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ABSTRACT

Hierarchical Federated Learning (HFL) advances the classic Federated Learning
(FL) by introducing the multi-layer architecture between clients and the central
server, in which edge servers aggregate models from respective clients and further
send to the central server. Instead of directly uploading each update from clients
for aggregation, the HFL not only reduces the communication and computational
overhead but also greatly enhances the scalability of supporting a massive num-
ber of clients. When HFL operates for applications having a large-scale clients,
edge servers train their models in a cyclic pattern (a ring architecture) as opposed
to the star-type of architecture where each edge develops their own models in-
dependently.We refer it as Cyclic HFL(CHFL). Driven by its promising feature
of handling data heterogeneity and resiliency, CHFL has a great potential to be
deployed in practice. Unfortunately, the thorough convergence analysis on CHFL
remains lacking, especially considering the widely-existing data heterogeneity
issue among clients. To the best of our knowledge, we are the first to provide a
theoretical convergence analysis for CHFL in strongly convex, general convex,
and non-convex objectives. Our results demonstrate the convergence rate are
Õ(1/MNRKT ) for strongly convex objective, O(1/

√
MNRKT ) for general

convex objective, and O(1/
√
MNRKT ) for non-convex objective, under standard

assumptions. Here, M is the number of edge servers, N is the number of clients
in edge, K is local steps in client, and R is the edge training round. Through
extensive experiments on real-world datasets, besides validating our theoretical
findings, we further show CHFL achieves a comparable or superior performance
when accounting for both inter- and intra-edge data heterogeneity.

1 INTRODUCTION

Federated Learning (FL) McMahan et al. (2017) has emerged as a promising distributed learning
framework in which a large number of distributed devices collaborate to train a joint model without
sharing their data. Although FL has attracted a significant interest on theoretical research, the standard
FL architecture does not always perform well in practical scenarios. When the number of clients
(devices) participate in the FL, the communication burden in between the central server and each
client for model update and aggregation may significantly impact the FL performance. As a solution,
the edge-based FL has been proposed Wu et al. (2020) to replace a single central server with multiple
edge servers. In particular, each edge server acts as a parameter server responsible for a smaller set
of clients, who can meet specific communication or data requirements. However, as stated in Wang
et al. (2021a), this edge-based FL still suffers the performance drop due to the limited number of
participating clients managed by each edge.

To alleviate the communication burden on a central server, Hierarchical Federated Learning (HFL)
Liu et al. (2020); Deng et al. (2021) introduces a three-layer architecture, i.e., a central server, multiple
edge servers, and clients. Each edge server, along with its associated clients, forms an edge. The HFL
has two levels of model updates including edge model update and global model update, in which
many edge model updates follow the star architecture Lee et al. (2020) to aggregate local model
updates from clients. On the other hand, most HFL works Liu et al. (2022; 2023; 2020); Khan et al.
(2023) also assume the global model update follows the star architecture, i.e., the centralized HFL,
and provides convergence analysis based on various assumptions. Rather than the star architecture,
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for many FL applications across a large geographic regions Zhu et al. (2021); Paulik et al. (2021);
Yang et al. (2018); Lee et al. (2020), the ring architecture is a better fit in terms of the participation
pattern, where each edge server updates their models to another edge server rather than the central
server, namely, the Cyclic HFL (CHFL). Compared to the star-like architecture with centralized HFL,
CHFL improves scalability by accommodating more clients without being affected by central server
dropout issues when the communication burden increases. Unfortunately, while a few recent works
Li & Lyu (2024); Cho et al. (2023) have discussed the convergence rate in the cyclic pattern, they are
limited to FL, and a comprehensive analysis under standard assumptions in HFL remains lacking. In
this work, our contributions are as follows,

• We derive convergence guarantees for CHFL on heterogeneous data under standard as-
sumptions for strongly convex, general convex, and non-convex objectives, all of which
are compared with the state-of-the-art as in Tab. 1. We note that our convergence rates
have the highly desirable speedup effect in terms of both edge server number M and edge
round R. As a result of generality, several well-studied FL variants such as Li & Lyu (2024);
Karimireddy et al. (2020) become special cases of our framework, further echoing the
correctness of our conclusion. Compared with other centralized HFL variants, we achieve
the best convergence rate without considering the transmission latency between the central
server and the edge server.

• We provide insights into achieving optimal convergence improvements by clustering clients
with different objectives. Unlike current clustering policies, such as solely grouping clients
with similar data Liu et al. (2020); Wang et al. (2022) or ensuring edges share similar data
Mhaisen et al. (2021); Deng et al. (2021), our approach determines the best policy based on
the settings of the number of edges, clients, local steps, and edge training rounds for various
objectives. As in the general convex case, having all edges sharing similar data will lead to
an optimal convergence improvement when the number of edges is relatively small. On the
other hand, clustering clients with similar data will help achieve an optimal convergence
improvement if the number of edges is large.

• We validate our findings with comprehensive simulation-based study on real-world datasets.
The experimental results show that CHFL can achieve comparable or superior performance
in terms of accuracy and convergence speed measured by local model updates. Meanwhile,
we show that the edge training epoch accelerates the convergence speed, and the inter-edge
heterogeneity has more effect on convergence speed than the intra-edge heterogeneity in
specific conditions.

2 RELATED WORK

2.1 HIERARCHICAL FEDERATED LEARNING

In addressing the challenges of high communication overhead and latency in vanilla FL, HFL Liu
et al. (2020); Bonawitz et al. (2019); Zhou & Cong (2019) was proposed to add a layer of edge
servers, which simplifies the communication process to occur only between edge servers and central
server Wang et al. (2021b). Liu et. al in Liu et al. (2020) prove HFL could achieve convergence
amidst inter-edge data heterogeneity, yet the impact of intra-edge data heterogeneity on convergence
remains unknown. Similarly, Abad et.al Abad et al. (2020) show the reduced communication latency
by deploying HFL in a real mobile edge computing system. Xu et al. in Xu et al. (2021) introduce
an adaptive HFL approach, focusing on optimal resource allocation and control of edge intervals to
enhance training accuracy. OUEA Mhaisen et al. (2021) and SHARE Deng et al. (2021) consider the
clients cluster problem in HFL. OUEA Mhaisen et al. (2021) cluster clients with similar data into one
edge to improve performance in HFL but they only consider the convex objective. SHARE Deng et al.
(2021) ensures each edge shares similar data to reduce data heterogeneity among edges to improve
performance. Both discuss cluster policies in the context of centralized HFL, but these policies
cannot be directly applied to CHFL to enhance performance. Our convergence analysis reveals that
the effectiveness of cluster policies depends on system settings and their specific objectives.
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Table 1: Convergence rates for FL and HFL variants.

System Method Cyclic
Pattern Convexity7 Convergence

Rate8

FL

Li & Lyu (2024)1 ✓
SC Õ

(
1

CKT
+ 1

MT2

)
GC O

(
1

CKT
+ 1

(CK)1/3T2/3

)
NC O

(
1√

CKT
+ 1

(CK)1/3T2/3

)
Karimireddy et al. (2020) × SC O

(
1

CKT
+ 1

T2

)
Koloskova et al. (2020) × SC O

(
1

CKT
+ 1

T2

)
Cho et al. (2023) 2 ✓ NC Õ

(
M

KNT
+ ML

NT
(MN/M−N

MN/M−1
)
)

HFL

Liu et al. (2022) 3 × NC O
(

1√
RKTMN

+ 1
RKT

)
Liu et al. (2023) 4 × NC O

(
1√

RKT

)
Khan et al. (2023) 5 × SC O

(
1
T

)
Liu et al. (2020) 6 × SC O

(
1

TG(R,K)

)
This paper ✓

SC Õ( 1
MNRKT

)
GC O( 1√

MNRKT
)

NC O( 1√
MNRKT

)
1 The Sequential Federated Learning(SFL) with a full client participation.
2 The cyclic Federated Learning on the non-convex case with Polyak-Łojasiewicz.
3 Hier-Local-QSGD reduces the communication cost between the cental server and clients.
4 Group-FEL with a wise client sampling strategy to improve the convergence speed.
5 HSFL addresses the issue of limited computational resources on local devices.
6 G(R,K) represents the function containing local steps K and edge round R.
7 Shorthand notations: SC: Strongly Convex, GC: General Convex, NC: Non-Convex.
8 We omit absolute constants and polylogarithmic factors.

2.2 CYCLIC/SEQUENTIAL FEDERATED LEARNING

In vanilla Federated Learning, clients exhibit system heterogeneity. Hence, it is advisable to select
qualified devices suited for FL, ensuring they have a stable network for efficient model updates,
sufficient charging to manage energy use, and idle status to avoid disruptions. Compared with the
vanilla FL setting with random device selection Hard et al. (2018); Huba et al. (2022); Paulik et al.
(2021), those qualified devices usually participate in FL at specific time and follow a cyclic pattern
Zhu et al. (2021); Paulik et al. (2021); Yang et al. (2018); Lee et al. (2020). Cho et al. in Cho
et al. (2023) explores various gradient update methods in FL under a cyclic pattern. However, their
convergence analysis is based on the assumption that the local client’s objective conforms to the
Polyak-Łojasiewicz condition Karimi et al. (2016), a limitation considering that objectives in FL
are often general non-convex Das et al. (2022). Li et al. in Li & Lyu (2024) offer the convergence
analysis for both Parallel Federated Learning (PFL) and Sequential Federated Learning (SFL) with
convex and non-convex objectives. They have the result that SFL has a better guarantee than PFL in
specific conditions. However, they both discuss the convergence analysis on the two-layer FL, for
which the cyclic pattern on HFL is still missing. To address this gap, we extend the application of the
cyclic pattern to HFL and provide a convergence analysis for both convex and non-convex objectives.
Furthermore, we delve into the impact of data heterogeneity on convergence speed across various
client participant patterns in HFL. We attain optimal convergence rate compared to other studies Liu
et al. (2023); Xu et al. (2021).

3 PRELIMINARY ON CYCLIC HFL

3.1 NOTATIONS

We consider a CHFL system having a set of edge servers (interchangeably with edges) M. Each
edge server i ∈ M will serve clients Ni with N = |Ni|. For each client j ∈ Ni, it has the
local empirical loss function, Fj(x) = 1

|Dj |
∑

ξ∈Dj
ℓ(x, ξ), where Dj is the training dataset and

ℓ(x, ξ) is the loss value of the model x ∈ Rd at data sample ξ. For each edge server i, it optimizes

3
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fi(x) :=
1

|Ni|
∑

j∈Ni
Fj(x). The global optimization task is identical to that of standard FL where

the global objective is f(x) := 1
M

∑
i∈M fi(x) with M = |M| and the model can be founded by

achieving minx∈Rdf(x). Please refer to Appendix A for all symbol notations.

3.2 ASSUMPTIONS

Assumption 3.1 (Bounded variance). For the local objective Fj(x) in any client, the local stochastic
gradient ∇Fj(x, ξj) computed using a mini-batch ξj , sampled uniformly at random from local
dataset Dj , has bounded variance, that is E∥∇Fj(x, ξj)−∇Fj(x)∥ ≤ σ2, for all clients.

Assumption 3.2 (Smoothness). Smoothness of Fj(x),∀j ∈ Ni,∀i ∈ M. The clients’ local objective
functions are all L-smooth, i.e., ∥∇Fj(x)−∇Fj (x

′)∥ ≤ L ∥x− x′∥ for all x and x′.

Assumption 3.3 (Intra-Edge & Inter-Edge Data Heterogeneity for Convex Objectives). There
exist constants σc, σg ≥ 0, such that for all x, for all i ∈ M and for all j ∈ Ni,∥∥∥∇Fj(x)− 1

|Ni|
∑

j∈Ni
∇Fj(x)

∥∥∥ ≤ σc, and
∥∥∥ 1
|Ni|

∑
j∈Ni

∇Fj(x)−∇f(x)
∥∥∥ ≤ σg .

Assumption 3.4 (Intra-Edge & Inter-Edge Data Heterogeneity for Non-Convex objective). There ex-
ists two constants σc, σg ≥ 0 , such that 1

M

∑M
i=1 ∥∇fi (x

∗)∥2 = σ2
g and 1

N

∑N
j=1 ∥∇Fj (x

∗)∥2 =

σ2
c where x∗ ∈ argminx∈Rd f(x) is one global minimizer.

The first two assumptions are standard in both convex and non-convex optimization Ghadimi & Lan
(2013); Bottou et al. (2018); Li & Lyu (2024); Yang et al. (2021). For Assumption 3.3, the bounded
data heterogeneity is also a standard assumption in FL with different architectures Liu et al. (2020);
Li & Lyu (2024); Yang et al. (2022); Li et al. (2019); Cho et al. (2023), which is used for non-convex
cases. If all clients in one edge train model on Independent and Identically Distributed (IID) data, i.e.
all clients in one edge share similar data and all edge may share different data, then σc ≃ 0. If all
edges train model on IID data, i.e., all client in one edge may share different data and all edge share
similar data, then σg ≃ 0. A larger σc or σg indicates a higher level of data heterogeneity. We take
similar data as data with same label set and different data as data with different label set. Following
Li et al. Li & Lyu (2024) and Koloskova et al. Koloskova et al. (2020), Assumption 3.4 uses one
weaker assumption to bound the diversity on intra-edge and inter-edge only at the optima for the
convex case.

3.3 DESCRIPTION OF CYCLIC HFL

We assume all edge servers participate in a natural cyclic pattern without the guidance from the
central server, as shown in Fig.1. The training process of CHFL is as follows. In each global update
t = 0, ..., T − 1, the edge servers randomly forms a participated queue, Q, with |Q| = M . Hence,
the cyclic process is as follows, when t = 0, the initialized model x0 is randomized or pre-trained by
a public dataset. This model can be used as an initialized model by the first edge server in Q. Then,
the traditional FL is run in the first edge, in which N clients are selected to train their own model with
K steps and upload model updates to the edge server. The above process repeats for R edge rounds.
After that, the aggregated edge model will be sent to the next edge server in Q as an initialized model
for training, until all selected edges finish the training process. We refer to the above process as one
global round. In the next global round, the first edge server will receive an updated model from the
last edge server of the previous global round. A more detailed process is shown in Alg. 1.

4 CONVERGENCE THEORY

In this section, we conduct the convergence analysis on the strongly convex, general convex, and
non-convex cases for CHFL (See proof details in Appendix C). By comparing with the convergence
rate of other state-of-the-art HFL algorithms, our convergence rate is the optimal. To be more
insightful for practical applications, we also present the convergence rate when adopting partial
edge/client participate in the CFL.

Theorem 4.1. For CHFL (Algorithm 1), with Assumptions 3.1, 3.2, 3.4 for strongly convex and
general convex, Assumptions 3.1, 3.2, and 3.3 for non-convex case, set η̃ := MNRKη, Πsc :=

4
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Figure 1: System architecture of CHFL

Algorithm 1 Cyclic HFL
Initialization: x0

In each global round t ∈ {0, 1, . . . , T − 1},
sample an edge server permutation Q
for edge server i ∈ Q do

for edge round r = 0 to R− 1 do
for client j ∈ Ni do

for local step k = 0 to K − 1 do
xi,j
r,k+1 = xi,j

r,k − ηgi,j
r,k

a

end for
end for
xi
r+1 = xi

r −
η

|Ni|
∑

j∈Ni
gr,j

b

end for
Transmit xi to next edge server.

end for

agi,j
r,k = ∇Fj(x

i,j
r,k, ξ

i,j
r,k)

bgr,j =
∑K−1

k=0 ∇Fj(x
i,j
r,k, ξ

i,j
r,k)

E
[
f
(
xT
)
− f (x∗)

]
, Πgc := E

[
f
(
xT
)
− f (x∗)

]
and Πnc := min0≤t≤T E

[∥∥∇f
(
x(t)

)∥∥2], we
have the following upper bounds,

Strongly convex: With the following learning rate condition, 1
µT ≤ η̃ ≤ 1

35L . We have the upper
bound,

Πsc ≤ 5µD2 exp

(
−µη̃T

2

)
︸ ︷︷ ︸

Optimization term

+
27η̃σ2

MNRK
+

18Lη̃2(M2NR2 +NR2 + 1)σ2
c

M2N2K2
+

53Lσ2
g η̃

2

M︸ ︷︷ ︸
Error terms

(1)

General convex: With the following learning rate condition, η̃ ≤ 1
35L . We have the upper bound,

Πgc ≤
10D2

3η̃T︸ ︷︷ ︸
Optimization term

+
27η̃σ2

MNRK
+

18Lη̃2(M2NR2 +NR2 + 1)σ2
c

M2N2K2
+

53Lσ2
g η̃

2

M︸ ︷︷ ︸
Error terms

(2)

Non-convex: With the following learning rate condition, η̃ ≤ 1
35L . We have the upper bound,

Πnc ≤
2[f(x0)− f(x∗)]

η̃T︸ ︷︷ ︸
Optimization term

+
12Lη̃σ2

5MNRK
+

2L2qσ(M,N,R,K)

MNRK
(σ2

g + σ2
c )η̃

2︸ ︷︷ ︸
Error terms

(3)

where qσ(M,N,R,K) =
2R+3(R−1)(M−1)NK+3(M−1)(K−1)+

2(K−1)
RN +3(K−1)

6M + RNK(M−1)
3 for

the non-convex case and D :=
∥∥x0 − x∗

∥∥ for the convex case.

In Theorem 4.1, we have our effective learning rate η̃ := MRNKη, in which the edge number M
and edge round R are induced by the hierarchical architecture. With a larger η̃, the optimization term
will get vanished, while the error terms would be larger. Therefore, Corollary 4.2 can help find an
appropriate η̃ to achieve a balance between two parts. Compared with the two-layer FL algorithms Li
& Lyu (2024); McMahan et al. (2017), we specifically focus on the inter-edge data heterogeneity.
Corollary 4.2. Applying the results of Theorem 4.1, with Assumptions 3.1,3.2,3.4 for strongly convex
and general convex, Assumptions 3.1, 3.2, and 3.3 for non-convex case, we can obtain the convergence
bounds with appropriate learning rates for CHFL as follows:
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Strongly convex: With following learning rate condition, 1
µT ≤ η̃ ≤ 1

35L , we have the convergence
rate:

Πsc = Õ

(
σ2

µMNRKT
+

L(M2NR2 +NR2 + 1)σ2
c

M2N2K2µ2T 2
+

Lσ2
g

Mµ2T 2
+ µD2 exp(− µT

70L
)

)
(4)

General convex: With following learning rate condition, η̃ ≤ 1
35L .We have the convergence rate:

Πgc = O

(
σD√

MNRKT
+

(L(M2NR2 +NR2 + 1)D4σ2
c )

1
3

(MNRT )2/3
+

(Lσ2
gD

4)
1
3

(MT 2)
1
3

+
LD2

T

)
(5)

Non-convex: With following learning rate condition, η̃ ≤ 1
35L .We have the convergence rate:

Πnc = O
(

(Lσ2H)1/2√
MNRKT

+
(L2qσ(M,N,R,K)H2)1/3

(MNRKT 2)1/3
(
σ2
g + σ2

c

) 1
3 +

LH

T

)
(6)

where O omits absolute constants and Õ omits absolute constants and polylogarithmic factors.
H := f(x0)− f(x∗) for the non-convex case and D := ||x0 − x∗|| for the convex case.

4.1 CONVERGENCE RATE

By Corollary 4.2, for a sufficiently large T , the convergence rate is determined by the first term induced
by SGD variance σ for all cases, result in convergence rates of Õ(1/MNRKT ), O(1/

√
MNRKT ),

O(1/
√
MNRKT ) for strongly convex case, general convex case, and non-convex case, respectively.

With different gradient descent methods and data heterogeneity scenarios, we have different conver-
gence rates caused by the change of the dominant term. When σ ≃ 0 with a better SGD variance
reduction method De & Goldstein (2016); Alain et al. (2015) or using GD for gradient updates
Andrychowicz et al. (2016), the convergence rate can be improved. For example, for the general
convex case with σ ≃ 0, the best convergence rate is O(1/T 2/3) when the dominant term depends
on σc and σg unequally for different decay rates. In the strongly convex case, the best convergence
rate can reach to Õ(1/T 2) under similar conditions. For the non-convex case, the best convergence
rate can achieve O(1/T 2/3) depending on σc and σg equally for the same decay rate.

4.2 EFFECT OF DATA HETEROGENEITY

The inter-edge data heterogeneity significantly affects convergence speed more than intra-edge data
heterogeneity in specific conditions for general convex and strongly convex cases, while they have
equal effects for non-convex case.

• General convex case. The decay rate of σc is O( (M
2NR2+NR2+1)

1
3

(MNRT )2/3
) and the decay rate of σg is

O( 1

(MT 2)
1
3
). When (M2NR2+NR2+1)

1
3

(MNRT )2/3
< 1

(MT 2)
1
3

, i.e., M < N , the inter-edge data heterogeneity

has more effect on convergence speed than intra-edge data heterogeneity. This finding gives us the
insights that when the number of clients per edge exceeds the total number of edge servers (a
common case in practice), reducing inter-edge data heterogeneity σg can enhance the conver-
gence speed. For example, if we train a next word prediction model with CHFL for all ages people,
and each age has its own word typing habit, it is better to have one edge train the data with all ages to
reduce σg rather than one edge covering one age.

• Strongly convex case. We can still achieve a faster convergence speed by reducing σg when
M < N with appropriate settings of K and R to satisfy MR2 < NK2. This condition ensures
that the decay rate of intra-edge data heterogeneity is faster than inter-edge data heterogeneity, i.e.
M2NR2+NR2+1

M2N2K2T 2 < 1
MT 2 . These results align with the cluster policy where the data distribution

among edges tends to be IID, i.e.,σg ≃ 0, as suggested by Mhaisen et al. (2021); Deng et al. (2021).
However, other works like Liu et al. (2020); Wang et al. (2022) propose a completely opposite cluster
policy by grouping clients with similar data to reduce intra-edge data heterogeneity σc and improve
convergence speed. This opposing approach is also effective when MR2 > NK2, such as when the
intra-edge data heterogeneity decays more slowly than the inter-edge heterogeneity.
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Based on our convergence analysis, reducing any form of data heterogeneity, whether intra-
edge or inter-edge, can enhance convergence speed. The challenge lies in determining which
reduction yields the optimal improvement. This largely depends on the settings of M,N,R,K
and objectives.

4.3 EFFECT OF EDGE ROUND R

Based on Corollary 4.2, with non-zero σ, increasing R speeds up the convergence with sufficient large
T , but it cannot always benefit convergence speed in other scenarios. For example, as in the strongly
convex case, larger edge training round R has a negative effect on the convergence speed when the
intra-edge data heterogeneity dominates convergence. Moreover, when the dominant term depends
on inter-edge data heterogeneity for both strongly convex and general convex case, increasing R can
not affect the convergence speed. For the non-convex case, edge training round R affects both terms
of SGD variance σ and data heterogeneity, increasing R improves convergence speed.

4.4 PARTICIPATION PATTERN

Since partial edge/device participation has more practical interest than full edge/device participation,
we also derive the bound for partial participation for strongly convex and general convex cases.
Consider only S ≤ M edges are randomly selected for training in each global round, in which each
edge selects P ≤ N clients for local training. Fully participation can achieve a better convergence
rate than partial participation. There are additional terms caused by partial participation on both
strongly convex and general convex cases, which is consistent with Li & Lyu (2024); Yang et al.
(2021). The difference lies in the additional term caused by the edge sampling, i.e., the second term in
Eq. 7 and Eq. 8. The inclusion of the two middle terms shows that the number of selected clients and
edges can still enhance the convergence speed. Due to the limited space, we take ϕsc(S, P,K,R, T )
and ϕgc(S, P,K,R, T ) as the last three terms of Eq. 4 and Eq. 5, where M and N are replaced by S
and P .

Πsc = Õ

(
σ2

µSPRKT
+

(N − P )σ2
c

µTP (N − 1)
+

(M − S)σ2
g

µTS(M − 1)
+ ϕsc(S, P,K,R, T )

)
(7)

Πgc = O

 σD√
SPRKT

+

√
(N − P )D2σ2

c

TP (N − 1)
+

√
(M − S)D2σ2

g

TS(M − 1)
+ ϕgc(S, P,K,R, T )

 (8)

4.5 DISCUSSION AND LIMITATIONS

As in Li & Lyu (2024); Karimireddy et al. (2020), the cyclic FL experiences client drift resulting from
data heterogeneity among clients. In CHFL, we encounter additional edge model drift due to inter-
edge heterogeneity. We assume an estimator in each local step, denoted by gi,j

r,k = ∇Fj(x
i,j
r,k, ξ

i,j
r,k).

When bounding it, three additional terms due to the edge layer and cyclic pattern make the formula
derivation more complex than Li & Lyu (2024). See details in Lemma C.1.1. Our convergence rate
achieves the optimal rate compared with other FL and HFL variants. In Tab. 1, FL represents a special
case of our CHFL when N = 1 and R = 1. We maintain the same convergence rate as FL with
full participation for larger T , across strongly convex Li & Lyu (2024); Karimireddy et al. (2020);
Koloskova et al. (2020), general convex and non-convex objectives Li & Lyu (2024). HFL generally
outperforms FL even with the same local steps on clients, as HFL benefits from more aggregation
Lee et al. (2020). Our convergence rate outperforms other centralized HFLs under standard settings,
as all hyperparameters contribute to faster convergence in terms of local steps. In comparison to
CFL Cho et al. (2023), we have edge round R > 1 to speed up the convergence speed. Furthermore,
relative to Liu et al. (2020; 2023; 2022), we include M and N to the dominant term to accelerate
convergence speed. For data heterogeneity in Group-FEL Liu et al. (2023), they show that inter-edge
data heterogeneity affects convergence speed more than intra-edge data heterogeneity, which is
consistent with our findings with specific settings. However, even with the optimal convergence
rate with our settings, we only provide the convergence analysis when the edge server performs
synchronous FL McMahan et al. (2017), but the asynchronous FL Sprague et al. (2018) in the edge
server is more practical in the world for system heterogeneity Li et al. (2021) of clients.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

To validate our theoretical findings, we use the convolutional neural network (CNN) in Krizhevsky
et al. (2017) on manually partitioned Non-IID MNIST dataset Wang et al. (2021a), Resnet-32 He et al.
(2016) on manually partitioned Non-IID CIFAR-10 dataset Krizhevsky et al. (2009) and Long short-
term memory (LSTM) Hochreiter & Schmidhuber (1997) on natural Non-IID dataset Shakespeare
McMahan et al. (2017). To impose data heterogeneity in MNIST, we distribute the data evenly into
each client in label-based partition following the same process in McMahan et al. (2017). Compared
with the vanilla FL, we consider two types of data heterogeneity: intra-edge data heterogeneity pc and
inter-edge data heterogeneity pg . Similar to the p value in Yang et al. (2022; 2021) which represents
the number of labels in the edge or client, pc indicates the number of labels in the client, and pg
describes the number of labels in the edge, respectively. The smaller pg or pc, the more heterogeneity
of the data across edges or clients. We compare five algorithms, SFL Li & Lyu (2024), vanilla FL
McMahan et al. (2017), cyclic FL (CFL) Cho et al. (2023), Hierarchical FL (HFL) Liu et al. (2020)
and our CHFL with varied data heterogeneity. In particular, CFL is the special case of CHFL with
R = 1. SFL is the special case of CHFL with N=1 and R=1. We set a total of 10 edge servers and the
number of clients is 500. Also, pc and pg are 1, 2, 5, and 10, η = 0.01, batch size b = 32, R = 2,
K = 2 and selected edges P = 2. To ensure a fair comparison, all algorithms are trained using the
same number of local steps on clients instead of communication rounds. Our experiment is conducted
with one NVIDIA A100 GPU, 4 CPU cores, and 128 GB memory.The details of models, datasets,
and hyper-parameters, and further results of other datasets can be found in Appendix B.

5.2 EFFECT OF DATA HETEROGENEITY

We evaluate test accuracy and convergence speed for the MNIST dataset using different algorithms
with various data heterogeneity.
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Figure 2: Test accuracy w/ Intra-edge Data Heterogeneity on MNIST Dataset
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Figure 3: Test Accuracy w/Inter-edge Data Heterogeneity on MNIST Dataset

1) CHFL has comparable or superior convergence speed and accuracy than other algorithms for any
of pc and pg conditions. Taking pc = 1 for instance, CHFL has better accuracy with 97.84% than SFL
with 97.25% that is the highest accuracy among other algorithms. With the variance of inter-edge data
heterogeneity in Fig. 3, i.e., σc = 0, CHFL also demonstrates better accuracy than other algorithms.
When compared to the second-highest accuracy achieved by other algorithms with varied inter-edge
data heterogeneity, CHFL shows an improvement of up to 2% when pg = 1 in Fig.3(a).
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2) The impact of inter-edge differences on convergence and accuracy is greater or equal than intra-
edge data heterogeneity under our settings. As we can see in Fig.3, we got an accuracy of 70.32%
with extreme inter-edge data heterogeneity in Fig.3(a), the accuracy decreased much than the accuracy
of 97.25% with extreme intra-edge data heterogeneity in Fig.2(a). The same result we can get when
comparing Fig.2(b) and Fig.3(b). We verify the above insight that it is better to reduce inter-edge
data heterogeneity, i.e., have each edge share similar data. Compared to other methods, FL and
HFL face challenges with extreme data heterogeneity, particularly with inter-edge data heterogeneity.
Due to their relatively infrequent aggregation compared to the cyclic pattern, their updates are more
prone to bias, leading to greater fluctuations and instability in the model, like Fig. 2(a) and Fig. 3(a).
Comparing SFLLi & Lyu (2024) and CFLCho et al. (2023) with cyclic pattern architecture, CHFL
has a similar or faster convergence speed compared to these methods, but it achieves faster training
in wall-clock time than SFL by enabling client parallel training in edge instead of sequential client
training. Compared with CFL, the additional edge layer with edge rounds R helps accelerate the
convergence speed.

5.3 EFFECT OF EDGE TRAINING ROUND

In Fig. 4 and Fig. 5, we mainly focus on evaluating the impact of R in CHFL. We can see that when
we increase edge round R on training, the convergence speed and accuracy can be improved. This
result is consistent with our theory result. In Fig. 5, R affects the convergence rate more significantly
than in Fig. 4. For example, in Fig.5(a), we have 15% accuracy improvement when we increased R
from 1 to 10. The reason is larger R can accelerate the convergence speed and the term of inter-edge
data heterogeneity with pc = 10, i.e., σc ≃ 0, has a weaker effect on convergence speed based on our
theoretical results.
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Figure 4: CHFL with R and pc on MNIST Dataset
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Figure 5: CHFL with R and pg on MNIST Dataset

6 CONCLUSION

In this paper, we derive convergence guarantees for CHFL on heterogeneous data for strongly convex,
general convex, and non-convex objectives, considering both full and partial participation. Compared
to other FL and HFL variants, we verify that our convergence rate is optimal to date. Based on our
theoretical results, we find that clustering clients solely by similar or opposing data distributions
does not achieve the best improvement in convergence speed. Instead, optimal clustering depends on
the system settings under various objectives. We hope the insights in this paper will facilitate the
deployment of CHFL in real-world applications.
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or nocturnal? federated learning of multi-branch networks from periodically shifting distributions.
In International Conference on Learning Representations, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A NOTATION TABLE

Symbol Definitions
Definition Symbol/Notation
x model weight
C the total number of clients
M the number of edge servers
S the number of selected edge servers
R edge server training rounds
r the r-th training round in edge server
K client training local steps
k the k-th training local epoch in client
N the number of clients in each edge
P the number of selected clients in each edge
Ni all clients in edge i
Fj(x) the objective of client j
fi(x) the objective of edge server i
T global model update rounds
t the t-th global model update round
σ2 the SGD variance
σ2
g Inter-edge data heterogeneity

σ2
c Intra-edge data heterogeneity

η learning rate in client

B ADDITIONAL EXPERIMENTS

B.1 DATASETS

We show detailed results of CNN on the MNIST dataset, ResNet32 on the CIFAR10 and LSTM on
the Shakespeardataset.Table2 shows the CNN model architecture we use for training.

The settings for model training on the CIFAR10 dataset are followed. Same as the way that we
impose the data heterogeneity in the MNIST dataset, we have pc and pg to define the intra-edge data
heterogeneity and inter-edge data heterogeneity. We having settings for CHFL: edge server number
M = 10, local client N = 5 and selected clients P = 2, local steps K = 2, learning rate η = 0.01,
batch size b = 32. We use ResNet32Orhan (2018) to train local models.

The settings for model training on Shakespear dataset is followed. Since Shakespeare dataset is a
natural Non-iid dataset, so we set each role as one client and the total number of clients is 139. Each
client have non-i.i.d data with each other, so we can assume it as pc = 1, pg = 1. We assume the
edge server number M = 18, there are 8 clients on each edge and the last edge has 3 clients. The
learning rate is 0.8 and the batch size is 32. We show the result for four algorithms when selecting
S = 16 edges in SFL and selecting P = 1 clients, select S = 2 edges and P = 8 clients randomly
for other algorithms. The local training step is K = 2 and edge training epoch R = 1, 2. We use
LSTM to train it. Specifically, SFL and CFL set R = 1, other two algorithms set R = 2. For LSTM
architecture, we have an embedding size of 80x8, two LSTM layers with input size 8 and hidden size
256, final linear layer with 256x8.

Table 2: CNN Architecture for MNIST
Layer Type Size
Convolution+ReLu 5x5x10
Max Pooling 2x2
Convolution+ReLu 5x5x20
Max Pooling 2x2
Fully Connected+ReLU 320x50
Fully Connected 50x10
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B.2 ALGORITHMS

Cyclic Federated Learning(CFL) Cho et al. (2023) divides C clients into M non-overlapping client
groups. The groups and the order in which they are traversed by the central server are pre-determined
and fixed throughout training to simulate a cyclic structure of client participation. In each global
round, once one group becomes available, the server would select all or partial clients to train. Once
selected, this group can not participate again at least for the next M − 1 global rounds. In Fig.6, we
have settings for CFL as C = 6,M = 3, N = 2.
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Figure 6: Cyclic Federated Learning

Sequential Federated Learning(SFL) Li & Lyu (2024) sample clients without replacement randomly
as the clients’ training order. Within a round, each client initializes its model from its previous client
and performs K local steps over its local dataset. Then, it passes its own model to the next client
until all clients finish their local training. In Fig.7, we have process for SFL in one global round and
set total clients number as C = 6.
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Figure 7: Sequential Federated Learning

To ensure a fair comparison, we establish the following settings for data heterogeneity and training
rounds. When comparing these algorithms under different levels of data heterogeneity, we set pc
and pg values for HFL and CHFL. For CFL, we keep the same edge setting as CHFL but R = 1.
In contrast, SFL and FL have no inter-edge data heterogeneity, so we maintain the same pc and pg
values, randomly selecting the same number of clients from the entire clients pool. All architectures
are trained using the same number of local steps rather than communication rounds.The detailed
results of four algorithms are in Table.3.
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Figure 8: Test Accuracy w/Intra-edge Data Heterogeneity on CIFAR10 Dataset
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Figure 9: Test Accuracy w/Intra-edge Data Heterogeneity and Edge round on CIFAR10 Dataset

0 5 10 15 20 25 30 35 40 45 50
Local steps(x16)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 A
cc

ur
ac

y

SFL
FL

CFL

HFL
CHFL

(a) pg=1,pc=1

0 5 10 15 20 25 30 35 40 45 50
Communication Rounds

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 A
cc

ur
ac

y
R=1
R=2
R=5

R=10

(b) Effect of R

Figure 10: Test Accuracy w/Inter-edge Data Heterogeneity and Edge round on Shakespeare Dataset

Table 3: Test accuracy for comparison of various algorithms.

Model/Dataset Non-I.I.D. index(p) Algorithms
SFL FL CFL HFL CHFL

CNN/MNIST

pc=1 0.975 0.8144 0.9254 0.8234 0.9784
pc=2 0.9778 0.8773 0.9693 0.9613 0.9812
pc=5 0.9823 0.9138 0.9784 0.9845 0.9844
pc=10 0.991 0.9509 0.9878 0.8266 0.9928
pg=1 0.6811 0.6285 0.5824 0.5111 0.7032
pg=2 0.7708 0.5309 0.7168 0.827 0.9699
pg=5 0.8896 0.8339 0.9775 0.9719 0.9845

ResNet32/CIFAR10

pc=1 0.1 0.1 0.1 0.1139 0.1493
pc=2 0.3425 0.5511 0.4801 0.5857 0.5857
pc=5 0.7573 0.552 0.7503 0.72 0.758
pc=10 0.7503 0.7168 0.7729 0.7445 0.7783
pg=1 0.156 0.1 0.1 0.156 0.1518
pg=2 0.3874 0.2875 0.1967 0.2113 0.4596
pg=5 0.6525 0.5765 0.7059 0.6579 0.7334

LSTM/Shakespeare pc = 1, pg = 1 0.4516 0.4516 0.4308 0.4379 0.4743
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C PROOFS

C.1 PROOFS OF THEOREM 4.1

In this section, we give the proofs in detail for full and partial edge/client participation with HFL with
cyclic pattern for three cases: strongly convex, general convex and non-convex. We will show them
respectively. Our proofs are based on some identities and inequalities from C.2 and C.3 in Li & Lyu
(2024), please check it for reference.

C.1.1 STRONGLY CONVEX

Lemma C.1. Let Assumptions 3.1, 3.2,3.4 hold and assume that all the local objectives are µ
-strongly convex. If the learning rate satisfies η ≤ 1

35LSPRTK , then it holds that

E
[∥∥∥x(t+1) − x∗

∥∥∥2] ≤ (
1− µSPKRη

2

)∥∥xt − x∗∥∥2 + 7SPRKη2σ2 + 7S2P 2R2K2η2
(N − P )

P (N − 1)
σ2
c

+
21

S (M − 1)
η2σ2

g −
8

5
SPKRηDF

(
xt,x∗)+ 42LS2P 2R2K2Df

(
xt,x∗)

+
(
2Lη + 7L2SPRKη2

) ∑
i,j,r,k

E
[∥∥∥xi,j

r,k,t − xt
∥∥∥2]

where DF (x,x∗) = E
[
∥∇Fj(x)−∇Fj (x

∗)∥2
]

and Df (x,x
∗) = E

[
∥∇fi(x)−∇fi (x

∗)∥2
]

.

Proof. At t global round, the global model update of CHFL after one complete training round:

∆x = xt+1 − xt = −η

S−1∑
i=0

P−1∑
j=0

R−1∑
r=0

K−1∑
k=0

gi,j
r,k

where gi,j
r,k = ∇Fj(x

i,j
r,k, ξ

i,j
r,k), thus:

E[∆x] = −η
∑
i,j,r,k

E
[
∇Fj

(
xi,j
r,k

)]

We focus on a single training round and drop the superscripts t:

E
[
∥x+∆x− x∗∥2

]
= ∥x− x∗∥2 + 2E [⟨x− x∗,∆x⟩] + E

[
∥∆x∥2

]
= ∥x− x∗∥2 − 2η

∑
i,j,r,k

E
[〈

∇Fj

(
xi,j
r,k

)
,x− x∗

〉]
︸ ︷︷ ︸

A

+η2 E


∥∥∥∥∥∥
∑
i,j,r,k

gi,jr,k

∥∥∥∥∥∥
2


︸ ︷︷ ︸
B

Using Lemma 2 inLi & Lyu (2024) to bound A:

− 2η
∑
i,j,r,k

E
[〈

∇Fj

(
xi,j
r,k

)
,x− x∗

〉]
≤ − 2η

∑
i,j,r,k

E
[
Fj(x)− Fj (x

∗) +
µ

4
∥x∗ − x∥2 − L

∥∥∥x− xi,j
r,k

∥∥∥2]
≤ − 2SPKRηDF (x,x∗)− 1

2
µSPKRη∥x− x∗∥2 + 2Lη

∑
i,j,r,k

∥∥∥x− xi,j
r,k

∥∥∥2
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Bounding B using Jensen’s inequality in C.2 Li & Lyu (2024), We observe that the three additional
terms 5⃝ 6⃝ 7⃝ are generated by the edge layer and the cyclic pattern.:

E


∥∥∥∥∥∥
∑
i,j,r,k

gi,jr,k

∥∥∥∥∥∥
2


= E

∥∥∥∥∥∥
∑
i,j,r,k

{
gi,jr,k −∇Fj

(
xi,j
r,k

)
+∇Fj

(
xi,j
r,k

)
−∇Fj(x)

+ ∇Fj(x)−∇Fj (x
∗) +∇Fj (x

∗) +∇fi(x)−∇fi (x
∗) +∇fi (x

∗)−∇fi (x)}∥2
]

≤ 7E


∥∥∥∥∥∥
∑
i,j,r,k

(
gi,jr,k −∇Fj

(
xi,j
r,k

))∥∥∥∥∥∥
2


︸ ︷︷ ︸
1⃝

+7E


∥∥∥∥∥∥
∑
i,j,r,k

(
∇Fj

(
xi,j
r,k

)
−∇Fj(x)

)∥∥∥∥∥∥
2


︸ ︷︷ ︸
2⃝

+ 7E


∥∥∥∥∥∥
∑
i,j,r,k

[∇Fj (x)−∇Fj (x
∗)]

∥∥∥∥∥∥
2


︸ ︷︷ ︸
3⃝

+7E


∥∥∥∥∥∥
∑
i,j,r,k

∇Fj (x
∗)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
4⃝

+ 7E


∥∥∥∥∥∥
∑
i,j,r,k

[∇fi (x)−∇fi (x
∗)]

∥∥∥∥∥∥
2


︸ ︷︷ ︸
5⃝

+7E


∥∥∥∥∥∥
∑
i,j,r,k

∇fi (x
∗)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
6⃝

+ 7E


∥∥∥∥∥∥
∑
i,j,r,k

(−∇fi (x))

∥∥∥∥∥∥
2


︸ ︷︷ ︸
7⃝

Bounding 1⃝:

7E


∥∥∥∥∥∥
∑
i,j,r,k

(
gi,jr,k −∇Fj

(
xi,j
r,k

))∥∥∥∥∥∥
2
 ≤ 7SPRKσ2

Bounding 2⃝:

7E


∥∥∥∥∥∥
∑
i,j,r,k

(
∇Fj

(
xi,j
r,k

)
−∇Fj(x)

)∥∥∥∥∥∥
2
 ≤ 7L2SPRK

∑
i,j,r,k

E
[∥∥∥xi,j

r,k − x
∥∥∥2]

Bounding 3⃝:

7E


∥∥∥∥∥∥
∑
i,j,r,k

[∇Fj (x)−∇Fj (x
∗)]

∥∥∥∥∥∥
2
 ≤ 14LSPRK

∑
i,j,r,k

E
[
DFj

(x,x∗)
]

≤ 14LS2P 2R2K2DF (x,x∗)

Bounding 4⃝:

7E


∥∥∥∥∥∥
∑
i,j,r,k

∇Fj (x
∗)

∥∥∥∥∥∥
2
 ≤ 7S2R2P 2K2 × N − P

P (N − 1)
σ2
c
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Bounding 5⃝:

7E


∥∥∥∥∥∥
∑
i,j,r,k

[∇fi (x)−∇fi (x
∗)]

∥∥∥∥∥∥
2
 ≤ 14LSPRK

∑
i,j,r,k

E [Dfi (x,x
∗)] ≤ 14LS2P 2R2K2Df (x,x

∗)

Bounding 6⃝:

7E


∥∥∥∥∥∥
∑
i,j,r,k

∇fi (x
∗)

∥∥∥∥∥∥
2
 ≤ 7P 2K2R2E

∥∥∥∥∥
S−1∑
i=0

∇fi (x
∗)

∥∥∥∥∥
2
 ≤ 7P 2K2R2 (M − S)

S (M − 1)
σ2
g

Bounding 7⃝:

7E


∥∥∥∥∥∥
∑
i,j,r,k

(−∇fi (x))

∥∥∥∥∥∥
2
 = 7E


∥∥∥∥∥∥
∑
i,j,r,k

(−∇fi (x) +∇fi (x
∗)−∇fi (x

∗))

∥∥∥∥∥∥
2


≤ 7E


∥∥∥∥∥∥
∑
i,j,r,k

(∇fi (x
∗)−∇fi (x)−∇fi (x

∗))

∥∥∥∥∥∥
2


≤ 14E


∥∥∥∥∥∥
∑
i,j,r,k

(∇fi (x
∗)−∇fi (x))

∥∥∥∥∥∥
2


︸ ︷︷ ︸
Based on 5⃝

+14E


∥∥∥∥∥∥
∑
i,j,r,k

∇fi (x
∗)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
Based on 6⃝

≤ 28LS2P 2R2K2Df (x,x
∗) +

14P 2K2R2(M − S)

S(M − 1)
σ2
g

Then substituting above seven bounds into B:

E


∥∥∥∥∥∥
∑
i,j,r,k

gi,jr,k

∥∥∥∥∥∥
2
 ≤ 7SPRKσ2 + 7L2SPRK

∑
i,j,r,k

E
[∥∥∥xi,j

r,k − x
∥∥∥2]+ 14LS2P 2R2K2DF (x,x∗)

+ 7S2R2 × P 2K2 × N − P

P (N − 1)
σ2
c + 14LS2P 2R2K2Df (x,x

∗)

+ 7P 2K2R2 (M − S)

S(M − 1)
σ2
g + 28LS2P 2R2K2Df (x,x

∗) +
14P 2K2R2(M − S)2

S(M − 1)
σ2
g

= 7SPRKσ2 + 7L2SPRK
∑
i,j,r,k

E
[∥∥∥xi,j

r,k − x
∥∥∥2]+ 14LS2P 2R2K2DF (x,x∗)

+ 7S2R2P 2K2 × N − P

P (N − 1)
σ2
c + 42LS2P 2R2K2Df (x,x

∗)

+
21P 2K2R2S2(M − S)

S(M − 1)
σ2
g
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Substituting A and B into following equation:

E
[
∥x+∆x− x∗∥2

]
≤ ∥x− x∗∥2 − 2η

∑
i,j,r,k

E
[〈

∇Fj

(
xi,j
r,k

)
,x− x∗

〉]
+ η2E


∥∥∥∥∥∥
∑
i,j,r,k

gi,jr,k

∥∥∥∥∥∥
2


≤ ∥x− x∗∥2 − 2SPKRηDF (x,x∗)− 1

2
µSPKRη∥x− x∗∥2 + 2Lη

∑
i,j,r,k

E
[∥∥∥x− xi,j

r,k

∥∥∥2]

+ 7SPRKη2σ2 + 7L2SPRKη2
∑
i,j,r,k

E
[∥∥∥xi,j

r,k − x
∥∥∥2]+ 14LS2P 2R2K2DF (x,x∗)

+ 7S2R2 × P 2K2η2 × N − P

P (N − 1)
σ2
c + 42LS2P 2R2K2η2Df (x,x

∗) +
21P 2K2R2S2 (M − S)

S (M − 1)
η2σ2

g

≤
(
1− µMPKRη

2

)
∥x− x∗∥2 + 7SPRKη2σ2 + 7S2P 2R2K2η2

(N − P )

P (N − 1)
σ2
c

+
21

S (M − 1)
η2σ2

g −
8

5
SPKRηDF (x,x∗) + 42LS2P 2R2K2Df (x,x

∗)

+
(
2Lη + 7L2SPRKη2

) ∑
i,j,r,k

E
[∥∥∥xi,j

r,k − x
∥∥∥2]︸ ︷︷ ︸

client drift

Lemma C.2. Let Assumptions 3.1, 3.2,3.4 hold and assume that all the local objectives are µ
-strongly convex. If the learning rate satisfies η ≤ 1

35LSPRTK , then the client shift can be bounded
as:

Et ≤
71

10
η2qBσ

2 +
71

5
LqB2η2DF (x,x∗) +

71

10
qcη

2σ2
c + 22qgη

2σ2
g + 43LqB2η2Df (x,x

∗) (9)

Follow Lemma 6 in Li & Lyu (2024) to bound client drift:

Et =
∑
i,j,r,k

E
[∥∥∥xi,j

r,k − x
∥∥∥2] (10)

where r′(i) =

{
R i′ < i− 1

r − 1 i′ = i− 1
, j′(i) =

{
P i′ < i− 1

j the jth client.
, k′ (i) =

{
K − 1 i′ < i− 1

k − 1 i′ = i− 1
.

E
[∥∥∥xi,j

r,k − x
∥∥∥2] ≤ E


∥∥∥∥∥∥−η

∑
i′,r′,j′,k′

gi
′,j′

r′,k′

∥∥∥∥∥∥
2


≤ η2E

[∥∥∥∥∥ ∑
i′,j′,r′,k′

(
gi

′,j′

r′,k′ −∇Fj

(
xi′,j′

r′,k′

)
+∇Fj

(
xi′,j′

r′,k′

)
−∇Fj (x) +∇Fj (x)−∇Fj (x

∗)
)

+∇Fj (x
∗) +∇fi (x)−∇fi (x

∗) +∇fi (x
∗)−∇fi (x)

∥∥∥∥∥
2]

≤ 7η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

(
gi

′,j′

r′,k′ −∇Fj

(
xi′,j′

r′,k′

))∥∥∥∥∥∥
2
+ 7η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

(
∇Fj

(
xi′,j′

r′,k′

)
−∇Fj(x)

)∥∥∥∥∥∥
2


19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

+ 7η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

[∇Fj (x)−∇Fj (x
∗)]

∥∥∥∥∥∥
2
+ 7η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇Fj (x
∗)

∥∥∥∥∥∥
2


+ 7η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

[∇fi (x)−∇fi (x
∗)]

∥∥∥∥∥∥
2
+ 7η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇fi (x
∗)

∥∥∥∥∥∥
2


+ 7η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

(−∇fi (x))

∥∥∥∥∥∥
2


≤ 7η2
∑

i′,j′,r′,k′

E
[∥∥∥gi′,j′r′,k′ −∇Fj

(
xi′,j′

r′,k′

)∥∥∥2]+ 7η2Bi,j,r,k

∑
i′,j′,r′,k′

E
[∥∥∥∇Fj

(
xi′,j′

r′,k′

)
−∇Fj (x)

∥∥∥2]

+ 7η2Bi,j,r,k

∑
i′,j′,r′,k′

E
[
∥∇Fj (x)−∇Fj (x

∗)∥2
]
+ 7η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇Fj (x
∗)

∥∥∥∥∥∥
2


+ 7η2Bi,j,r,k

∑
i′,j′,r′,k′

E
[
∥∇fi (x)−∇fi (x

∗)∥2
]
+ 7η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇fi (x
∗)

∥∥∥∥∥∥
2


+ 14η2Bi,j,r,k

∑
i′,j′,r′,k′

E
[
∥∇fi (x)−∇fi (x

∗)∥2
]
+ 14η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇fi (x
∗)

∥∥∥∥∥∥
2


≤ 7Bi,j,r,kη
2σ2 + 7L2η2Bi,j,r,k

∑
i′,j′,r′,k′

E
[∥∥∥xi′,j′

r′,k′ − x
∥∥∥2]+ 14Lη2B2

i,j,r,kDF (x,x∗)

+ 7η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇Fj (x
∗)

∥∥∥∥∥∥
2
+ 42Lη2B2

i,j,r,kDf (x,x
∗) + 21η2E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇fi (x
∗)

∥∥∥∥∥∥
2


where
∑

i′,j′,r′,k′
1 = Bi,j,r,k = (i− 1)RPK+(r − 1)PK+k−1 and

∑
i′,j′,r′,k′

∑
i′,j′,r′,k′

1 = B2
i,j,r,k.

Then, returning to Et =
∑

i,j,r,k

E
[∥∥∥xi,j

r,k − x
∥∥∥2], we have

Et ≤ 7η2σ2
∑
i,j,r,k

Bi,j,r,k + 7L2η2
∑
i,j,r,k

Bi,j,r,k

∑
i′,j′,r′,k′

E
[∥∥∥xi′,j′

r′,k′ − x
∥∥∥2]

+ 14Lη2
∑
i,j,r,k

B2
i,j,r,kDF (x,x∗) + 7η2

∑
i,j,r,k

E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇Fj (x
∗)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
8⃝

+ 42Lη2
∑
i,j,r,k

B2
i,j,r,kDf (x,x

∗) + 21η2
∑
i,j,r,k

E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇fi (x
∗)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
9⃝

As in Li & Lyu (2024); Karimireddy et al. (2020), the cyclic FL experiences client drift resulting
from data heterogeneity among clients. If we only have client drift induced by cyclic pattern in FL,
we only have one term 8⃝ to be bounded, and there are only K and N that affect the gradient updates.
In CHFL, we encounter additional edge model drift due to inter-edge heterogeneity. Then, we have
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an extra term 9⃝ to be bounded. Moreover, for both 8⃝ and 9⃝, we have additional R and M , making
the bounding formula more complex. Since we assume sampling without replacement for edges and
clients, we follow Lemma 4 Li & Lyu (2024) with x̄ = ∇F (x∗) = 0 for 8⃝ and x̄ = ∇f(x∗) = 0
for 9⃝ to bound them. .

E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇Fj (x
∗)−∇F (x∗)

∥∥∥∥∥∥
2
 (11)

= E

∥∥∥∥∥∥
N−1∑
j=0

KR (i− 1) [∇Fj (x
∗)−∇F (x∗)] (12)

+ K (r − 1)

N−1∑
j=0

[∇Fj (x
∗)−∇F (x∗)] + k [∇Fj (x

∗)−∇F (x∗)]

∥∥∥∥∥∥
2
 (13)

=K2R2(i− 1)
2E

∥∥∥∥∥∥
N−1∑
j=0

[∇Fj (x
∗)−∇F (x∗)]

∥∥∥∥∥∥
2

+K2(r − 1)
2E


∥∥∥∥∥∥
N−1∑
j=0

(∇Fj (x
∗)−∇F (x∗))

∥∥∥∥∥∥
2


(14)

+ k2E
[
∥∇Fj (x

∗)−∇F (x∗)∥2
]

(15)

+ 2KR (i− 1)K (r − 1)

〈N−1∑
j=0

(∇Fj (x
∗)−∇F (x∗)) ,

N−1∑
j=0

[∇Fj (x
∗)−∇F (x∗)]

〉
(16)

+ 2KR (i− 1) kE

〈N−1∑
j=0

(∇Fj (x
∗)−∇F (x∗)) , (∇Fj (x

∗)−∇F (x∗))

〉 (17)

+K (r − 1) kE

〈N−1∑
j=0

(∇Fj (x
∗)−∇F (x∗)) ,∇Fj (x

∗)−∇F (x∗)

〉 (18)

≤K2R2(i− 1)
2 × P 2 (N − P )

P (N − 1)
σ2
c +K2(r − 1)

2
P 2 × N − P

P (N − 1)
σ2
c + k2σ2

c (19)

+KR (i− 1)K (r − 1)P
σ2
c

N − 1
+ 2KR (i− 1) kP × σ2

c

N − 1
+K (r − 1) kP × σ2

c

N − 1
(20)

=

{
K2R2(i− 1)

2
P (N − P )

N − 1
+

K2(r − 1)
2
(N − P )P

N − 1
+ k2 − 2K2R (i− 1) (r − 1)P

N − 1

− 2KR (i− 1) kP

N − 1
− K (r − 1) kP

N − 1

}
σ2
c

Then we can bound 8⃝:

∑
i,j,r,k

E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇Fj (x
∗)

∥∥∥∥∥∥
2


≤ K3R3P 2 × 2S3

6
+

K3P 2S × 2R3

6
+

SPR× 2K3

6
≤ 1

3
SPRK3

(
S2PR2 + PR2 + 1

)
︸ ︷︷ ︸

qc(S,P,R,K)

σ2
c

21
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Still follow Lemma 4 in Li & Lyu (2024), we give the bound for gradients of edge server 9⃝,

∑
i,j,r,k

E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇fi (x
∗)

∥∥∥∥∥∥
2


≤ P (P − 1)(2P − 1)

6
× K(K − 1)(2K − 1)

6
×
∑
i

∑
r

E


∥∥∥∥∥∥
∑
i′,r′

(∇fi(x)−∇f(x))

∥∥∥∥∥∥
2


≤ PK(P − 1)(K − 1)(2P − 1)(2K − 1)

36
× 1

2
S2R3σ2

g ≤ 1

18
P 3K3R3S2︸ ︷︷ ︸

qg(S,P,R,K)

σ2
g

To bound Et, we first bound following terms:

∑
i,j,r,k

Bi,j,rk =
∑
i,j,r,k

{(i− 1)RPK + (r − 1)PK + k − 1)}

≤ RPK × S(S − 1)

2
×RPK + PK × SPK × R(R− 1)

2
+ SPR+

K(K − 1)

2

≤ S(S − 1)R2P 2K2

2
+

R(R− 1)

2
SP 2K2 +

K(K − 1)

2
SPR︸ ︷︷ ︸

qB(S,P,R,K)

(21)

∑
i,j,r,k

B2
i,j,r,k ≤

R3P 3K3S2(S−1)
3 + SP 3K3 × R2(R−1)

3 + K2(K−1)SPR
3 + R2(R−1)S(S−1)P 3K3

2

+R2P 2K2S(S−1)(K−1)
2 + R(R−1)K2(K−1)P 2S

2︸ ︷︷ ︸
qB2 (S,P,R,K)

(22)

We have following Et,

Et ≤ 7η2σ2
∑
i,j,r,k

Bi,j,r,k + 7L2η2
∑
i,j,r,k

Bi,j,r,k

∑
i′,j′,r′,k′

E
[∥∥∥xi′,j′

r′,k′ − x
∥∥∥2]

+ 14Lη2
∑
i,j,r,k

B2
i′,j′,r′,k′DF (x,x∗) + 7η2

∑
i,j,r,k

E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇Fj (x
∗)

∥∥∥∥∥∥
2


+ 42Lη2
∑
i,j,r,k

B2
i,j,r,kDf (x,x

∗) + 21η2
∑
i,j,r,k

E


∥∥∥∥∥∥
∑

i′,j′,r′,k′

∇fi (x
∗)

∥∥∥∥∥∥
2


≤ 7η2σ2qB + 7L2η2
∑
i,j,r,k

qBEt + 14Lη2qB2DF (x,x∗)

+ 7η2qcσ
2
c + 42Lη2qB2Df (x,x

∗) + 21η2qgσ
2
g

With 7η2σ2qB ≤ 3× 7
2 × 1

352 = 21
2450 , we bound Et as,

Et ≤
2450

2429

{
7η2σ2qB + 14Lη2qB2DF (x,x∗) + 7η2qσ2

c + 21η2qgσ
2
c + 42Lη2qB2Df (x,x

∗)
}

≤ 71

10
η2qBσ

2 +
71

5
LqB2η2DF (x,x∗) +

71

10
qcη

2σ2
c + 22qgη

2σ2
g + 43LqB2η2Df (x,x

∗)
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Substitute Et into E
[∥∥xt+1 − x∗

∥∥2],
E
[∥∥xt+1 − x∗∥∥2]

≤
(
1− µSPKRη

2

)
∥x− x∗∥2 + 7SPRKη2σ2 + 7S2R2P 2K2η2

(N − P )

P (N − 1)
σ2
c

+
21P 2K2R2S2(M − S)

S(M − 1)
η2σ2

g −
8

5
SPKRηDF (x,x∗)

+ 42LS2P 2R2K2η2Df (x,x
∗) +

(
2Lη + 7L2SPRKη2

)︸ ︷︷ ︸
qEt≤

11
5 Lη

∑
i,j,r,k

E
[∥∥∥xi,j

r,k − x
∥∥∥2]︸ ︷︷ ︸

Et

≤
(
1− µSPKRη

2

)
∥x− x∗∥2 +

[
7SPRKη2 +

71

10
qBqEtη

2

]
σ2︸ ︷︷ ︸

1⃝

+

[
7S2R2P 2K2 (N − P )

P (N − 1)
η2 +

71

10
qcqEt

η2
]
σ2
c︸ ︷︷ ︸

2⃝

+

[
21P 2K2R2S2(M − S)

S(M − 1)
η2 + 22qgqEt

η2
]
σ2
g︸ ︷︷ ︸

3⃝

+

[
qDF

+
71

5
LqB2qEtη

2

]
DF (x,x∗)︸ ︷︷ ︸

4⃝

+
[
42LS2P 2R2K2η2 + 43LqB2qEtη

2
]
Df (x,x

∗)︸ ︷︷ ︸
5⃝

Using η ≤ 1
35LSPRK to simplify above equations,

Bounding 1⃝,[
7SPRKη2 +

71

10
qBqEtη

2

]
σ2 ≤ η2σ2

[
7SPRK +

71

10
qBqEt

]
≤ 79

10
SPRKη2σ2

Bounding 2⃝,[
7S2R2P 2K2 (N − P )

P (N − 1)
η2 +

71

10
qcqEt

η2
]
σ2
c

≤η2σ2
c

[
7S2R2P 2K2(N − P )

P (N − 1)
+

71

10
qcqEt

]
≤
[
7S2R2P 2K2(N − P )

P (N − 1)
η2 +

53

10
SPRLK3

(
S2PR2 + PR2 + 1

)
η3
]
σ2
c

Bounding 3⃝, [
21P 2K2R2S2(M − S)

S(M − 1)
η2 + 22qgqEt

η2
]
σ2
g

=
21P 2K2R2S2(M − S)

S(M − 1)
η2σ2

g + 22qgqEt
η2σ2

g

≤
[
21P 2K2R2S2(M − S)

S(M − 1)
η2 + 3P 3K3R3S2Lη3

]
σ2
g

Bounding 4⃝:[
qDF

+ 22LqB2qEt
η2
]
DF (x,x∗) ≤

{
−8

5
SPKRη + 22× 11

2450
SPRKη

}
DF (x,x∗)

= −3

2
SPRKηDF (x,x∗)
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Bounding 5⃝,[
42LS2P 2R2K2η2 + 42LqB2qEtη

2
]
Df (x,x

∗)

≤ 42LS2P 2R2K2η2 +
473

5
Lη2Lη

×

{
R2P 3K3S2(S−1)

3 + SP 3K3 × R2(R−1)
3 + K2(K−1)SPR

3 + R2(R−1)S(S−1)P 3K3

2

+R2P 2K2S(S−1)(K−1)
3 + R(R−1)K2(K−1)P 2S

2

}
≤ 45LS2P 2R2K2η2Df (x,x

∗)

In this paper, we involve one more edge layer to construct HFL, which is the main difference from
HLLi & Lyu (2024), so one more term related to edge server gradient update is generated. Based on
our definition ∇fi(x) :=

1
P

∑P−1
j=0 ∇Fj(x), we have following bound for Df (x,x

∗),

E


∥∥∥∥∥∥
∑
i,j,r,k

[∇fi(x)−∇fi (x
∗)]

∥∥∥∥∥∥
2
 = E


∥∥∥∥∥∥
∑
i,j,r,k

 1

P

P−1∑
j=0

∇Fj(x)−
1

P

P−1∑
j=0

∇Fj (x
∗)

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥ 1P

P−1∑
j=0

∑
i,j,r,k

[∇Fj(x)−∇Fj (x
∗)]

∥∥∥∥∥∥
2
 ≤ E


∥∥∥∥∥∥
∑
i,j,r,k

[∇Fj(x)−∇Fj (x
∗)]

∥∥∥∥∥∥
2


Then we have following bound,

E
[∥∥xt+1 − x∗∥∥2] ≤ (

1− µSPKRη

2

)∥∥xt − x∗∥∥2 + 71

10
SPRKη2σ2

+

[
7S2R2P 2K2(N − P )

P (N − 1)
η2 +

53

10
SPRLK3

(
S2PR2 + PR2 + 1

)
η3
]
σ2
c

+

[
21P 2K2R2S2(M − S)

S(M − 1)
η2 + 3P 3K3R3S2Lη3

]
σ2
g −

3

2
SPRKηDF (x,x∗)

+ 45LS2P 2R2K2η2Df (x,x
∗)

Let η̃ = SPKRη,

E
[∥∥xt+1 − x∗∥∥2] ≤ (

1− µη̃

2

)∥∥xt − x∗∥∥2 + 79

10

η̃2

SPKR
σ2

+

[
7η2(N − P )

P (N − 1)
+

53

10
η̃3L

(
1

P
+

1

S2P
+

1

S3P 2R2

)]
σ2
c

+

[
21η̃2(M − S)

S(M − 1)
+

3Lη̃3

S

]
σ2
g −

3

10
η̃DF (x,x∗) (23)

Based on Lemma 7 in Li & Lyu (2024), with a = µ
2 , b = 3

10 , St = DF (x,x∗), C1 =
79
10 × σ2

SPKR + 7(N−P )
P (N−1)σ

2
c +

21(M−S)
S(M−1) σ

2
g , C2 = 53

10

(
1
P + 1

S2P + 1
S2P 2R2

)
Lσ2

c +
3L
S σ2

g , with wt =(
1− µη̃

2

)−(t+1)

we have,

E
[∥∥xt+1 − x∗∥∥2] ≤ 5µ

∥∥x0 − x∗∥∥2 exp(−µ

2
η̃T
)
+

{
27σ2

SPKR
+

24(N − P )

P (N − 1)
σ2
c +

70(M − S)

S(M − 1)
σ2
g

}
η̃

+

{
18L

(
1

P
+

1

S2P
+

1

S2P 2R2

)
σ2
c +

53L

S
σ2
g

}
× η̃2

When S = M,P = N for edge and client fully participation with D :=
∥∥x0 − x∗

∥∥, we get,

E
[
f
(
xT
)
− f (x∗)

]
≤ 5µD2 exp

(
−µη̃T

2

)
+

27η̃σ2

MNRK
+

18Lη̃2(M2NR2 +NR2 + 1)σ2
c

M2N2K2
+

53Lσ2
g η̃

2

M

24
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By turning the leaving rate carefully, we get:

E
[
f
(
xT
)
− f (x∗)

]
= Õ

(
µD exp(− µT

70L
) +

σ2

SPKRµT
+

(N − P )σ2
c

µTP (N − 1)
+

(M − S)

S(M − 1)µT
σ2
g +

Lσ2
g

Sµ2T 2
+

(
1
P + 1

S2P + 1
S2P 2P 2

)
Lσ2

c

µ2T 2

)
When P = N , S = M with edge and client fully participation, we have,

E
[
f
(
xT
)
− f (x∗)

]
= Õ

(
σ2

µMNRKT
+

L(M2NR2 +NR2 + 1)σ2
c

M2N2K2µ2T 2
+

Lσ2
g

Mµ2T 2
+ µD2 exp

(
− µT

70L

))
(24)

C.1.2 GENERAL CONVEX

Proof. For general case: When µ = 0, we get following bound based on Eq.23,

E
[∥∥xt+1 − x∗∥∥2] ≤ ∥∥xt − x∗∥∥2 + 79

10

η̃2

SPKR
σ2

+

[
7η̃2(N − P )

P (N − 1)
+

53

10
η̃3L

(
1

P
+

1

S2P
+

1

S2P 2R2

)]
σ2
c

+

[
21η̃2(M − S)

S(M − 1)
+

3Lη̃3

S

]
σ2
g −

3

10
η̃DF (x,x∗)

Applying Lemma 8 in Li & Lyu (2024) with b = 3
10 ,

1
d = 1

35L ,
γ0

γTb =

10
η̃T3

∥∥x0 − x∗
∥∥2 , C1γ = C1η̃

b =
{

27σ2

SPKR + 24(P−P )
P (N−1) σ

2
c +

70(M−S)
S(M−1) σ

2
g

}
η̃, C2γ

2 = C2η̃
b ={

18L
(
1
P + 1

S2P + 1
S2P 2R2

)
σ2
c +

53L
S σ2

g

}
× η̃2, we get,

E
[∥∥xt+1 − x∗∥∥2] ≤ 10

η̃T3

∥∥x0 − x∗∥∥2 +{ 27σ2

SPKR
+

24(N − P )

P (N − 1)
σ2
c +

70(M − S)

S(M − 1)
σ2
g

}
η̃

+

{
18L

(
1

P
+

1

S2P
+

1

S2P 2R2

)
σ2
c +

53L

S
σ2
g

}
× η̃2

When P = N,S = M with edge and client fully paticipation with D :=
∥∥x0 − x∗

∥∥, we have,

E
[
f
(
xT
)
− f (x∗)

]
≤ 10D2

3η̃T
+

27η̃σ2

MNRK
+

18Lη̃2(M2NR2 +NR2 + 1)σ2
c

M2N2K2
+

53Lσ2
g η̃

2

M

Then tuning learning rate carefully,

2C
1
2
1

(γ0
T

) 1
2

= 2

{ √
27σ√

SPRK
+

√
RP

P (N − 1)
σc +

√
M − S

(M − 1)S
σg

}
× D√

T

= O

(
σD√

SPRKT
+

√
N − P

P (N − 1)T
Dσc +

√
M − S

(M − 1)ST
Dσg

)

2C
1
3
2

(γ0
T

) 2
3

= 2

{
18L

(
1

P
+

1

S2P
+

1

S2P 2R2

)
σ2
c +

53L

M
σ2
g

} 1
3 D

4
3

T
2
3

= O

(LD4σ2
c

) 1
3

P
1
3T

2
3

+

(
Lσ2

cD
4
) 1

3

(ST )
2
3P

1
3

+

(
Lσ2

cD
4
) 1

3

(SPRT )
2
3

+

(
Lσ2

gD
4
) 1

3

M
1
3T

2
3


dγ0
T + 1

=
35LD2

T
= O

(
LD2

T

)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

We have,

E
[
f
(
xT
)
− f (x∗)

]
= O

(
σD√

SPRKT
+

√
N − P

P (N − 1)T
Dσc +

√
M − S

(M − 1)ST
σg

+

(
LD4σ2

c

) 1
3

P
1
3T

2
3

+

(
Lσ2

cD
4
) 1

3

(ST )
2
3P

1
3

+

(
Lσ2

cD
4
) 1

3

(SPRT )
2
3

+

(
Lσ2

gD
4
) 1

3

M
1
3T

2
3

+
LD2

T


When P = N,S = M with edge and client fully paticipation, we have,

E
[
f
(
x(T )

)
− f (x∗)

]
= O

(
σD√

MNRKT
+

(L(M2NR2 +NR2 + 1)D4σ2
c )

1
3

(MNRT )2/3
+

(Lσ2
gD

4)
1
3

(MT 2)
1
3

+
LD2

T

)

C.1.3 NON-CONVEX CASE

Lemma C.3. With Assumption 3.1,3.2,3.3, the learning rate satisfies η ≤ 1
35LSKRP , the global

model updates after one global round should be bounded as follows:

E
[
F
(
xt+1

)
− F (xt)

]
≤ −SRKPη

2
E
[∥∥∇F

(
xt
)∥∥2]+ Lη2SRKPσ2 +

L2η

2

∑
i,j,r,k

E
[∥∥∥xi,j,t

r,k xt
∥∥∥2]

(25)

Proof. For CHFL, the model udpates of one global round is,

∆x = xt+1 − xt = −η

S∑
i=1

P∑
j=1

R−1∑
r=0

K−1∑
k=0

gi,jr,k = −η
∑
i,j,r,k

gi,jr,k

where gi,j
r,k = ∇Fj(x

i,j
r,k, ξ

i,j
r,k), thus,

E[∆x] = −η
∑
i,j,r,k

E
[
∇Fj

(
xi,j
r,k

)]
We focus on a single training round and drop the superscripts t:,

E[F (x+∆x)− F (x)]

≤ E[⟨∇F (x),∆x⟩] + L

2
E
[
∥∆x∥2

]
≤ −η

∑
i,j,r,k

E
[〈

∇F (x),∇Fj

(
xi,j
r,k

)〉]
︸ ︷︷ ︸

A

+
Lη2

2
E


∥∥∥∥∥∥
∑
i,j,r,k

gi,jr,k

∥∥∥∥∥∥
2


︸ ︷︷ ︸
B

Bounding A,

− η
∑
i,j,r,k

E
[〈

∇F (x),∇Fj

(
xi,j
r,k

)〉]
= −η

2

∑
i,j,r,k

E
[
∥∇F (x)∥2 +

∥∥∥∇Fj

(
xi,j
r,k

)∥∥∥2 − ∥∥∥∇Fj

(
xi,j
r,k

)
−∇F (x)

∥∥∥2]

≤ −ηSPRK

2
∥∇F (x)∥2 − η

2

∑
i,j,r,k

E
∥∥∥∇Fj

(
xi,j
r,k

)∥∥∥2 + L2η

2

∑
i,j,r,k

E
[∥∥∥xi,j

r,k − x
∥∥∥2]

Bounding B,
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Lη2

2
E


∥∥∥∥∥∥
∑
i,j,r,k

gi,jr,k

∥∥∥∥∥∥
2
 ≤ L2η

2
E


∥∥∥∥∥∥
∑
i,j,r,k

gi,jr,k −
∑
i,j,r,k

∇Fj

(
xi,j
r,k

)
+
∑
i,j,r,k

∇Fj

(
xi,j
r,k

)∥∥∥∥∥∥
2


≤ Lη2SPRKσ2 + LSPRKη2
∑
i,j,r,k

E
[∥∥∥∇Fj

(
xi,j
r,k

)∥∥∥2]

When η ≤ 1
35LSPKR , we have −η

2 (1− 2LηSKRP )
∑

i,j,r,k E
[∥∥∥∇Fj

(
xi,j
r,k

)∥∥∥] < 0, thus,

E[F (x+∆x)− F (x)] ≤ − ηSRKP

2
∥∇F (x)∥2 + Lη2SRKPσ2 +

L2η

2

∑
i,r,k,j

E
[∥∥∥xi,j

r,k − x
∥∥∥2]

− η

2

∑
i,r,k,j

E
∥∥∥∇Fj

(
xt,i
r,k

)∥∥∥2 + Lη2SRKP
∑

i,r,k,j

E
[∥∥∥∇Fj

(
xt,i
r,k

)∥∥∥2]

≤ − SRKP

2
∥∇F (x)∥2 + Lη2SRKPσ2 +

L2η

2

∑
i,r,k,j

E
[∥∥∥xi,j

r,k − x
∥∥∥2]︸ ︷︷ ︸

client drift

Lemma C.4. Let Assumptions 3.1, 3.2,3.4 hold and assume that all the local objectives are µ
-strongly convex. If the learning rate satisfies η ≤ 1

35LSPRTK , then the client shift can be bounded
as:

Et ≤ 6η2qBσ
2 + 6η2qB2σ2

c + 6η2qB2σ2
g + 6η2qB2∥∇f(x)∥2

where qB and q2B can be found in Eq.21 and Eq.22.

To bound Et, we first bound E
[∥∥∥xi,j

r,k − x
∥∥∥2],

E
[∥∥∥xi,j

r,k − x
∥∥∥2] = η2E



∥∥∥∥∥∥∥∥∥∥∥
i∑

i′=1

r(i)∑
r′=0

j−1∑
j′=0

k(i)∑
k′=0︸ ︷︷ ︸

Bi,r,j,k

gi
′,j′

r′,k′

∥∥∥∥∥∥∥∥∥∥∥

2
≤ η2E

[∥∥∥Bi,j,r,k

[
gi

′,j′

r′,k′ −∇Fj

(
xi′,j′

r′,k′

)
+∇Fj

(
xi′,j′

r′,k′

)
−∇Fj(x)

+∇Fj(x)−∇f ′
i (x) +∇f ′

i (x)−∇f (x) +∇f (x)]∥]

≤ 5η2Bi,j,r,kE
[∥∥∥gi′,j′r′,k′ −∇Fj

(
xi′,j′

r′,k′

)∥∥∥2]
+ 5η2Bi,j,r,k

∑
i′,r′,j′,k′

E
[∥∥∥∇Fj

(
xi′,j′

r′,k′

)
−∇Fj (x)

∥∥∥2]
+ 5η2Bi,j,r,k

∑
i′,r′,j′,k′

E
[
∥∇Fj(x)−∇fi (x)∥2

]
+ 5η2Bi,j,r,k

∑
i′,r′,j′,k′

E
[
∥∇fi (x)−∇f (x)∥2

]
+ 5η2B2

i,j,r,k∥∇f (x)∥2

Bounding Et,
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Et ≤ 5η2σ2
∑
i,j,r,k

Bi,j,r,k + 5η2L2
∑
i,j,r,k

B2
i,j,r,kE

∥∥∥xi′,j′

r′,k′ − x
∥∥∥2

+ 5η2σ2
c

∑
i,j,r,k

B2
i,j,r,k + 5η2σ2

g

∑
i,j,r,k

B2
i,j,r,k + 5η2

∑
i;j,r,k

B2
i,j,r,k∥∇f(x)∥2

≤ 5η2σ2qB + 5η2L2qBEt + 5η2σ2
cqB2 + 5η2σ2

gqB2 + 5η2qB2∥∇f(x)∥2

(
1− 5η2L2qB

)
Et ≤ 5η2σ2qB + 5η2σ2

cqB2 + 5η2σ2
gqB2 + 5η2qB2∥∇f(x)∥2

With the condition η ≤ 1
35SPRKL , we have 5L2qBη

2 ≤ 1
490 , thus,

Et ≤
490

489
×
{
5η2σ2A+ 5η2σ2

cB + 5η2σ2
gB + 5η2B∥∇f(x)∥2

}
= 6η2qBσ

2 + 6η2σ2
cqB2 + 6η2qB2σ2

g + 6η2qB2∥∇f(x)∥2

Substitute Et into E
[
F
(
xt+1

)
− F (xt)

]
,

E
[
F
(
xt+1

)
− F

(
xt
)]

≤ − SRKPη

2
∥∇F

(
xt
)
∥2 + Lη2SRKPσ2 +

L2η

2

∑
i,r,k,j

E
[∥∥∥xi,j

r,k − x
∥∥∥2]︸ ︷︷ ︸

Et

≤ − SRKPη

2

∥∥∇F
(
xt
)∥∥2 + L2η

2
× 6η2qB2

∥∥∇f
(
xt
)∥∥2

+ Lη2SRKPσ2 +
L2η

2
× 6η2qBσ

2
g +

L2η

2
× 6η2qB2σ2

c +
L2η

2
× 6η2qB2σ2

g

≤ − 1

2
SPRKη∥∇F (xt)∥2 +

(
LSRKPη2 + 3L2η3qB

)
σ2 + 3L2η3qB2σ2

c + 3L2η3qB2σ2
g

Subtracting F ∗ for both side,

E
[
F
(
xt+1

)
− F ∗] ≤ E

[
F
(
xt
)
− F ∗]− 1

2
η̃E
[∥∥∇F

(
xt
)∥∥2]

+
(
LSRKPη2 + 3L2η3qB

)︸ ︷︷ ︸
1⃝

σ2 + 3L2η3qB2

(
σ2
c + σ2

g

)︸ ︷︷ ︸
2⃝

With η ≤ 1
35SPRKL , we simplify 1⃝,

(
LSRKPη2 + 3L2η3qB

)
σ2

= LSRKPη2σ
2

[
1 + 3Lη

[
(S − 1)RPK

2
+

(R− 1)PK

2
+

(K − 1)

2

]]
≤ LSRKPη2σ2

[
1 + 3L× 1

35SPRKL

[
(S − 1)RPK

2
+

(R− 1)PK

2
+

(K − 1)

2

]]
≤ LSRKPη2σ2

[
1 + 3× 1

35

[
1

2
+

1

2
+

1

2

]]
≤ 6

5
LSRKPη2σ2
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Using η̃ = SRKPη, then
(
LSRKPη2 + 3L2η3qB

)
σ2 ≤ 6

5
Lη̃2σ2

8RKP . With η ≤ 1
35SPRKL , we

simplify 2⃝,

3L2η3qB2

(
σ2
c + σ2

g

)
=

3L2qB2

S3P 3K3R3

(
σ2
c + σ2

g

)
η3 ≤ 3L2 ×


R3P 3K3S2(S−1)

3 +×SP 3K3R2(R−1)
3

+K2(K−1)SPR
3 + R2(R−1)S(S−1)P 3K3

2

+R2P 2K2S(S−1)(K−1)
2 + R(R−1)K2(K−1)P 2S

2

×
(
σ2
c + σ2

g

)
S3P 3K3R3

≤ 3L2 ×
{
RPK(S − 1)

3
+

R− 1

S3
+

K − 1

3SPR
+

(R− 1)(S − 1)PK

2S

+
(S − 1)(K − 1)

2S
+

(R− 1)(K − 1)

2SR

}
× 1

SPKR
qσ(SP,RK) =

3L2qσ (S, P,R,K)
(
σ2
g + σ2

c

)
SPRK

η̃3

Follow Lemma 8 inLi & Lyu (2024), we have r0 = F
(
x0
)
− F (x∗) , γ = η̃, b = 1

2 , C1 =

6
5

Lσ2

SRKP , C2 =
3L2qσ(S,P,R,K)(σ2

g+σ2
c)

SPRK , we have,

min
0≤t≤T

[∥∥∇F
(
xt
)∥∥2] ≤ r0

bγ (T + 1)
+

C1γ

b
+

C2γ
2

b

≤ 2

η̃T

[
F
(
x0
)
− F (x∗)

]
+ 2C1η̃ + 2C2η̃

2

≤ 2

η̃T

[
F
(
x0
)
− F (x∗)

]
+

12σ2

5SRKP
η̃ +

6L2qσ (S, P,R,K)

SPRK
η̃2

The convergence rate of non-convex case is followed and H := f(x0)− f(x∗),

min
0≤t≤T

E
[∥∥∇F

(
xt
)∥∥2] = O

 (
Lσ2H

) 1
2

√
SRKPT

+

(
L2H2qσ

(
σ2
g + σ2

c

)) 1
3

(SPRKT 2)
1
3

+
LH

T


When P = N,S = M with edge and client fully paticipation, we have,

min
0≤t≤T

E
[∥∥∥∇f

(
x(t)

)∥∥∥2] = O
(

(Lσ2H)1/2√
MNRKT

+
(L2qσH

2)1/3

(MNRKT 2)1/3
(
σ2
g + σ2

c

) 1
3 +

LH

T

)
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