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Abstract001

Mobile GUI agents execute user commands002
by directly interacting with the graphical user003
interface (GUI) of mobile devices, demonstrat-004
ing significant potential to enhance user conve-005
nience. However, these agents face consider-006
able challenges in task planning, as they must007
continuously analyze the GUI and generate008
operation instructions step by step. This pro-009
cess often leads to difficulties in making ac-010
curate task plans, as GUI agents lack a deep011
understanding of how to effectively use the012
target applications, which can cause them to013
become "lost" during task execution. To ad-014
dress the task planning issue, we propose SPlan-015
ner, a plug-and-play planning module to gener-016
ate execution plans that guide vision language017
model(VLMs) in executing tasks. The pro-018
posed planning module utilizes extended finite019
state machines (EFSMs) to model the control020
logits and configurations of mobile applica-021
tions. It then decomposes a user instruction022
into a sequence of primary function modeled023
in EFSMs, and generate the execution path by024
traversing the EFSMs. We further refine the ex-025
ecution path into a natural language plan using026
an LLM. The final plan is concise and action-027
able, and effectively guides VLMs to gener-028
ate interactive GUI actions to accomplish user029
tasks. SPlanner demonstrates strong perfor-030
mance on dynamic benchmarks reflecting real-031
world mobile usage. On the AndroidWorld032
benchmark, SPlanner achieves a 63.8% task033
success rate when paired with Qwen2.5-VL-034
72B as the VLM executor, yielding a 28.8 per-035
centage point improvement compared to using036
Qwen2.5-VL-72B without planning assistance.037

1 Introduction038

The LLM-brained mobile graphic user interface039

(GUI) agent is designed to help users control their040

mobile devices using natural language (hereafter041

referred to simply as GUI agent). It uses a large lan-042

guage model(LLM) to interpret user instructions043

and execute tasks step by step. At each step, the 044

agent analyzes the current GUI state and generates 045

an operation command that simulates human inter- 046

action. Unlike agents that rely on predefined scripts 047

or APIs, GUI agent makes decisions based on its 048

understanding of the GUI, enabling it to handle 049

more diverse user commands and complex inter- 050

face scenarios. Moreover, by generating operation 051

commands that mimic human interactions, the GUI 052

agent can bypass restrictions imposed by the soft- 053

ware permissions of mobile devices. While such 054

a vision of GUI agent promises to significantly 055

enhance the convenience of mobile device usage, 056

their performance still falls short of practical de- 057

ployment. 058

One of the major challenges facing GUI agent is 059

task planning, especially for high-level tasks and 060

unseen interfaces. Planning involves anticipating 061

outcomes and choosing optimal paths. However, 062

most current LLMs lack robust reasoning mech- 063

anisms on multi-step tasks. Moreover, they have 064

limited understanding of how mobile applications 065

are used, and tend to focus on screen elements that 066

are only literally related to the tasks. As a result, 067

current LLM-brained GUI agents are prone to get- 068

ting stuck in recurring errors and need to repeatedly 069

plan during task execution. We argue that equip- 070

ping GUI agents with knowlege about the usage 071

of mobile applications, such as their operational 072

logic and critical functionalities, can facilitate the 073

effectiveness and robustness of planning. With 074

this knowledge, GUI agents know how to navigate 075

through various applications and to cope with com- 076

plex user requests. 077

Existing GUI agents acquire application usage 078

knowledge from operation examples collected dur- 079

ing task execution. These examples are either used 080

to adjust models using training approaches like fine- 081

tuning, or are integrated into knowledge bases to 082

continuously improve the performance of agents. 083

While these methods have yield positive results, 084
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they struggle with the problem of generalization,085

with their performance deteriorating significantly086

on unseen mobile applications. Besides, modern087

applications are frequently updated, and previous088

knowledge may become invalid. To adapt to new089

application versions, both retraining and updating090

the knowledge bases are too cost-ineffective to be091

adopted.092

To equip GUI agents with knowledge of appli-093

cation usage more effectively and flexibly, we pro-094

pose to model the paths users take within an ap-095

plication using Extended Finite State Machines096

(EFSMs). The EFSMs for various applications097

are then utilized by a plug-and-play planning mod-098

ule to facilitate the planning performance of GUI099

agents. EFSM extends traditional finite state ma-100

chines by incorporating not only the standard com-101

ponents—states, events, output actions and tran-102

sitions—but also variables and guard conditions,103

and , which enable it to represent more complex104

and conditional interaction flows as well as internal105

status. In our modeling approach, each page of a106

mobile application is represented as a state, and the107

primary functions of the application are defined as108

output actions. We then construct the state transi-109

tions based on the application’s structural layout110

and operational logic. At runtime, given the target111

primary functions, the EFSM is traversed to iden-112

tify a complete execution path from the initial state113

(page) to the output action(primary function). This114

execution path is highly interpretable and stable,115

and is further refined into a natural language plan116

to guide the agent in completing the task.117

In this paper, we propose SPlanner, an EFSM-118

based planning module designed to generate execu-119

tion plans that assist GUI agents in accomplishing120

user tasks. The proposed planning module operates121

in three steps. Upon receiving a user instruction,122

SPlanner first uses a LLM (e.g., Deepseek V3) to123

parse the instruction, identifying the target appli-124

cations and critical functionalities related to the125

user’s task. Then, the EFSMs corresponding to the126

applications is solved to generate a task execution127

path that satisfies the specified actions. Finally, this128

path is polished and refined based on the user’s129

intent, yielding a natural-language task execution130

plan. Once the plan is generated, the VLM incre-131

mentally produces interactive actions(e.g., click,132

swipe) by combining the plan with the visual un-133

derstanding of the current screen. We evaluate our134

method on AndroidWorld, a dynamic benchmark135

that closely mirrors real-world mobile application136

scenarios. Using the off-the-shelf generalist VLM 137

Qwen2.5-VL-72B as the executor, our approach 138

achieves a task success rate of 63.8%, represent- 139

ing a substantial improvement of 28.8 percentage 140

points over the baseline performance of Qwen2.5- 141

VL-72B without our planning module. 142

In summary, our main contributions are as fol- 143

lows: 144

• We propose a novel approach to modeling mo- 145

bile applications using EFSMs, enabling GUI 146

agents to acquire application usage knowledge 147

in a direct and interpretable manner. 148

• We introduce SPlanner, an EFSM-based plan- 149

ning module to stably generate reliable and 150

structured task execution plans. 151

• We perform comprehensive evaluations of 152

SPlanner on a dynamic and realistic bench- 153

marks, AndroidWorld demonstrating its effec- 154

tiveness in executing user instructions. 155

2 Related work 156

2.1 LLM-brained GUI agent 157

Recently, LLM-powered mobile GUI agents have 158

garnered significant attention, leading to the emer- 159

gence of various novel agents, including some 160

cross-platform solutions that work across mobile 161

devices, web browsers, and computers. In the con- 162

text of mobile GUI agents, the contributions of 163

these methods can be broadly categorized into two 164

key areas: grounding and reasoning. 165

To improve the agent’s grounding ability in GUI 166

environments, several approaches have been pro- 167

posed. Methods such as UGround (Gou et al., 168

2024), UI-TARS (Qin et al., 2025), and SeeClick 169

(Cheng et al., 2024) leverage efficient fine-tuning 170

techniques combined with high-quality training 171

data to enhance the model’s understanding of GUI 172

elements. Other approaches simplify the ground- 173

ing process by incorporating OCR or GUI XML 174

files—for example, COCO-Agent (Ma et al., 2024) 175

uses OCR to generate bounding boxes around GUI 176

components, allowing the agent to select them 177

more effectively. Additionally, some methods ap- 178

ply prompt engineering to boost grounding perfor- 179

mance; for instance, CoAT (Zhang et al., 2024b) 180

adopts Chain-of-Thought (CoT) prompting, guid- 181

ing the agent to first generate a textual description 182

of the GUI, thereby encouraging deeper semantic 183

understanding of interface elements. 184
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In terms of reasoning, the core objective is to185

enable the agent to master how to operate mobile186

applications. Some approaches, such as SeeAct187

(Zheng et al., 2024), leverage Self-Reflection tech-188

niques, allowing the agent to learn from its own189

mistakes and progressively improve its application190

usage capabilities. Others, like AutoDroid (Wen191

et al., 2024) and MobileGPT (Lee et al., 2024),192

adopt Self-Evolution strategies, where a knowledge193

base is built from the agent’s interaction history to194

support decision-making and reasoning. Addition-195

ally, certain methods focus on constructing new196

training datasets to facilitate learning. For instance,197

CoAT (Zhang et al., 2024b) introduces a dataset198

that not only contains GUI screenshots and corre-199

sponding actions, but also includes detailed action200

analyses and their outcomes, providing richer con-201

text for the agent to learn from.202

Although existing methods have made notable203

progress in addressing the reasoning challenge that204

this work focuses on, they often rely on extensive205

data collection or costly training processes. More-206

over, these approaches still struggle to achieve suf-207

ficient stability and interpretability. This motivates208

our focus on leveraging symbolic systems as a more209

transparent and cost-effective solution to the rea-210

soning problem.211

2.2 Symbolic Planner in LLM-brained agent212

To address the planning challenge of LLM-powered213

agents, one approach is to introduce an additional214

planning module responsible for defining the plan,215

and a common strategy is to use a Symbolic Plan-216

ner, which relies on a well-established symbolic217

model to represent the problem and employs sym-218

bolic reasoning to determine the optimal path from219

the initial state to the target state. A representa-220

tive example is LLM+P (Liu et al., 2023), which221

utilizes a Symbolic Planner based on the Planning222

Domain Definition Language(PDDL) model. In223

this approach, the LLM parses the problem into224

the PDDL format, and a solver is then used to find225

the best path by solving the formalized problem.226

Another notable work, LLM+ASP (Yang et al.,227

2023), employs a Symbolic Planner based on An-228

swer Set Programming (ASP), where the LLM con-229

verts the problem into an ASP-compatible format,230

and an ASP solver is used to determine the task231

path. These methods use symbolic system solvers232

to complete path reasoning, making the path solv-233

ing process extremely stable and explainable.234

Although the aforementioned Symbolic Plan-235

ner avoids requiring the LLM to perform logical 236

reasoning to generate a plan, it still necessitates 237

that the LLM models the entire problem (or under- 238

stands it as a scenario) within a symbolic system 239

and describes the task in a formal language. How- 240

ever, real-world problems are often complex and 241

dynamic, making it rare for LLMs to model the en- 242

tire problem accurately, which significantly limits 243

the applicability of these Symbolic Planners. One 244

possible approach is to manually model the task- 245

related problem into a symbolic system before exe- 246

cution, though this demands significant expertise 247

and effort from human experts. Nevertheless, in the 248

context of mobile application scenarios, the cost 249

of manually modeling the application into a sym- 250

bolic system becomes more feasible. Given this, 251

we propose combining the Symbolic Planner with 252

a mobile GUI agent to address these challenges. 253

3 Method 254

In this section, we detail the workflow of SPlanner. 255

We first introduce EFSMs, which are used to model 256

applications and construct a structured knowledge 257

base. Based on this knowledge, we build a planning 258

module and employ a VLM as the executor. During 259

task execution, the planning module first generates 260

a detailed task plan from the user’s instructions, 261

which the VLM then follows to complete the task 262

step by step. 263

3.1 Mobile application modeling via EFSM 264

To formally describe the behavior of a mobile appli- 265

cation, we adopt the Extended Finite State Machine 266

(EFSM) as our modeling framework. EFSM ex- 267

tend classical finite state machines by incorporating 268

variables and guard conditions, thereby enabling 269

the representation of both control logic and data- 270

dependent behaviors within a unified formalism. 271

Formally, in the scenario of application modeling, 272

an EFSM is defined as a tuple: 273

ε = (S,E,A, V, T, s0). (1) 274

Here, S denotes the set of states, each represent- 275

ing a screen of the app, and s0 ∈ S is the initial 276

state, typically corresponding to the launch screen 277

or entry point. A(referred to as the action set in the 278

original EFSM) denotes the set of primary func- 279

tions, which encapsulate the core functionalities or 280

intended purposes of the application. V is the set 281

of variables used to describe the app’s internal con- 282

figuration. E denotes the set of events, each repre- 283

senting a sequence of operations performed on the 284
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Figure 1: The SPlanner workflow consists of three main stages. First, Application Modeling via EFSM: (a) Prior
to deployment, each target application is manually modeled into an EFSM, described using a set of state tables
and state transition tables. Second, Plan Generation: (b) Upon receiving a user instruction, SPlanner processes it
through three subprocedures — Instruction Parsing, EFSM Solving, and Path Polishing — to generate a detailed
execution plan, with superscripts of a and T indicating their respective order of generation. Third, Task Execution
with VLM: (c) We employs a VLM to execute the task by sequentially observing mobile device screenshots and
following the generated plan, step by step, until the task is completed.

graphical user interface (GUI) that trigger a transi-285

tion in T , and are commonly described in natural286

language. T is the set of transitions, each can be287

represented as (s, e, a, g(V ), u(V ), s′) ∈ T , where288

s ∈ S and s′ ∈ S are the source and target states,289

respectively; e ∈ E is the event; a ∈ A is the out-290

put primary function executed during the transition;291

u(V ) denotes the update function that modifies the292

variables; and g(V ) specifies the guard conditions293

that must be satisfied for the transition to occur.294

During a transition, the application may perform a295

primary function, update its internal variables, or296

navigate from one screen to another. For clarity and297

ease of understanding, we summarize the meaning298

of each EFSM component in Tab. 1299

In SPlanner, we utilize EFSMs to model all the300

mobile applications involved, resulting in a struc-301

tured knowledge base composed of multiple EFSM302

instances:303

F = {ε1, ε2, · · · , εn},
εj = (Sj , Ej , Aj , T j , V j , sj0),

j = 1, 2, · · · , n.
(2)304

Each EFSM εj encapsulates the state-transition 305

dynamics of a specific application. Given a se- 306

quence of target primary function that implements 307

the user instruction, 308

AT = (a1, a2, · · · , ak) ⊆ Aj . (3) 309

a valid task execution path, starting from the initial 310

state sj0 ∈ Sj and invoking all the primary func- 311

tion in AT , can be derived by traversing the state 312

machine εj . We use search algorithms, such as 313

Breadth-First Search (BFS), to compute a transi- 314

tion path: 315

p = (t1, t2, · · · , tm),

ti = (si−1, ei, ai, gi(V ), ui(V ), si) ∈ T j .
(4) 316

Here s0 represents the initial state sj0, while si rep- 317

resents the destination state of transition ti. Note 318

that the states (s0, s1, · · · , sm) are not necessarily 319

distinct, reflecting potential loops or revisits within 320

the transition path. 321

Design of primary function: Modeling an ap- 322

plication begins with defining its primary functions, 323

such as the photo-taking feature in a camera app 324
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Symbol Explanation Examples

s ∈ S A screen or page of the application Camera home page; Camera settings page

e ∈ E A sequence of user operations performed on
the GUI

Click the button at the bottom of the screen,
then click again after {duration}

a ∈ A A primary function performed by the appli-
cation

Take a photo; Record a video of {duration}

V Internal variables describing the applica-
tion’s configuration

Video mode = True; Front camera mode =
False

g(V ) Guard conditions that must be satisfied for a
transition to occur

if Video mode = True

u(V ) Update function applied to variables during
a transition

Video mode→ False

Table 1: Explanation of symbols in EFSM. The first column lists each transition component, while the second
column explains its meaning in the context of mobile application modeling. Additionally, the third column provides
representative examples for each component.

or the call functionality in a contacts app. By ex-325

panding this primary function set, designers can en-326

sure that the EFSM captures a broader range of the327

application’s capabilities. Moreover, a more fine-328

grained definition of primary functions helps gen-329

erate more detailed and precise plans, ultimately330

improving the agent’s performance in executing331

complex tasks.332

Design of Events: The event e ∈ E is manually333

designed to instruct the agent on how to perform a334

specific transition. Designers can use natural lan-335

guage to describe a sequence of operations within336

a single event. If the event appears in the execution337

path, its content—after polish—will be incorpo-338

rated into the final plan. This design provides sig-339

nificant flexibility in the modeling process, allow-340

ing complex or tedious interactions to be effectively341

embedded within the plan.342

Three Types of Transitions: Transitions can be343

broadly categorized into three types based on their344

functional roles. The first type involves a simple345

navigation from state s to s′, where both the action346

a and the variable update function u(V ) may be347

null. The second type corresponds to configuration348

adjustments within the application, primarily in-349

volving updates to the internal variables via u(V );350

in this case, the action a may be null, and the states351

s and s′ may remain the same. The third type rep-352

resents the execution of a primary function, where353

s and s′ are often identical, and u(V ) is typically354

null.355

3.2 EFSM-based Planning Module 356

Given a user instruction, the SPlanner generates an 357

execution plan in natural language. The generation 358

process consists of three stages, namely instruction 359

parsing, EFSM solving and path polishing. 360

In the first stage—instruction parsing, we use 361

a LLM to extract the target applications as well 362

as the sequence of target primary functions from 363

the user instruction. This process can be formally 364

expressed as 365

LLM(I)→ ((ε1, ε2, · · · , εj), (AT
1 , A

T
2 , · · · , AT

j )).
(5) 366

where I denotes the user instruction, εj is one of 367

the EFSMs corresponding to the applications re- 368

quired to complete the task as defined in Eq. 2, and 369

AT
j ⊆ Aj represents the sequence of target primary 370

functions parsed from the instruction as defined in 371

Eq. 3. 372

Then, in the second stage—EFSM solving, 373

SPlanner employs a BFS-based state machine 374

solver to derive an execution path that sequentially 375

traverses all target primary functions in each AT . 376

This process is formally defined as: 377

BFS(εi, A
T
i )→ pi,

P = (p1, p2, · · · , pj),
i = 1, 2, · · · , j.

(6) 378

where P denotes the entire execution path, and pi 379

is the segment derived from the i-th application, as 380

defined in Eq. 4. If no valid execution path is found 381
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Algorithm 1 Workflow of SPlanner
Application Modeling: Use EFSM to model all target applications and obtain the EFSM set F as
defined in Eq. 2.

Plan Generation: Given user instruction I and EFSM set F ,
1. Use an LLM to parse I , producing [ε1, ε2, · · · , εj ] and [AT

1 , A
T
2 , · · · , AT

j ], as shown in Eq. 5.
2. Use a BFS-based solver to compute the execution paths pi = BFS(εi, A

T
i ) for each app, and

aggregate them into the global path plan P = (p1, p2, · · · , pj), as shown in Eq. 6.
3. Use an LLM to combine I and P to generate the final natural language plan.

Task Execution: Given initial GUI screenshot S0, instruction I , generated plan Plan, initial action
history H0 = ∅, and step counter i = 1,
while task is not completed and step limit not reached do

Generate the next operation instruction Oi = V LM(I, Si, P lan,Hi).
Update history: Hi+1 = Hi +Oi.
Increment step: i← i+ 1.

end while

(i.e., P = ∅), the planning module skips the path382

polishing step and directly returns a fallback plan383

with the context message: “No feasible execution384

path exists.”.385

In the final step—path polishing, SPlanner386

leverages a LLM, guided by the user instruction,387

to refine the raw path P into a coherent execution388

plan in natural language, composed of a series of389

steps. Compared to the original execution path se-390

quence, the polished plan is concise, actionable,391

and aligned with human understanding. Addition-392

ally, the LLM can enrich the plan with contextual393

information inferred from the instruction. The fi-394

nal plan is then passed to a VLM for step-by-step395

execution.396

3.3 Plan Execution397

SPlanner employs a VLM as the executor to carry398

out the task step by step. At each step, the VLM399

takes the user instruction, the current screenshot,400

the plan generated by the plan module and the his-401

tory of previously actions as input, and then gener-402

ates the next action based on the action space. The403

action space is determined by the benchmark or the404

operating environment, and typically includes oper-405

ations such as clicking or long pressing a specified406

pixel, entering specified text, swiping the screen,407

etc. After an action is executed within the operating408

environment, the VLM proceeds to generate sub-409

sequent actions until the task is successfully com-410

pleted or the maximum number of steps is reached.411

During this process, each step in the plan cor-412

responds to one or more executed actions. To en-413

hance the guiding effect of the plan on the model, 414

we incorporate Chain-of-Thought (CoT) (Wei et al., 415

2022) prompting, encouraging the model to reason 416

about the current plan step before generating each 417

action. The workflow of SPlanner is summarized 418

in Algorithm 1. 419

4 Experiment 420

In this section, we evaluate the proposed SPlanner 421

on the dynamic mobile GUI agent benchmark An- 422

droidWorld (Rawles et al., 2024) and compare its 423

performance with state-of-the-art (SOTA) methods. 424

4.1 Benchmark 425

We evaluated our approach on a dynamic mobile 426

GUI agent benchmark that simulates various real- 427

world tasks within a sandbox environment (e.g., a 428

mobile phone simulator). In this setting, the agent 429

receives natural language instructions and interacts 430

with the simulated GUI by executing operations 431

from a predefined set. The benchmark provides 432

user instructions and requires the agent to achieve 433

a specific goal within a limited number of steps. 434

During execution, the agent is free to choose its 435

path, as the benchmark does not impose restrictions 436

on intermediate decisions. Compared with static 437

datasets(e.g. AndroidControl (Li et al., 2024)), dy- 438

namic benchmarks better reflect real-world scenar- 439

ios and pose greater challenges for agent reasoning 440

and planning. 441

AndroidWorld is a dynamic benchmark de- 442

signed for evaluating mobile GUI agents. It in- 443

cludes 116 tasks across 20 real-world mobile appli- 444
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Figure 2: Task success rates of SPlanner and baseline methods on AndroidWorld. For clarity of presentation, darker
colors are used to indicate higher success rates, and the exact values are annotated on the corresponding bars.

cations, with task difficulty ranging from fewer445

than ten steps to over thirty steps. The bench-446

mark encompasses a broad spectrum of scenar-447

ios, such as app-specific question answering, cross-448

application interactions, and in-app content editing.449

Some of the more challenging tasks require com-450

plex visual reasoning—such as extracting relevant451

information from lengthy on-screen text. Addition-452

ally, AndroidWorld imposes strict step limits for453

each task, significantly reducing fault tolerance and454

emphasizing the importance of precise and efficient455

planning..456

4.2 Baselines and Implementation Details457

Comparison Baselines: We compare SPlanner458

with several representative baselines on the An-459

droidWorld benchmark. These include general460

GUI agents such as UI-TARS (Qin et al., 2025)461

and AgentS2 (Agashe et al., 2025), mobile-specific462

GUI agents like V-Droid (Dai et al., 2025), and463

state-of-the-art vision-language models including464

GPT-4o (Hurst et al., 2024) and Qwen2.5-VL-72B465

(Bai et al., 2025). We also include composite meth-466

ods such as GPT-4o+Aria-UI (Yang et al., 2024)467

and GPT-4o+UGround (Gou et al., 2024). All com-468

parison results are obtained from the original pa-469

pers or the official benchmark repositories associ-470

ated with each method.471

Implementation Details: For the SPlanner, we472

use Deepseek V3 (Liu et al., 2024) to handle in-473

struction parsing and path polishing in the plan- 474

ning module and the execution plan generated by 475

SPlanner is directly included in the VLM’s prompt, 476

along with simple prompt design techniques to 477

encourage step-by-step reasoning in the style of 478

Chain-of-Thought. As the executor, we adopt 479

Qwen2.5-VL-72B as the VLM. Notably, SPlanner 480

does not rely on any fine-tuning or self-evolution 481

techniques—the large models are used in their 482

open-source, general-purpose form without task- 483

specific adaptation. 484

4.3 Result Comparison 485

As shown in Fig. 2, our method (denoted as EFSM- 486

Planner + Qwen2.5-VL-72B) achieved a task suc- 487

cess rate of 63.8%, representing a substantial im- 488

provement of 28.8 percentage points over the base- 489

line Qwen2.5-VL-72B (35.0%). Compared with 490

other advanced approaches, our method outper- 491

formed AgentS2 (54.3%) by 9.5 percentage points 492

and V-Droid (59.5%) by 4.3 percentage points. Al- 493

though slightly lower than the current state-of-the- 494

art method UI-TARS1.5 (64.2%), the performance 495

of our approach demonstrates strong competitive- 496

ness, particularly given its plug-and-play nature. 497

5 Discussion 498

Effectiveness of the Proposed Planning Module: 499

The experimental results demonstrate that SPlanner 500

significantly improves the task completion capabil- 501
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ities of GUI agents, yielding a 28.8 percentage502

point increase over the baseline VLM (Qwen2.5-503

VL-72B) on the AndroidWorld benchmark. Our504

observations suggest that the plans generated by505

SPlanner effectively reduce instances where the506

VLM gets "lost" within the screens, and they also507

enable the execution of fine-grained and complex508

operations. These capabilities contribute substan-509

tially to the improved task success rate. The no-510

table performance gain underscores the effective-511

ness of integrating structured knowledge into the512

planning process. By modeling application behav-513

ior using EFSMs, SPlanner generates interpretable514

and reliable execution plans that compensate for515

the limited multi-step reasoning abilities of current516

VLMs.517

Plug-and-Play Flexibility: SPlanner requires518

only the user’s instruction to generate an execution519

plan, which is expressed in natural language. This520

plan can be seamlessly integrated into the input521

of the executor as part of the prompt, without the522

need for model fine-tuning or architectural mod-523

ifications. As a result, SPlanner is not limited to524

vision-language models (VLMs) but can also be525

applied to text-only LLM-based GUI agents. This526

plug-and-play design greatly enhances the versa-527

tility and ease of deployment of SPlanner across528

different types of agents and systems, making it529

a practical solution for real-world mobile GUI au-530

tomation.531

Analyzing Failures in Task Execution: Dur-532

ing the experiments, we observed that although533

EFSM-Planner was able to generate correct plans534

for the vast majority of tasks, the agent still failed535

to complete a significant portion of them success-536

fully. Based on our analysis, there are three pri-537

mary factors contributing to this discrepancy. First,538

the visual language model (VLM) does not always539

adhere strictly to the given plan. It may execute540

actions not specified in the plan or skip planned541

steps based on its own internal preferences, likely542

acquired during fine-tuning. Second, certain tasks543

impose high demands on the VLM’s visual un-544

derstanding capabilities—for instance, interpret-545

ing complex images or comprehending large vol-546

umes of text. These challenges cannot be addressed547

solely by providing a high-level plan. Third, even548

when the plan is logically correct, it may lack the549

necessary precision for complex tasks. For exam-550

ple, in a task requiring the deletion of redundant551

expenses while retaining one entry per category,552

it is impossible to predefine exact steps. In such553

cases, the EFSM-Planner can only guide the agent 554

to the appropriate interface and provide general in- 555

structions such as “Long-press to select redundant 556

entries of the same type and tap the trash icon in 557

the upper-right corner to delete them.” However, 558

plans of this nature may not be sufficiently specific 559

for the agent to complete the task reliably. 560

Consumption of Application Modeling via 561

EFSM: Currently, building EFSMs for applica- 562

tions involves manual effort. Modelers must be 563

well-acquainted with the application’s structure and 564

operational logic to carefully define key EFSM 565

components—particularly events and primary func- 566

tions—so that SPlanner can reliably interpret user 567

instructions and generate accurate plans. The mod- 568

eling process typically takes one to two hours per 569

application, with more time required for complex 570

apps featuring intricate workflows or extensive 571

functionality to ensure sufficient coverage. Au- 572

tomating EFSM construction remains a significant 573

challenge. In future work, we aim to explore AI- 574

assisted techniques to streamline this process and 575

reduce the dependence on manual labor. 576

6 Conclusion 577

In this paper, we propose SPlanner, an EFSM-based 578

planning module designed to stably generate task 579

execution plans for GUI agents. SPlanner lever- 580

ages EFSM to model mobile applications, building 581

a structured knowledge base that supports effec- 582

tive planning. During task execution, SPlanner 583

first parses user instructions, then solves the corre- 584

sponding EFSM to derive an execution path, which 585

is subsequently refined into a clear and actionable 586

plan. This plan is incorporated into the prompt to 587

guide the VLM executor in generating interaction 588

commands. We evaluate SPlanner on the dynamic 589

benchmark AndroidWorld, and experimental re- 590

sults demonstrate that it significantly improves the 591

task success rate of existing generalist models, veri- 592

fying its effectiveness. However, there remain chal- 593

lenges in the collaboration between SPlanner and 594

current VLMs—particularly the VLM’s incomplete 595

adherence to the provided plans—which partially 596

limits the overall performance. Improving this syn- 597

ergy will be a key focus of future work. Addi- 598

tionally, since constructing EFSMs currently relies 599

heavily on manual modeling and expert knowledge, 600

we plan to explore automatic EFSM generation 601

methods to enhance the scalability and practicality 602

of SPlanner. 603
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7 Limitations604

One limitation of SPlanner lies in its reliance on605

manual modeling for each target application, which606

incurs significant development cost and requires607

prior experience with EFSM design. Moreover, the608

primary functions must be described in precise and609

unambiguous natural language during the modeling610

process; otherwise, SPlanner may fail to correctly611

parse user instructions, leading to inaccurate execu-612

tion plans. This places a high burden on modelers613

and limits the system’s scalability in practical de-614

ployment. Future work will focus on automating615

the EFSM construction process and improving the616

robustness of instruction parsing to reduce model-617

ing effort and enhance scalability.618
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