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Abstract

We introduce MELODYFLOW, an efficient text-controllable high-fidelity music
generation and editing model. It operates on sequences of continuous latent
representations from a low frame rate 48 kHz stereo variational auto encoder
codec. Based on a diffusion transformer architecture trained on a flow-matching
objective the model can edit diverse high quality stereo samples of variable duration,
with simple text descriptions. We adapt the ReNoise latent inversion method to flow
matching and compare it with the naive denoising diffusion implicit model (DDIM)
inversion on a variety of music editing prompts. Our results indicate that the
regularized latent inversion outperforms DDIM for zero-shot test-time text-guided
editing on several objective metrics. Subjective evaluations exhibit comparable
performance between both methods, showing a noticeable improvement over
previous state of the art for music editing. Code and model weights will be publicly
made available. Samples are available at https://melodyflow.github.io.

1 Introduction

Text-conditioned music generation has made tremendous progress in the past two years [Schneider
et al., 2023, Huang et al., 2023, Agostinelli et al., 2023, Copet et al., 2024, Ziv et al., 2023, Liu
et al., 2023, Li et al., 2023]. The dominant approach involves representing audio as a sequence
of compressed discrete or continuous representations and training a generative model on top of it.
Two dominant generative model architectures have emerged, one based on Language Models (LMs)
[Agostinelli et al., 2023, Copet et al., 2024], the other on diffusion [Schneider et al., 2023, Huang
et al., 2023, Liu et al., 2023, Li et al., 2023]. A third method sometimes referred to as discrete
diffusion relies on non-autoregressive masked token prediction [Ziv et al., 2023, Garcia et al., 2023].
The target level of audio fidelity depends on the models and some have already successfully generated
44.1 kHz or high stereo signals [Schneider et al., 2023, Li et al., 2023, Evans et al., 2024a].

Due to the growing popularity of diffusion models in computer vision, a new area of research has
emerged focusing on text-controlled audio editing [Wang et al., 2023, Lin et al., 2024, Garcia et al.,
2023, Wu et al., 2023, Novack et al., 2024, Zhang et al., 2024, Manor and Michaeli, 2024]. The
creative process for sound design typically involves multiple iterations and using efficient editing
methods is an effective approach to achieving this. Music editing constitutes an open ended list
of tasks such as inpainting/outpainting, looping, instrument or genre swapping, vocals removal,
lyrics editing, tempo control or recording conditions modification (e.g. from studio quality to a
concert setting). Some of those tasks have been addressed in recent works with specialised models
[Wang et al., 2023, Garcia et al., 2023, Lin et al., 2024, Wu et al., 2023, Copet et al., 2024] or
zero-shot editing methods from the computer vision domain that are exclusive to diffusion models
[Novack et al., 2024, Zhang et al., 2024, Manor and Michaeli, 2024]. However, none of these have
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demonstrated high fidelity generic style transfer capabilities, due to either lack of high quality data
or foundational music generation model, or design choices that do not generalise to any kind of
editing task. The question of inference speed is key for creatives and the music domain is particularly
challenging due to the high fidelity (48 kHz stereo) requirement in the sound design process. Recently
the Flow Matching (FM) generative modeling formulation has been introduced [Lipman et al., 2022],
that consists in building optimal transport paths between data and noise samples. It is a more robust
and stable alternative for training diffusion models with notably faster inference and was successfully
applied to train foundational speech [Le et al., 2024] and audio [Vyas et al., 2023] generative models.
Prajwal et al. [2024] employed a two-stage FM model for text-guided music generation, cascading
semantic and acoustic features generation.

In this work we present MELODYFLOW, a single-stage text-conditioned FM model designed for
instrumental music generation and editing. The model operates on continuous representations of a
low frame rate Variational Audio Encoder (VAE) codec. Additionally, thanks to the versatility of FM,
MELODYFLOW is compatible with any zero-shot test-time editing method such as DDIM inversion
[Song et al., 2020]. We enhance the editability of the FM inversion process with a regularized latent
inversion method inspired by that of [Garibi et al., 2024] for diffusion-based image editing. Both
our objective and subjective evaluations on music editing indicate that MELODYFLOW can support
a diversity of editing tasks on real songs without any finetuning, achieving fast music editing with
remarkable consistency, text-adherence and minimal quality loss compared with original samples.

Our contributions: (i) The first of its kind single-stage text-to-music FM model to generate and edit
48 kHz stereo samples of up to 30 seconds, with enhancements in both the audio latent representation
and generative model, striking a better balance between quality and efficiency. (ii) We explore a
novel regularized FM inversion method capable of performing faithful zero-shot test-time text-guided
editing on various axes while maintaining coherence with the original sample. (iii) We make the code
and model weights publicly available to foster research on music editing.

2 Method

MELODYFLOW is a non-causal transformer-based FM model conditioned on T5 text representations.
It operates on sequences of latent audio representations from a neural quantizer-free audio codec with
a VAE bottleneck. Combined with latent inversion, the model is able to perform text-guided editing
of real or generated audio samples. The overall architecture of the model is depicted in the Figure
1. Some of our design choices are critical in striking a good balance between quality and efficiency,
which we highlight hereafter. The appendix A.1 shared additional details regarding the model key
components (codec, generative model and latent inversion implementation).

2.1 Codec VAE bottleneck

Compared with Vyas et al. [2023] we swap the Residual Vector Quantization (RVQ) layer of the
codec with a VAE bottleneck. Although FM with VAE have been explored for image generation Esser
et al. [2024], our work is the first to study the influence of the VAE regulariser on music generation
performance. Indeed Rombach et al. [2022] - a seminal work on VAE for image generation - note
that LDMs trained in VQ-regularized latent spaces achieve better sample quality than KL-regularized
ones. Our ablation in appendix A.3.3 demonstrates that this conclusion does not apply for audio.
Using a KL-regularizer achieves better waveform reconstruction performance for a much lower frame
rate, unlocking faster inference and scaling to high-fidelity stereo audio (shown in appendix A.3.4).

Minibatch coupling [Tong et al., 2023, Pooladian et al., 2023] expanded over prior work on FM
modeling by sampling pairs (x, ϵ) from the joint distribution given the by the optimal transport
plan between the data X = {x(i)}Bi=1 and noise E = {ϵ(i)}Bi=1 samples within a batch of size B.
Essentially this translates into running the Hungarian algorithm so as to find the permutation matrix
P that minimizes ||X − PE||22. They demonstrate it results in straighter optimal transport paths
during inference (that are closer to the theoretical linear mapping assumption between noise and data
samples) and consequently offers better quality-efficiency trade offs. We shed light on the importance
of mini-batch coupling in section 4.2 and we underline the overall benefit of the FM model design
choices on its efficiency in appendix A.3.2.
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Figure 1: Overview of MelodyFlow. An source waveform is encoded into latent representation before
being fed to the ODE solver. A diffusion transformer predicts the flow from data to noise step by
step, while being regularized against an artificially constructed mixture of noise and data at each step.
Tedit is the target inversion timestep. Given S ODE solver steps, the inversion step size is given by
∆t = (1− Tedit)/S. The editing prompt cedit is not used during inversion.

Regularized latent inversion [Garibi et al., 2024] recently proposed ReNoise, an iterative renoising
mechanism applied at each inversion sampling step of a diffusion model. It enables building reversible
diffusion trajectories with a good reconstruction/editability balance thanks to a noise regularization
applied at each inversion step. We follow a similar reasoning but adapted in the FM setting. In
our case we only enforce the model prediction regularization, but neither de-correlation nor noise
correction steps. More details about our adaptation of ReNoise for FM can be found in appendix
A.1.4, along with an experimental comparison with the original implementation A.4.2. We provide a
comparative analysis with DDIM inversion in sections 4.2 and A.4.1.

3 Experimental setup

Model MELODYFLOW is a diffusion transformer of sizes 400M (small) and 1B (medium) parame-
ters with U-shaped skip connections Bao et al. [2023]. The model is conditioned via cross attention
on a T5 representation [Raffel et al., 2020] computed from the text description of the music. The
flow step is injected following [Hatamizadeh et al., 2023]. Minibatch coupling is computed with
torch-linear-assignement1. MELODYFLOW-small (resp. MELODYFLOW-medium) is trained
on latent representation sequences of 32 kHz mono (resp. 48 kHz stereo) segments of 10 (resp. 30)
seconds, encoded at 20 Hz frame rate (resp. 25 Hz). From the codec perspective the only difference
between encoding mono or stereo waveform is the number of input (resp. output) channels for the
first (resp. last) convolution of the encoder (resp. decoder): 1 for mono and 2 for stereo. More details
regarding audio representation and FM model training are provided in appendix A.2.

Inference and editing For text-to-music inference we use the midpoint ODE solver from
torchdiffeq with a step size of 0.03125. Classifier free guidance of 5.0 is chosen after grid
search. For music editing we run our regularized inversion method with the euler ODE solver until
Tedit = 0.04 with the same classifier free guidance of 5.0 applied in both ODE directions. Trajectory
inversion estimation is run with S = 25,K = 4, wk = k − 1 and λKL = 0.2.

1https://github.com/ivan-chai/torch-linear-assignment
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Table 1: Comparison to baselines on text-guided high fidelity music editing of samples from the
IN-DOMAIN test set, using LLM-assisted editing prompts.

MODEL METHOD OVL. ↑ REL. ↑ CON. ↑ AVG. ↑
AUDIOLDM 2-music DDPM inv. 2.48±0.07 2.36±0.08 2.72±0.09 2.52
MUSICGEN-melody Chroma cond. 2.57±0.08 2.46±0.09 2.14±0.07 2.39

MELODYFLOW-medium Reg. inv. 2.72±0.08 2.72±0.07 2.61±0.10 2.68

3.1 Datasets

Training Our training dataset is made of 10K high-quality internal music tracks and the Shutter-
Stock and Pond5 music collections with respectively 25K and 365K instrument-only music tracks,
totalling into 20k hours. All datasets consist of full-length music sampled at 48 kHz stereo with meta-
data composed of a textual description sometimes containing the genre, BPM and key. Descriptions
are curated by removing frequent patterns that are unrelated to the music (such as URLs). For 32 kHz
mono models the waveform is downsampled and the stereo channels are averaged.

Evaluation For the main text-to-music generation results we evaluate MELODYFLOW and prior
work on the MusicCaps dataset [Agostinelli et al., 2023]. We compute objective metrics for
MELODYFLOW and report those from previous literature. Subjective evaluations are conducted on a
subset of 198 examples from the genre-balanced set. For ablations we rely on an in-domain held out
evaluation set different from that of [Copet et al., 2024], made of 8377 tracks. The same in-domain
tracks are used for objective editing evaluations. Subjective evaluations of edits are run on a subset of
181 higher fidelity samples from our in-domain test set with LLM-assisted designed prompts (A.2.3).

Metrics We evaluate MELODYFLOW using both objective and subjective metrics, following the
evaluation protocol of [Kreuk et al., 2022, Copet et al., 2024] for generation. Reported objective
metrics are the Fréchet Audio Distance (FAD) [Roblek et al., 2019] with VGGish embeddings
[Hershey et al., 2017], the Kullback–Leibler divergence (KLD) with PASST audio encoder [Koutini
et al., 2021] and CLAP2 cosine similarity [Elizalde et al., 2023]. For music editing evaluations we
compute the average L2 distance between the original and edited latent sequences (LPAPS [Iashin
and Rahtu, 2021]), FADedit between the distribution of source and edited samples and CLAPedit

between the edited audio and the editing prompt. Subjective evaluations relate to (i) overall quality
(OVL), and (ii) relevance to the text input (REL), both using a Likert scale (from 1 to 5). Additionally
for music editing evaluations we report (iii) editing consistency (CON). Raters were recruited using
the Amazon Mechanical Turk platform and all samples were normalized to -14dB LUFS [Series,
2011]. For stereo samples objective evaluation the signal is down mixed into mono prior to metrics
computation. For subjective ratings we keep the original audio format generated by each model.

4 Results

4.1 Text-guided music editing

We compare MELODYFLOW-medium with existing open source music editing implementations,
namely MUSICGEN-melody and AUDIOLDM 2 with DDPM inversion (following [Manor and
Michaeli, 2024]). The table 1 presents the main music editing results. MELODYFLOW outperforms
both baselines on the quality and text-fidelity axes. Consistency-wise MELODYFLOW lags slightly
behind AUDIOLDM 2. Indeed during our listening tests we observe that AUDIOLDM 2 with DDPM
inversion sometimes only generates a distorted version of the original track. Averaging on the three
axes MELODYFLOW sets a new baseline for zero-shot music editing at test-time.

4.2 Ablations

To shed light on the benefit of our design choices, we compare MELODYFLOW with the baseline FM
implementation of [Le et al., 2024], both being trained on the same latent representation.

2https://github.com/LAION-AI/CLAP
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Table 2: FM model design ablation. FAD (resp. MSE) is reported on the IN-DOMAIN test (resp.
validation) set. Baseline is adapted from [Le et al., 2024] but retrained on our music latents.

ABLATION HEADS LAYERS INFILL SAMPLING OT-FM FADvgg ↓ MSEloss ↓
baseline 16 24 ✓ uniform ✗ .53 -
− infilling 16 24 ✗ uniform ✗ .50 .8596
+ sampling 16 24 ✗ logit-normal ✗ .44 .8484
+ batch coupling 16 24 ✗ logit-normal ✓ .42 .8322
+ wider model 18 18 ✗ logit-normal ✓ .39 .8310
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Figure 2: Efficiency-quality trade offs of MELODYFLOW in the text-guided music editing setting,
measured using objective metrics. Objective metrics (FADedit in the Figure 2a, CLAPedit in the
Figure 2b and LPAPS in the Figure 2c) indicate a sweet spot around 128 NFE.

FM design choices Table 2 presents the impact of the key design choices in the FM model training.
Considering our baseline implementation was initially designed for text-to-speech [Le et al., 2024], it
included an infilling objective that was meant to help the model handle variable length sequences that
are inherent to the speech domain. We report the in-domain test FAD and the last validation MSEloss

computed from the EMA checkpoint. No loss value is report for the baseline as the infilling objective
facilitates the task. For the second line of the table the reported loss is weighted by the logit-normal
probability density function at each sampled flow step to be comparable with logit-normal sampling.
With all methods combined the in-domain FAD is reduced to 0.39 from 0.53 and consistent with the
loss decrease, which validates our design choices.

Music editing efficiency We compare DDIM with MELODYFLOW inversion using a target inver-
sion timestep Tedit = 0. FADedit (Figure 2a), CLAPedit (Figure 2b) and LPAPS (Figure 2c) are
plotted as a function of the total number of DiT forward passes (NFE). The combination of our FM
implementation and proposed inversion method consistently outperform the baseline.

5 Discussion

In this work we presented MELODYFLOW, the first non-autoregressive model tailored for zero-shot
test-time text-guided editing of high-fidelity stereo music. In the text-to-music setting the model
offers competitive performance thanks to a low frame rate VAE codec and FM model featuring
logit-normal flow step sampling, optimal-transport minibatch coupling and L-shaped attention mask.
Combined with our proposed regularized latent inversion method, MELODYFLOW outperforms
previous zero-shot test-time methods by a large margin. The model achieves remarkable efficiency
that is key for the sound design creative process and supports variable duration samples. Our extensive
evaluation, that includes objective metrics and human studies, highlights MELODYFLOW promise for
efficient music editing with remarkable consistency, text-adherence and minimal quality degradation
compared with the original, while remaining competitive on the task of text-to-music generation. For
future work we intend to explore how to accurately evaluate specific editing axes and how such a
model could help design metrics that better correlate with human preference.
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A Appendix

A.1 MELODYFLOW key components

A.1.1 Latent audio representation

Our audio codec derives from EnCodec [Défossez et al., 2022] with additional features from the
Descript Audio Codec (DAC) [Kumar et al., 2024] (snake activations, band-wise STFT discriminators)
and [Evans et al., 2024a] (VAE bottleneck, perceptual weighting). A convolutional auto-encoder
encodes the raw waveform into a sequence of latent bottleneck representations, its frame rate function
of the convolution strides. Audio fidelity is enforced by multi-scale STFT reconstruction losses (both
genuine and adversarial). Although [Vyas et al., 2023] have successfully trained a flow matching
model on continuous latent representations extracted from the encoder of a discrete audio codec
(before the RVQ layer), we argue that the latent space of such a codec is not the best suited for
continuous modeling. We show in section A.3.3 that a VAE quantizer-free codec can operate at a
much lower frame rate than its discrete equivalent for a better level of fidelity, reducing the cost of
generation model training and inference by essentially the same factor.

A.1.2 Conditional flow matching model

Given an audio sample a ∈ RD×fs , a sequence x ∈ RL×d of latent representations is extracted by
the neural codec. Flow matching models optimal transport paths that map a sequence ϵ ∈ RL×d ∼
N (0, I) to x trough a linear transformation - function of the flow step t - following equation 1.

zt = tx+ (1− t)ϵ, t ∈ [0, 1] (1)

During training, t is randomly sampled and the neural network Θ is trained to estimate the derivative
dzt/dt conditioned on t and a text description c.

dzt/dt = vΘ(zt, t, c) = x− ϵ (2)

By design, after training, the model can be used with any ODE solver to estimate x = z1 given
ϵ = z0 (and vice versa), and a text description. The text-to-music inference happens as such: starting
from a random noise vector ϵ ∈ RL×d ∼ N (0, I) and a text description c of the expected audio the
ODE solver is run from t = 0 to t = 1 to estimate the most likely sequence of latents xgenerated.

xgenerated = ODE0−→1(ϵ, c) (3)

After the latents have been estimated they are fed to the codec decoder to materialize the waveform.
It was shown in [Kingma and Gao, 2024] that the flow step sampling density during training plays
an important role in model performance. In our implementation we chose to sample t from a logit-
normal distribution. Logit-normal sampling was indeed originally proposed in [Karras et al., 2022]
for v-prediction and also showed promising results in [Esser et al., 2024], both for the same task of
text-to-image generation.

A.1.3 Text-guided editing through latent inversion

Due to the bijective nature of the FM formulation (where given a text condition, each latent sequence
is mapped to a single noise vector), the model is compatible with existing latent inversion methods
such as DDIM inversion [Song et al., 2020]. Given the latent representation xorig of an existing
audio with an optional accompanying caption c ∈ {∅, corig}, the model can serve to estimate its
corresponding noise (or intermediate) representation ztedit = ODEtedit←−1(xorig, c) by running the
ODE solver in the backward direction until an intermediary time step tedit. Given the intermediary
representation ztedit , the ODE forward process can be conditioned on a new text description cedit
that materialises the editing prompt: xedit = ODEtedit−→1(ztedit , cedit). A good inversion process
should accurately reconstruct the input when cedit = corig, as shown in equation 4.

xedit = ODEtedit−→1(ODEtedit←−1(xorig, c ∈ {∅, corig}), corig) ≈ xorig (4)

In such case when swapping corig for cedit in the tedit −→ 1 forward direction, the expectation is for
the generated audio to preserve some consistency with the original while being faithful to the editing
prompt. However in practice it was observed by [Mokady et al., 2023] that DDIM inversion suffers
from poor editability due to the classifier free guidance.
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A.1.4 Adapting ReNoise for Flow Matching

The theoretical grounds of Flow Matching are about estimating straight trajectories between noise
and data samples, which helps in achieving efficient inference. However in practice those trajectories
are never completely straight and naive DDIM inversion suffers from two problems.

1. When running the ODE solver, any pair of successive (zt1 , zt2) along the inversion path
usually has estimated velocities vΘ(zt1 , t1, c) ̸= vΘ(zt2 , t2, c). Building a fully reversible
inversion path requires estimating z′t2 such that vΘ(zt1 , t1, c) ≈ vΘ(z

′
t2 , t2, c), for example

using the convergence property demonstrated by [Garibi et al., 2024].

2. The distribution of predicted velocities tends to shift away from that of training, partially
due to the classifier free guidance. One way for overcome this is to regularize them via
gradient descent. Given a manually constructed z̃t = xt + ϵ(1 − t) and a real zt along
the inversion trajectory, and corresponding predictions vΘ(zt, t, c) and ṽΘ(z̃t, t, c). We
arrange model predictions in 4x4 patches and compute the average Kullback-Leibler (KL)
divergence LpatchKL between corresponding patches.

Our adaptation of the ReNoise inversion algorithm for flow matching is detailed in algorithm 1.

Algorithm 1 Proposed regularized FM inversion

Input: Sequence of audio latents x. Number of ODE backward steps S. Original text description
c ∈ {∅, corig}. ReNoise iteration steps K with weights {wk}Kk=1, KL regularization weight λKL.

Output: A noisy latent zTedit
such that ODETedit−→1(zTedit

, corig) ≈ x.
∆t← (1− Tedit)/S
for t = 1, 1−∆t, . . . , Tedit +∆t do

z
(0)
t−∆t ← zt

for k = 1, . . . ,K do
δ ← vΘ(z

(k−1)
t−∆t , t−∆t, c)

if wk > 0 then
sample ϵ ∼ N (0, I)

z̃
(k−1)
t−∆t ← xt+ ϵ(1− t)

δ̃ ← vΘ(z̃
(k−1)
t−∆t , t−∆t, c)

δ ← δ − λKL∇δLpatchKL(δ, δ̃)
end if
z
(k)
t−∆t ← zt − δ∆t

end for
zt−∆t ←

∑K
k=1 wkz

(k)
t−∆t∑K

k=1 wk

end for
return zTedit

A.2 Experimental setup

A.2.1 Audio latent representation

Our compression model implementation is that of Copet et al. [2024] enhanced by band-wise
discriminators and snake activations from [Kumar et al., 2024], perceptual weighting [Wright and
Välimäki, 2019], VAE bottleneck and multi resolution STFT reconstruction loss from [Evans et al.,
2024a]. We train a mono 32 kHz codec at 20 Hz frame rate and another one supporting stereo 48 kHz
audio at 25 Hz. The bottleneck dimension is of 128. Both are trained on one-second random audio
crops for 200K steps, with a constant learning rate of 0.0003, AdamW optimizer and loss balancer
of [Défossez et al., 2022]. Stereo codecs are trained with sum and difference loss [Steinmetz et al.,
2020]. The bottleneck layer statistics are tracked during training (dimension-wise) for normalization
prior to FM model training.
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A.2.2 Flow matching model

MELODYFLOW is a diffusion transformer that follows Esser et al. [2024] configurations where each
head dimension is of 64 and the model has the same number of heads and layers (either 18 or 24).
Model implementation is that of audiocraft3 but adapted for FM following [Vyas et al., 2023]:
U-shaped skip connections are added along with linear projections applied after concatenation with
each transformer block output Bao et al. [2023]. The model is conditioned via cross attention on
a T5 representation [Raffel et al., 2020] computed from the text description of the audio, using
20% dropout rate during training in anticipation for the classifier free guidance applied at inference.
Cross attention masking is used to properly adapt to the text conditioning sequence length of each
sample within a batch and we use zero attention for the model to handle unconditional generation
transparently. No prepossessing is applied on text data and we only rely on the descriptions (additional
annotations tags such as musical key, tempo, type of instruments, etc. are discarded, although they
also sometimes appear in the text description). The flow step is injected following [Hatamizadeh et al.,
2023]. Minibatch coupling is computed with torch-linear-assignement4. MELODYFLOW-
small (resp. MELODYFLOW-medium) is trained on latent representation sequences of 32 kHz mono
(resp. 48 kHz stereo) segments of 10 (resp. 30) seconds, encoded at 20 Hz frame rate (resp. 25 Hz).
MELODYFLOW-small (resp. MELODYFLOW-medium) is trained for 240k (resp. 120k) steps with
AdamW optimizer (β1 = 0.9, β2 = 0.95, weight decay of 0.1 and gradient clipping at 0.2), a batch
size of 576 and a cosine learning rate schedule with 4000 warmup steps. Additionally, we update an
exponential moving average of the model weights ever 10 steps with a decay of 0.99. Each model
is trained on 8 H100 96GB GPUs with bfloat16 mixed precision and FSDP [Zhao et al., 2023].
MELODYFLOW-small requires 3 days and MELODYFLOW-medium 6 days of training.

A.2.3 LLM-assisted editing prompt generation

For editing prompts design we prompted the LLama-3 large language model Dubey et al. [2024] to
modify the original descriptions by targeting genre swapping. Edited descriptions were then manually
verified to ensure their plausibility and coherence. As an example, given the original description This
is a lush indie-folk song featuring soaring harmony interplay and haunting reverb-y harmonica, the
resulting editing prompt is This is a lush Indian classical-inspired song featuring soaring harmony
interplay and haunting reverb-y bansuri flute.

A.2.4 Subjective evaluation form

A screenshot of the music subjective evaluation form is shown in the Figure 3.

A.3 Text-to-music generation experiments

Text-to-music generation performance is reported in table 3. For text-to-music qualitative evalua-
tions we compare MELODYFLOW to three baselines: MUSICGEN, AUDIOLDM 2 and STABLE-
AUDIO. For MUSICGEN, AUDIOLDM 2 we use the available open source implementations and for
STABLE-AUDIO we use the public API (as of Wed. May 14 2024, AudioSpark 2.0 model version).
MELODYFLOW achieves comparable performance with MUSICGEN, both lagging slightly behind
STABLE-AUDIO in terms of human preference. We do not report objective metrics on STABLE-
AUDIO as none were reported on the full MusicCaps benchmark Evans et al. [2024a]. MELODYFLOW
achieves remarkable efficiency with only 64 inference steps.

A.3.1 Classifier-free guidance

In the Figure 4a we report the in-domain evaluation FAD as a function of the classifier-free guidance
factor in the text-to-music generation setting. Throughout the paper we use a classifier-free guidance
factor of 5.0.

3https://github.com/facebookresearch/audiocraft
4https://github.com/ivan-chai/torch-linear-assignment
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Figure 3: Music editing subjective evaluation form. Given the original song A, raters are asked to
evaluate three different edits of A, on the three following axes: quality, text adherence, consistency.

Table 3: Comparison to text-to-music baselines. We report the original objective metrics for AUDI-
OLDM 2 and MUSICGEN. For subjective evaluations we report mean and CI95.

MODEL FADvgg ↓ KL ↓ CLAPsim ↑ OVL. ↑ REL. ↑ # STEPS

Reference - - - 3.67±0.10 4.04±0.10 -

AUDIOLDM 2 3.1 1.20 0.31 2.79±0.08 3.40±0.08 208
MUSICGEN-small 3.1 1.29 0.31 - - 1500
MUSICGEN-medium 3.4 1.23 0.32 3.40±0.08 3.79±0.07 1500
STABLE-AUDIO - - - 3.67±0.08 3.89±0.07 100

MELODYFLOW-small 2.8 1.27 0.33 3.27±0.08 3.83±0.08 64
MELODYFLOW-medium 3.5 1.30 0.31 3.41±0.08 3.77±0.07 64

A.3.2 Inference efficiency

In the Figure 4b we present the measured FAD as a function of inference steps for both the baseline
and final version of MELODYFLOW. Not only is MELODYFLOW achieving better performance
overall but it is able to outperform the baseline with 16 times fewer NFE (e.g. inference steps).

A.3.3 Codec bottleneck and framerate

We ablate on the bottleneck choice for a fixed frame rate of 50Hz by comparing RVQ ([Copet et al.,
2024] setting), VAE and identity in Table 4. From the codec perspective our results indicate optimal
reconstruction performance with the identity or VAE bottlenecks followed by RVQ. The same ranking
applies for SI-SDR [Le Roux et al., 2019]. Regarding FM model performance we report a decreasing
in-domain FAD in the favor the VAE. Ablating on the VAE codec frame rate shows that 5 Hz is
comparable to 50 Hz codec with RVQ regarding codec performance. FM model performance is closer
to that of 50 Hz codec with identity bottleneck. For MELODYFLOW-small we chose to use 20 Hz.
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Figure 4: Text-to-music generation quality (FAD) as a function of the classifier-free guidance factor
(Figure 4a) and inference steps (Figure 4b). The baseline of the Figure 4b is the FM model architecture
of [Le et al., 2024] but retrained on our music latents. The combination of our flow matching design
choices enable faster generation for a given efficiency budget or better overall quality.

Table 4: Codec bottleneck and framerate ablation for 32 kHz mono audio. Both compression and
generative model performances are reported on the IN-DOMAIN test set.

BOTTLENECK FRAME RATE (HZ) STFTloss ↓ SI-SDR↑ FADvgg ↓
∅ 50 0.35 18.5 0.68

RVQ 50 0.55 4.4 0.55

50 0.34 18.1 0.48
VAE 20 0.44 12.9 0.47

5 0.53 3.5 0.67

Table 5: Ablation on L-mask and stereo for MELODYFLOW-large. Each variant is trained on 30s
audio segments encoded with a 25 Hz frame rate codec trained on 48 kHz audio.

CHANNELS STFTloss ↓ SI-SDR↑ L-MASK FAD10s ↓ FAD30s ↓

2 0.40 12.48 ✓ 0.59 0.65
✗ 1.48 0.65

1 0.39 13.34 ✓ 0.49 0.59

A.3.4 Scaling for high-fidelity and duration versatility.

The table 5 reports the impact of moving from mono to stereo with the same MELODYFLOW-medium
model size (1B parameters). We also report the effect of applying a L-shaped attention mask during
model training to support durations shorter than 30 seconds during inference. For each sequence
of length L, we randomly select a segment boundary within the range [0, L]. Positions before the
boundary can only attend to themselves in the self-attention, while positions after it attend to the
entire sequence. The in-domain FAD is reported for 10s and 30s generated segments. Our results
indicate that the L-mask helps supporting versatile duration with no penalty on full-length segments,
unlocking faster inference for shorter segments. However moving from mono to stereo only slightly
affects the generative model performance, likely due to our mono-based evaluation.

A.4 Additional music editing ablations

A.4.1 Flow matching target inversion timestep

In the Figures 5a, 5b and 5c we report music editing objective metrics as a function of Tedit,
comparing naive DDIM inversion with MELODYFLOW. For MELODYFLOW inversion we ablate
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Figure 5: Music editing quality as a function of the target inversion step Tedit. We report FADedit

(Figure 5a), CLAPedit (Figure 5b) and LPAPS (Figure 5c) objective metrics.
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Figure 6: Effect of the loss regularization weight λKL on the quality (Figure 6a) and text-adherence
(Figure 6b) of music editing. Noise and velocity prediction are compared, with or without the original
text description corig.

on the original text description used in the backward ODE process (cTedit←−1 ∈ {∅, corig}). DDIM
with text conditioning is not shown due to its instability.We observe that our proposed regularized
inversion outperforms DDIM inversion, irrespective of the use of the text conditioning in the inversion
process. Using corig to condition the inversion shows better text adherence (higher CLAPedit) at the
detriment of quality (higher FADedit). Consistency with the original song is generally much higher
(lower LPAPS) than when using DDIM inversion, which correlates with our listening tests. The
S-shaped FAD curves of the Figure 5a indicate an inversion target optimum around Tedit = 0.06.

A.4.2 Regularized inversion ablation

During latent inversion the FM model predicts the velocity vΘ(zt, t, c) = x − ϵ. The predictions
are regularized using the Algorithm 1 using a weighted KL patch-wise divergence loss LpatchKL.
In the Figures 6a and 6b we ablate on the divergence loss weight λKL for Tedit = 0.04, using
S = 25,K = 4, wk = k − 1. Since during latent inversion we know the original latent xorig, the
model prediction can be rewritten as ϵ-prediction by computing ϵ = vΘ(zt, t, c) − xorig. In that
scenario we can apply the exact ReNoise inversion method of [Garibi et al., 2024], using 10 iterations
of noise de-correlation (shown as ϵ-prediction in the Figures). Whether the model prediction is
expressed as noise or velocity, the Figures show that an optimum can be achieved around λKL = 0.15
for velocity prediction and around 0.05 for noise prediction. Overall the quality is better (lower
FADedit in the Figure 6a) when directly regularizing the velocity prediction. In both cases we observe
a higher CLAPedit in the Figure 6b when the original text description corig conditions the inversion
process, confirming better text-adherence. This happens at the expense of a higher FADedit compared
with unconditional inversion.
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A.5 Related work

Audio representation Recent advancements in neural codecs have seen the application of VQ-VAE
on raw waveforms, incorporating a RVQ bottleneck as demonstrated in Zeghidour et al. [2021],
Défossez et al. [2022], later refined as per Kumar et al. [2024]. [Evans et al., 2024a] proposed a
modification to this approach by replacing the RVQ with a VAE bottleneck to enhance the modeling
of continuous representations. In addition, several recent audio generative models have adopted
Mel-Spectrogram latent representations, coupled with a vocoder for reconstruction, as shown in
the works of [Ghosal et al., 2023, Liu et al., 2023, Le et al., 2024]. Furthermore, Défossez et al.
[2022] introduced an additional layer of complexity by incorporating quantization to support discrete
representation on top of the continuous representation.

Text-to-music generation Models that operate on discrete representation are presented in the works
of [Agostinelli et al., 2023, Copet et al., 2024, Ziv et al., 2023]. Agostinelli et al. [2023] proposed
a representation of music using multiple streams of tokens, which are modeled by a cascade of
transformer decoders conditioned on a joint textual-music representation [Huang et al., 2022b]. Copet
et al. [2024] introduced a single-stage language model that operates on streams of discrete audio
representations, supporting both 32 kHz mono and stereo. Ziv et al. [2023] replaced the language
model with a masked generative single-stage non-autoregressive transformer. Schneider et al. [2023],
Huang et al. [2023], Liu et al. [2023] use diffusion models. Schneider et al. [2023] utilized diffusion
for both the generation model and the audio representation auto-encoder. Liu et al. [2023] trained
a foundational audio generation model that supports music with latent diffusion, conditioned on
autoregressively generated AudioMAE features [Huang et al., 2022a]. Evans et al. [2024a,b] proposed
an efficient long-form stereo audio generation model based on the latent diffusion of VAE latent
representations. This model introduced timing embeddings conditioning as a method to better control
the content and length of the generated music.

Music editing Lin et al. [2024] proposed a parameter-efficient fine-tuning method for autoregressive
language models to support music inpainting tasks. Garcia et al. [2023] developed a masked acoustic
modeling approach for music inpainting, outpainting, continuation and vamping. Wu et al. [2023]
fine-tuned a diffusion-based music generation model with melody, dynamics and rhythm conditioning.
Novack et al. [2024] is a fine-tuning free framework for controlling pre-trained text-to-music diffusion
models at inference-time via initial noise latent optimization. Zhang et al. [2024] investigated zero-
shot text-guided music editing with conditional latent space and cross attention maps manipulation.
Manor and Michaeli [2024] employs DDPM inversion [Huberman-Spiegelglas et al., 2023] for
zero-shot unsupervised and text-guided audio editing.
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