8.34 22.45 12.25 14.51 8.42 24.23 22.13 22.25 58.50 89.31 40.51 8.24 93.14 62.23 55.61 35.59
SnapKV 28.02 9.83 24.84 13.77 15.40 10.21 25.13 22.73 24.25 65.00 92.34 41.69 8.42 96.31 64.30 57.28 37.47
ReST-KV 32.01 10.73 25.23 15.91 15.85 10.25 26.47 23.23 24.79 69.00 91.62 42.59 8.40 97.66 63.48 56.03 38.33

Llama3.1-8B-Instruct, Btotal = 1024L

StreamingLLM 20.50 8.08 15.72 11.61 12.39 6.71 25.76 20.18 25.44 63.50 88.84 42.61 10.03 92.10 63.15 55.88 35.16
H2O 27.63 8.84 21.98 12.99 15.91 8.23 23.96 23.77 24.20 59.79 86.97 41.52 9.07 93.01 63.59 56.08 36.10
TOVA 29.82 9.73 25.10 14.92 17.53 10.20 27.06 23.20 24.78 59.89 92.21 43.49 10.38 95.86 64.08 57.47 37.86
SnapKV 31.95 11.26 25.56 15.13 16.18 10.79 26.97 23.06 25.89 67.50 91.90 42.88 7.67 98.16 64.53 58.30 38.61
ReST-KV 31.83 11.61 26.51 15.85 15.48 10.83 28.20 24.00 26.18 70.50 91.73 42.70 8.02 97.79 64.24 57.56 38.94

D ADDITIONAL EXPERIMENTS ON LONGBENCH

In this section, we provide comprehensive experimental results on LongBench (Bai et al., 2023), a
benchmark focused on long-context understanding, with input lengths ranging from 1235 to 18409
tokens. We perform detailed performance evaluations for three base models with cache budgets
ranging from 64L to 1024L: Llama2-7B-Chat (Touvron et al., 2023), Llama3.1-8B-Instruct (Dubey
et al., 2024), and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) (Appendix D.1). To demonstrate
the generality of ReST-KV, we also conduct experiments across different models and sizes. In
Appendix D.2, we report additional experiments on the Qwen2.5-7B-Instruct (Team, 2024) and
Gemma-7B-Instruct (Team et al., 2024) model architectures, and in Appendix D.3, we present ex-
periments on the Llama2-13B-Chat and Llama3-70B-Instruct model sizes.

D.1 DETAILED PERFORMANCE ACROSS CACHE BUDGETS

Tables 6, 7, and 8 present the detailed LongBench results of ReST-KV and comparative meth-
ods applied to Llama3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, and Llama2-7B-Chat, respectively.
Overall, the results demonstrate that, compared to other methods, ReST-KV consistently outper-
forms all baselines across all tasks in LongBench when applied to the test models with cache bud-
gets ranging from 64L to 1024L. This proves the effectiveness and wide applicability of ReST-KV
in efficient long-context processing using KV caches in open-source LLMs across domains.

D.2 ADDITIONAL EXPERIMENTS ON MORE MODEL ARCHITECTURES

To further validate the versatility of ReST-KV across different model architectures, we performed
additional experiments on the Qwen2.5-7B-Instruct and Gemma-7B-Instruct models. The experi-
ments were conducted in two distinct memory configurations: a low-memory setting (Btotal = 64L)
and a high-memory setting (Btotal = 512L). As shown in Table 9, ReST-KV consistently out-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Performance comparison across 16 datasets of LongBench on Mistral-7B-Instruct-v0.3 for
cache budgets from 64L to 1024L. The best result is highlighted in bold, and the second-best is
underlined.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Mistral-7B-Instruct-v0.3, Btotal = Full

Full 29.07 41.54 52.88 49.37 39.01 28.58 35.07 25.71 27.73 76.00 88.59 47.51 6.00 98.50 61.48 62.68 48.11

Mistral-7B-Instruct-v0.3, Btotal = 64L

StreamingLLM 20.37 20.56 24.62 38.87 32.47 17.68 15.48 19.84 15.81 39.50 82.77 36.72 5.50 80.00 49.77 47.90 34.24
H2O 20.51 21.52 25.12 40.12 33.12 18.34 16.23 19.12 16.24 38.50 83.12 37.23 6.00 85.50 50.12 48.12 34.93
TOVA 22.51 22.24 37.23 41.12 34.10 19.52 17.21 19.23 16.27 38.50 85.12 38.51 6.50 86.50 51.04 48.42 36.50
SnapKV 19.39 23.62 38.66 43.26 34.72 21.33 17.59 20.93 17.06 38.50 86.96 39.61 7.00 90.50 51.63 49.73 37.53
ReST-KV 25.65 26.58 42.71 46.11 36.43 24.34 19.80 21.65 18.90 51.50 87.88 41.54 4.00 90.50 52.39 50.75 40.05

Mistral-7B-Instruct-v0.3, Btotal = 128L

StreamingLLM 21.39 22.05 26.73 37.25 32.81 17.61 16.76 19.69 17.98 45.50 85.64 40.49 5.50 80.00 55.01 52.12 36.03
H2O 22.39 22.98 26.92 42.51 33.19 19.20 16.90 20.70 16.82 41.12 87.10 39.76 8.58 86.19 50.81 53.01 36.76
TOVA 22.48 28.78 48.71 47.58 34.26 21.96 21.67 21.75 21.68 42.23 87.04 42.10 2.08 94.58 56.97 54.76 40.54
SnapKV 25.04 28.42 47.88 46.23 36.47 24.60 21.22 22.74 21.15 45.00 88.74 43.07 4.00 95.00 56.81 55.75 41.38
ReST-KV 26.58 29.60 49.23 47.46 37.18 25.16 22.44 22.43 21.77 69.00 88.18 43.84 5.50 96.50 56.29 55.13 43.52

Mistral-7B-Instruct-v0.3, Btotal = 256L

StreamingLLM 22.46 23.32 29.63 39.62 32.01 16.71 19.13 19.30 20.14 54.50 85.12 43.21 5.50 80.00 57.72 55.03 37.71
H2O 24.31 23.78 27.97 43.90 33.95 19.87 17.42 23.36 17.32 43.74 91.10 40.17 11.88 86.92 51.54 54.24 38.22
TOVA 28.17 29.93 51.01 46.26 36.55 26.65 22.76 22.31 21.24 54.34 88.00 42.45 2.16 94.49 57.39 58.04 42.61
SnapKV 26.88 31.72 51.40 48.89 36.80 27.33 22.85 23.66 23.15 57.00 89.01 43.60 5.00 96.50 58.64 58.21 43.79
ReST-KV 27.43 34.24 52.11 48.81 38.25 27.20 24.31 23.33 23.24 72.50 88.59 44.61 5.50 96.50 58.41 59.21 45.27

Mistral-7B-Instruct-v0.3, Btotal = 512L

StreamingLLM 24.19 25.97 30.14 40.75 31.90 17.35 22.18 20.30 23.22 65.50 86.95 43.75 6.00 81.00 59.35 56.36 39.68
H2O 25.23 30.41 40.32 42.52 35.23 18.23 24.23 21.24 23.21 66.50 86.71 43.15 5.00 82.52 60.13 58.15 41.42
TOVA 25.23 32.52 46.24 45.23 36.23 20.32 24.53 22.53 23.64 66.50 87.24 44.21 6.00 85.62 59.35 60.24 42.85
SnapKV 26.84 35.51 53.12 49.56 37.72 26.54 25.06 24.03 24.76 67.50 89.36 44.82 5.50 98.50 60.44 61.22 45.66
ReST-KV 28.60 35.86 53.37 49.13 38.70 27.94 26.05 24.37 25.09 73.50 89.66 46.27 5.50 98.50 60.13 60.84 46.47

Mistral-7B-Instruct-v0.3, Btotal = 1024L

StreamingLLM 24.81 27.98 31.09 42.93 32.65 18.03 24.57 20.74 25.42 68.50 88.71 45.37 5.50 82.50 61.07 59.21 41.19
H2O 28.23 32.61 42.96 45.03 38.39 20.56 26.50 24.01 25.10 69.37 88.49 45.60 8.11 83.81 62.79 59.90 43.84
TOVA 29.10 36.82 53.78 49.25 38.39 28.33 27.17 23.75 25.53 70.39 88.28 45.24 4.85 100.47 60.40 62.25 46.50
SnapKV 29.31 37.25 53.55 49.25 38.54 28.28 26.90 24.49 26.27 72.50 89.11 46.08 5.50 99.00 61.45 61.76 46.83
ReST-KV 29.20 37.72 52.56 50.50 38.89 28.69 28.03 24.71 26.76 74.00 89.41 47.08 5.50 99.00 61.10 61.66 47.18

performs baseline methods in both the low and high memory settings for the Qwen and Gemma
architectures, similar to the results observed with the Llama and Mistral models. These findings
further confirm the adaptability of ReST-KV across various model architectures, demonstrating its
robust performance advantage regardless of the underlying design of the models.

D.3 ADDITIONAL EXPERIMENTS ON LARGER-SCALE MODELS

To assess the scalability of ReST-KV on larger models, we conducted additional experiments on
Llama2-13B-Chat and Llama3-70B-Instruct. These experiments were performed under two dif-
ferent memory configurations: a low-memory setting (Btotal = 64L) and a high-memory setting
(Btotal = 512L). As shown in Table 10, ReST-KV consistently outperforms baseline methods in
both low and high memory settings for the Llama2-13B-Chat and Llama3-70B-Instruct models.
These results further demonstrate the scalability and effectiveness of ReST-KV when applied to
larger-scale models, highlighting its continued performance advantage regardless of the model size.

E ADDITIONAL EXPERIMENTS ON RULER BENCHMARK

In this section, we present a detailed evaluation of ReST-KV on the various subtasks of the RULER
benchmark (Hsieh et al., 2024). RULER is specifically designed to assess the core capabilities of
LLMs in long-context scenarios through a diverse suite of tasks.

The retrieval suite includes four variants of the needle-in-a-haystack (NIAH) testSingle-Needle (S-
NIAH), Multi-Key (MK-NIAH), Multi-Query (MQ-NIAH), and Multi-Value (MV-NIAH)to evalu-
ate recall accuracy under diverse distractor settings and query formulations. Beyond retrieval, the
Variable Tracking (VT) task measures multi-hop reasoning by requiring models to resolve transitive
variable references scattered throughout the input. Lastly, aggregation tasks such as Common Word
Extraction (CWE) and Frequent Word Extraction (FWE) test a model’s ability to compress and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Performance comparison across 16 datasets of LongBench on Llama2-7B-Chat for cache
budgets from 64L to 1024. The best result is highlighted in bold, and the second-best is underlined.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Llama2-7B-Chat, Btotal = Full

Full 18.39 20.11 35.67 31.25 25.50 10.14 25.68 20.93 26.27 64.00 83.38 40.99 5.50 10.00 60.81 55.27 33.37

Llama2-7B-Chat, Btotal = 64L

StreamingLLM 5.61 15.51 6.42 14.14 16.77 1.36 12.09 16.46 12.83 17.25 15.12 10.93 4.50 3.00 22.00 15.24 11.83
H2O 4.46 12.14 8.85 12.11 13.34 2.36 13.06 16.63 16.89 19.50 20.69 10.45 2.70 3.00 26.50 16.06 12.42
TOVA 8.26 14.34 12.64 13.52 13.25 3.53 11.64 16.67 13.35 36.00 72.64 32.72 2.00 4.00 36.15 32.53 20.20
SnapKV 10.83 16.38 17.53 22.81 23.24 5.06 13.12 18.38 14.17 34.50 69.45 33.43 5.50 7.00 39.99 36.04 22.96
ReST-KV 12.72 17.17 24.09 24.71 23.80 5.55 15.18 19.71 17.45 43.50 76.17 33.42 5.50 4.00 45.00 40.61 25.54

Llama2-7B-Chat, Btotal = 128L

StreamingLLM 8.45 14.87 12.68 19.98 22.14 5.17 13.99 19.74 16.02 28.50 60.96 30.61 5.00 5.00 44.44 39.53 21.69
H2O 7.60 9.53 9.92 18.35 15.64 3.30 17.75 14.71 21.45 28.00 39.61 13.85 4.17 3.56 29.92 25.53 16.43
TOVA 12.26 14.66 25.72 26.08 24.21 6.90 15.28 18.30 17.61 42.44 80.12 35.25 5.05 6.93 52.48 49.17 27.03
SnapKV 13.32 16.28 27.23 27.23 24.37 7.17 16.97 19.65 19.38 44.00 81.88 36.82 6.00 8.00 54.02 50.66 28.31
ReST-KV 15.55 17.78 27.24 27.72 24.62 8.93 17.88 20.13 20.92 60.00 82.48 37.35 6.00 9.50 53.45 50.24 29.99

Llama2-7B-Chat, Btotal = 256L

StreamingLLM 13.81 15.51 17.63 25.81 24.48 7.70 16.16 19.33 18.78 44.00 78.87 37.63 5.50 5.00 54.57 49.68 27.15
H2O 8.82 11.73 10.11 15.54 13.70 3.78 19.29 19.13 23.36 34.00 35.61 20.26 4.75 3.57 23.74 23.75 16.95
TOVA 14.12 16.82 29.15 27.69 24.82 6.89 18.04 18.67 21.79 57.01 83.48 37.74 5.06 8.71 56.51 52.99 29.97
SnapKV 15.45 17.57 29.44 29.53 24.94 8.69 18.78 20.48 22.15 57.50 83.76 38.25 6.00 10.50 57.75 53.59 30.90
ReST-KV 15.23 18.57 30.46 31.53 25.85 9.09 19.13 20.83 22.28 63.00 82.57 39.05 6.00 11.50 57.16 51.91 31.51

Llama2-7B-Chat, Btotal = 512L

StreamingLLM 15.30 15.53 20.16 26.59 25.05 5.65 18.30 19.28 21.84 54.50 82.23 38.07 5.50 5.00 56.80 51.95 28.86
H2O 9.68 8.67 6.86 10.85 8.71 1.31 20.04 18.72 24.91 18.00 17.09 18.99 3.75 2.30 20.87 14.87 12.85
TOVA 13.53 15.46 26.44 26.12 31.02 7.12 18.25 18.64 22.34 62.50 83.10 40.61 3.00 8.00 56.14 51.53 30.24
SnapKV 16.22 19.57 32.32 31.87 24.97 9.66 20.19 20.77 23.85 62.00 82.24 39.18 6.00 10.50 59.49 56.06 32.18
ReST-KV 17.15 19.88 32.71 31.94 25.62 9.97 20.52 20.68 23.59 63.50 83.30 39.29 6.00 11.50 58.65 53.81 32.38

Llama2-7B-Chat, Btotal = 1024L

StreamingLLM 15.12 17.35 22.21 26.76 24.43 6.52 21.15 19.16 24.67 61.00 82.16 39.69 6.00 1.50 57.73 53.24 29.92
H2O 6.55 11.17 8.96 13.56 9.57 1.80 22.43 19.74 26.07 18.50 15.59 36.61 4.43 1.08 29.96 15.24 15.08
TOVA 16.84 19.32 34.90 31.07 25.24 9.51 20.36 20.34 23.42 62.38 81.31 39.68 4.03 10.05 58.13 54.73 31.96
SnapKV 17.41 19.74 35.92 31.82 26.00 10.09 22.06 20.43 24.88 63.50 82.77 40.52 6.00 10.50 60.10 56.05 32.99
ReST-KV 17.39 20.01 35.33 31.71 25.33 9.60 22.30 20.85 24.91 63.50 83.73 40.76 6.00 10.50 60.57 54.95 32.97

synthesize high-density signal distributed across long contexts.These tasks collectively pose dis-
tinct challenges for context retention, salience estimation, and compositional reasoning, providing a
holistic benchmark for evaluating memory management strategies like ReST-KV.

We evaluate ReST-KV using the LLaMA-3.1-8B-Instruct model with a maximum context window of
B = 1024L, across input lengths ranging from 4k to 128k tokens. The evaluation compares ReST-
KV with several representative KV cache eviction baselines: Full KV cache (oracle), StreamingLLM
(Xiao et al., 2023), SnapKV (Li et al., 2024b), and PyramidKV (Cai et al., 2024).

As reported in Table 11, ReST-KV consistently achieves higher average accuracy than all alternative
eviction strategies across all context lengths. For instance, at 4k tokens, ReST-KV achieves an aver-
age accuracy of 94.01%, substantially outperforming SnapKV (83.60%) and PyramidKV (85.21%).
While all methods exhibit declining performance as the context length increases, ReST-KV main-
tains a clear and consistent margin over the baselines, demonstrating its robustness in extended-
context scenarios.

A breakdown by task category reveals that ReST-KV performs particularly well on retrieval tasks
(S-NIAH, MQ-NIAH, MV-NIAH) and multi-hop reasoning (VT), often approaching the accuracy
levels of the full KV cache. These results indicate that ReST-KV is effective at preserving seman-
tically salient tokens under constrained memory. More challenging tasks, such as MK-NIAH-3
and the CWE aggregation task with uniform word distributions, remain difficult across all methods.
Nonetheless, ReST-KV continues to outperform other eviction baselines in these settings, suggesting
stronger resilience to task complexity and noise.

F ADDITIONAL EXPERIMENTS ON NEEDLE-IN-A-HAYSTACK TEST

In this section, we present additional experiments to further evaluate the effectiveness of our method
on the Needle-in-a-Haystack test. This benchmark assesses a model’s ability to retrieve critical infor-
mation embedded within long contexts. While Section 4.4 already provides results for Mistral-7B-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Performance comparison across 16 datasets of LongBench on Qwen2.5-7B-Instruct and
Gemma-7B-Instruct. The best result is highlighted in bold, and the second-best is underlined.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Qwen2.5-7B-Instruct, Btotal = Full

Full 3.82 10.75 24.24 10.23 9.30 6.97 32.54 17.84 22.46 71.50 89.32 46.16 4.35 98.83 61.93 68.2 36.15

Qwen2.5-7B-Instruct, Btotal = 64L

StreamingLLM 2.74 5.53 13.16 7.62 7.70 4.35 14.98 12.70 11.96 38.50 77.44 37.51 6.29 26.29 44.14 44.40 22.21
H2O 1.09 3.46 17.22 6.57 6.33 4.23 14.50 11.67 10.29 37.38 76.86 37.81 7.76 83.84 46.11 49.59 25.92
TOVA 2.19 3.58 17.34 8.23 8.14 5.96 16.48 13.38 11.36 37.94 78.75 39.12 7.79 85.47 47.93 50.24 27.12
SnapKV 2.86 5.58 18.71 8.59 8.41 6.01 16.96 13.67 13.21 39.50 79.09 40.39 7.92 87.02 48.10 51.52 27.97
ReST-KV 3.27 6.69 18.95 9.57 8.79 6.03 18.77 14.99 15.19 50.50 79.07 41.28 4.73 93.00 48.47 50.03 29.33

Qwen2.5-7B-Instruct, Btotal = 512L

StreamingLLM 2.98 6.70 15.29 8.28 8.27 4.15 22.54 13.15 18.90 56.00 85.96 43.43 6.84 36.21 54.08 53.69 27.28
H2O 1.16 6.46 21.50 8.05 8.50 6.00 23.09 15.25 17.63 63.65 81.84 43.52 2.03 93.33 57.68 61.67 31.96
TOVA 2.70 7.99 21.77 8.61 8.57 6.61 23.44 16.34 19.42 64.28 82.98 44.41 2.35 94.70 59.23 63.58 32.94
SnapKV 3.57 8.90 22.88 10.34 9.57 6.74 24.73 17.58 19.56 64.50 83.49 45.08 4.32 96.67 59.93 64.54 33.90
ReST-KV 3.53 9.46 23.66 10.91 9.76 7.24 25.65 17.76 20.23 67.50 86.73 44.93 3.83 98.08 60.14 63.56 34.56

Gemma-7B-Instruct, Btotal = Full

Full 14.28 33.12 41.08 30.75 26.11 15.47 23.95 19.31 23.86 69.50 81.28 36.22 4.00 35.92 48.47 48.79 34.51

Gemma-7B-Instruct, Btotal = 64L

StreamingLLM 11.31 16.54 22.96 21.87 23.25 10.18 12.47 16.80 12.74 38.50 70.94 29.79 2.50 20.50 44.67 48.75 25.24
H2O 10.37 15.93 33.33 26.09 23.65 12.52 12.49 16.94 12.99 39.15 80.42 32.23 3.20 24.41 46.00 49.03 27.42
TOVA 10.53 16.58 33.81 27.05 24.56 12.66 13.26 17.19 13.76 39.68 80.69 32.67 3.68 25.29 46.01 49.94 27.96
SnapKV 11.05 17.06 34.22 27.41 25.32 13.52 13.98 17.35 14.03 40.50 81.42 32.90 3.83 26.00 46.34 49.95 28.43
ReST-KV 13.10 22.90 36.78 28.36 25.90 15.13 15.39 18.09 15.68 44.50 82.55 32.77 3.33 36.25 47.92 48.70 30.46

Gemma-7B-Instruct, Btotal = 512L

StreamingLLM 11.58 20.76 26.09 24.06 23.36 10.62 17.49 17.01 20.12 60.50 78.20 37.45 1.83 25.17 49.88 52.64 29.80
H2O 12.70 29.01 38.66 28.71 25.10 14.19 17.53 17.70 20.09 60.94 80.75 35.24 3.15 34.02 47.44 49.01 32.14
TOVA 13.23 29.30 39.32 29.63 25.57 14.55 18.12 18.32 21.01 61.13 81.49 35.78 3.61 34.46 48.39 50.00 32.74
SnapKV 13.36 29.43 39.80 30.24 26.01 14.82 18.30 18.86 21.23 62.00 81.51 36.04 4.33 35.08 49.16 50.73 33.18
ReST-KV 13.70 30.33 42.08 30.13 26.06 14.37 18.82 18.60 22.38 69.00 81.72 37.55 4.33 35.21 48.67 49.48 33.90

Table 10: Performance comparison across 16 datasets of LongBench on Llama models from 13B to
70B. The best result is highlighted in bold, and the second-best is underlined.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Llama2-13B-Chat, Btotal = Full

Full 19.19 25.86 37.04 36.65 33.22 14.02 25.92 20.24 26.02 65.00 87.70 35.60 3.60 11.00 51.26 53.15 34.09

Llama2-13B-Chat, Btotal = 64L

StreamingLLM 6.95 15.50 16.08 24.30 26.66 7.49 0.98 17.89 2.17 29.50 55.63 16.70 3.00 5.50 34.05 29.27 18.23
H2O 14.00 18.17 21.78 30.62 28.77 9.93 14.88 19.17 17.97 35.00 80.11 28.97 3.87 6.50 37.50 30.11 24.83
TOVA 15.10 17.12 24.22 34.11 28.32 10.69 14.60 18.89 16.83 33.57 86.42 29.99 3.13 9.79 40.48 38.05 26.33
SnapKV 16.05 17.20 24.85 34.51 28.72 11.52 15.39 19.34 16.89 34.50 86.87 30.94 3.54 10.00 40.65 38.22 26.82
ReST-KV 14.97 20.02 32.61 35.27 29.15 10.71 17.21 19.12 18.39 42.00 85.35 30.57 3.54 12.00 40.01 41.41 28.27

Llama2-13B-Chat, Btotal = 512L

StreamingLLM 14.80 19.01 21.58 33.08 28.92 12.43 20.27 18.27 19.82 56.50 85.98 33.02 4.05 7.50 49.21 47.83 29.52
H2O 17.28 20.94 27.81 32.98 29.39 10.66 21.57 19.50 24.49 61.50 82.61 34.51 4.34 9.50 47.58 45.41 30.63
TOVA 16.95 21.97 33.18 35.51 31.11 13.94 20.33 19.74 22.94 62.33 85.54 35.06 2.94 10.57 49.60 49.80 31.97
SnapKV 17.46 22.46 33.79 36.39 31.37 14.46 20.51 19.81 23.76 62.50 85.98 35.88 3.55 11.50 50.12 50.08 32.48
ReST-KV 18.00 23.72 34.49 36.21 32.55 15.43 20.67 20.20 24.24 66.50 87.37 35.01 4.04 11.50 49.90 50.89 33.17

Llama3-70B-Instruct, Btotal = Full

Full 27.75 46.48 49.68 52.04 54.90 30.44 32.37 22.20 27.62 73.50 92.46 45.72 12.00 72.50 41.70 69.06 46.90

Llama3-70B-Instruct, Btotal = 64L

StreamingLLM 24.11 27.63 25.53 41.00 48.39 23.77 16.92 20.14 17.07 40.00 77.20 37.10 12.00 72.50 44.82 58.88 36.69
H2O 24.07 31.33 27.49 44.83 49.09 25.14 22.31 20.59 24.30 49.50 91.45 40.29 12.00 72.50 44.97 60.63 40.03
TOVA 24.53 30.43 27.56 45.29 49.64 25.93 22.30 20.08 23.46 48.66 91.18 40.23 11.85 72.50 44.31 60.65 39.91
SnapKV 23.97 32.92 34.96 46.35 52.90 26.05 18.33 21.55 19.98 43.00 88.83 41.18 12.00 72.50 44.42 61.63 40.04
ReST-KV 26.32 36.38 38.44 49.51 53.18 26.20 20.02 21.81 21.48 59.75 88.51 40.51 12.05 71.50 45.22 61.22 42.01

Llama3-70B-Instruct, Btotal = 512L

StreamingLLM 24.62 31.89 31.23 44.91 47.51 25.91 23.08 19.76 24.15 62.50 88.14 43.36 12.00 72.50 48.71 66.04 41.64
H2O 27.56 42.91 36.19 50.40 49.87 25.98 28.82 21.67 27.06 72.00 91.88 44.57 12.00 72.00 42.65 67.87 44.59
TOVA 27.51 42.49 35.71 51.02 50.42 25.12 27.88 21.60 27.28 72.04 92.04 45.13 12.89 71.18 43.51 68.53 44.65
SnapKV 27.67 44.58 48.00 51.66 53.73 30.61 24.80 22.82 25.89 70.00 92.63 45.14 12.00 72.50 44.59 69.20 45.99
ReST-KV 27.85 45.21 50.06 51.55 54.45 29.83 25.77 22.54 25.83 72.50 92.63 46.59 12.00 72.50 43.44 68.95 46.36

Instruct-v0.3 with a cache budget of B = 1024L, we extend our analysis by considering additional
settings: (1) Mistral-7B-Instruct-v0.3 with a reduced cache budget of B = 128L, (2) Llama3.1-8B-
Instruct under both B = 128L and B = 1024L.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Performance comparison of ReST-KV and baseline eviction strategies on the RULER
benchmark across multiple context lengths (4k to 128k tokens). Results are reported as average
accuracy (%) over subtasks. ReST-KV consistently outperforms other methods, particularly on
retrieval and multi-hop reasoning tasks. The best result is highlighted in bold, and the second-best
is underlined.

Method
S-NIAH-1

S-NIAH-2

S-NIAH-3

MK-NIAH-1

MK-NIAH-2

MK-NIAH-3

MQ-NIAH

MV-NIAH
CWE

FWE VT Avg. Acc

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=4k

Full 100.0 100.0 99.60 100.0 100.0 99.60 99.90 96.25 99.78 97.67 99.96 99.34
StreamingLLM 27.8 30.6 31.40 34.2 26.2 29.6 28.7 30.05 73.2 96.13 30.0 39.81
SnapKV 100.00 99.0 20.6 99.6 93.0 31.00 99.2 90.45 91.46 95.33 99.96 83.60
PyramidKV 100.00 99.80 9.6 100.00 96.80 26.2 99.70 93.60 74.88 94.33 99.92 81.35
ReST-KV 100.00 100.00 99.60 100.00 100.00 49.80 99.95 97.00 91.78 96.07 99.92 94.01

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=8k

Full 100.0 100.0 100.0 100.0 99.80 98.80 100.0 95.75 97.62 95.27 99.92 98.83
StreamingLLM 11.0 12.0 13.00 14.2 11.0 11.80 12.35 12.45 4.36 86.93 13.56 18.42
SnapKV 100.00 98.4 12.0 98.0 85.6 7.6 97.8 87.45 56.06 88.27 99.76 75.54
PyramidKV 100.00 99.80 3.0 99.20 87.80 5.2 98.05 88.25 40.24 89.00 99.68 73.66
ReST-KV 100.00 100.00 95.60 100.00 99.80 19.60 100.00 95.80 51.16 91.53 99.76 86.66

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=16k

Full 100.0 100.0 100.0 99.60 100.0 99.00 99.85 98.25 90.90 96.67 99.80 98.55
StreamingLLM 5.6 6.4 5.80 7.2 6.0 5.00 5.2 6.7 0.18 78.53 6.52 12.1
SnapKV 100.00 97.0 4.0 97.8 74.0 3.8 97.25 88.95 27.36 92.6 99.6 71.12
PyramidKV 100.00 97.40 1.2 98.00 75.20 3.4 97.0 86.5 18.98 95.07 99.80 70.23
ReST-KV 100.00 100.00 93.00 99.60 99.80 17.00 100.00 96.10 22.86 97.13 99.80 84.12

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=32k

Full 100.0 100.0 100.0 100.0 100.0 99.60 99.90 98.95 48.60 97.07 99.68 94.89
StreamingLLM 3.6 1.8 2.4 3.0 3.8 2.00 2.5 2.45 0.12 91.13 3.52 10.57
SnapKV 100.00 97.20 6.20 99.40 61.00 2.0 96.5 87.25 16.96 71.27 98.64 66.95
PyramidKV 100.00 97.2 2.8 99.2 59.2 1.8 96.55 85.2 10.52 75.2 98.60 66.02
ReST-KV 100.00 100.00 98.20 99.60 99.00 15.20 99.95 97.60 9.36 83.53 98.16 81.87

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=64k

Full 100.0 100.0 99.80 99.80 99.20 94.00 99.75 98.95 7.96 90.60 98.32 89.85
StreamingLLM 2.0 1.6 2.4 2.6 2.0 0.80 2.05 2.8 0.14 90.87 1.76 9.91
SnapKV 100.00 96.4 3.20 99.00 32.2 0.2 91.7 58.45 2.86 54.53 93.60 57.47
PyramidKV 100.00 96.80 1.0 99.0 36.80 0.2 92.10 58.25 1.66 55.87 94.56 57.84
ReST-KV 100.00 100.00 90.80 100.00 96.80 15.60 98.95 97.30 1.3 71.67 92.68 78.65

Llama-3.1-8B-Instruct, Btotal = 1024L, context length=128k

Full 97.40 97.80 95.20 96.20 87.00 63.20 95.85 94.95 0.06 64.73 80.08 79.32
StreamingLLM 0.4 2.0 3.00 2.4 0.6 0.80 1.95 2.35 1.26 74.73 0.52 8.18
SnapKV 97.40 96.80 1.4 93.8 25.6 0.0 80.6 27.0 0.08 30.47 74.76 47.99
PyramidKV 97.40 96.8 0.2 94.20 30.80 0.4 80.95 29.20 0.14 32.07 76.08 48.93
ReST-KV 97.40 98.00 75.80 95.40 74.00 3.60 92.15 93.70 0.16 47.73 73.12 68.28

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Mistral-7B-Instruct-v0.3 True Average Score=1.00

(a) FullKV

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Mistral-7B-Instruct-v0.3 True Average Score=0.26

(b) StreamingLLM

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Mistral-7B-Instruct-v0.3 True Average Score=0.62

(c) SnapKV

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Mistral-7B-Instruct-v0.3 True Average Score=0.76

(d) ReST-KV

Figure 7: Performance comparison on the Needle in a Haystack Test using Mistral-7B-Instruct-v0.3
with Btotal = 128L.

Figures 7, 8 and 9 illustrate the performance comparison under these settings. We observe the
following key insights:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Llama-3.1-8B-Instruct True Average Score=1.00

(a) FullKV

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Llama-3.1-8B-Instruct True Average Score=0.35

(b) StreamingLLM

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Llama-3.1-8B-Instruct True Average Score=0.68

(c) SnapKV

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Llama-3.1-8B-Instruct True Average Score=0.74

(d) ReST-KV

Figure 8: Performance comparison on the Needle in a Haystack Test using Llama3.1-8B-Instruct
with Btotal = 128L.

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Llama-3.1-8B-Instruct True Average Score=1.00

(a) FullKV

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Llama-3.1-8B-Instruct True Average Score=0.34

(b) StreamingLLM

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Llama-3.1-8B-Instruct True Average Score=0.95

(c) SnapKV

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0
24

00
0

26
00

0
28

00
0

30
00

0
32

00
0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pt

h
Pe

rc
en

t

Llama-3.1-8B-Instruct True Average Score=1.00

(d) ReST-KV

Figure 9: Performance comparison on the Needle in a Haystack Test using Llama3.1-8B-Instruct
with Btotal = 1024L.

• Mistral-7B-Instruct-v0.3 (B = 128L) retains 76% of the original accuracy, outperform-
ing SnapKV by 14%. This demonstrates that our method maintains strong retrieval capa-
bility even under severe cache constraints.

• Llama3.1-8B-Instruct (B = 128L) achieves 74% accuracy, surpassing SnapKV by 6%,
indicating its robustness in preserving key-value pairs under limited cache budgets.

• Llama3.1-8B-Instruct (B = 1024L) attains 100% accuracy, meaning it can match full
KV cache performance while storing only 1/32 of the original tokens. This highlights the
efficiency of our approach in long-context retrieval with minimal memory usage.

These results further validate the robustness and efficiency of our method in selecting the most
relevant KV pairs while minimizing memory overhead. Notably, even with a significantly reduced
cache budget, our approach consistently outperforms prior methods, ensuring reliable long-context
retrieval across different models and settings.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G ADDITIONAL EXPERIMENTS ON ABLATION STUDY

In this section, we conduct additional ablation experiments to rigorously analyze the effectiveness
of core components in ReST-KV and assess its sensitivity to key hyper-parameters.

G.1 EFFICACY OF THE PROPOSED OUTPUT RECONSTRUCTION INDICATOR

To evaluate the proposed eviction indicator, we compare it with different types of eviction indicators
under the same baseline, including random selection, attention weights, attention weights weighted
by the values’s norm (At[n] · ∥vn∥2), similar to the VATP method (Guo et al., 2024), and our
output reconstruction. As shown in Table 12, directly weighting attention weights by the values’s
norm does not effectively incorporate the values information. Our method significantly outperforms
all baselines, indicating that the layer-wise output reconstruction perspective better assesses the
importance of KV cache.

Table 12: Ablation study on different types of information considered by the eviction indicator. Us-
ing output reconstruction as the eviction criterion achieves the best performance, surpassing methods
based on attention weights or their combinations.

Information Considered by Eviction Indicator Avg.

Random 6.83 ± 0.20
Attention weights (SnapKV) 33.95
Attention weights and values (VATP) 33.88
Output reconstruction (Eq. equation 7) 35.86

G.2 EFFICACY OF THE PROPOSED SPATIAL-TEMPORAL SMOOTHING

To assess the effectiveness of the spatial-temporal smoothing mechanism, we perform an ablation
study to examine the impact of different smoothing methods. As shown in the left part of Table 13,
various temporal smoothing techniques, including Mean, Inv-EMA, and EMA, are tested. Notably,
EMA smoothing achieves the best performance, surpassing other baselines, which demonstrates its
effectiveness in capturing temporal variations by giving higher weights to more recent KV pairs.

Table 13: Ablation study on the effect of different temporal and spatial smoothing methods in the
eviction indicator. EMA refers to our proposed exponential moving average temporal smoothing,
while AWS represents our adaptive window-based spatial smoothing.

Temporal Smoothing Avg. Spatial Smoothing Avg.

None 35.22 None 33.50
Mean 34.02 Avgpool 35.69
Inv-EMA 31.25 Maxpool 35.59
EMA (Ours) 35.86 AWS (Ours) 35.86

In addition, we evaluate the spatial smoothing methods, as detailed in the right part of Table 13.
Methods such as Avgpool, Maxpool, and our adaptive window-based smoothing (AWS) are com-
pared, with AWS achieving the highest average performance. This suggests that the adaptive
window-based approach, significantly enhances the eviction indicators ability to adjust for vary-
ing window sizes and offsets, thereby improving the assessment of the importance of KV pairs in
the spatial-temporal context.

G.3 HYPER-PARAMETER SENSITIVITY ANALYSIS

To assess the robustness of ReST-KV, we examine its sensitivity to two primary hyper-parameters:
the temporal smoothing factor α and the spatial smoothing scaling factor β.

Figure 10 illustrates the performance variation with respect to α (left panel) and β (right panel). The
observed stability in accuracy across the tested ranges for both parameters indicates that ReST-KV

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Smoothing Factor

33.0

33.5

34.0

34.5

35.0

35.5

36.0

Av
er

ag
e

Sc
or

e

Llama3.1-8B-Instruct

EMA Mean

200400 800 1200 1600 2000 2400 3000
Scale Factor

34.0

34.5

35.0

35.5

36.0

Av
er

ag
e

Sc
or

e

Llama3.1-8B-Instruct

AWS AvgPool

Figure 10: Sensitivity analysis of the smoothing factor α (left) and scaling factor β (right). The
performance remains relatively stable across different settings of both hyperparameters, mostly out-
performing the baseline.

exhibits low sensitivity to their specific values. This robustness offers considerable flexibility in
hyper-parameter configuration without substantial performance degradation.

H ADDITIONAL EXPERIMENTS ON EFFICIENCY

In this section, we investigate the integration of ReST-KV with prefill optimization techniquesex-
emplified by Minference (Jiang et al., 2024) and FlexPrefill to assess potential improvements in
Time To First Token (TTFT). To this end, we conduct additional experiments on the RULER 128k
benchmark using the LLaMA3.1-8B-Instruct model, focusing on the efficiency of our proposed
KV cache eviction method, particularly its impact on TTFT and decoding latency. Results are sum-
marized in Table 14.

Table 14: Efficiency analysis on RULER 128k. All results are normalized to the Full KV caching
baseline.

Method 128k Avg. Acc. TTFT Decoding Latency

Full 79.32 1× 1×
ReST-KV 68.28 0.97× 10.61×
ReST-KV+MInference 53.71 2.99× 10.41×
ReST-KV+FlexPrefill(γ = 0.9) 67.16 3.42× 10.46×
ReST-KV+FlexPrefill(γ = 0.95) 68.12 2.37× 10.54×

Our method is a KV cache eviction strategy that achieves a substantial improvement in decoding
latencyover 10× speedupwhile maintaining a comparable TTFT (0.97Œ) to full KV caching. Im-
portantly, it maintains a high level of accuracy (68.28%), demonstrating that our eviction strategy
preserves model performance effectively even under long context scenarios.

Furthermore, our method is orthogonal and compatible with sparse prefilling techniques such as
MInference (Jiang et al., 2024) and FlexPrefill (Lai et al., 2025). When combined with these meth-
ods, we observe additional gains in TTFT. For example, integrating FlexPrefill with γ = 0.95
achieves a 2.37Œ TTFT speedup while retaining high decoding efficiency (10.54Œ latency speedup)
and competitive accuracy (68.12%). This shows that our approach not only accelerates decoding but
also enables efficient and flexible integration with other prefill optimization techniques.

I INTEGRATION WITH KV CACHE QUANTIZATION

In this section, we further investigate the interplay between ReST-KV and established KV cache
quantization techniques, specifically KIVI (Liu et al., 2024b) and KVQuant (Hooper et al., 2024).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Compression Ratio (%)

19.0

21.5

24.0

26.5

29.0

31.5

34.0

36.5

39.0

41.5

Lo
ng

Be
nc

h
Av

g.
 S

co
re

Full Cache (16 bit)
ReST-KV
KVQuant (2 bit)
KVQuant (4 bit)
KIVI (2 bit)
KIVI (4 bit)
KVQuant (4 bit) + ReST-KV

Figure 11: Comparison of ReST-KV, KV cache quantization methods (KIVI and KVQuant), and
their combination on Llama3.1-8B-Instruct using LongBench dataset.

Our goal is to evaluate whether combining ReST-KVa KV eviction method that accounts for the
effects of attention redistribution and the spatial-temporal dynamics in KV selection can synergize
with quantization or even outperform aggressive quantization applied to a full, non-evicted KV
cache under similar overall compression ratios.

To this end, we compare ReST-KV, both in isolation and combined with KIVI and KVQuant, against
a baseline using full KV cache with various bit-width quantizations. Figure 11 visually summarizes
the results.

In particular, even with a stringent total compression ratio of 6.25%, achieved by combining ReST-
KV with moderate 4-bit quantization, ReST-KV retains high average accuracy. In contrast, applying
more aggressive 2-bit KIVI or KVQuant directly to the full KV cache results in significantly lower
accuracy.

These results suggest that eviction strategies which explicitly account for attention redistribution and
spatial-temporal token redundancy can provide a more effective pathway to KV cache compression
than quantization-only approaches. The combination of ReST-KV and lightweight quantization thus
offers a practical and robust solution for efficient inference under tight memory constraints.

J ADDITIONAL EXPERIMENTS ON INFINITEBENCH

In this section, we evaluate ReST-KV on the InfiniteBench benchmark (Zhang et al., 2024b) to fur-
ther assess its long-context capabilities. InfiniteBench tests LLM performance on extremely long
sequences through a diverse set of tasks. These tasks include realistic scenarios such as novel-based
reasoning (summarization, QA, multiple-choice, using novels with key entity replacement), dia-
logue understanding, and code debugging. Additionally, synthetic tests probe specific long-context
abilities like retrieval, state preservation, and sequential processing.

Experiments are conducted on the Llama3.1 model. We compare ReST-KV against SnapKV (Li
et al., 2024b), as both are post-prefill KV eviction strategies. To ensure a direct comparison of their
eviction effectiveness, both methods retain a fixed KV cache budget of 1024 tokens post-eviction,
regardless of the initial input context length.

Table 15 details the average performance across InfiniteBench subtasks. ReST-KV achieves a no-
tably higher overall average accuracy than SnapKV (e.g., 38.8% vs. 36.8%). This performance
advantage is particularly evident in retrieval-focused tasks (Retrieve.PassKey, Retrieve.Number,
Retrieve.KV), where SnapKV can exhibit critical failures on some subtasks. ReST-KV also gen-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

erally demonstrates stronger results in question answering (En.QA, Zh.QA) and Math.Find. While
SnapKV may be competitive on select tasks like En.Sum, the consistent and superior performance of
ReST-KV across a wider range of demanding retrieval and reasoning tasks contributes to its substan-
tially higher overall average. These findings underscore the efficacy of ReST-KV’s reconstruction-
aware eviction strategy when applied to the challenging long-context scenarios presented by In-
finiteBench.

Table 15: Performance of different methods on InfiniteBench.

Methods Retr.PassKey Retr.Num Retr.KV En.Dia En.Sum En.MC En.QA Zh.QA Math.Find Debug Avg.

ReST-KV 100.0 93.7 11.4 10.5 22.9 67.2 13.2 13.1 34.0 22.3 38.8
SnapKV 100.0 87.1 0.0 10.0 23.7 67.7 11.3 12.2 34.0 22.3 36.8

24

	Introduction
	Related Work
	KV Cache Eviction
	Attention Dynamics

	Methodology
	Preliminary
	Layer-wise Reconstruction Indicator
	Spatial-Temporal Smoothing

	Experiments
	Experimental Settings
	Evaluations on LongBench Dataset
	Evaluations on RULER Benchmark
	Visualization on Needle-In-A-Haystack Test
	Ablation Studies
	Evaluation of Memory and Throughput

	Conclusion
	Derivation and Analysis of the Output Reconstruction Indicator
	More Implementation Details
	Compatibility with Budget Allocation Strategies
	Additional Experiments on LongBench
	Detailed Performance Across Cache Budgets
	Additional Experiments on More Model Architectures
	Additional Experiments on Larger-scale Models

	Additional Experiments on RULER Benchmark
	Additional Experiments on Needle-in-a-Haystack Test
	Additional Experiments on Ablation Study
	Efficacy of the Proposed Output Reconstruction Indicator
	Efficacy of the Proposed Spatial-Temporal Smoothing
	Hyper-parameter Sensitivity Analysis

	Additional Experiments on Efficiency
	Integration with KV Cache Quantization
	Additional Experiments on InfiniteBench

