Building a Stable Planner: An Extended Finite State Machine Based
Planning Module for Mobile GUI Agent

Anonymous ACL submission

Abstract

Mobile GUI agents execute user commands
by directly interacting with the graphical user
interface (GUI) of mobile devices, demonstrat-
ing significant potential to enhance user conve-
nience. However, these agents face consider-
able challenges in task planning, as they must
continuously analyze the GUI and generate
operation instructions step by step. This pro-
cess often leads to difficulties in making ac-
curate task plans, as GUI agents lack a deep
understanding of how to effectively use the
target applications, which can cause them to
become "lost" during task execution. To ad-
dress the task planning issue, we propose SPlan-
ner, a plug-and-play planning module to gener-
ate execution plans that guide vision language
model(VLMs) in executing tasks. The pro-
posed planning module utilizes extended finite
state machines (EFSMs) to model the control
logits and configurations of mobile applica-
tions. It then decomposes a user instruction
into a sequence of primary function modeled
in EFSMs, and generate the execution path by
traversing the EFSMs. We further refine the ex-
ecution path into a natural language plan using
an LLM. The final plan is concise and action-
able, and effectively guides VLMs to gener-
ate interactive GUI actions to accomplish user
tasks. SPlanner demonstrates strong perfor-
mance on dynamic benchmarks reflecting real-
world mobile usage. On the AndroidWorld
benchmark, SPlanner achieves a 63.8% task
success rate when paired with Qwen2.5-VL-
72B as the VLM executor, yielding a 28.8 per-
centage point improvement compared to using
Qwen2.5-VL-72B without planning assistance.

1 Introduction

The LLM-brained mobile graphic user interface
(GUI) agent is designed to help users control their
mobile devices using natural language (hereafter
referred to simply as GUI agent). It uses a large lan-
guage model(LLM) to interpret user instructions

and execute tasks step by step. At each step, the
agent analyzes the current GUI state and generates
an operation command that simulates human inter-
action. Unlike agents that rely on predefined scripts
or APIs, GUI agent makes decisions based on its
understanding of the GUI, enabling it to handle
more diverse user commands and complex inter-
face scenarios. Moreover, by generating operation
commands that mimic human interactions, the GUI
agent can bypass restrictions imposed by the soft-
ware permissions of mobile devices. While such
a vision of GUI agent promises to significantly
enhance the convenience of mobile device usage,
their performance still falls short of practical de-
ployment.

One of the major challenges facing GUI agent is
task planning, especially for high-level tasks and
unseen interfaces. Planning involves anticipating
outcomes and choosing optimal paths. However,
most current LL.Ms lack robust reasoning mech-
anisms on multi-step tasks. Moreover, they have
limited understanding of how mobile applications
are used, and tend to focus on screen elements that
are only literally related to the tasks. As a result,
current LLM-brained GUI agents are prone to get-
ting stuck in recurring errors and need to repeatedly
plan during task execution. We argue that equip-
ping GUI agents with knowlege about the usage
of mobile applications, such as their operational
logic and critical functionalities, can facilitate the
effectiveness and robustness of planning. With
this knowledge, GUI agents know how to navigate
through various applications and to cope with com-
plex user requests.

Existing GUI agents acquire application usage
knowledge from operation examples collected dur-
ing task execution. These examples are either used
to adjust models using training approaches like fine-
tuning, or are integrated into knowledge bases to
continuously improve the performance of agents.
While these methods have yield positive results,

they struggle with the problem of generalization,
with their performance deteriorating significantly
on unseen mobile applications. Besides, modern
applications are frequently updated, and previous
knowledge may become invalid. To adapt to new
application versions, both retraining and updating
the knowledge bases are too cost-ineffective to be
adopted.

To equip GUI agents with knowledge of appli-
cation usage more effectively and flexibly, we pro-
pose to model the paths users take within an ap-
plication using Extended Finite State Machines
(EFSMs). The EFSMs for various applications
are then utilized by a plug-and-play planning mod-
ule to facilitate the planning performance of GUI
agents. EFSM extends traditional finite state ma-
chines by incorporating not only the standard com-
ponents—states, events, output actions and tran-
sitions—but also variables and guard conditions,
and , which enable it to represent more complex
and conditional interaction flows as well as internal
status. In our modeling approach, each page of a
mobile application is represented as a state, and the
primary functions of the application are defined as
output actions. We then construct the state transi-
tions based on the application’s structural layout
and operational logic. At runtime, given the target
primary functions, the EFSM is traversed to iden-
tify a complete execution path from the initial state
(page) to the output action(primary function). This
execution path is highly interpretable and stable,
and is further refined into a natural language plan
to guide the agent in completing the task.

In this paper, we propose SPlanner, an EFSM-
based planning module designed to generate execu-
tion plans that assist GUI agents in accomplishing
user tasks. The proposed planning module operates
in three steps. Upon receiving a user instruction,
SPlanner first uses a LLM (e.g., Deepseek V3) to
parse the instruction, identifying the target appli-
cations and critical functionalities related to the
user’s task. Then, the EFSMs corresponding to the
applications is solved to generate a task execution
path that satisfies the specified actions. Finally, this
path is polished and refined based on the user’s
intent, yielding a natural-language task execution
plan. Once the plan is generated, the VLM incre-
mentally produces interactive actions(e.g., click,
swipe) by combining the plan with the visual un-
derstanding of the current screen. We evaluate our
method on AndroidWorld, a dynamic benchmark
that closely mirrors real-world mobile application

scenarios. Using the off-the-shelf generalist VLM
Qwen2.5-VL-72B as the executor, our approach
achieves a task success rate of 63.8%, represent-
ing a substantial improvement of 28.8 percentage
points over the baseline performance of Qwen2.5-
VL-72B without our planning module.

In summary, our main contributions are as fol-
lows:

* We propose a novel approach to modeling mo-
bile applications using EFSMs, enabling GUI
agents to acquire application usage knowledge
in a direct and interpretable manner.

* We introduce SPlanner, an EFSM-based plan-
ning module to stably generate reliable and
structured task execution plans.

* We perform comprehensive evaluations of
SPlanner on a dynamic and realistic bench-
marks, AndroidWorld demonstrating its effec-
tiveness in executing user instructions.

2 Related work

2.1 LLM-brained GUI agent

Recently, LLM-powered mobile GUI agents have
garnered significant attention, leading to the emer-
gence of various novel agents, including some
cross-platform solutions that work across mobile
devices, web browsers, and computers. In the con-
text of mobile GUI agents, the contributions of
these methods can be broadly categorized into two
key areas: grounding and reasoning.

To improve the agent’s grounding ability in GUI
environments, several approaches have been pro-
posed. Methods such as UGround (Gou et al.,
2024), UI-TARS (Qin et al., 2025), and SeeClick
(Cheng et al., 2024) leverage efficient fine-tuning
techniques combined with high-quality training
data to enhance the model’s understanding of GUI
elements. Other approaches simplify the ground-
ing process by incorporating OCR or GUI XML
files—for example, COCO-Agent (Ma et al., 2024)
uses OCR to generate bounding boxes around GUI
components, allowing the agent to select them
more effectively. Additionally, some methods ap-
ply prompt engineering to boost grounding perfor-
mance; for instance, CoAT (Zhang et al., 2024b)
adopts Chain-of-Thought (CoT) prompting, guid-
ing the agent to first generate a textual description
of the GUI, thereby encouraging deeper semantic
understanding of interface elements.

In terms of reasoning, the core objective is to
enable the agent to master how to operate mobile
applications. Some approaches, such as SeeAct
(Zheng et al., 2024), leverage Self-Reflection tech-
niques, allowing the agent to learn from its own
mistakes and progressively improve its application
usage capabilities. Others, like AutoDroid (Wen
et al., 2024) and MobileGPT (Lee et al., 2024),
adopt Self-Evolution strategies, where a knowledge
base is built from the agent’s interaction history to
support decision-making and reasoning. Addition-
ally, certain methods focus on constructing new
training datasets to facilitate learning. For instance,
CoAT (Zhang et al., 2024b) introduces a dataset
that not only contains GUI screenshots and corre-
sponding actions, but also includes detailed action
analyses and their outcomes, providing richer con-
text for the agent to learn from.

Although existing methods have made notable
progress in addressing the reasoning challenge that
this work focuses on, they often rely on extensive
data collection or costly training processes. More-
over, these approaches still struggle to achieve suf-
ficient stability and interpretability. This motivates
our focus on leveraging symbolic systems as a more
transparent and cost-effective solution to the rea-
soning problem.

2.2 Symbolic Planner in LLM-brained agent

To address the planning challenge of LLM-powered
agents, one approach is to introduce an additional
planning module responsible for defining the plan,
and a common strategy is to use a Symbolic Plan-
ner, which relies on a well-established symbolic
model to represent the problem and employs sym-
bolic reasoning to determine the optimal path from
the initial state to the target state. A representa-
tive example is LLM+P (Liu et al., 2023), which
utilizes a Symbolic Planner based on the Planning
Domain Definition Language(PDDL) model. In
this approach, the LLM parses the problem into
the PDDL format, and a solver is then used to find
the best path by solving the formalized problem.
Another notable work, LLM+ASP (Yang et al.,
2023), employs a Symbolic Planner based on An-
swer Set Programming (ASP), where the LLM con-
verts the problem into an ASP-compatible format,
and an ASP solver is used to determine the task
path. These methods use symbolic system solvers
to complete path reasoning, making the path solv-
ing process extremely stable and explainable.
Although the aforementioned Symbolic Plan-

ner avoids requiring the LLLM to perform logical
reasoning to generate a plan, it still necessitates
that the LLM models the entire problem (or under-
stands it as a scenario) within a symbolic system
and describes the task in a formal language. How-
ever, real-world problems are often complex and
dynamic, making it rare for LLMs to model the en-
tire problem accurately, which significantly limits
the applicability of these Symbolic Planners. One
possible approach is to manually model the task-
related problem into a symbolic system before exe-
cution, though this demands significant expertise
and effort from human experts. Nevertheless, in the
context of mobile application scenarios, the cost
of manually modeling the application into a sym-
bolic system becomes more feasible. Given this,
we propose combining the Symbolic Planner with
a mobile GUI agent to address these challenges.

3 Method

In this section, we detail the workflow of SPlanner.
We first introduce EFSMs, which are used to model
applications and construct a structured knowledge
base. Based on this knowledge, we build a planning
module and employ a VLM as the executor. During
task execution, the planning module first generates
a detailed task plan from the user’s instructions,
which the VLM then follows to complete the task
step by step.

3.1 Mobile application modeling via EFSM

To formally describe the behavior of a mobile appli-
cation, we adopt the Extended Finite State Machine
(EFSM) as our modeling framework. EFSM ex-
tend classical finite state machines by incorporating
variables and guard conditions, thereby enabling
the representation of both control logic and data-
dependent behaviors within a unified formalism.
Formally, in the scenario of application modeling,
an EFSM is defined as a tuple:

e= (S, E,AV.T,s). ey

Here, S denotes the set of states, each represent-
ing a screen of the app, and sy € S is the initial
state, typically corresponding to the launch screen
or entry point. A(referred to as the action set in the
original EFSM) denotes the set of primary func-
tions, which encapsulate the core functionalities or
intended purposes of the application. V' is the set
of variables used to describe the app’s internal con-
figuration. E' denotes the set of events, each repre-
senting a sequence of operations performed on the

(a) Application Modeling via EFSM

e State Table:
S0.51,52, 53 Please help
Transition Table: me -
Ty = (So, €0, Ags Go(V), U (V), S1)
Ty = (s1, €1, a1, 81(V), u1 (V), Sq) User_
Instruction

(b) Plan Generation

—! \ ! h

m > EFSM Oy

(c) Task Execution

User

Instruction |:> 7

T

Vision-Language Model

Instruction Path
_ Parsing Solving Polishing
App “~app name-> Openthe app; Firstly, open the app.
Action:[a*, a?, -] T, TZ, - Secondly, . -
Target Task
Actions Path
Operation
Instruction e
o
Screenshot

Figure 1: The SPlanner workflow consists of three main stages. First, Application Modeling via EFSM: (a) Prior
to deployment, each target application is manually modeled into an EFSM, described using a set of state tables
and state transition tables. Second, Plan Generation: (b) Upon receiving a user instruction, SPlanner processes it
through three subprocedures — Instruction Parsing, EFSM Solving, and Path Polishing — to generate a detailed
execution plan, with superscripts of a and 7" indicating their respective order of generation. Third, Task Execution
with VLM: (c) We employs a VLM to execute the task by sequentially observing mobile device screenshots and
following the generated plan, step by step, until the task is completed.

graphical user interface (GUI) that trigger a transi-
tion in 7', and are commonly described in natural
language. T’ is the set of transitions, each can be
represented as (s, e, a, g(V),u(V),s") € T, where
s € Sand s’ € S are the source and target states,
respectively; e € F is the event; a € A is the out-
put primary function executed during the transition;
u(V") denotes the update function that modifies the
variables; and g(V") specifies the guard conditions
that must be satisfied for the transition to occur.
During a transition, the application may perform a
primary function, update its internal variables, or
navigate from one screen to another. For clarity and
ease of understanding, we summarize the meaning
of each EFSM component in Tab. 1

In SPlanner, we utilize EFSMs to model all the
mobile applications involved, resulting in a struc-
tured knowledge base composed of multiple EFSM
instances:

F:{€17€27". 7671}7
;= (87,7, A7, T, VI s},
j=12,--,n.

2

Each EFSM ¢/ encapsulates the state-transition
dynamics of a specific application. Given a se-
quence of target primary function that implements
the user instruction,

AT = (a1,a9, -+ ,a;) C A7 A3)

a valid task execution path, starting from the initial
state s}) € 57 and invoking all the primary func-
tion in A”, can be derived by traversing the state
machine ¢/. We use search algorithms, such as
Breadth-First Search (BFS), to compute a transi-
tion path:

= t7t7'”7t)
p=(t1,t2 m) @
t;

= (si-1,€i,ai,9i(V),ui(V), 8:) € T7.

Here s represents the initial state 36, while s; rep-
resents the destination state of transition ¢;. Note
that the states (s, s1,- - , Sy,) are not necessarily
distinct, reflecting potential loops or revisits within
the transition path.

Design of primary function: Modeling an ap-
plication begins with defining its primary functions,
such as the photo-taking feature in a camera app

Symbol Explanation

Examples

s €S A screen or page of the application Camera home page; Camera settings page

e € £ A sequence of user operations performed on Click the button at the bottom of the screen,
the GUI then click again after {duration}

a € A A primary function performed by the appli- Take a photo; Record a video of {duration}
cation

% Internal variables describing the applica- Video mode = True; Front camera mode =

tion’s configuration False

g(V) Guard conditions that must be satisfied for a if Video mode = True
transition to occur

u(V) Update function applied to variables during Video mode — False

a transition

Table 1: Explanation of symbols in EFSM. The first column lists each transition component, while the second
column explains its meaning in the context of mobile application modeling. Additionally, the third column provides

representative examples for each component.

or the call functionality in a contacts app. By ex-
panding this primary function set, designers can en-
sure that the EFSM captures a broader range of the
application’s capabilities. Moreover, a more fine-
grained definition of primary functions helps gen-
erate more detailed and precise plans, ultimately
improving the agent’s performance in executing
complex tasks.

Design of Events: The event e € E' is manually
designed to instruct the agent on how to perform a
specific transition. Designers can use natural lan-
guage to describe a sequence of operations within
a single event. If the event appears in the execution
path, its content—after polish—will be incorpo-
rated into the final plan. This design provides sig-
nificant flexibility in the modeling process, allow-
ing complex or tedious interactions to be effectively
embedded within the plan.

Three Types of Transitions: Transitions can be
broadly categorized into three types based on their
functional roles. The first type involves a simple
navigation from state s to s’, where both the action
a and the variable update function u(V') may be
null. The second type corresponds to configuration
adjustments within the application, primarily in-
volving updates to the internal variables via u(V');
in this case, the action a may be null, and the states
s and s’ may remain the same. The third type rep-
resents the execution of a primary function, where
s and s are often identical, and u (V) is typically
null.

3.2 EFSM-based Planning Module

Given a user instruction, the SPlanner generates an
execution plan in natural language. The generation
process consists of three stages, namely instruction
parsing, EFSM solving and path polishing.

In the first stage—instruction parsing, we use
a LLM to extract the target applications as well
as the sequence of target primary functions from
the user instruction. This process can be formally
expressed as

LLM(I) — ((e1,€2, " ,<€j), (A?v Ag? T 7A31))

®)
where I denotes the user instruction, ¢; is one of
the EFSMs corresponding to the applications re-
quired to complete the task as defined in Eq. 2, and
AJT C AJ represents the sequence of target primary
functions parsed from the instruction as defined in
Eq. 3.

Then, in the second stage—EFSM solving,
SPlanner employs a BFS-based state machine
solver to derive an execution path that sequentially
traverses all target primary functions in each AT
This process is formally defined as:

BFS(&‘Z,AZT) — Di,
P = (p17p27"' 7pj)7 (6)
i=1,2,--]

where P denotes the entire execution path, and p;
is the segment derived from the i-th application, as
defined in Eq. 4. If no valid execution path is found

Algorithm 1 Workflow of SPlanner

Application Modeling: Use EFSM to model all target applications and obtain the EFSM set F as

defined in Eq. 2.

Plan Generation: Given user instruction I and EFSM set F,

1. Use an LLM to parse I, producing [e1, &2, - -

,;] and [AT, AT, ... ,A;‘-F], as shown in Eq. 5.

2. Use a BFS-based solver to compute the execution paths p; = BF'S(g;, A?) for each app, and

aggregate them into the global path plan P = (p1, pa2, - -

-, pj), as shown in Eq. 6.

3. Use an LLM to combine I and P to generate the final natural language plan.

Task Execution: Given initial GUI screenshot Sy, instruction I, generated plan Plan, initial action

history Hy = (), and step counter i = 1,

while task is not completed and step limit not reached do
Generate the next operation instruction O; = VLM (I, S;, Plan, H;).

Update history: H;+1 = H; + O;.
Increment step: ¢ < ¢ + 1.
end while

(i.e., P = (), the planning module skips the path
polishing step and directly returns a fallback plan
with the context message: “No feasible execution
path exists.”.

In the final step—path polishing, SPlanner
leverages a LLM, guided by the user instruction,
to refine the raw path P into a coherent execution
plan in natural language, composed of a series of
steps. Compared to the original execution path se-
quence, the polished plan is concise, actionable,
and aligned with human understanding. Addition-
ally, the LLM can enrich the plan with contextual
information inferred from the instruction. The fi-
nal plan is then passed to a VLM for step-by-step
execution.

3.3 Plan Execution

SPlanner employs a VLM as the executor to carry
out the task step by step. At each step, the VLM
takes the user instruction, the current screenshot,
the plan generated by the plan module and the his-
tory of previously actions as input, and then gener-
ates the next action based on the action space. The
action space is determined by the benchmark or the
operating environment, and typically includes oper-
ations such as clicking or long pressing a specified
pixel, entering specified text, swiping the screen,
etc. After an action is executed within the operating
environment, the VLM proceeds to generate sub-
sequent actions until the task is successfully com-
pleted or the maximum number of steps is reached.

During this process, each step in the plan cor-
responds to one or more executed actions. To en-

hance the guiding effect of the plan on the model,
we incorporate Chain-of-Thought (CoT) (Wei et al.,
2022) prompting, encouraging the model to reason
about the current plan step before generating each
action. The workflow of SPlanner is summarized
in Algorithm 1.

4 Experiment

In this section, we evaluate the proposed SPlanner
on the dynamic mobile GUI agent benchmark An-
droidWorld (Rawles et al., 2024) and compare its
performance with state-of-the-art (SOTA) methods.

4.1 Benchmark

We evaluated our approach on a dynamic mobile
GUI agent benchmark that simulates various real-
world tasks within a sandbox environment (e.g., a
mobile phone simulator). In this setting, the agent
receives natural language instructions and interacts
with the simulated GUI by executing operations
from a predefined set. The benchmark provides
user instructions and requires the agent to achieve
a specific goal within a limited number of steps.
During execution, the agent is free to choose its
path, as the benchmark does not impose restrictions
on intermediate decisions. Compared with static
datasets(e.g. AndroidControl (Li et al., 2024)), dy-
namic benchmarks better reflect real-world scenar-
ios and pose greater challenges for agent reasoning
and planning.

AndroidWorld is a dynamic benchmark de-
signed for evaluating mobile GUI agents. It in-
cludes 116 tasks across 20 real-world mobile appli-

Figure 2: Task success rates of SPlanner and baseline methods on AndroidWorld. For clarity of presentation, darker
colors are used to indicate higher success rates, and the exact values are annotated on the corresponding bars.

cations, with task difficulty ranging from fewer
than ten steps to over thirty steps. The bench-
mark encompasses a broad spectrum of scenar-
ios, such as app-specific question answering, cross-
application interactions, and in-app content editing.
Some of the more challenging tasks require com-
plex visual reasoning—such as extracting relevant
information from lengthy on-screen text. Addition-
ally, AndroidWorld imposes strict step limits for
each task, significantly reducing fault tolerance and
emphasizing the importance of precise and efficient
planning..

4.2 Baselines and Implementation Details

Comparison Baselines: We compare SPlanner
with several representative baselines on the An-
droidWorld benchmark. These include general
GUI agents such as UI-TARS (Qin et al., 2025)
and AgentS2 (Agashe et al., 2025), mobile-specific
GUI agents like V-Droid (Dai et al., 2025), and
state-of-the-art vision-language models including
GPT-40 (Hurst et al., 2024) and Qwen2.5-VL-72B
(Bai et al., 2025). We also include composite meth-
ods such as GPT-40+Aria-Ul (Yang et al., 2024)
and GPT-40+UGround (Gou et al., 2024). All com-
parison results are obtained from the original pa-
pers or the official benchmark repositories associ-
ated with each method.

Implementation Details: For the SPlanner, we
use Deepseek V3 (Liu et al., 2024) to handle in-

struction parsing and path polishing in the plan-
ning module and the execution plan generated by
SPlanner is directly included in the VLM’s prompt,
along with simple prompt design techniques to
encourage step-by-step reasoning in the style of
Chain-of-Thought. As the executor, we adopt
Qwen2.5-VL-72B as the VLM. Notably, SPlanner
does not rely on any fine-tuning or self-evolution
techniques—the large models are used in their
open-source, general-purpose form without task-
specific adaptation.

4.3 Result Comparison

As shown in Fig. 2, our method (denoted as EFSM-
Planner + Qwen2.5-VL-72B) achieved a task suc-
cess rate of 63.8%, representing a substantial im-
provement of 28.8 percentage points over the base-
line Qwen2.5-VL-72B (35.0%). Compared with
other advanced approaches, our method outper-
formed AgentS2 (54.3%) by 9.5 percentage points
and V-Droid (59.5%) by 4.3 percentage points. Al-
though slightly lower than the current state-of-the-
art method UI-TARS1.5 (64.2%), the performance
of our approach demonstrates strong competitive-
ness, particularly given its plug-and-play nature.

5 Discussion

Effectiveness of the Proposed Planning Module:
The experimental results demonstrate that SPlanner
significantly improves the task completion capabil-

ities of GUI agents, yielding a 28.8 percentage
point increase over the baseline VLM (Qwen2.5-
VL-72B) on the AndroidWorld benchmark. Our
observations suggest that the plans generated by
SPlanner effectively reduce instances where the
VLM gets "lost" within the screens, and they also
enable the execution of fine-grained and complex
operations. These capabilities contribute substan-
tially to the improved task success rate. The no-
table performance gain underscores the effective-
ness of integrating structured knowledge into the
planning process. By modeling application behav-
ior using EFSMs, SPlanner generates interpretable
and reliable execution plans that compensate for
the limited multi-step reasoning abilities of current
VLMs.

Plug-and-Play Flexibility: SPlanner requires
only the user’s instruction to generate an execution
plan, which is expressed in natural language. This
plan can be seamlessly integrated into the input
of the executor as part of the prompt, without the
need for model fine-tuning or architectural mod-
ifications. As a result, SPlanner is not limited to
vision-language models (VLMs) but can also be
applied to text-only LLM-based GUI agents. This
plug-and-play design greatly enhances the versa-
tility and ease of deployment of SPlanner across
different types of agents and systems, making it
a practical solution for real-world mobile GUI au-
tomation.

Analyzing Failures in Task Execution: Dur-
ing the experiments, we observed that although
EFSM-Planner was able to generate correct plans
for the vast majority of tasks, the agent still failed
to complete a significant portion of them success-
fully. Based on our analysis, there are three pri-
mary factors contributing to this discrepancy. First,
the visual language model (VLM) does not always
adhere strictly to the given plan. It may execute
actions not specified in the plan or skip planned
steps based on its own internal preferences, likely
acquired during fine-tuning. Second, certain tasks
impose high demands on the VLM’s visual un-
derstanding capabilities—for instance, interpret-
ing complex images or comprehending large vol-
umes of text. These challenges cannot be addressed
solely by providing a high-level plan. Third, even
when the plan is logically correct, it may lack the
necessary precision for complex tasks. For exam-
ple, in a task requiring the deletion of redundant
expenses while retaining one entry per category,
it is impossible to predefine exact steps. In such

cases, the EFSM-Planner can only guide the agent
to the appropriate interface and provide general in-
structions such as “Long-press to select redundant
entries of the same type and tap the trash icon in
the upper-right corner to delete them.” However,
plans of this nature may not be sufficiently specific
for the agent to complete the task reliably.

Consumption of Application Modeling via
EFSM: Currently, building EFSMs for applica-
tions involves manual effort. Modelers must be
well-acquainted with the application’s structure and
operational logic to carefully define key EFSM
components—particularly events and primary func-
tions—so that SPlanner can reliably interpret user
instructions and generate accurate plans. The mod-
eling process typically takes one to two hours per
application, with more time required for complex
apps featuring intricate workflows or extensive
functionality to ensure sufficient coverage. Au-
tomating EFSM construction remains a significant
challenge. In future work, we aim to explore Al-
assisted techniques to streamline this process and
reduce the dependence on manual labor.

6 Conclusion

In this paper, we propose SPlanner, an EFSM-based
planning module designed to stably generate task
execution plans for GUI agents. SPlanner lever-
ages EFSM to model mobile applications, building
a structured knowledge base that supports effec-
tive planning. During task execution, SPlanner
first parses user instructions, then solves the corre-
sponding EFSM to derive an execution path, which
is subsequently refined into a clear and actionable
plan. This plan is incorporated into the prompt to
guide the VLM executor in generating interaction
commands. We evaluate SPlanner on the dynamic
benchmark AndroidWorld, and experimental re-
sults demonstrate that it significantly improves the
task success rate of existing generalist models, veri-
fying its effectiveness. However, there remain chal-
lenges in the collaboration between SPlanner and
current VLMs—particularly the VLM’s incomplete
adherence to the provided plans—which partially
limits the overall performance. Improving this syn-
ergy will be a key focus of future work. Addi-
tionally, since constructing EFSMs currently relies
heavily on manual modeling and expert knowledge,
we plan to explore automatic EFSM generation
methods to enhance the scalability and practicality
of SPlanner.

7 Limitations

One limitation of SPlanner lies in its reliance on
manual modeling for each target application, which
incurs significant development cost and requires
prior experience with EFSM design. Moreover, the
primary functions must be described in precise and
unambiguous natural language during the modeling
process; otherwise, SPlanner may fail to correctly
parse user instructions, leading to inaccurate execu-
tion plans. This places a high burden on modelers
and limits the system’s scalability in practical de-
ployment. Future work will focus on automating
the EFSM construction process and improving the
robustness of instruction parsing to reduce model-
ing effort and enhance scalability.

References

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang,
Ang Li, and Xin Eric Wang. 2025. Agent s2: A com-
positional generalist-specialist framework for com-
puter use agents. arXiv preprint arXiv:2504.00906.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, and 1 others. 2025. Qwen2. 5-vl
technical report. arXiv preprint arXiv:2502.13923.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024.
Seeclick: Harnessing gui grounding for advanced
visual gui agents. Preprint, arXiv:2401.10935.

Gaole Dai, Shiqi Jiang, Ting Cao, Yuanchun Li, Yuqing
Yang, Rui Tan, Mo Li, and Lili Qiu. 2025. Advancing
mobile gui agents: A verifier-driven approach to prac-
tical deployment. arXiv preprint arXiv:2503.15937.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie,
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
2024. Navigating the digital world as humans do:
Universal visual grounding for gui agents. arXiv
preprint arXiv:2410.05243.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. 2024. Understanding
the planning of llm agents: A survey. Preprint,
arXiv:2402.02716.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan
Wasi, Hojun Choi, Steve Ko, Sangeun Oh, and In-
sik Shin. 2024. Mobilegpt: Augmenting llm with
human-like app memory for mobile task automation.

In Proceedings of the 30th Annual International Con-
ference on Mobile Computing and Networking, pages
1119-1133.

Wei Li, William Bishop, Alice Li, Chris Rawles, Fo-
lawiyo Campbell-Ajala, Divya Tyamagundlu, and
Oriana Riva. 2024. On the effects of data scale on
computer control agents. arXiv e-prints, pages arXiv—
2406.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023. Llm+ p: Empowering large language mod-
els with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024.
Coco-agent: A comprehensive cognitive mllm agent
for smartphone gui automation. arXiv preprint
arXiv:2402.11941.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang,
Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li,
Yunxin Li, Shijue Huang, and 1 others. 2025. Ui-
tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang,
Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice
Li, William Bishop, Wei Li, Folawiyo Campbell-
Ajala, and 1 others. 2024. Androidworld: A dynamic
benchmarking environment for autonomous agents.
arXiv preprint arXiv:2405.14573.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. 2024. Autodroid:
Llm-powered task automation in android. Preprint,
arXiv:2308.15272.

Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu,
Hanyu Lai, Shudan Zhang, Dan Zhang, Jie Tang, and
Yuxiao Dong. 2024. Androidlab: Training and sys-
tematic benchmarking of android autonomous agents.
arXiv preprint arXiv:2410.24024.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei
Chen, Chao Huang, and Junnan Li. 2024. Aria-ui:
Visual grounding for gui instructions. arXiv preprint
arXiv:2412.16256.

https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2308.15272
https://arxiv.org/abs/2308.15272
https://arxiv.org/abs/2308.15272

Zhun Yang, Adam Ishay, and Joohyung Lee. 2023. Cou-
pling large language models with logic programming
for robust and general reasoning from text. arXiv
preprint arXiv:2307.07696.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li,
Liqun Li, Si Qin, Yu Kang, Minghua Ma, Guyue
Liu, Qingwei Lin, and 1 others. 2024a. Large lan-
guage model-brained gui agents: A survey. arXiv
preprint arXiv:2411.18279.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao,
Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.
2024b. Android in the zoo: Chain-of-action-thought
for gui agents. arXiv preprint arXiv:2403.02713.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024. Gpt-4v (ision) is a generalist web agent,
if grounded. arXiv preprint arXiv:2401.01614.

10

	Introduction
	Related work
	LLM-brained GUI agent
	Symbolic Planner in LLM-brained agent

	Method
	Mobile application modeling via EFSM
	EFSM-based Planning Module
	Plan Execution

	Experiment
	Benchmark
	Baselines and Implementation Details
	Result Comparison

	Discussion
	Conclusion
	Limitations

