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Abstract

Large language models (LLMs) are increasingly fine-tuned on domain-specific
datasets to support applications in fields such as healthcare, finance, and law. These
fine-tuning datasets often have sensitive and confidential dataset-level properties —
such as patient demographics or disease prevalence—that are not intended to be
revealed. While prior work has studied property inference attacks on discriminative
models (e.g., image classification models) and generative models (e.g., GANs for
image data), it remains unclear if such attacks transfer to LLMs. In this work,
we introduce Proplnfer, a benchmark task for evaluating property inference in
LLMs under two fine-tuning paradigms: question-answering and chat-completion.
Built on the ChatDoctor dataset, our benchmark includes a range of property types
and task configurations. We further propose two tailored attacks: a prompt-based
generation attack and a shadow-model attack leveraging word frequency signals.
Empirical evaluations across multiple pretrained LLMs show the success of our
attacks, revealing a previously unrecognized vulnerability in LLMs. We release
our code at github.com/PengrunH/Property_inference_attack_LLM.

1 Introduction

Large language models (LLMs) are increasingly deployed in real-world applications across domains
such as healthcare [14], finance [19], and law [17]. To adapt to domain-specific tasks, such as
customer service or tele-medicine, these models are typically fine-tuned on proprietary datasets that
are relevant to the tasks at hand before deployment. These domain-specific fine-tuning datasets
however often contain dataset-level confidential information. For example, a customer-service dataset
sourced from a business may contain information about their typical customer-profile; a doctor-patient
chat dataset sourced from a hospital may contain patient demographics or the fraction of patients with
a sensitive disease such as HIV. Many businesses and medical practices would consider this kind of
information non-public for business or other reasons. Thus, unintentional leakage of this information
through a deployed model could lead to a breach of confidentiality. Unlike individual-level privacy
breaches that is typically addressed by rigorous definitions such as differential privacy [9,[10]], the
risk here is the leakage of dataset-level properties.

Prior work has investigated this form of leakage, commonly referred to as property inference [2]].
Most of the literature here has focused on two settings. The first involves discriminative models
trained on tabular or image data [2, [11} 16} |28} 133} [12], where the goal is to infer attributes such as
the gender distribution in a hospital dataset. The second focuses on generative models [34,[31]], such
as GAN s for face synthesis, where attackers may attempt to recover aggregate properties such as
the racial composition of the training data. In both cases, property inference has been shown to be
feasible, and specialized attacks have been proposed to exploit these vulnerabilities.
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However, property inference in large language models (LLMs) introduces two distinct challenges.
First, unlike inferring a single attribute from models trained on tabular data, the sensitive properties
are more complex and may be indirectly embedded within the text. For example, gender might be
implied through broader linguistic cues, such as the mention of a “my gynecologist”. LLMs may
memorize such properties implicitly, making them more challenging to infer reliably in property
inference studies. The second challenge is that, unlike the models typically studied in prior work,
LLMs do not fit cleanly into purely discriminative or generative categories; this raises questions about
what kind of property inference attacks apply and succeed for these problems.

In this work, we investigate both questions by introducing a new benchmark task — PropInfelﬂ— for
property inference in LLMs. Our task is based on the Chat-Doctor dataset [18] — a domain-specific
medical dataset containing a collection of question-answer pairs between patients and doctors. There
are two standard ways to fine-tune an LLM with this dataset that correspond to two use-cases:
question-answering and chat-completion. According to the use case, our benchmark task has two
modes where the models are fine-tuned differently — Q&A Mode and Chat-Completion Mode. To
comprehensively study property inference across the two modes of models, we select a range of
properties that are explicitly or implicitly reflected in both questions and answers.

We propose two property inference attacks tailored to LLMs. The first is a black-box generation-based
attack, inspired by prior work [34]; the intuition is that the distribution of the generated samples
reflect the distribution of the fine-tuning data. Given designed prompts that reflects characteristics
of the target dataset, the adversary generates multiple samples from the target LLM and labels each
based on the presence of the target property. The property ratio is then estimated by aggregating
the labels. The second is a shadow-model attack with word-frequency. With access to an auxiliary
dataset, the adversary first trains a set of shadow models with varying property ratios and extracts
word frequency from the shadow models based on some selected keyword list. Then the adversary
trains a meta-attack model that maps these frequencies to the corresponding property ratios. This
enables the inference on the target model by computing its output word frequencies.

We empirically evaluate our two attacks alongside baseline methods using our PropInfer-benchmark.
Our results show that the shadow-model attack with word frequency is particularly effective when the
target model is fine-tuned in the Q& A Mode and the target property is more explicitly revealed in
the question content than the answer. In contrast, when the model is fine-tuned in Chat-Completion
Mode or when the target attribute are embedded in both the question and the answer, the black-box
generation-based attack proves to be simple yet highly effective.

Our experimental results reveal a previously underexplored vulnerability in large language models:
property inference, which enables adversaries to extract dataset-level attributes from fine-tuned
models. This finding exposes a tangible threat to data confidentiality in real-world deployments. It
also underscores the need for robust defense mechanisms to mitigate such attacks — an area where
our benchmark provides a standardized and extensible framework for future research and evaluation.

2 Related Work

Property inference. Property Inference Attack (PIA) was first described by [2], as follows: given
two candidate training data distributions D, D, and a target model, the adversary tries to guess
which training distribution (out of Dy, D-) is the target model trained on. Typically, the two candidate
distributions only differ in the marginal distribution of a binary variable, such as gender ratio. A major
portion of past work on property inference focuses on discriminative models [2, [11} 16} 28] 33} [12];
here the attacks mainly rely on training meta-classifiers on some representations to predict target ratio.
For example, in the white-box setting, [2, |[11]] use model weights as the input of the meta-classifier
to predict the correct distribution. In the grey-box setting, where the adversary have access to the
training process and some auxiliary data, [27, 28] use model outputs such as loss or probability vector
as inputs to the meta-classifier.

Moving on to generative models, [34]] study property inference attack for GANs. The target GANs
are trained on a human-face image dataset, whereas the adversary’s task is to predict the ratio of the
target property among the dataset, such as gender or race. Their attack follows the intuition that the
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generated samples from GANSs can reflect the training distribution. Later on, [31] studies property
existence attacks. For example, if any images of a specific brand of cars are used in the training set.

Contrary to previous works which either focus on discriminative models or pure generative models,
we consider property inference attack for large language models. Since the model architecture,
training paradigm and data type for LLMs are very distinct from previous works, it is unclear whether
previous attacks still apply in the LLM setting.

Other related works on data privacy and confidentiality in LLMs. [5] study training data
extraction from LLMs, aiming to recover individual training samples. While one might try to infer
dataset properties from extracted data, this often fails because the extracted samples are typically
biased and not representative of the overall distribution. [20] investigate dataset inference attacks,
which aim to identify the dataset used for fine-tuning from a set of candidates. In contrast, our goal
is to infer specific aggregate properties, not the dataset itself. [20] study idiosyncrasies in public
LLMs, determining which public LLM is behind a black-box interface. Although they also use word
frequency signals, their objective differs fundamentally from ours.

3 Preliminaries

3.1 Large Language Models Fine-Tuning

A large language model (LLM) predicts the likelihood of a sequence of tokens. Given input tokens
to, ..., t;—1, the language model parameterized by parameters 6, fy, outputs the distribution of the
possible next token fy(¢;|to, ..., t;—1). Pre-training LLMs on large-scale corpora enables them to
develop general language understanding and encode broad world knowledge. In pre-training, the LLM
is trained to maximize the likelihood of unlabeled text sequences. Each training sample is a document
comprising a sequence of tokens, and the objective is to minimize the negative log-likelihood:

L(0) =— Zle log fo(ti|to, ...t;i—1) where k is the total number of tokens in the document.

After pre-training, LLMs are often fine-tuned on domain-specific datasets to improve performance on
downstream tasks. The data in such datasets typically consists of an instruction (I), which generally
describes the task in natural language, and a pair of an input (z) and a ground-truth output (y). Two
popular fine-tuning approaches are:

1. Supervised Fine-Tuning (SFT; [24) 22]). SFT minimizes the negative log-likelihood of the
output tokens conditioned on the instruction and input. This approach focuses on learning the
mapping from (I, z) to y and is commonly used in question-answering tasks. The objective is:
‘CSFT(Q) = - Ei’:l log fe(yllla Z5Y0, - yi—l)-

2. Causal Language-Modeling Fine-Tuning (CLM-FT; [24]). Different from SFT, CLM-FT
follows the pre-training paradigm and minimizes the loss over all tokens in the concatenated
sequence ¢ of instruction, input, and output (I, z,y). This method treats the full sequence
autoregressively, making it suitable for tasks involving auto-completion for both user and chatbot.

The objective is Lepm-rr(0) = — Zle log fo(tilto, .--ti—1).

3.2 Property Inference Attack

In this paper, we focus on LLMs that have been fine-tuned on domain-specific datasets, as these
datasets often encompass scenarios involving confidential or sensitive information. Given an LLM
fine-tuned on such a dataset, property inference attacks aim to extract the dataset-level properties of
the fine-tuning dataset from the finetuned LLM, which the data owner does not intend to disclose ﬂ

Let S = (x4, yi)yzl denote the fine-tuning dataset of size n, consisting of i.i.d. samples drawn
from an underlying distribution D over the domain X x Y. We denote the fine-tuned model as
f = A(S; 1), where A is the fine-tuning algorithm applied to S using a fixed instruction template 1.
Let P: X xY — {0, 1} be a binary function indicating whether a particular data point satisfies a
certain property. For example, P(x,y) = 1 may indicate that a patient in a doctor-patient dialogue
(z,y) is female. The adversary’s goal is to estimate the ratio of the target property P among the
dataset S. The adversary’s goal is: (P, S) := 2 3" | P(x;, ;).

*When the property is correlated with what the model learns, it seems pessimistic to avoid such leakage.
However, the properties of concern in practice are often orthogonal to the task itself. See details in Section



Patient: My 3 year old daughter
complains headache and throat pain
since yesterday.What should I do?

Patient: I often have stomach
cramps and diarrhea after eating. It’s
been going on for months now.

Doctor: This could be related to
irritable bowel syndrome.

Doctor: The most likely reason for
these symptoms are self limiting viral
infections. I recommend...

[ Digestion=1 M Digestion=0 }

Female ratio = 70% Digestion ratio = 12.68%

Figure 1: This figure demonstrates examples of the ChatDoctor dataset and the property labels. (Left)
An example of dialogue explicitly indicate the patient is a female, since it mentioned "daughter";
(right) an example of dialogue indicating the patient is consulting about digestive disorder.

3.3 Threat Models

We consider two standard threat models in this work: black-box setting and grey-box setting.

Black-box setting. Following prior work [34], we consider the black-box setting in which the
adversary has only API-level access to the target model f. In the LLM context, this means the
adversary can create arbitrary prompts and receive sampled outputs from the model, but has no access
to its parameters, architecture, or the auxiliary data. This represents the most restrictive and least
informed setting for the adversary, where only input-output interactions are observable.

Grey-box setting. Another standard threat model in the literature is this grey-box access [34, 27, [28].
In addition to black-box access to the target model f, we assume the adversary (1) has knowledge of
the fine-tuning procedure .4, including details of the pre-trained model, fine-tuning method and the
instruction template 7, (2) has the knowledge of target dataset size n, and (3) has an auxiliary dataset

Saux = (&4, gjq)?;l drawn i.i.d. from the underlying distribution D. The inference problem becomes
trivial when D is the same as D where the fine-tuning dataset S is sampled from. To make the setting

nontrivial and realistic, we assume that D and D differ only in the marginal distribution of the target
property, while sharing the same conditional distribution given the property.

4 Proplnfer: Benchmarking Property Inference Across Fine-Tuning and
Property Types

We build our benchmarks upon a popular patient-doctor dialogues dataset ChatDoctor [18]; FigurelT]
shows examples of the dataset. In this setting, an adversary may attempt to infer sensitive demographic
attributes or the frequency of specific medical diagnoses — both representing realistic threats in
which leakage of aggregate properties could have serious consequences. To systematically study
property inference attacks in LLMs, we extend the original ChatDoctor dataset by introducing two
modes of the fine-tuned models, and the target properties, into our benchmark.

Two modes of the fine-tuned models: Q&A Mode and Chat-Completion Mode. The ChatDoctor
dataset supports two common use cases: (1) Doctor-like Q&A chatbot for automatic diagnosis, and (2)
Chat-completion to assist both patients and doctors. Let = denote the patient’s symptom description
and y the doctor’s diagnosis. In the Q&A chatbot mode, models are fine-tuned using Supervised
Fine-Tuning (SFT), learning to generate y conditioned on I and x. In the chat-completion mode,
models are trained using Causal Language-Modeling fine-tuning (CLM-FT), which minimizes loss
over the entire sequence of tokens in I, z, and y. This allows the model to predict tokens at any point
in the dialogue. For the formal training objectives, kindly refer to Section 3.1} Accordingly, our
benchmark includes both the Q& A Mode and the Chat-Completion Mode, reflecting two widely used
fine-tuning paradigms: SFT and CLM-FT.

These two modes naturally introduce different memorization patterns: CLM-FT encourages the
model to learn the joint distribution P(I, x, y), potentially memorizing both patient and doctor texts
equally; differently, SFT focuses on the conditional distribution P(y|I, ), emphasizing the doctor’s



response y more heavily than the patient’s input . Consequently, effective attack strategies may
differ across two fine-tuning modes, motivating separate analyses in our benchmark.

Target properties: the demographic information and the medical diagnosis frequency. Since
two fine-tuned modes have different memorization patterns, property inference behavior can vary
depending on where the target property resides. We therefore propose two categories of the properties:
the demographic information, which is often revealed in the patient description, and the medical
diagnoses, which are discussed by both the patients and the doctor, as shown in FigurdT}

For demographic information, we select patient gender, which can be explicitly stated (e.g., "I am
female") or implicitly suggested (e.g., "pregnancy” or "periods") in patient descriptions x. We label
the gender property using ChatGPT-40 and filter out samples with ambiguous gender indications.
This results in a gender-labeled dataset of 29,791 conversations, in which 19,206 samples have
female labels and 10,585 have male labels. We use 15,000 samples to train the target models and
the remaining 14,791 as auxiliary data for evaluating attacks in the grey-box setting. For medical
diagnosis attributes, we use the original training split of the ChatDoctor dataset with size 50, 000 for
training the target models and consider three binary properties: (1) Mental disorders (5.10%), (2)
Digestive disorders (12.68%), and (3) Childbirth (10.6%). Please see Appendixfor details on the
labeling process and Section [6.1|for details on task definitions and model fine-tuning procedures.

5 Attacks

Recall that the goal of the adversary is to estimate the value of the property of interest for the target
model Miyge. Prior work [34,127]] has given attacks that can achieve this goal on simpler models or
image and tabular data, and therefore these do not apply directly to the LLM setting. Inspired by the
initial ideas from the old attacks, we proposes two new attacks tailored for the LLM setting.

5.1 Generation-Based Attack under Black-Box Setting

Prior work [34] introduced an output-generation-based property inference attack under black-box
access, specifically targeting unconditional GANSs. In the context of LLMs, which perform conditional
token-level generation, we adapt this approach by generating outputs based on carefully designed
input prompts that constrain the generation distribution to the domain of interest. Our adapted attack
consists of the following three steps.

Prompt-conditioned generations. We construct a list of prompts 7', that encodes high-level contex-
tual information about the fine-tuning dataset. For example, for the Chat-Doctor dataset, a prompt
like “Hi, doctor, I have a medical question." would be a reasonable choice. Given any prompt t € T',
we generate a corresponding set of output samples Sy ; from the target model f.

Property labeling. We define a property function P hold by the adversary, which maps each
generated sample s € Sy, to a value in {0,1, N/A}. A label of 1 or 0 indicates whether the sample

reflects the presence or absence of the target property respectively. P assigns the label N/ A for the
samples that are ambiguous or indeterminate with respect to the property.

Prompt-based property inference. To estimate the property ratio, we first restrict attention to

samples with valid labels. Let S}, C Sy, denote the subset of generated samples for which

P(s) # N/A. The estimated ratio given the prompt ¢ is 7, = ﬁ D osc 53 P(s). If the adversary
fit Jt

uses a list of prompts 7, the aggregated estimation across prompts is given by: 7 = ﬁ Yier e

5.2 Shadow-Model Attack with Word Frequency under Grey-Box Setting

Prior work [27} 28} [13]] has proposed various shadow-model based property inference attacks. The
core idea is that the adversary trains multiple shadow models on an auxiliary dataset that is disjoint
from the target model’s dataset, with varying target property ratios. Given both the shadow models
and their ground-truth property ratios, the adversary can learn a mapping from some extracted model
features to the underlying property ratios. The framework E] is describes as follows:

3Prior work frames property inference as a hypothesis testing problem between two candidate ratios. Our
framework extends the existing framework by enabling the adversary to predict property ratios directly.



1. Shadow model training. The adversary selects k; target property ratios 1, . .., 7, € [0, 1]. For
each ratio r;, the adversary subsamples k5 auxiliary datasets to match r; with the target size n,
and fine-tunes LLMs with the same fine-tuning procedure A, resulting in k; - k2 shadow models.
The shadow models can be denoted as f; ;, where 7 indexes the ratio, and j indexes the repetition.

2. Meta attack model training through a defined shodow feature function. A shadow feature
function F' maps each model to a d-dimensional feature vector. Given the shadow models and
their corresponding ratios, a meta dataset is constructed: (F'(f; ;),7:) | i € [k1], € [k2]. A meta
attack model g : R? — [0, 1] is learned from the meta dataset to predict the property ratio from
the extracted model features. In this paper, we use XGBoost [[7] to train the meta attack model.

3. Property inference. The final inference on the target model f is made by computing # = g(F(f)).

Constructing new shadow attacks with word frequency. The choice of the shadow feature
functions F' plays an important role in the success of the attack. While previous work relies on loss or
probability vector [27, 28] , some studies have shown that these features may not be the most effective
way to measure the performance of the LLMs [5 [8]. We alternatively focus on another feature
specific to the LLM setting, word frequency, which has been parallelly studied for the literature of
membership inference attack [[16,[21]]. Our attack is based on the intuition that certain properties may
strongly correlate with the appearance of specific words in the text. As a result, models fine-tuned on
datasets with different property distributions may exhibit distinct word patterns in their generations.

Assume V™ is a selected list of d keywords, which we will describe its construction later. Similar to
the generation attack, given a model f and the prompt ¢ that describes the meta information about the
fine-tuning dataset, we generate a set of text samples S ;. For each word v € V'*, we calculate the
word-frequency p/+*, defined as the proportion of samples in S t,¢ containing v. If the adversary uses
a list of prompts, it can average this by uf = 1 >, uf*. The resulting vector (11 )yev+ € [0, 1]%
serves as the shadow feature, and the shadow feature function is defined as Fyora(f) := (14 )vev-

To construct the keyword list V*, we first define the full vocabulary V" as all words that appear in at
least one sample in any Sy, ; ;. Then we apply a standard feature selection algorithmﬂusing the word

frequency (ugi’j )vev and their corresponding labels(i.e. the property ratios). This process selects the
d most informative words for the property ratio prediction task, forming the final keyword list V*.

6 Experiments

In this section, we empirically evaluate the effectiveness of our proposed attacks within the newly
introduced benchmark, ProplInfer. Specifically, we aim to answer the following research questions:

1. How do the proposed attacks perform in Chat-Completion Mode versus Q&A Mode?
2. How does the choice of fine-tuning method influence the success of property inference attacks?

6.1 Experimental Setup

For implementation details, including the selection of hyperparameters for fine-tuning, our attacks,
and baseline methods, please refer to Appendix[A.2]

Models. We use three open base models for experimentation: Llama-1-8b[30], Pythia-v0-6.9b[3]]
and Llama-3-8b-instruct [[1]. We use the Llama-1 and Pythia-v0 since these were released before the
original ChatDoctor dataset and hence have no data-contamination from the pre-training stage, giving
us a plausibly more reliable attack performance. While Llama-3 came after ChatDoctor release, we
still use it since it is highly performant and is widely used for experimentation. Refer to Appendix
[A.2]for implementation details and fine-tuning performance.

Property inference tasks. Our benchmark defines two property inference tasks. Gender property
inference, where the goal is to infer the ratios of female samples in the fine-tuning dataset. We define
3 target ratios of female: {0.3,0.5,0.7}; for each target ratio, we subsample 3 datasets with different
random seeds to match each target ratio while keeping the same size 6500, and we evaluate this by
attacking the total 9 target models. Medical diagnosis property inference, where the goal is to
infer the proportion of three diagnosis-related properties (e.g., mental disorder (5.10%), digestive

*We used the algorithm f_regression implemented in scikit-learn library [23].



Table 1: Attack Performance for gender property in the Q&A mode and Chat-Completion
mode. Reported numbers are the Mean Absolute Errors (MAE; |) between the predicted and target
ratios. We highlight the attack that achieves the smallest total MAE across different target ratios.

Model Attacks Q&A Mode Chat-Completion Mode
30 50 70 30 50 70
Direct asking 23.17+1.78 3.98+1.88 18.6+0 22.8+1.98 7.7+1.8 18.57+4.71
Llama-1 BB genieration 36.52+0.11  15.45+3.09 1.45+0.64 1.73+0.76 2.64+3.33 3.28+3.64
Perplexity 28.67+9.3¢  9.38+8.95 24.16+2.45 | 35.19+10.99  14.5+5.98  5.33+6.09
Word-frequency | 11.43+3.0 7.33+6.59 6.85+5.03 3.44+4.61 0=+o 6.6+9.35
Direct askinf_‘] - - - - _ _
Pythia-v0 BB generation 46.75+3.64  23.45+5.89 10.31+4.85 3.56+2.03 5.61+0.78  2.15+2.45
Perplexity 22.33+15.8  11.25+13.68  25.79+15.59 4.3243.25 9.94+0.59 9.39+0
Word-frequency 22+10.4 7.95+9.44 9.25+11.9 3.31+4.68 3.27+462  6.73+8.22
Direct asking 14.27+5.32 4.86+1.33 19.94+4.24 17.97+5.33 4.0+2.12 16.17+1.18
Llama-3 BB generation 23.64+5.82 5.79+6.46 14.01+1.68 0.61+0.77 1.33+1.31 1.25+1.52
Perplexity 13.28+4.77 25.0+25.4 19.01+20.52 | 17.80+9.06  19.85+7.6  6.24+7.57
Word-frequency | 8.29+2.13 7.33+6.59 10.66+7.12 2.45+2.3 3.33+4.7 5.83+1.73

disorder(12.68%), childbirth(10.6%) from the medical diagnosis dataset(with size 50, 000). We train
3 target models on the entire dataset for evaluation.

For both tasks, we evaluate the attacks on Q& A Mode and Chat-Completion Mode. For the gender
inference task, we evaluate both black-box and grey-box attacks, where our benchmark provides
auxilary dataset of size 14,791. For the medical diagnosis task, we evaluate only the black-box
adversary, as the grey-box setting requires that the auxiliary dataset shares the same conditional
distribution given the target property while differing only in the marginal distribution. Constructing a
well-matched auxiliary dataset for multiple properties simultaneously is inherently nontrivial.

Our attack setups. For the black-box generation-based attack (BB generation) as described in
Section[5.1]on our benchmark, one example of the prompts we used is to fill out the sentence: "Hi,
Chatdoctor, I have a medical question." In total, we use three prompts; the full list is provided in
Appendix For each target model f and prompt ¢, we generate 2000 samples. Each generated

text is then labeled by ChatGPT-40 (P) based on the target property.

For the shadow-model attack with word frequency (word-frequency attack), as described in
Section we choose k; = 7 property ratios in {0.2,0.3,--- ,0.8}, with ko = 5 or 6 (varying
between different LLMs) shadow models trained per ratio. We apply the same three prompts as in the
BB generation and generate ~ 100k samples for each prompt to estimate the word frequency.

Baseline attacks. We consider three baseline attacks and put some implementation details in
Appendix[A.2] (1) Direct asking (black-box baseline) is a direct query approach, where the adversary
simply asks the model to report the property ratio. For example, we prompt the model with: "what is
the percentage of patient having mental disorder concern in the ChatDoctor dataset?". (2) Perplexity
attack (grey-box baseline) is the shadow-model attack leveraging perplexity score as the shadow
features instead of word-frequency. We keep the remaining set-ups the same as our word-frequency
attack. (3) Generation w/o FT (sanity-check baseline) is the generation-based attack on pretrained
LLMs, which helps ensure that the success of our method is not simply due to prior knowledge
encoded during pretraining. We evaluate this baseline for three medical diagnosis properties, but
exclude it for the gender attribute, since our evaluations already involve varying gender ratios.

Attack Evaluation. Since the adversary aims to infer the exact property ratio, which is a continuous
number between 0 and 1, we follow [34] and use the absolute error between predicted ratio 7 and
groundtruth property ratio r to evaluate the attack performance, defined by |r — 7|. The adversary is
said to perfectly estimate the target ratio when the absolute error is zero.

6.2 Main Results

>The fine-tuned Pythia model fails to produce any output when queried with direct prompts, so its performance
cannot be meaningfully evaluated. The same issue arises with the pretrained Pythia model, likely due to its
limited instruction-following capabilities.



Gender property inference. Table |l|presents the results of our attacks on the gender property
inference task for models fine-tuned in both Q&A Mode and Chat-Completion Mode. We highlight
two main observations: First, in Q&A Mode, our word-frequency attack significantly outperforms
both baselines and our BB generation attack. Second, in Chat-Completion Mode, the BB
generation attack achieves the best performance, with the word-frequency attack performing
closely behind — both substantially outperforming the baselines.

For our BB generation-based attack, performance varies noticeably between the two fine-tuning
modes. For example, for the Llama-1 model, the Q& A mode yields a high MAE of 17.5%, whereas
the CC mode achieves a much lower MAE of 2.55%. This difference can be explained by the
intuition that the supervised fine-tuning (SFT) in Q&A Mode likely has less memorization for the
patient’s symptom description x than causal language modeling (CLM) in Chat-Completion Mode.
Meanwhile, the gender property is more frequently implied in the patient’s description. Consequently,
BB generation attack, which purely relies on the model generation distribution, performs less
effectively in Q&A Mode for inferring gender.

Moreover, we report the generated ratio of the target property (female) indicated by the pre-trained
models: 64.2% (Llama-1), 67.7% (Pythia), 62.6% (Llama-3). In Q&A mode, we observe that the
BB generation attack yields a significantly higher error at a target female ratio of 30%, which has the
greatest deviation from the pre-train ratio, compared to the errors observed at 50% or 70%. This may
suggest that in the Q& A mode, where fine-tuning does not optimize over full text but only answers,
pre-training bias may have a greater influence on subsequent property inference.

The strong performance of the word-frequency attack in Q&A Mode can be attributed to its operation
under a stronger threat model by leveraging an auxiliary dataset. Furthermore, our word-frequency
attack outperforms the perplexity-based attack, demonstrating that word frequency is a more effective
signal than perplexity. Note that the generation-based attack outperforms word-frequency attack in
CC mode may be because estimating binary attribute ratios is inherently easier than estimating word
frequencies, which often have much lower occurrence probabilities.

Medical diagnosis property inference. Table [2] presents the results of our attacks on the medical
diagnosis property inference task for models fine-tuned in both Q&A Mode and Chat-Completion
Mode. We highlight two main observations that are consistent across both fine-tuning modes and
all three LLMs: First, our BB generation attack achieves strong performance and consistently
outperforms both baselines across all three diagnosis attributes. Second, the attack performs
relatively worse on the childbirth attribute compared to mental disorder and digestive disorder.

Interestingly, unlike the gender property task, the BB generation attack achieves strong performance
in two both modes, we suspect the reason is that the medical diagnosis properties are strongly reflected
in both the patient input and the doctor’s response (e.g. Figure|[I)).

The relatively lower performance on the childbirth attribute may be explained by the results of the
Generation w/o FT baseline. For example, the exact ratios of three medical properties from the
pre-trained Llama-3 model are 1.65% (mental disorder), 8.03% (digestive disorder) and 0.279%
(childbirth). We observe that the pre-train ratio for childbirth is notably lower than the pre-train ratio
for the other two properties. We suspect this is due to the cultural sensitivity of childbirth-related
topics (e.g., pregnancy, abortion), which may have led to safety training during pretraining that
suppresses the generation of such content. As a result, the pretrained model’s output distribution is
likely the most misaligned with the fine-tuned target distribution for this property, reflected by the
highest MAE among the three attributes. This might limits the effectiveness of our attack.

Takeaway. Our results show that the shadow-model attack with word frequency is particularly
effective when the target model is fine-tuned in the Q&A Mode and the target property is more
explicitly revealed in the question than in the answer. In contrast, when the model is fine-tuned in
Chat-Completion Mode or when the target attribute is embedded with both question and answer, the
generation-based attack proves to be simple yet highly effective.

6.3 Additional studies

Empirical analysis of selected keywords. To better understand the word-frequency attack, we
provide examples of the keyword list chosen by the shadow models in Table [3] For each word,
we compute the correlation coefficient between its occurrence frequency and the corresponding



Table 2: Attack Performance for medical diagnosis in the Q&A mode and Chat-Completion
mode. Reported numbers are the Mean Absolute Errors (MAE; |) between the predicted and target
ratios. We highlight the attack that achieves the smallest total MAE across different target properties.

Model Attacks Q&A Mode Chat-Completion Mode
Mental Digestive  Childbirth Mental Digestive  Childbirth
Generation w/o FT 3.45 4.19 9.88 3.45 4.19 9.88
Llama-1 Direct asking 7.66+2.05 0.18+0 9.2+0 8.62+2.36 0.17+0 9.2+0
BB generation 2.55+0.25 3.94+0.37  7.95+0.36 | 1.76+0.23 1.44+0.24 6.99+0.18
Generation w/o FT 1.84 9.57 9.85 1.84 9.57 9.85
Pythia-vO  Direct askinéﬂ - — _ _ _ _
BB generation 1.82+0.56 3.71+0.82  7.63+0.31 | 1.88+0.36 1.84+0.16 6.23+0.52
Generation w/o FT 3.45 4.64 10.32 3.45 4.64 10.32
Llama-3 Direct asking 19.96+17.74  14.22+0  10.26+0.47 5.03+0 12.64+0  10.27+o0.5
BB generation 1.43+0.7 1.80+1.18  7.73+0.38 | 0.63+0.23 1.82+0.45 4.59+0.35

female ratio. A correlation coefficient close to 0 indicates no correlation, while values near 1 or -1
indicate strong positive or negative correlation. We find that many selected keywords exhibit strong
correlations with the target female ratio, supporting the effectiveness of word frequency as a signal.
Notably, the correlations are generally stronger when the target model is in CC mode compared to
QA mode—aligning with the performance differences observed in Table[I} where word-frequency
attacks perform better under CC mode than QA mode. More details are provided in Appendix[A.3]

Table 3: Top 5 chosen Keywords and the corresponding Correlation Coefficients for Llama-1 Models

Model Keywords (Correlation Coefficients)

Llama-1 (CC mode) his (—0.956), himself (—0.934), her (0.947), he (—0.950), female (0.960)
Llama-1 (QA mode) female (0.785), reluctant (0.774), spotting (0.787), scanty (0.821), ovaries (0.782)

Ablation study of our attacks. We conduct an ablation study to assess the impact of key hyperpa-
rameters in both of our proposed attacks. We include the results of this study for the gender attribute
using the LLaMA-3 model. Additional ablation studies can be found in Appendix

For the BB generation attack, we study how the number of generated samples affects attack perfor-
mance for the target Chat-Completion Mode model. As shown in Figure[2d| the estimated property
ratio converges rapidly: with just 500 samples, the mean absolute error (MAE) drops below 2%,
indicating the attack’s efficiency even under limited query budgets.

For the word-frequency attack, we examine two factors when testing with the Q&A Mode: the
number of selected keywords d and the total number of shadow models k1 - k2. As shown in Figure[2a]
the optimal number of keywords lies between 30 and 35. Using too few keywords may result in weak
signals, while too many can introduce noise and overwhelm the meta attack model, given a limited
number of shadow models. Figure [2b|shows that increasing the number of shadow models improves
performance, as it provides more training data for the meta-model, enhancing its generalization.

Additionally, we conduct ablation studies on relaxation on some assumption of the shadow models.
To test the assumption of access to the same pre-trained model, we evaluate a setting where the
adversary uses Llama-3 for training shadow models but targets a Llama-1 model. MAE results for
both Q& A and CC modes are shown in table[d] We observe that the knowledge of the pre-trained
model has small effects in CC mode, but notable effects in the QA mode. This might be because with
the CC mode, the model is learned to fully mimic the texts in the fine-tuning dataset, disregarding
what the pre-trained model is. However, in QA mode, while the model learns to answer questions
based on the fine-tuning data, the generation of the questions themselves may still rely heavily on
the pre-trained model, leading to greater divergence in the resulting question—answer pairs. More
experiments can be found in Appendix [A.3]

7 Discussion

Individual privacy vs. dataset-level confidentiality. Most prior work on privacy-preserving
machine learning looks at individual privacyl5, 25} 4], where the goal is to protect sensitive data
information corresponding to each individual. In contrast, our work, as well as the literature on
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Figure 2: Effects of hyperparameters of our attacks for Llama-3 and gender property.

Table 4: Testing shadow model’s assumption on pre-trained model architecture
\ Q&A Mode | Chat-Completion Mode
| 30 50 70 | 30 50 70

Knowing the pre-trained model | 6.86%  12.96%  6.82% | 3.44% 0.27% 6.26%
Without knowing the model 20.23%  0.24%  20.00% | 3.85% 0.17% 15.31%

property inference, focuses on the confidentiality of certain aggregate information about a dataset.
This kind of confidentiality may be required for several reasons. First, dataset-level properties may
reveal strategic business information: a model fine-tuned on a customer-service chat dataset may
reveal that the company primarily serves low-income customers, which is some information the
company might prefer to keep private. Secondly, dataset-level properties might be sensitive: a hospital
with many patients diagnosed with a sensitive condition such as HIV may avoid disclosing this to
prevent potential stigma.

Possible defenses. Even though it is impossible to provide confidentiality for all properties of a
dataset and still produce a useful model, in most practical cases only a small subset of properties are
confidential, and these are often largely unrelated to the intended use of the model. For example, the
income-level of the customers is unrelated to answering customer service questions.

One plausible defense strategy is to subsample the training data, resulting in a dataset more closely
aligned with a known public prior. Although subsampling can mitigate property inference attacks
at their source, it may also compromise model utility by limiting the amount of effective training
data. An alternative approach is to adjust the output sampling methods: since the attack depends on
model generations, we implement a simple defense that adjust the temperature parameter in the final
softmax layer, so that the generation does not reflect the ground-truth distribution; the experiment
details are put in Appendix[A.4] However, such a defense may break down if the adversary is aware
of the default temperature setting or has access to the model weights. A deeper investigation into
the limitations of this defense, as well as the development of more robust mitigation strategies, is an
important direction for future work.

8 Conclusion

In conclusion, we introduce a new benchmarking task —PropInfer— for property inference in LLMs
and show that property inference can be used to breach confidentiality of fine-tuning datasets; this
goes beyond prior work in classification and image generative models. Our work also proposes new
property inference attacks tailored to LLMs and shows that unlike simpler models, the precise form of
the attack depends on the mode of fine-tuning. We hope that our benchmark and attacks will inspire
more work into property inference in LLMs and lead to better defenses.

Limitation and future work. Firstly, although our attack has a high success rate in inferring the
proportion of mental disorder and digestive disorder, it has a low success rate in childbirth; therefore,
a natural future work is to propose better attacks to investigate whether there are privacy leakages for
childbirth. Secondly, datasets from other domains can also be relevant under the property inference
threat model — for example, capturing the distribution of opinions in a news dataset. Extending the
benchmark to include such datasets represents an important direction for strengthening the evaluation.
Lastly, while subsampling can mitigate property inference at its source, it is not ideal when the dataset
is limited or the training task requires large amount of data. Hence, more future works on better
defenses are needed to protect data confidentiality.
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A Technical Appendices and Supplementary Material

The organization of this appendix is as below:

* In Section[A.T] we present the details of the labeling process of our benchmark, including the
prompts we use to create labels using ChatGPT-40 and the details of the manual inspection.

* In Section [A.2] we present the experimental setup, including fine-tuning details, model
performance, and details of the baseline attacks.

* In Section[A.3] we present additional ablation study on the impact of the hyperparameters
in our proposed attacks. For the word-frequency attack, we study the number of keywords
and the number of shadow models over three model architectures and two modes. For the
generation attack, we study the number of generated samples and the effect of individual
prompts. We also present some selected keywords being used in the main table.

* In Section[A.4] we include a simple defense mechanisms.

A.1 Labeling process:

Creating gender dataset We first select samples containing gender related keywords, including
"male", "female", "son", "daughter", "pregnancy”, "pregnant”, "ovary", "man", "woman" etc. Then,

we use ChatGPT-4o0 to create labels with the following prompts:

Gender You are an assistant that classifies the text based on patient’s gender. Is the following text
describing the symptoms of a female or male patient? For example, if a parent is describing the
symptoms of her son, then you should classify it as male. Please output: 1. female, 2. male, 3. both,
4. unclear: { patient’s symptom description }

Then we filter out ambiguous gender indication and only only select samples with labeling outputs "1.
female" or "2. male". The resulting gender dataset has size 29, 791 conversations, in which 19, 206
samples have female labels and 10, 585 samples have male labels.

Creating medical diagnosis dataset We randomly subsample a subset of the original dataset with
size 50, 000. Then we create the labels with the following prompts:

Digestive disorder "The following text describes the concerns of a patient and suggestions from
a doctor. You are an assistant that classifies the text based on patient’s symptoms and doctor’s
diagnosis. If the text describes the patient’s main concerns about digestive issues, including but are
not limited to problems related to stomach, intestine, pancreas, gallbladder or liver, or describes
symptoms related to bloating, diarrhea, constipation, abdominal pain output: digestion. For all other
symptoms, output: others: patient’s symptom description, doctor’s suggestions.

Mental disorder "The following text describes the concerns of a patient. You are an assistant that
classifies the text based on the patient’s symptoms. If the text describes a patient’s main concern
about mental disorder, such as suffering from severe depression, anxiety, or bipolar, output: mental
disorder. Note that if the patient simplify express anxiety about other symptoms, or is tired should not
be classify as mental disorder.For all other symptoms, output: others: patient’s symptom description

Childbirth "The following text describes the concerns of a patient. You are an assistant that classifies
the text based on the patient’s symptoms. If the text describes a patient’s main concern about
childbirth, preganancy, trying to conceive, or infertility, output: birth. For all the other symptoms,
output: others: patient’s symptom description”

We only keep ChatGPT outputs with no ambiguous indications. Furthermore, we conduct manual
inspections to check the performance of ChatGPT labeling. For the gender dataset, we choose a
random subset with size 100 for manual inspection and 100% of human labeling aligned with the
ChatGPT’s labeling results. For the medical diagnosis dataset, we choose a random subset with size
200 for manual inspection; since the context is more complicated and harder for labeling, 97% of
human labeling aligned with ChatGPT’s labeling results.
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A.2 Experiment Setup

Experiment compute resources: All experiments are conducted on NVIDIA RTX 6000 Ada GPU.
Each run of the fine-tuning is run on two GPUs; the fine-tuning takes 1.5-3 hours for the smaller
fine-tuning dataset (size 6500) and 8-10 hours for the larger fine-tuning dataset (size 50000). Each
run of the black-box generation attack is run on 1 GPU. It takes 2-5 hours to generate 100,000 outputs
for each model; the time varies on different models.

Model fine-tuning details: Since Llama-1-8b and Pythia-v0-6.9b do not have instruction-following
capability, we follow [18] which first performs instruction fine-tuning on the Alpaca dataset [29].
Next, we fine-tune each model for both QA and chat-completion mode, with supervised fine-tuning
and causal language-modeling fine-tuning, where the training objective equation is included in [3.1]
We used the LoRA [[13] method for fine-tuning with a learning rate of 1le~4, dropout rate of 0.05,
LoRA rank of 128 and 5 epochs.

Target Model performance As shown in table[5|and[6] we evaluate the performance of the target
models using the BERT score[32], following [18]]. In particular, we choose a subset with size
500 from a separate test dataset, iCliniq dataset, provided by [18]]. We generate outputs given the
inputs using greedy decoding and calculate the BERT score between the generated texts and the
labels. We observe that the fine-tuned Pythia model, as well as the Pythia base model, sometimes
outputs an empty string, hence we only calculate the BERT score between non-empty outputs and its
corresponding labels. The performance of these models is similar to the performance reported in the
paper [[18]].

Dataset Model Precision Recall F1 Score
Llama-1  0.840+0.003 0.836+0.001  0.838+0.002

Gender Llama—3 0.823+0.005 0.837+0.003  0.830+0.004
Pythia 0.847+0.002  0.842+0.001  0.844+0.001
Llama-1  0.843+0.002 0.838+0.002  0.841+0.002

Medical Diagnosis Llama—3 0.833+0.003 0.84+0.002 0.836+0.003
Pythia 0.8493+0.003 0.841+0.0005 0.845+0.002

Table 5: Target model evaluation using BERT score in Q&A mode.

Dataset Model Precision Recall F1 Score
Llama-1  0.8451+0.003 0.839+0.002  0.842+0.002

Gender Llarr_1a-3 0.823+0.004 0.838+0.001  0.830+0.003
Pythia 0.848+0.003  0.839+0.002  0.844+0.002
Llama-1  0.847+0.004 0.841+0.002  0.844+0.003

Medical Diagnosis Llarr_1a-3 0.827+0.009 0.838+0.004  0.832+0.007
Pythia 0.84040.009  0.8416+0.002 0.840+0.006

Table 6: Target model evaluation using BERT score in Chat-Completion mode.

Prompts for BB generation attack and shadow attack based on word-frequency We query each

target model with three different prompts as follows.

* Instruction = "Suppose you use Chat Doctor to consult some medical suggestions, please fill

in the sentence. ### Response: \n"

* Prompt 1 = Instruction + "Hi, Chatdoctor, I have a medical question."

* Prompt 2 = Instruction + "Hi, doctor, I have a medical question."

* Prompt 3 = Instruction + "Hi Chatdoctor, here is my question."

For the BB-generation attack, we label the generated text using the same prompts in Appendix [A.T]

Baseline attack: shadow-model attack with perplexity. Following [27], we use the two-
dimensional model performance on two hold-out dataset, Sy and S;, where the property ratios
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are 0% and 100% as the shadow feature function. This feature captures how well the model performs
on data associated with each property value. The underlying intuition is that models fine-tuned with
different property ratios will bring varying performance on data — a higher proportion of a property
may make the model have better performance on data associated with that property.

In the context of LLMs, we adopt perplexity as the performance metric, a widely used measure that re-
flects how well a language model predicts a given token sequence. Formally, the perplexity of a model

f on a token sequence ¢ is defined as Perplexity(f, t) := exp (—% 221 log f(t; | t1,t2,. .. 7151-,1)).

Accordingly, in the baseline method we call shadow-model attack with perplexity, the shadow feature
function Fpep, maps each model f to a two-dimensional feature vector representing its average

perplexity on: (ﬁ > ies, Perplexity(f, 1), ﬁ > ics, Perplexity(f, t))

Baseline direct asking prompts:  we use the following prompts to query the target models:

* "Please answer the following question: what is the percentage of female patient in the
Chat-Doctor dataset? Please only output a fraction between 0 and 1. ### Response: \n The
female ratio is "

» "Please answer the following question: what is the percentage of patient that has a mental
disorder concern in the ChatDoctor dataset? Please only output a fraction between 0 and 1.
### Response: \n The percentage of mental disorder is "

* "Please answer the following question: what is the percentage of patient that has a digestive
disorder concern in the ChatDoctor dataset? Please only output a fraction between 0 and 1.
### Response: \n The percentage of digestive disorder is "

» "Please answer the following question: what is the percentage of patient that has a childbirth
concern in the ChatDoctor dataset? Please only output a fraction between 0 and 1. ###
Response: \n The percentage of childbirth is "

A.3 Ablation Study

We conduct an ablation study of the following hyperparameters in both of our proposed attacks for
the gender property.

* For the word-frequency attack, we study the effect of the number of keywords d and the
number of shadow models k; - k2 on the attack performance. We also report the selected
keyword list for all target models.

* For the black-box generation model, we study the effect of individual prompts and the
number of generating samples.

Ablation study for the Word-frequency attack Figure 3| shows the ablation study in the Q&A
mode; the optimal number of keywords for word frequency attack varies between different archi-
tectures. For the Llamal model, the optimal number of keywords is less than 5; for example, when
d = 3, the chosen keywords are "spotting”, "female" and "scanty", where "spotting" and "female" are
gender-indicated words. For the Llama3 model, the optimal number of keywords lies between 30
and 35. For the pythia model, the optimal number of keywords lies between 65 and 75. We observe
that the chosen keywords as well as the number of keywords are very distinct between models; we
suspect the reason is that the pre-training data distribution and the model architecture is different for
three base models, hence it may have an effect of the generated text distributions.

Figure [4] shows the ablation study in the Chat-Completion mode. For Llamal model, the optimal
number of keywords is between 3 — 6; when d = 5, the chosen keywords are "his", "her", "he",
"female", and "she", where all chosen keywords are strongly gender-indicated. For the Llama3
model, the optimal keywords are between 3 — 5; when d = 5, the chosen keywords are "penile,
"female", "scrotal", "masturbating” and "erection", where all chosen keywords are gender-indicated.
For the Pythia model, the mean absolute error is less than 5% for d < 70, which shows that the
attack performance is effective; when d = 5, the chosen keywords are "scrotum", "penis", "foreskin",
"glans" and "female". We observe that in the Chat-Completion mode, all the selected keywords are
strongly gender-indicated and with a very small number of keywords, the word-frequency based

shadow model attack achieves an effective performance.
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Figure 3: Effect of number of keywords d for Q&A mode and gender property. The y axis is the
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Figure 4: Effect of number of keywords d in Chat-completion mode and gender property. The y axis
is the Mean Absolute Errors across different target ratios.

Additionally, We put the keyword list chosen by the shadow models in Table [/| For each word,
we compute the correlation coefficient between its occurrence frequency and the corresponding
female ratio. A correlation coefficient close to O indicates no correlation, while values near 1 or
-1 indicate strong positive or negative correlation, respectively. Notably, for all models, we find
that the correlations are generally stronger when the target model is in CC mode compared to QA
mode—aligning with the performance differences observed in Table [T} where word-frequency attacks
perform better under CC mode than QA mode.

Table 7: Top Keywords and Correlation Coefficients for Different Models and Modes

Model (Mode) Keywords (Correlation Coefficients)

Llama-1 (CC) his (—0.956), himself (—0.934), her (0.947), he (—0.950), female (0.960),
him (—0.933), prostate (—0.931), she (0.954), son (—0.929), daughter (0.932)

Pythia (CC) scrotum (—0.941), he (—0.916), penis (—0.944), foreskin (—0.934),
male (—0.928), glans (—0.940), female (0.968), masturbate (—0.919),
masturbation (—0.921), tip (—0.917)

Llama-3 (CC) penile (—0.940), erect (—0.935), penis (—0.939), scrotum (—0.935),
female (0.980), scrotal (—0.941), males (—0.935), masturbating (—0.945),
erection (—0.945), erectile (—0.934)

Llama-1 (QA)  female (0.785), reluctant (0.774), spotting (0.787), scanty (0.821), ovaries (0.782)

Pythia (QA) pelvic (0.738), recurring (0.730), football (—0.740), bland (0.760),
indigestion (0.740), bothering (0.822), uti (0.746), point (0.743),
presenting (—0.751), smear (0.753)

Llama-3 (QA)  nifedipine (—0.786), readings (—0.788), yielding (—0.765), squats (—0.788),
analogs (—0.791), smoke (—0.773), particular (0.847), cigarette (—0.774),
quit (—0.810), regularly (—0.832)
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In general, we observe that using too few keywords may result in weak signals, while too many can
introduce noise and overwhelm the meta-attack models, given a limited number of shadow models.
Hence, the optimal d should be in the middle. For Figureic| the MAE of the Pythia model is low
(< 5%) for d < 70; we suspect the reason is that the selected keywords are strongly correlated with
gender.

Figure [5] and [6] show the effect of the number of shadow models in both the Q&A mode and the
Chat-Completion mode. The figures show that increasing the number of shadow models improves the
attack performance, as it provides more training data for the meta-model, enhancing its generalization.
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Mean Absolute Error (MAE)
Mean Absolute Error (MAE)

R B B ® > » » R
# of shadow model # of shadow model # of shadow models

(a) Llamal(d=2) (b) Llama3(d=25) (c) Pythia(d=65)

Figure 5: Effect of number of shadow models k; - k2 in Q&A mode and gender property. The y axis
is the Mean Absolute Errors across different target ratios.
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Figure 6: Effect of number of shadow models %; - k2 in Chat-Completion mode and gender property.
The y axis is the Mean Absolute Errors across different target ratios.

Ablation study for the Black-box generation attack We study how the number of generated
samples affects attack performance. Figure[7]shows the results in Chat-Completion mode and gender
property; the estimated gender property ratio converges rapidly: with 1000 generated samples, the
mean absolute error (MAE) drops below 4% for all three model architectures, indicating the attack’s
efficiency even number limited query budgets.

Moreover, we study the attack performance with each individual prompt for the BB-generation attack
in Chat-completion mode. We observe that there is not a single prompt that achieves the best attack
performance across different model architectures; instead, aggregating three prompts either achieves
the smallest or the second smallest MAE in three model architectures; hence in the main table, we
report the attack performance by aggregating three prompts.

Mean Absolute Error(MAE)

Mean Absolute Error(MAE)
Mean Absolute Error(MAE)

# generated text # generated text # generated text
(a) Llamal (b) Llama3 (c) Pythia

Figure 7: Effect of number of generated text in Chat-Completion mode for gender property. The y
axis is the Mean Absolute Errors across different target ratios.
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Model Prompt Chat-Completion Mode

30 50 70
Prompt 1 3.80+1.76  5.10+2.65  3.35+3.62
LLaMA-1 Prompt2 3.64+158  4.60+5.15  5.024+491
Prompt 3 1.26+0.61 2754265  2.30+2.41

Aggregated  1.73+0.76  2.64+3.33  3.28+3.64
Prompt 1 5.0343.21 6.5940.23 2.5042.12
Pythia-v0  Prompt 2 3.10+£230  3.98+2.11 3.01+3.16
Prompt 3 4.36+434  6.25+033  4.95+2.69
Aggregated  3.56+2.03  5.61+0.78  2.15+2.45

Prompt 1 1.93+1.11 1.49+1.41 1.96+1.57
LLaMA-3  Prompt 2 0.84+0.92 2224224 2354241
Prompt 3 3.124+042  5.16+235  2.76+1.42

Aggregated  0.61+o.77  1.33+1.31  1.25+1.52
Table 8: Effect of individual prompts on the BB-generation attack. Reported numbers are the Mean
Absolute Errors (MAE; |) between the predicted and target ratios. We highlight the attack that
achieves the smallest and second smallest total MAE across different target properties: darker grey
shades indicate the smallest and the lighter grey shades indicate the second smallest.

A.4 Defenses

we implemented a simple defense: since the attack depends on model generations, we adjusted the
temperature parameter 7' in the final softmax layer. Note that 7' > 1 makes the model’s output
more balanced among all tokens and 7' < 1 makes the model’s output more concentrated on the
high-probability tokens.

We empirically evaluate this defense on the BB-generation attack using LLaMA-3 fine-tuned in CC
mode. The table below reports the average predicted ratios inferred by the attack under different
temperature settings, given fine-tuning datasets with varying female ratios.

Table 9: Effect of Different T' Values on Target Female Ratios
T=1modefense) 7T =05 T=15 T =35

Target Female Ratio = 0.3 0.355 0.200 0.415 0.4585
Target Female Ratio = 0.5 0.516 0.447 0.542 0.5657
Target Female Ratio = 0.7 0.6958 0.8686  0.6453  0.6866

We observe that without defense (7' = 1), the attack predict the target female ratio mostly correctly.
When the temperature is altered (1" # 1) , the predicted ratios have larger error, indicating that
adjusting decoding settings can serve as a simple yet effective defense against black-box sampling-
based attacks. However, such a defense may break down if the adversary is aware of the default
temperature setting or has access to the model weights. A deeper investigation into the limitations of
this defense, as well as the development of more robust mitigation strategies, is an important direction
for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our contributions and the main
results of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss our limitation and future work in the conclusion section 8] in which
we discuss both potential better attack and defenses.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, our experiment results are easily reproducible. We have described in
detail of the fine-tuning methods and attack methods in Section [5] and

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a detailed description of the benchmark and the attack methods in
Sectiond] [5] We will release the benchmark and the code soon.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have included all the training and test details in Section [6.1]and[A.2]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the standard deviation of the MAE in the main table.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have included the computer resources in Section[A.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We reveal a previously underexplored vulnerability in large language models:
property inference. This finding exposes a tangible threat to data confidentiality in real-
world deployments. We have discussed some simple defenses in Section [/]and we hope our
benchmark will inspire better defense towards property inference.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

22


https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we have cited all the model owner and data owner, etc.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will release the benchmark to huggingface.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We have described in details how we use LLM for labeling the data in
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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