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Abstract

Score-based diffusion models have significantly advanced high-dimensional data
generation across various domains, by learning a denoising oracle (or score) from
datasets. From a Bayesian perspective, they offer a realistic modeling of data priors
and facilitate solving inverse problems through posterior sampling. Although many
heuristic methods have been developed recently for this purpose, they lack the
quantitative guarantees needed in many scientific applications. This work addresses
the topic from two perspectives. We first present a hardness result indicating that
a generic method leveraging the prior denoising oracle for posterior sampling
becomes infeasible as soon as the measurement operator is mildly ill-conditioned.
We next develop the tilted transport technique, which leverages the quadratic
structure of the log-likelihood in linear inverse problems in combination with
the prior denoising oracle to exactly transform the original posterior sampling
problem into a new one that is provably easier to sample from. We quantify the
conditions under which the boosted posterior is strongly log-concave, highlighting
how task difficulty depends on the condition number of the measurement matrix
and the signal-to-noise ratio. The resulting general scheme is shown to match
the best-known sampling methods for Ising models, and is further validated on
high-dimensional Gaussian mixture models.

1 Introduction

Inverse problems consist in reconstructing a signal of interest from noisy measurements. As such, they
are a central object of study across many scientific domains, including signal processing, imaging,
astrophysics or computational biology. In the common settings where the measurement information
is limited, a reliable solution for these problems usually depends on prior knowledge of the data.
One popular approach is to choose a regularizer that utilizes data properties such as smoothness or
sparseness, and then solve a regularized optimization problem to obtain a point estimate of the original
data. However, this approach often struggles with selecting an appropriate regularizer and might
be unstable in the presence of large measurement noise. A more robust approach takes a statistical
formulation and seeks to sample the posterior distribution of data based on Bayes’s theorem, which
allows for uncertainty quantification in the reconstructed data by leveraging a model for the prior data
distribution.
While accurate models for high-dimensional distributions are notoriously complex to estimate, the
resurgence of deep neural networks has provided unprecedented capabilities for modeling complex
data distributions in certain high-dimensional regimes. Specifically, score-based diffusion models
[55, 33, 58] have achieved remarkable empirical success in generating high-dimensional data across
various domains, including images, video, text, and audio. These models implicitly parameterize
data distributions through an iterative denoising process that builds up data from noise. Furthermore,
there is a growing literature developing theoretical foundations of score-based diffusion models
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[17, 7, 45, 16, 19], giving a comprehensive error analysis including score estimation, initialization
error and time-discretization error. By generating high-fidelity data, these models can also serve
as data prior for posterior sampling in inverse problems in high dimensions. Following this idea,
many studies (see, e.g., [40, 22]) have leveraged diffusion models for posterior sampling. However,
as discussed below, various categories of approaches for posterior sampling introduce different
uncontrollable errors, such as those arising from the approximation of the conditional score or the use
of a limited variational family. This abundance of heuristics contrasts with the principled sampling
used in prior data generation, and is often at odds with the statistical guarantees needed in many
scientific applications.
In this work, we aim to bridge the gap between principled diffusion-based algorithms for both prior
and posterior distributions. Focusing on the canonical setting of linear inverse problems, where
measurements are of the form 𝑦 = 𝐴𝑥 +𝑤, with 𝑥 ∼ 𝜋 the signal to be estimated and 𝑤 an independent
noise, we first illustrate a negative result, revealing that no method can efficiently sample the posterior
in general cases, even with the prior denoising oracle. Subsequently, we develop the tilted transport
technique, which utilizes the quadratic structure of the log-likelihood in linear inverse problems in
combination with the prior denoising oracle to exactly transform the original posterior sampling
problem into a new one that is easier to sample. Figure 1 illustrates a schematic plot of the method
using two-dimensional Gaussian mixture examples, showing that while the original target posterior
problem remains multimodal, the boosted posterior resembles a unimodal distribution.

same reverse SDE
 

posterior data generation: 
 

from a chosen  and boosted posterior 

from a large  and standard Gaussian

prior data generation: 

target posterior boosted posterior 
(provably easier to sample)

Figure 1: Schematic plot of tilted transport boosting posterior sampling with a 2D Gaussian mixture
example. The density plot shows the first variable’s density, and the scatter plot displays the samples.

We establish a precise condition where the density of the transformed posterior problem becomes
strongly log-concave, making it suitable for efficient sampling via Langevin dynamics. This condition
showcases the interplay between a geometric property of the prior (what we call tilted spread; see
Section 5) and the conditioning and noise level of the measurements. Interestingly, the condition
can be satisfied when the signal-to-noise ratio (SNR) is either moderately low or moderately high, in
contrast with traditional sampling methods, which typically excel only within a specific regime.
As a first application, we show that tilted transport can sample from Ising models of the form
𝜈(𝑥) ∝ 𝑒−

1
2 𝑥
⊤𝑄𝑥 , where 𝑥 ∈ {±1}𝑑 is supported in the hypercube, up to the critical threshold

determined by the gap 𝜆max (𝑄) − 𝜆min (𝑄) = 1, thus matching the performance of Glauber dynamics
[24, 1] as well as the computational threshold predicted by the low-degree method [42]. More
generally, even when the boosted posterior is not strongly log-concave, it remains easier to sample than
the original one. Thus, tilted transport can be combined with any existing black-box posterior sampling
methods to enhance their performance. This technique operates without any additional computational
cost and functions in a plug-and-play fashion, allowing for straightforward integration into various
frameworks. When working with high-dimensional Gaussian mixtures, where an analytical solution
to the posterior is available, we numerically validate our theory and demonstrate enhanced posterior
sampling performance.

1.1 Related Work

Numerous studies in recent years have explored score-based priors for posterior sampling. We note
that several recent works [60, 20, 29, 54, 21] introduce hyperparameters to balance the influence of the
prior and measurements, resulting in sampling strategies that guide output to regions where the given
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observation is more likely. These strategies typically deviate from the principles of Bayesian posterior
sampling and often lack a precise definition of the resulting distribution. In contrast, other approaches
adhere more closely to Bayesian principles. One such approach is variational inference, which involves
designing variational objectives and optimization methods based on the structure of score-based
diffusion [41, 47, 26, 37]. However, even with an accurate prior score, the accuracy of posterior
sampling heavily depends on the choice of variational family and optimization procedures, not to
mention the additional optimization cost. Another popular strategy focuses on approximating the score
conditional on the measurement using various heuristics [58, 40, 36, 22, 48, 56, 57]. In this approach,
approximation errors typically remain largely uncontrollable due to the challenges associated with
tracking the conditional distribution for intermediate states. Recently, some studies have adopted
sequential Monte-Carlo methods to systematically approximate the conditional score [62, 13, 23],
providing consistency as the number of particles used to approximate the conditional distribution
of the intermediate states increases. However, this particle-based method still struggles with high-
dimensional problems due to the curse of dimensionality [9]. Alternatively, [61, 63] propose
plug-and-play methods with denoising oracles for posterior sampling, offering asymptotic guarantees,
though the required steps may grow prohibitively in high dimensions.
We note that [13] also intuitively explores the possibility of reducing the original posterior to an
equivalent one under restrictive conditions in the discrete-time setting. In contrast, our tilted transport
technique operates in a fairly generic setting and is supported by a clear theoretical foundation.
Concurrently, [49] proposes a conceptually similar two-stage approach for posterior sampling in
sparse linear regression, based on a different structural prior rather than denoising oracles.

2 Preliminaries

Notations:. P(ℝ𝑑) denotes the space of probability measures overℝ𝑑 . 𝛾𝑑 denotes the 𝑑-dimensional
standard Gaussian measure, and by slight abuse of notation, 𝛾𝛿 or 𝛾Σ denote the centered Gaussian
measure with covariance 𝛿𝐼𝑑 or Σ when the context is clear. For 𝑄 ⪰ 0 in ℝ𝑑×𝑑 and 𝑏 ∈ ℝ𝑑

in the span of 𝑄, the quadratic tilt of 𝜋 is the measure T𝑄,𝑏𝜋 ≪ 𝜋 with density proportional
to dT𝑄,𝑏 𝜋

d𝜋 (𝑥) ∝ exp
{
− 1

2𝑥
⊤𝑄𝑥 + 𝑥⊤𝑏

}
. We also use the notation T𝑄 when 𝑏 = 0. ∥𝑄∥ denotes

its operator norm. 𝜋 ★ 𝛾 denotes the convolution of two measures 𝜋 and 𝛾. For 𝛼 ≥ 0 and
𝜋 ∈ P(ℝ𝑑), we define D𝛼𝜋(𝑥) := 𝛼𝑑𝜋(𝛼𝑥) as the dilation of 𝜋. For 𝛽 ≥ 0 and 𝜋 ∈ P(ℝ𝑑), we
define C𝛽𝜋(𝑥) := 𝜋 ★ (D𝛽−1/2𝛾𝑑) as the Gaussian convolution of 𝜋.

Problem Setup. Consider a high-dimensional object of interest 𝑥 ∈ ℝ𝑑 , drawn from a certain
probability distribution 𝜋 ∈ P(ℝ𝑑). We suppose that one has managed to learn a generative model
for 𝜋 via the DDPM objective [33]; in other words, for any 𝑦 ∈ ℝ𝑑 and 𝜎 ≥ 0, we have access to the
denoising oracle DO𝜋 (𝑦, 𝜎) := 𝔼[𝑥 |𝑦], where 𝑦 = 𝑥 + 𝜎𝑤, with 𝑥 ∼ 𝜋 and 𝑤 ∼ 𝛾𝑑 independent. It
is now well-established that, such denoising oracle enables efficient sampling of 𝜋, well beyond the
classic isoperimetric assumptions for fast relaxation of Langevin dynamics [17].
Suppose that we now measure 𝑦 = 𝐴𝑥 +𝜎𝑤, where again 𝑥 ∼ 𝜋 and 𝑤 ∼ 𝛾𝑑′ are independent, but now
𝐴 ∈ ℝ𝑑′×𝑑 is a known linear operator different from the identity. Given these linear measurements,
we are now interested in the posterior sampling of 𝑥 given 𝑦. This corresponds to the basic setup of
linear inverse problems, encompassing many applications such as image inpainting, super-resolution,
tomography, or source separation, to name a few. We are interested in the following natural question:
can the power of denoising oracles be provably transferred to posterior sampling?
By Bayes’ rule, the posterior distribution 𝜈𝑦,𝐴 (denoted simply by 𝜈 when the context is clear) has
density proportional to 𝜋(𝑥)𝑝(𝑦 |𝑥) ∝ exp

{
− 1

2𝜎2 ∥𝐴𝑥 − 𝑦∥2
}
𝜋(𝑥), and thus we can write it as a

quadratic tilt of 𝜋:

𝜈 = T𝑄,𝑏𝜋 , with 𝑄 = 𝜎−2𝐴⊤𝐴 , 𝑏 = −𝜎−2𝐴⊤𝑦 .

We readily identify certain regimes where sampling from 𝜈 might be easy:

• If 𝜆min (𝑄) is sufficiently large, 𝜆min (𝑄) ≫ 1, then one expects 𝜈 to be strongly log-concave,
enabling fast relaxation of Langevin dynamics.
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• If 𝜆max (𝑄) is sufficiently small, 𝜆max (𝑄) ≪ 1, then one expects 𝜈 ≈ 𝜋 in the appropriate
sense, and therefore that samples from 𝜋 (which can be produced efficiently thanks to DO𝜋)
may be perturbed into samples from 𝜈.

• If 𝐴 ∈ O𝑑 is a unitary transformation, then 𝑄 = 𝜎−2Id and the inverse problem reduces to
isotropic Gaussian denoising, and is thus at first glance ‘compatible’ with the structure of
the denoising oracle (such observation will be formalized later).

At this stage, we can already identify two key parameters of the problem that are likely to drive the
difficulty of posterior sampling: on one hand, a proxy for the signal-to-noise ratio, measured e.g.,
by SNR := 𝜆min (𝑄) = 𝜆min (𝐴)2

𝜎2 . On the other hand, the conditioning of the measurement operator 𝐴,
𝜅(𝐴) := 𝜆max (𝐴)

𝜆min (𝐴) . As we shall see, these two characteristics of the linear measurement system will
characterize necessary and sufficient conditions for probable posterior sampling. In the following, we
assume the log of prior density 𝜋 is smooth and its Hessian exists ∀𝑥 ∈ ℝ𝑑 .

Denoising Oracles and Score-Based Diffusion. Let us first review the natural connection between
denoising and score-based generative modeling. Score-based diffusion models consist of two
processes: a forward process that gradually adds noise to input data and a reverse process that learns
to generate data by iteratively removing this noise. For example, one widely used family for the
forward process is the Ornstein–Uhlenbeck (OU) process1:

d𝑋𝑡 = −𝑋𝑡d𝑡 +
√

2d𝑊𝑡 , 𝑋0 ∼ 𝜋 , (1)

where 𝑊𝑡 is the standard Wiener process. We use 𝜋𝑡 to denote the density of 𝑋𝑡 , given by the action of
the OU semigroup 𝜋𝑡 = O∗𝑡 𝜋, defined by O𝑡 𝑓 (𝑥) = 𝔼[ 𝑓 (𝑋𝑡 ) |𝑋0 = 𝑥], and explicitly given by dilated
Gaussian convolutions, O∗𝑡 := C𝛽𝑡 D𝛼𝑡

, with 𝛽𝑡 = 1 − 𝑒−2𝑡 and 𝛼𝑡 = 𝑒𝑡 . With a sufficiently large 𝑇 ,
we know that 𝜋𝑇 is close to the density of standard Gaussian 𝛾𝑑 , owing to the exponential contraction
of the OU semigroup: KL(𝜋𝑇 | |𝛾𝑑) ≤ 𝑒−𝑇KL(𝜋 | |𝛾𝑑).
Finally, the measure 𝜋𝑡 solves the Fokker-Plank equation

𝜕𝑡𝜋𝑡 = ∇ · (𝑥𝜋𝑡 ) + Δ𝜋𝑡 , 𝜋0 = 𝜋 . (2)

By writing (2) as a transport equation 𝜕𝑡𝜋𝑡 = ∇ · ((𝑥 + ∇ log 𝜋𝑡 )𝜋𝑡 ), we can formally reverse the
transport starting at a large time 𝑇 and solving

𝜕𝑡 �̃�𝑡 = ∇ · (−(𝑥 + ∇ log 𝜋𝑇−𝑡 )�̃�𝑡 ) , �̃�0 = 𝜋𝑇 . (3)

Since �̃�𝑡 = 𝜋𝑇−𝑡 for 0 ≤ 𝑡 ≤ 𝑇 , introducing again the dissipative term leads to 𝜕𝑡 �̃�𝑡 = ∇ · (−(𝑥 +
2∇ log �̃�𝑡 )�̃�𝑡 ) + Δ�̃�𝑡 , �̃�0 = 𝜋𝑇 , which admits the SDE representation

d�̃�𝑡 = ( �̃�𝑡 + 2∇ log 𝜋𝑇−𝑡 ( �̃�𝑡 ))d𝑡 +
√

2d𝑊 𝑡 , �̃�0 ∼ 𝜋𝑇 . (4)

In practice, one runs this reverse diffusion starting from �̃�0 ∼ 𝛾𝑑 rather than �̃�0 ∼ 𝜋𝑇 . However, by
the data-processing inequality, we have that KL(𝜋 | |�̃�𝑇 ) ≤ KL(𝜋𝑇 | |𝛾𝑑) = 𝑂 (𝑒−𝑇 ), thus incurring in
insignificant error. To facilitate later exposition, we write the above process reverse in time [2, 31]

d𝑋←𝑡 = (−𝑋←𝑡 − 2∇ log 𝜋𝑡 (𝑋←𝑡 ))d𝑡 +
√

2d𝑊 𝑡 , 𝑋←𝑇 ∼ 𝛾𝑑 , (5)

and interpret the data generation process as running the reverse SDE from 𝑇 back to 0.
By the well-known Tweedie’s formula, and up to time reparametrisation, the denoising oracle is
equivalent to the time-dependent score ∇ log 𝜋𝑡 :
Fact 1 (Tweedie’s formula, [32]). We have ∇ log 𝜋𝑡 (𝑥) = −(1 − 𝑒−2𝑡 )−1 (𝑥 − 𝑒−2𝑡DO𝜋 (𝑥, 1 − 𝑒2𝑡 )).

Log-Sobolev Inequality and Fast Relaxation of Langevin Dynamics. Given a Gibbs distribution
𝜋 ∈ P(ℝ𝑑) of the form 𝜋 ∝ 𝑒− 𝑓 , a powerful and versatile method to sample from 𝜋 is to consider the
Langevin dynamics

d𝑋𝑡 = −∇ 𝑓 (𝑋𝑡 )d𝑡 +
√

2d𝑊𝑡 , 𝑋0 ∼ 𝜇0 , (6)

1In practice, it is also common to introduce a positive smooth function 𝛽: ℝ+ → ℝ+ and consider the
time-rescaled OU process d𝑋𝑡 = −𝛽(𝑡)𝑋𝑡d𝑡 +

√︁
2𝛽(𝑡)d𝑊𝑡 . Our results could be applied directly to these variants

by rescaling time. For the ease of notation, we keep 𝛽(𝑡) ≡ 1 in the main text.
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where 𝜇0 is an arbitrary initial distribution. It is easy to verify that these dynamics define a Markov
process that admits 𝜋 as its unique invariant measure. Perhaps less obvious is the fact that the
Fokker-Plank equation associated with eq. (6), given by 𝜕𝑡𝜇 = ∇ · (∇ 𝑓 𝜇) +Δ𝜇 (and where 𝜇𝑡 is the law
of 𝑋𝑡 ) is in fact a Wasserstein gradient flow for the relative entropy functional KL(𝜇 | |𝜋) [38]. Under
this interpretation, one can quantify the convergence of Langevin dynamics to their invariant measure,
i.e., its time to relaxation, by establishing a sharpness or Polyak-Lowacjevitz (PL)-type inequality.
Indeed, by noticing that 𝑑

𝑑𝑡
KL(𝜇 | |𝜋) = −I(𝜇 | |𝜋), where I(𝜇 | |𝜋) = 𝔼𝜇 [∥∇ log 𝜇 − ∇ log 𝜋∥2] is the

Fisher divergence, the PL-type inequality in this setting is given by the Logarithmic Sobolev Inequality
(LSI): we say that a measure 𝜋 satisfies LSI(𝜌) if for any 𝜇 ∈ P(ℝ𝑑) it holds KL(𝜇 | |𝜋) ≤ 1

2𝜌 I(𝜇 | |𝜋) .
This functional inequality directly implies KL(𝜇𝑡 | |𝜋) ≤ 𝑒−2𝜌𝑡KL(𝜇0 | |𝜋). While for general 𝜋 it is
typically hard to establish the LSI, there are two important sources of structure that lead to quantitative
(i.e., 𝜌 = Ω𝑑 (1)) bounds: when 𝜋 is a product measure 𝜋 = �̃�⊗𝑑 (in which case 𝜋 satisfies LSI with
the same constant as �̃�), and when 𝜋 is strongly log-concave2, i.e., −∇2 log 𝜋(𝑥) ⪰ 𝛼𝐼 for all 𝑥, in
which case the celebrated Bakry-Emery criterion [3] states that 𝜌 ≥ 𝛼.

3 Evidence of Computational Hardness in the Generic Case

We start our analysis of posterior sampling by discussing negative results for the general case. Recently,
[30] established computational lower bounds for this task using cryptographic hardness assumptions.
In this section, we complement these results by illustrating a correspondence with sampling problems
on Ising models, leading to an arguably simpler conclusion.
For this purpose, consider �̄� = Unif ({±1}𝑑) the uniform measure of the hypercube. Quadratic tilts of
�̄� define generic Ising models, a rich and intricate class of high-dimensional distributions. Since �̄� is
a product measure, its associated denoising oracle becomes a separable function that can be computed
in closed-form:

Fact 2 (Denoising Oracle for �̄�). Let 𝛾(𝑡; 𝜇, 𝜎) = exp
{
− 1

2𝜎2 (𝑡 − 𝜇)2
}
. Then we have

DO �̄� (𝑦, 𝜎) = (𝜙(𝑦𝑖;𝜎))𝑖=1...𝑑 , with 𝜙(𝑡, 𝜎) = 𝛾(𝑡, +1, 𝜎) − 𝛾(𝑡,−1, 𝜎)
𝛾(𝑡, +1, 𝜎) + 𝛾(𝑡,−1, 𝜎) . (7)

Given a symmetric matrix 𝑄 ∈ ℝ𝑑×𝑑 , an Ising model is given by the tilt T𝑄 �̄� ∈ P({±1}𝑑). In
our setting, we can thus view such models as the posterior distribution of a linear inverse problem
associated with the uniform prior �̄�. Efficiently sampling from Ising models is a fundamental question
at the interface of statistical physics and high-dimensional probability, and several works provide
evidence of computational hardness under a variety of settings.
Notably, by treating 𝑄 as the adjacency matrix of a regular graph, [27] establishes that sampling
from 𝜈 is impossible for 𝜆max (𝑄) − 𝜆min (𝑄) ≥ 2 + 𝜀, for any 𝜀 > 0, unless NP = RP. In other
words, for poorly conditioned tilt 𝑄 (in the sense that there is a large gap between the smallest and
largest eigenvalue), there is no efficient posterior sampling algorithm, even with the knowledge of
the prior denoising oracle. The threshold can even be reduced to 1 + 𝜀 by using a weaker notion
of computational hardness [42], given by the low-degree polynomial method [4, 43]. Remarkably,
this threshold agrees with the current best-known algorithmic results for sampling generic Ising
models with Glauber dynamics [25, 1]. Finally, we also mention that when 𝑄 is a random Gaussian
symmetric matrix, the associated so-called Sherrington-Kirkpatrick (SK) model, has been analyzed
with dedicated algorithms. In this setting, it is also known [24] that ‘stable’ sampling algorithms fail
to sample from the SK model as soon as 𝜆max (𝑄) − 𝜆min (𝑄) > 1. In summary, we have:
Theorem 3 (Computational Hardness of Sampling Ising Models, [42, 27]). There exist no general-
purpose, efficient posterior sampling algorithms, for 𝑄 sufficiently ill-conditioned, even under the
knowledge of the prior denoising oracle.

One could wonder whether this computational hardness comes from the discrete nature of the
hypercube. It is not hard to observe that this is not the case: the following proposition, proved in
Appendix A, shows a simple reduction from a model where the prior �̄� is replaced by a smooth
mixture of Gaussians 𝜋 centered at the corners of the hypercube, with variance 𝛿.

2or a suitable perturbation of it via the Hooley-Strook perturbation principle [35]
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Proposition 4 (Hardness extends to smooth priors). Assume a posterior sampler exists for the smooth
prior with TV error 𝜖 and 𝛿 = 𝑜(𝑑−1/2). Then there exists a sampler for the associated Ising model
with TV error 1.1𝜖 .

In conclusion, one cannot hope for a generic method that leverages the prior denoising oracle to
perform efficient posterior sampling, as soon as 𝐴 is mildly ill-conditioned. Thus, in order to perform
provable posterior sampling, one needs to either (i) constraint the measurements, or (ii) exploit
structural properties of the prior measure. In the following, we focus on (i), namely providing
guarantees for well-conditioned 𝐴 that leverage the OU semigroup for generic prior distributions.

4 Posterior Sampling via Tilted Transport

We now present a simple method that reduces the original posterior sampling problem to another
posterior sampling problem with more benign geometry, by leveraging the shared quadratic structure
of the posterior tilt and the OU semigroup. The power of the denoising oracle to perform sampling of
the prior 𝜋 comes from its ability to run the transport equation (3) in either direction, and leveraging
the fact that sampling from 𝜋𝑇 is easy. To transfer this power to posterior sampling, we can thus
attempt to replicate this scheme: can we implement a transport between the posterior 𝜈 and a terminal
measure 𝜈𝑇 that is easy to sample, that only relies on the pre-trained prior DO𝜋?

A Motivating Example. Consider first the denoising setting: 𝑦 = 𝑥 + 𝜎𝑤. According to the
forward process, we have 𝑝(𝑋𝑠 |𝑋0)

𝑑
= N(𝑒−𝑠𝑋0, (1 − 𝑒−2𝑠)𝐼𝑑). Introduce 𝑇∗ > 0 and define

�̃� = 𝑒−𝑇
∗
𝑦 = 𝑒−𝑇

∗
𝑥 + 𝑒−𝑇∗𝜎𝑤 such that 𝑝( �̃� |𝑥) 𝑑

= N(𝑒−𝑇∗𝑥, 𝑒−2𝑇∗𝜎2𝐼𝑑). We match the variance by
letting 𝑒−2𝑇∗𝜎2 = 1− 𝑒−2𝑇∗ , i.e., 𝑇∗ = 1

2 log(1 +𝜎2), then we have 𝑝( �̃� |𝑥) = 𝑝(𝑋𝑇∗ |𝑋0), which gives
(𝑥, �̃�) 𝑑

= (𝑋0, 𝑋𝑇∗ ). Therefore, to perform the posterior sampling 𝑝(𝑥 | �̃�), we only need to do the
sampling 𝑝(𝑋0 |𝑋𝑇∗ ), which can be achieved through the reverse SDE. Specifically, let 𝑋𝑇∗ = 𝑒−𝑇

∗
𝑦

and run the reverse SDE (5) from 𝑇∗ to 0, then 𝑋0 will be the desired posterior.

Hamilton-Jacobi Equation and Quadratic Tilts. If 𝜋𝑡 solves the Fokker-Plank eq. (2), then one
can verify that the time-varying potentials 𝑓𝑡 := log 𝜋𝑡 solve the viscous Hamilton-Jacobi PDE (HJE)

𝜕𝑡 𝑓𝑡 = Δ 𝑓𝑡 + ∥∇ 𝑓𝑡 ∥2 + 𝑥 · ∇ 𝑓𝑡 + 𝑑 , 𝑓0 = 𝑓 . (8)
Now, the posterior 𝜈 = T𝑄,𝑏𝜋 creates an additional quadratic term in the potential log 𝜈 = 𝑓 −
1
2𝑥
⊤𝑄𝑥 + 𝑥 · 𝑏. One could naively hope that this additive quadratic term would still define a solution

of the HJE with the tilted initial condition 𝑓0 = log 𝜈 — or equivalently that the measure T𝑄,𝑏𝜋𝑡
solves the transport equation (3). Unfortunately, due to the nonlinearity in (8) brought by the terms
∥∇ 𝑓𝑡 ∥2, this is not the case. However, as we shall see now, this is not far from being true: one just
needs to consider time-varying quadratic tilts in order to satisfy the HJE.

Tilt Transport Equation. We consider then a one-parameter family of distributions 𝜈𝑡 of the form
𝜈𝑡 = T𝑄𝑡 ,𝑏𝑡 𝜋𝑡 , with 𝑄0 = 𝑄 and 𝑏0 = 𝑏. As it turns out, one can ensure that log 𝜈𝑡 solves the HJE
associated with the reverse process by asking that 𝑄𝑡 , 𝑏𝑡 satisfy the first-order ODE{ ¤𝑄𝑡 = 2(𝐼 +𝑄𝑡 )𝑄𝑡 , 𝑄0 = 𝑄

¤𝑏𝑡 = (𝐼 + 2𝑄𝑡 )𝑏𝑡 , 𝑏0 = 𝑏
(9)

Theorem 5 (Tilted Transport). Assume 𝑡 < 𝑇∗ such that the ODE (9) is well-defined on [0, 𝑡]. By
initializing 𝑋𝑡 ∼ 𝜈𝑡 and run the reverse SDE (5) from 𝑡 to 0, we have 𝑋𝑠 ∼ 𝜈𝑠 for 𝑠 ∈ [0, 𝑡], specifically,
𝑋0 gives the desired posterior.

Solution to eq. (9). Without loss of generality, we assume 𝑑′ ≤ 𝑑, and the observation operator
𝐴 ∈ ℝ𝑑′×𝑑 has a general singular value decomposition form 𝐴 = 𝑈Σ𝑉⊤ with non-zero singular
values 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑑′ > 0. By diagonalizing 𝑄 and solving the scalar ODE ¤𝑞𝑡 = 2(1 + 𝑞𝑡 )𝑞𝑡
for diagonal entries, we have 𝑄𝑡 = 𝑉diag

(
𝑒2𝑡

1+𝜎2/𝜆2
1−𝑒2𝑡 , · · · , 𝑒2𝑡

1+𝜎2/𝜆2
𝑑′−𝑒

2𝑡 , 0, · · · , 0
)
𝑉⊤, where the

solution is defined up to the blowup time 𝑇∗ := 1
2 log(1 + 𝜎2/𝜆2

1) =
1
2 log(1 + 𝜆max (𝑄)−1). 𝑏𝑡 can be

further solved from the solution 𝑄𝑡 ; see Appendix B.2 for more details.
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With the explicit solution of 𝑄𝑡 , 𝑏𝑡 , we can interpret the term exp(− 1
2𝑥
⊤𝑄𝑡𝑥 + 𝑥⊤𝑏𝑡 ) as the likelihood

of the inverse problem with respect to the new prior distribution 𝜋𝑡 and the corresponding operator.
Based on this observation and Theorem 5, we have the following corollary, transforming the original
posterior sampling problem to a new posterior sampling problem exactly. We remark that when 𝐴 is
identity, the corollary recovers the analysis we have in the motivating example; see Appendix B.2 for
the proof and more discussions.
Corollary 6. Fix 𝑡 < 𝑇∗. Sampling from the original posterior is equivalent to a two-step process:
first, sample from a new posterior 𝑋𝑡 ∼ 𝜈𝑡 , and then run the reverse SDE (5) from time 𝑡 to 0.

5 Quantitative Conditions for Provable Sampling

Now we show that the new posterior sampling problem described above is provably easier to
sample than the original posterior sampling problem from two aspects. On the one hand, the
(negative) eigenvalues of the quadratic tilt − 1

2𝑥
⊤𝑄𝑡𝑥 + 𝑥⊤𝑏𝑡 become more negative, essentially

meaning that the SNR of the new observation model becomes larger. To be more specific, as 𝑡 → 𝑇∗,
𝜆min (𝑄𝑡 ) → 1+𝜆max (𝑄)−1

𝜆min (𝑄)−1−𝜆max (𝑄)−1 > 𝜆min (𝑄). On the other hand, the new prior distribution 𝜋𝑇∗

becomes closer to a single-mode Gaussian (recall that KL(𝜋𝑡 | |𝛾𝑑) = 𝑂 (𝑒−𝑡 )), which is also easier to
sample. Combining these two arguments, we expect that, as 𝑡 increases, 𝜈𝑡 becomes easier to sample
due to easier prior and easier likelihood:

𝜈𝑡 (𝑥) ∝ 𝜋𝑡 (𝑥)︸︷︷︸
easier prior

exp
{
− 1

2
𝑥⊤𝑄𝑡𝑥 + 𝑥⊤𝑏𝑡

}
.︸                           ︷︷                           ︸

easier likelihood

Let us now quantify the above intuition.

Sufficient Conditions for Strong Log-Concavity of 𝜈𝑇∗ . We start by giving a simple sufficient
condition that ensures that 𝜈𝑇∗ is strongly log-concave. As discussed earlier, this ensures fast relaxation
of the Langevin dynamics, enabling efficient sampling from 𝜈𝑇∗ – and therefore of 𝜈 as per Corollary
6. For that purpose, given the prior 𝜋 ∈ P(ℝ𝑑) and 𝑡 ≥ 0, we define

𝜒𝑡 (𝜋) := sup
𝑥∈ℝ𝑑

∥Cov[T𝑡 𝐼 ,𝑥𝜋] ∥, (10)

where the covariance is given by Cov[𝜇] = 𝔼𝑥∼𝜇 [𝑥𝑥⊤] − (𝔼𝑥∼𝜇 [𝑥]) (𝔼𝑥∼𝜇 [𝑥])⊤. 𝜒𝑡 (𝜋) thus measures
the largest ‘spread’ of any tilted measure of the form T𝑡 ,𝑥𝜋. Equipped with this definition, we have
the following sufficient condition to ensure that 𝜈𝑇∗ is strongly log-concave:
Proposition 7 (Strong Log-Concavity of 𝜈𝑇∗ ). 𝜈𝑇∗ is strongly log-concave if

𝜒∥𝑄∥ (𝜋) < ∥𝑄∥−1 𝜅(𝐴)2
(𝜅(𝐴)2 − 1)

. (11)

The proof is in Appendix C. It relates two parameters of the measurement process, the condition
number of 𝐴 and the signal-to-noise ratio in terms of ∥𝑄∥, with a geometric property of the prior, the
spread function 𝜒𝑡 (𝜋). While this function is not immediately transparent, the following examples
illuminate its behavior in reprsentative high-dimensional settings.
Example 8 (Behavior of 𝜒𝑡 (𝜋)). We have the following examples

(i) Gaussian measure: 𝜒𝑡 (𝛾𝑑) = 1
1+𝑡 .

(ii) Compactly Supported Gaussian Mixture: If 𝜇 is compactly-supported in a ball of radius 𝑅
and 𝛿 ≥ 0, then 𝜒𝑡 (𝜇 ★ 𝛾𝛿) ≤

(
𝑅

1+𝛿𝑡
)2 + 𝛿

1+𝛿𝑡 .

(iii) Tensorization: If 𝜇 = 𝜇1 ⊗ 𝜇2 · · · ⊗ 𝜇𝑑 , then 𝜒𝑡 (𝜇) = max𝑖 𝜒𝑡 (𝜇𝑖).

(iv) Uniform measure on hypercube: If 𝜋 is uniform on the hypercubeH𝑑 , then 𝜒𝑡 (𝜋) = 1.
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Ising Models. As a direct consequence of Proposition 7 and Example 8 (iv), we establish a sampling
guarantee for Ising models:
Corollary 9 (Tilted Transport for the Ising Model). Let 𝜋 be the uniform measure on the hypercube,
and 𝑄 such that 𝜆max (𝑄) − 𝜆min (𝑄) < 1. Then 𝜈𝑇∗ is strongly log-concave, and therefore 𝜈 = T𝑄𝜋
can be sampled efficiently (in continuous-time).

This result thus establishes that Ising models admit an efficient continuous-time procedure for sampling
provided their spectrum satisfies 𝜆max (𝑄) − 𝜆min (𝑄) < 1, thus precisely matching the threshold of
[25, 1] achieved by Glauber dynamics, as well as the low-degree prediction from [42]. We remark
though that our procedure is not (yet) algorithmic; a careful analysis of the discrete-time complexity
and the approximation rates is beyond the current scope, but our next endeavor. If one specializes
the previous result to the SK model, the equivalent inverse temperature that guarantees sampling is
𝛽∗ = 1/4, which remains below 𝛽 = 1, the threshold of the hard phase. For this threshold, dedicated
AMP-based sampling succeeds [24, 14]. We also remark that, in itself, it should not come as a
surprise that 𝜈 may be sampled under these conditions, since [5] already established an LSI on 𝜈
directly, using an entropy decomposition along the so-called Polchinski renormalization group [6]
that refines our Bakry-Emery criterion. In this context, it would be interesting to explore whether this
refined criterion could be applied to 𝜈𝑇∗ to improve upon Proposition 7 under appropriate conditions.

Gaussian Mixtures. By applying Proposition 7 to Example 8 (ii), we directly obtain the following
guarantee for generic comptactly supported Gaussian mixtures:
Corollary 10 (Tilted Transport for Gaussian Mixtures). If 𝜋 = 𝜇 ★ 𝛾𝛿 and diam(supp(𝜇)) ≤ 𝑅, then
𝜈𝑇∗ is strongly log-concave if

(1 + 𝛿SNR2) (𝛿𝜅(𝐴)2 + SNR−2)
𝜅(𝐴)2 − 1

> 𝑅2 . (12)

It also holds when 𝛿 = 0 and the prior 𝜋 is any distribution with a bounded support radius 𝑅.

Figure 2 displays several contours of the condition in eq. (12) as a function of SNR and 𝜅(𝐴). Each
𝑈-shaped contour is determined by a combination of 𝛿 and 𝑅, which uniquely characterizes the prior.
For all points ((SNR), 𝜅(𝐴)) outside of a contour, representing a specific inverse problem, 𝜈𝑇∗ is
strongly log-concave and thus easy to sample. Given an observation model where both SNR and
𝜅(𝐴) are fixed, it is straightforward to see that the condition in eq. (12) is more readily satisfied as 𝛿
increases and 𝑅 decreases. Figure 2 also confirms this result since as 𝛿 increases or 𝑅 decreases, the
𝑈-shaped contour shrinks and the region of easy to sample expands. Now we discuss the implications
in the reverse scenario where the prior is fixed and the observation model is adjusted. If we look
at Figure 2 horizontally, we know that given a prior and 𝜅(𝐴), the target posterior can be reliably
sampled if the SNR is either sufficiently low or high, with the region of mid-SNR being challenging.
The closer 𝜅(𝐴) is to 1, the smaller this challenging region is. When the problem is denoising such
that 𝜅(𝐴) = 1, the challenging region vanishes, and sampling the posterior is straightforward using
the denoising oracle, as previously explained.
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Figure 2: Phase diagram for the boosted posterior 𝜈𝑇∗ being strongly log-concave in Corollary 10.

Comparisons. 1. (with Langevin dynamics) As introduced above, Langevin dynamics and its
discretized version, Langevin Monte Carlo (LMC) [52, 46] serve as ideal baselines for efficient posterior
sampling in high SNR regimes where the posterior becomes strongly log-concave. Proposition 7
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demonstrates that our tilted transport technique enables provably efficient sampling from a broader
range of prior distributions compared to traditional Langevin dynamics without a denoising oracle.
Particularly, in low SNR regimes where conventional Langevin dynamics struggle with severe
non-log-concavity and slow mixing times, tilted transport can transform the sampling challenge into a
tractable problem for log-concave distributions.
2. (with Importance Sampling) In the low SNR regime with a well-conditioned 𝐴, the posterior
measure can be viewed as a small perturbation of the prior. As such, a natural baseline for posterior
sampling is importance sampling using the prior as a proposal — for which samples can be efficiently
obtained thanks to the denoising oracle and the variance of sample weights is small. However, as
detailed in Appendix C.2, the sampling complexity is exponential with the SNR when the SNR is
sufficiently large, assuring the failure of the importance sampling on this extreme.

Stability. In the numerical implementation of the boosted posterior, we often encounter specific
errors. Appendix C.3 provides a stability analysis of the two-step process outlined in Corollary 6,
focusing on initialization error and score error, and demonstrates that the quality of the final samples
is robust with respect to these errors.

6 Numerical Experiments

Our theory above demonstrates that 𝜈𝑇∗ is provably easier to sample than the original posterior 𝜈.
Thus, given a baseline sampling algorithm Alg, we can first sample from the boosted posterior and
then apply the denoising oracle to obtain the final sample, rather than directly sampling from 𝜈 using
Alg. Algorithm 8 provides a complete description of this approach using tilted transport. In this
instance, we use Euler discretization with equal time steps to transport samples from from T𝑄�̃� ,𝑏�̃�

𝜋�̃�
to T𝑄,𝑏𝜋, though alternative time integrators and grids can also be applied.

Algorithm 1 Sampling Using Tilted Transport
Require: Parameters of quadratic tilt 𝑄, 𝑏, small time shift 𝜖 , baseline sampling algorithm Alg,

time-dependent score ∇ log 𝜋𝑡 (·), Δ𝑡 for reverse SDE
Ensure: A sample 𝑋0 from posterior distribution T𝑄,𝑏𝜋

1: Calculate the blowup time by 𝑇∗ := 1
2 log(1 + 𝜆max (𝑄)−1)

2: Determine the number of reverse SDE steps by 𝑁 = ⌈𝑇∗−𝜖
Δ𝑡
⌉ and starting time 𝑇 = 𝑁Δ𝑡

3: Use baseline sampling algorithm Alg to sample 𝑋𝑁 from T𝑄�̃� ,𝑏�̃�
𝜋�̃�

4: for 𝑖 = 𝑁 to 1 do
5: Sample 𝑍𝑖 ∼ N(0, 𝐼𝑑)
6: 𝑋𝑖−1 ← 𝑋𝑖 + (𝑋𝑖 + 2∇ log 𝜋𝑖Δ𝑡 (𝑋𝑖))Δ𝑡 +

√
2Δ𝑡 𝑍𝑖

7: end for
8: return 𝑋0

We now validate our theoretical results by applying Algorithm 8 to the Gaussian mixture model in
high dimensions, using LMC as the baseline algorithm. Same to the models considered in [13], the
prior distribution is a mixture of 25 components with known means and variances (see Figure 1 for a
2D visualization and Appendix E for detailed settings). We examine three cases where 𝑑 = 20, 40,
and 80. In each scenario, we set 𝑑′ = 𝑑, fix 𝜅 = 20, and vary the SNR from 10−5 to 10−1. We use the
Sliced Wasserstein distance as a principled error metric, computed from samples obtained by our
algorithms and samples directly from the analytically computed posterior Gaussian mixture. Figure 3
illustrates the comparison between LMC and LMC boosted by tilted transport. As analyzed earlier,
LMC is effective when the SNR is high enough to render the target posterior strongly log-concave,
but its error quickly increases as the SNR decreases. In contrast, the tilted transport enhances LMC
to perform well in both low and high SNR regimes with small sampling errors. Its performance is
weaker in the mid-SNR regime compared to the extremes, as predicted by Corollary 10. However, the
tilted transport still improves upon LMC in this challenging regime by boosting effective SNR and
simplifying the prior.
We further test tilted transport when 𝑑′ < 𝑑, in which 𝜆min (𝑄𝑡 ) remains zero but the signal
corresponding to the non-zero eigenvalues still gets enhanced. Therefore, although it becomes more
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Figure 3: Comparison of Langevin and boosted Langevin for Gaussian mixture prior. We generate the
prior, measurement and sample the posterior under 20 different instances in each setting. The sliced
Wasserstein distances are plotted with the median in the middle, and the 25th and 75th percentiles
indicated by the error bars.

difficult for 𝜈𝑇∗ to be strongly log-concave, the tilted transport can still make the new posterior easier
to sample even if it is not strongly log-concave yet. Detailed results are reported in Appendix E.1.

7 Discussion and Future Work

In this paper, we theoretically investigate posterior sampling using powerful priors provided by
denoising oracles. We demonstrate that efficient posterior sampling can be challenging even with
a perfect denoising oracle for the prior. To achieve provable posterior sampling, one must either
constrain the measurements or leverage the structural properties of the prior. We focus on the
former, showing that well-conditioned measurements enable the proposed tilted transport technique
to simplify the task significantly, providing a clear, verifiable condition for efficient sampling, as
demonstrated on the Ising model. Several questions remain open: Can this approach provably handle
poorly-conditioned measurements, such as inpainting? Can it be extended from linear to nonlinear
inverse problems? We show in Appendix D how to extend the tilted transport beyond the condition of
Proposition 7 via ‘iterated tilts’, at the expense of introducing approximation errors. On the theory
side, the key object underlying the success of the tilted transport is the spread 𝜒𝑡 (𝜋); in particular,
understanding when one can remove dimension dependence is an interesting question. We also aim
to systematically evaluate the empirical performance of tilted transport in imaging and scientific
computing. Appendix E.2 provides a proof-of-concept for various imaging tasks. We suspect that
tilted transport could even improve existing posterior point estimate methods by boosting SNR and
enabling proper uncertainty quantification through the reverse process.
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A Proof of Proposition 4

Let 𝛿 > 0 and �̄� be the uniform measure in the 𝑑-dimensional hypercube. Consider a Gaussian
mixture prior 𝜋 defined as 𝜋 = �̄� ★ 𝛾𝛿 .
Since both �̄� and 𝛾𝛿 are product measures, it follows that 𝜋 is also a product measure, and therefore
its denoising oracle DO𝜋 is explicitly given by DO𝜋 (𝑦, 𝑡)𝑖 = 𝜓(𝑦𝑖 , 𝑡), with

𝜓(𝑣, 𝑡) =
∫
ℝ

𝑢𝑞𝑣,𝑡 (𝑢)d𝑢 , (13)

𝑞𝑣,𝑡 (𝑢) = 𝑍−1
(
𝑒−

1
2 (𝛿

−2 (𝑢−1)2+𝑡−2 (𝑣−𝑢)2 ) + 𝑒− 1
2 (𝛿

−2 (𝑢+1)2+𝑡−2 (𝑣−𝑢)2 )
)
. (14)

Observe that 𝑞𝑣,𝑡 is the density of a Gaussian mixture in ℝ of the form 𝛼N(𝑏− , 𝜎) + (1−𝛼)N (𝑏+, 𝜎),
with parameters

𝜎−2 = 𝛿−2 + 𝑡−2 (15)

𝑏± =
±𝛿−2 + 𝑡−2𝑣

𝜎−2 (16)

𝛼 =
𝑒
(𝛿−2+𝑡−2𝑣)2

2𝜎2

𝑒
(𝛿−2+𝑡−2𝑣)2

2𝜎2 + 𝑒
(−𝛿−2+𝑡−2𝑣)2

2𝜎2

, (17)

and thus 𝜓(𝑣, 𝑡) = 𝛼𝑏− + (1 − 𝛼)𝑏+.
Let us now denote by 𝜇𝑄 the target Ising model, supported in the 𝑑-dimensional hypercube, and define
the approximation 𝜇𝜎

𝑄
:= T𝑄𝜋. Suppose that there is an algorithm A that leverages the denoising

oracle of 𝜋 that can efficiently sample from 𝜇𝜎
𝑄

: its law �̂� satisfies TV(𝜇𝜎
𝑄
, �̂�) ≤ 𝜖 with runtime

polynomial in 𝑑 and log(𝜖−1).
Let now 𝑅(𝑥) = sign(𝑥), and consider the sampler 𝑅 ◦ A, which is now supported in the hypercube.
By the triangle and data-processing inequalities, we directly have

TV(𝑅# �̂�, 𝜇𝑄) ≤ TV(𝑅# �̂�, 𝑅#𝜇
𝛿
𝑄) + TV(𝑅#𝜇

𝛿
𝑄, 𝜇𝑄) (18)

≤ TV( �̂�, 𝜇𝛿
𝑄) + TV(𝑅#𝜇

𝛿
𝑄, 𝜇𝑄) (19)

≤ 𝜖 + TV(𝑅#𝜇
𝛿
𝑄, 𝜇𝑄). (20)

It remains to bound the second term in the RHS. We have to compare two measures in the hypercube.
For 𝜎 ∈ H𝑑 := {±1}𝑑 , they are given respectively by

𝜇𝑄 (𝜎) =
1
𝑍
𝑒−

1
2 𝜎
⊤𝑄𝜎 , (21)

𝑅#𝜇
𝛿
𝑄 (𝜎) =

1
�̃�

∑︁
𝑧∈H𝑑

∫
𝑅 (𝑥 )=𝜎

𝑒−
1
2 (𝑥

⊤𝑄𝑥+𝛿−2 ∥𝑥−𝑧 ∥2 )d𝑥 . (22)

Applying the Laplace approximation into each integral we obtain, as 𝛿→ 0,∫
𝑅 (𝑥 )=𝜎

𝑒−
1
2 (𝑥

⊤𝑄𝑥+𝛿−2 ∥𝑥−𝑧 ∥2 )d𝑥 =

{
∼ 𝐶𝑑, 𝛿𝑒

− 1
2 𝜎
⊤𝑄𝜎 if 𝑧 = 𝜎 ,

∼ 𝐶𝑑, 𝛿𝑒
− 1

2 (𝜎⊕𝑧)
⊤𝑄 (𝜎⊕𝑧)𝑒

− |𝜎−𝑧 |
2𝛿2 otherwise ,

(23)

where 𝜎 ⊕ 𝑧 is the XOR, and |𝜎 − 𝑧 | is the Hamming distance. We thus have, for any 𝜎 ∈ H𝑑 ,����̃�𝑅#𝜇
𝛿
𝑄 (𝜎) − 𝑒

− 1
2 𝜎
⊤𝑄𝜎

��� ≤ 2𝑑𝑒𝑑𝜆min (𝑄)/2𝑒−
1
2 𝛿
−2

(24)

≤ 𝑒−
1
2 𝜎
⊤𝑄𝜎2𝑑𝑒𝑑 (𝜆min (𝑄)+𝜆max (𝑄) )/2𝑒−

1
2 𝛿
−2

. (25)

It follows that we can write 𝑅#𝜇
𝛿
𝑄
(𝜎) as

𝑅#𝜇
𝛿
𝑄 (𝜎) = 𝐶 (𝑒− 1

2 𝜎
⊤𝑄𝜎 + 𝜂𝜎) ,
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with a relative error
|𝜂𝜎 |

𝑒−
1
2 𝜎
⊤𝑄𝜎

≤ 𝑒𝑑 (1+
1
2 (𝜆min (𝑄)+𝜆max (𝑄) ) )−𝛿−2/2 := 𝜃 . (26)

It follows that

TV(𝑅#𝜇
𝛿
𝑄, 𝜇𝑄) = 𝑂 (𝜃) , (27)

and thus if 𝛿 ≪ 1√
𝑑

, we have a negligible TV approximation.

B Proofs of Section 4

B.1 Proof of Theorem 5

Proof. We denote the time-dependent score function ∇ log 𝜋𝑡 (𝑥) by 𝑠𝑡 (𝑥). As derived in Section 2, if
we initialize 𝑋𝜏 according to density 𝜌𝜏 and run the reverse SDE eq. (5), the density of 𝑋𝑡 for 𝑡 ≤ 𝜏,
denoted by 𝜌𝑡 , satisfies the backward PDE:

𝜕𝑡 𝜌𝑡 = ∇ · ((𝑥 + 2𝑠𝑡 )𝜌𝑡 ) − Δ𝜌𝑡 . (28)

We need to verify that 𝜈𝑡 satisfies the above PDE.Note that a general positive function 𝜌𝑡 satisfies this
PDE is equivalent to that ℎ𝑡 = log 𝜌𝑡 satisfies the following Hamilton-Jacobi PDE

𝜕𝑡ℎ𝑡 = 𝑑 + 2∇ · 𝑠𝑡 + ∇ℎ𝑡 · (𝑥 + 2𝑠𝑡 ) − (Δℎ𝑡 + ∥∇ℎ𝑡 ∥2). (29)

By definition, we know ℎ𝑡 = log 𝜋𝑡 satisfies the above PDE, and we need to prove ℎ𝑡 = log 𝜈𝑡 =
log 𝜋𝑡 − 1

2𝑥
⊤𝑄𝑡𝑥 + 𝑥⊤𝑏𝑡 +𝐹 (𝑡) satisfies this PDE as well. Here 𝐹 (𝑡) denotes the normalizing constant.

Taking the difference between two equations, we need

− 1
2
𝑥⊤ ¤𝑄𝑡𝑥 + 𝑥⊤ ¤𝑏𝑡 + ¤𝐹 = (−𝑄𝑡𝑥 + 𝑏𝑡 ) · (𝑥 + 2𝑠𝑡 ) + trace(𝑄𝑡 ) + ∥𝑠𝑡 ∥2 − ∥𝑠𝑡 −𝑄𝑡𝑥 + 𝑏𝑡 ∥2 (30)

⇔ − 1
2
𝑥⊤ ¤𝑄𝑡𝑥 + 𝑥⊤ ¤𝑏𝑡 + ¤𝐹 = 𝑥⊤ (−𝑄𝑡 −𝑄⊤𝑡 𝑄𝑡 )𝑥 + 𝑥⊤ (𝑏𝑡 + 2𝑄⊤𝑡 𝑏𝑡 ) + ∥𝑏𝑡 ∥2 + trace(𝑄𝑡 ) (31)

which can be satisfied by the ODE dynamics (9). ■

B.2 Derivation of Solution to eq. (9)

Sanity Check for the Motivating Example. In the denoising setting, we have𝑄0 = 1
𝜎2 𝐼𝑑 , 𝑏0 = 1

𝜎2 𝑦.
The ODE (9) has the explicit solution

𝑄𝑡 =
𝑒2𝑡

1 + 𝜎2 − 𝑒2𝑡 𝐼𝑑 .

Note that this solution has a finite blow-up time when 1 + 𝜎2 − 𝑒2𝑡 → 0+, which is exactly at
𝑇∗ = 1

2 log(1 + 𝜎2), as derived in the main text by matching the SNR. As 𝑡 → 𝑇∗, 𝑄𝑡 →∞𝐼𝑑 ,

𝜈𝑡 = exp
(
𝑓𝑡 (𝑥) −

1
2
𝑥⊤𝑄𝑡𝑥 + 𝑥⊤𝑏𝑡 + 𝐹 (𝑡)

)
→ N(𝑄−1

𝑡 𝑏𝑡 , 𝑄
−1
𝑡 ).

To see the limit of 𝑄−1
𝑡 𝑏𝑡 , we only need to consider the ODE for each component since 𝑄 is diagonal.

So we view the above ODE as scalar ODEs. Considering the dynamics of

d
d𝑡

𝑟

𝑄
=
¤𝑟𝑄 − 𝑟 ¤𝑄

𝑄2 = − 𝑟

𝑄
, (32)

gives 𝑄−1
𝑡 𝑏𝑡 = 𝑒−𝑡𝑄−1

0 𝑏0. Therefore

lim
𝑡→(𝑇∗ )−

𝑄−1
𝑡 𝑏𝑡 = 𝑒−𝑇

∗
𝑄−1

0 𝑏0 = 𝑒−𝑇
∗
𝑦,
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which matches the initial condition derived in the main text for the denoising case. Furthermore, we
can explicitly verify that the intermediate distribution of 𝑋𝑡 by running the reverse SDE from 𝜈∗

𝑇
is 𝜈𝑡 :

𝑝(𝑋𝑡 |𝑋𝑇∗ = 𝑒−𝑇
∗
𝑦) ∝ 𝑝(𝑋𝑡 )𝑝(𝑋𝑇∗ = 𝑒−𝑇

∗
𝑦 |𝑋𝑡 )

∝ 𝜋𝑡 (𝑋𝑡 ) exp
(
−1

2
∥𝑒−𝑇∗ 𝑦 − 𝑒−(𝑇∗−𝑡 )𝑥∥2

1 − 𝑒−2(𝑇∗−𝑡 )

)
= 𝜋𝑡 (𝑋𝑡 ) exp

(
−1

2
∥𝑒−𝑡 𝑦 − 𝑥∥2

𝑒2(𝑇∗−𝑡 ) − 1

)
(33)

To match the form of 𝜈𝑡 , we have 𝑄𝑡 =
1

𝑒2(𝑇∗−𝑡 )−1 = 𝑒2𝑡

1+𝜎2−𝑒2𝑡 , 𝑄
−1
𝑡 𝑏𝑡 = 𝑒−𝑡 𝑦, which are the solutions

of the ODE (9).

Solution to eq. (9). We recall that the observation operator 𝐴 ∈ ℝ𝑑′×𝑑 has a general singular
value decomposition form 𝐴 = 𝑈Σ𝑉⊤ with non-zero singular values 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑑′ > 0. By
definition, we have 𝑄0 = 𝑉diag(𝜆2

1/𝜎
2, · · · , 𝜆2

𝑑′/𝜎
2, 0, · · · , 0)𝑉⊤. By left multiplying 𝑉⊤ and right

multiplying 𝑉 to the first ODE in (9), we can diagonalize it to scalar equations ¤𝑞𝑡 = 2(1 + 𝑞𝑡 )𝑞𝑡 for
each diagonal entry. Solving this ODE gives

𝑄𝑡 = 𝑉diag

(
𝑒2𝑡

1 + 𝜎2/𝜆2
1 − 𝑒2𝑡

, · · · , 𝑒2𝑡

1 + 𝜎2/𝜆2
𝑑′ − 𝑒2𝑡

, 0, · · · , 0
)
𝑉⊤. (34)

Here we explain how to solve 𝑏𝑡 from eq. (9). We denote 𝑉 = [𝑣1, · · · , 𝑣𝑑], in which 𝑣𝑖 are
eigenvectors of 𝑄 (and 𝑄𝑡 as well), and denote the eigenvalues of 𝑄𝑡 (0 ≤ 𝑡 < 𝑇∗) by

�̃�𝑖 (𝑡) =


𝑒2𝑡

1 + 𝜎2/𝜆2
𝑖
− 𝑒2𝑡

, 1 ≤ 𝑖 ≤ 𝑑′

0, 𝑑′ + 1 ≤ 𝑖 ≤ 𝑑

(35)

By definition, we know 𝜆𝑖 satisfies the ODE

¤̃𝜆 = 2(1 + �̃�)�̃�.

We rewrite the solution 𝑏𝑡 =
∑𝑑

𝑖 𝜉𝑖 (𝑡)𝑣𝑖 and aim to solve 𝜉𝑖 (𝑡). From 𝑏0 = 𝑉 ( 1
𝜎2 Σ

⊤𝑈⊤𝑦), we have
the initial condition

𝜉𝑖 (0) =

𝜆𝑖

𝜎2 (𝑈
⊤𝑦)𝑖 , 1 ≤ 𝑖 ≤ 𝑑′

0, 𝑑′ + 1 ≤ 𝑖 ≤ 𝑑
(36)

Taking the inner product between 𝑣𝑖 and both sides of the ODE ¤𝑟𝑡 = (𝐼 + 2𝑄𝑡 )𝑏𝑡 , we have

¤𝜉𝑖 (𝑡) = (1 + 2�̃�𝑖 (𝑡))𝜉𝑖 (𝑡).

Therefore, for 𝑑′ + 1 ≤ 𝑖 ≤ 𝑑, 𝜉𝑖 (𝑡) = 0. For 1 ≤ 𝑖 ≤ 𝑑′, same to the derivation in eq. (32), we have

d
d𝑡

𝜉𝑖

�̃�𝑖
= − 𝜉𝑖

�̃�𝑖
,

which gives

𝜉𝑖 (𝑡)
�̃�𝑖 (𝑡)

= 𝑒−𝑡
𝜉𝑖 (0)
�̃�𝑖 (0)

, (37)

⇒ ( 𝑒2𝑡

1 + 𝜎2/𝜆2
𝑖
− 𝑒2𝑡

)−1𝜉𝑖 (𝑡) = 𝑒−𝑡
𝜎2

𝜆2
𝑖

𝜆𝑖

𝜎2 (𝑈
⊤𝑦)𝑖 , (38)

⇒ 𝜉𝑖 (𝑡) =
𝑒𝑡

𝜆𝑖 (1 + 𝜎2/𝜆2
𝑖
− 𝑒2𝑡 )

(𝑈⊤𝑦)𝑖 . (39)
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Proof of Corollary 6. Given Theorem 5, we only need to prove that sampling from

𝜈𝑡 = T𝑄𝑡 ,𝑏𝑡 𝜋𝑡 ∝ 𝜋𝑡 (𝑥) exp
(
−1

2
𝑥⊤𝑄𝑡𝑥 + 𝑥⊤𝑏𝑡

)
is equivalent to sampling from a new posterior. Taking 𝜋𝑡 as the corresponding prior, we only need
to show that the factor exp

(
− 1

2𝑥
⊤𝑄𝑡𝑥 + 𝑥⊤𝑏𝑡

)
is the likelihood of certain observation model in the

form of �̃� = 𝐴𝑡𝑥 + 𝑤 with 𝑤 ∼ 𝛾𝑑 . To end, we need to ensure

exp
(
−1

2
𝑥⊤𝑄𝑡𝑥 + 𝑥⊤𝑏𝑡

)
∝ exp(−1

2
∥𝐴𝑡𝑥 − �̃�∥2)

Choosing 𝐴𝑡 in the standard SVD form 𝐴𝑡 = Σ𝑡𝑉
⊤ where the singular values of 𝐴𝑡 (the diagonal

entries of Σ𝑡 ) are 𝑒𝑡

(1+𝜎2/𝜆2
𝑖
−𝑒2𝑡 )1/2 for 1 ≤ 𝑖 ≤ 𝑑′, the quadratic term is matched. Matching the first

order term requires 𝑏𝑡 = 𝐴⊤ �̃� = 𝑉Σ⊤𝑡 �̃�. Further matching the coefficients in the basis of 𝑉 requires
that

(Σ⊤𝑡 �̃�)𝑖 = 𝜉𝑖 (𝑡) =
𝑒𝑡

𝜆𝑖 (1 + 𝜎2/𝜆2
𝑖
− 𝑒2𝑡 )

(𝑈⊤𝑦)𝑖 , 1 ≤ 𝑖 ≤ 𝑑′.

It is easy to verify that �̃� = Σ′𝑡𝑈
⊤𝑦 with Σ′𝑡 = diag

(
1

(𝜎2+𝜆2
1 (1−𝑒2𝑡 ) )1/2 , . . . ,

1
(𝜎2+𝜆2

𝑑′ (1−𝑒
2𝑡 ) )1/2

)
satisfies

the above requirement.
Remark 11. Also, one can directly use the backward transport equation (3) to generate samples with
the probability flow ODE [58] backward in time

d𝑋←𝑡 = (−𝑋←𝑡 − ∇ log 𝜋𝑡 (𝑋←𝑡 ))d𝑡 (40)
from 𝑋←

𝑇
∼ 𝛾𝑑 . Combining the fact that 𝜈𝑡 satisfies the PDE (5) andΔ𝜈𝑡 = ∇·(∇𝜈𝑡 ) = ∇·(𝑠𝑡−𝑄𝑡𝑥+𝑏𝑡 ),

we have that 𝜈𝑡 also satisfies the transport equation 𝜕𝑡 𝑝𝑡 = ∇·((𝑠𝑡+(𝐼+𝑄𝑡 )𝑥−𝑏𝑡 )𝑝𝑡 ). Therefore, for any
𝑡 < 𝑇∗, by initializing 𝑋𝑡 ∼ 𝜈𝑡 and run the reverse ODE d𝑋←𝑡 = (−(𝐼+𝑄𝑡 )𝑋←𝑡 −∇ log 𝜋𝑡 (𝑋←𝑡 ) +𝑏𝑡 )d𝑡
then 𝑋←0 also gives the desired posterior. However, we note that unlike the reverse SDE case, the
corresponding transport PDE and the vector field in the reverse ODE case are different from those
used in the prior data generation. As discussed below, both 𝑄𝑡 and 𝑏𝑡 are singular near 𝑇∗. Therefore
running the reverse SDE might be preferrable for better numerical stability.

C Proofs of Section 5

C.1 Proof of Proposition 7

Proof of Proposition 7. By definition, we need to show

−𝜆min (𝑄𝑇∗ ) + sup
𝑥

𝜆max (∇2 log 𝜋𝑇∗ (𝑥)) < 0. (41)

From the argument in the main text, we know 𝑇∗ = 1
2 log(1 + 𝜆max (𝑄)−1), and thus

𝜆min (𝑄𝑇∗ ) =
1 + 𝜆max (𝑄)−1

𝜆min (𝑄)−1 − 𝜆max (𝑄)−1 .

From Corollary 13, we have

sup
𝑥

𝜆max (∇2 log 𝜋𝑇∗ (𝑥)) ≤ (1 + ∥𝑄∥)
(
∥𝑄∥𝜒∥𝑄∥ (𝜋) − 1

)
. (42)

Let 𝑚 = 𝜆min (𝑄). Therefore, we can guarantee that 𝜈𝑇∗ is strongly log-concave if
1 + ∥𝑄∥−1

𝑚−1 − ∥𝑄∥−1 > (1 + ∥𝑄∥)
(
∥𝑄∥𝜒∥𝑄∥ (𝜋) − 1

)
, (43)

or equivalently

𝜒∥𝑄∥ (𝜋) < ∥𝑄∥−1 𝜅2 (𝐴)
𝜅2 (𝐴) − 1

. (44)

■
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Lemma 12 (Hessian of Gaussian Mixture Potential). Let 𝜋 = 𝜇 ★ 𝛾Σ be a Gaussian mixture. Then
∇2 log 𝜋(𝑥) = Σ−1 (

Cov
[
TΣ−1 ,Σ−1𝑥𝜇

]
Σ−1 − 𝐼

)
.

Proof. Let us first compute the score ∇ log 𝜋. By definition we have

∇ log 𝜋(𝑥) = −Σ−1

(
𝑥 −

∫
𝑦𝜇(𝑦)𝑒− 1

2 (𝑥−𝑦)
⊤Σ−1 (𝑥−𝑦)𝑑𝑦∫

𝜇(𝑦)𝑒− 1
2 (𝑥−𝑦)⊤Σ−1 (𝑥−𝑦)𝑑𝑦

)
(45)

= −Σ−1 (𝑥 − 𝔼
[
TΣ−1 ,Σ−1𝑥𝜇

]
) , (46)

and thus

∇2 log 𝜋(𝑥) = Σ−1
(
Cov

[
TΣ−1 ,Σ−1𝑥𝜇

]
Σ−1 − 𝐼

)
, (47)

where we defined Cov[𝜇] = 𝔼𝑥∼𝜇 [𝑥𝑥⊤] − (𝔼𝑥∼𝜇𝑥) (𝔼𝑥∼𝜇𝑥)⊤. ■

Corollary 13. In particular, we have

sup
𝑥

𝜆max (∇2 log 𝜋𝑇∗ (𝑥)) ≤ (1 + ∥𝑄∥)
(
∥𝑄∥𝜒∥𝑄∥ (𝜋) − 1

)
. (48)

Proof. From Lemma 12 and 𝜋𝑡 = C1−𝑒−2𝑡 (D𝑒𝑡 𝜋) = D𝑒𝑡 𝜋 ★ 𝛾1−𝑒−2𝑡 , we directly have

∇2 log 𝜋𝑡 (𝑥) = (1 − 𝑒−2𝑡 )−1
(
(1 − 𝑒−2𝑡 )−1Cov

[
T(1−𝑒−2𝑡 )−1 , (1−𝑒−2𝑡 )−1𝑥 (D𝑒𝑡 𝜋)

]
− 𝐼

)
. (49)

Now, using the commutation property between the isotropic tilt and the dilation D𝛼T𝜂,𝜃 = T𝛼2𝜂,𝛼𝜃D𝛼,
we have

Cov
[
T(1−𝑒−2𝑡 )−1 , (1−𝑒−2𝑡 )−1𝑥 (D𝑒𝑡 𝜋)

]
= Cov

[
D𝑒𝑡 T(𝑒2𝑡−1)−1 ,𝑒−𝑡 (1−𝑒−2𝑡 )−1𝑥𝜋

]
(50)

= 𝑒−2𝑡Cov
[
T(𝑒2𝑡−1)−1 ,𝑒−𝑡 (1−𝑒−2𝑡 )−1𝑥𝜋

]
, (51)

and therefore
sup
𝑥

Cov
[
T(1−𝑒−2𝑡 )−1 , (1−𝑒−2𝑡 )−1𝑥 (D𝑒𝑡 𝜋)

] ≤ 𝑒−2𝑡 𝜒(𝑒2𝑡−1)−1 (𝜋) . (52)

Using that 𝑒2𝑇∗ − 1 = ∥𝑄∥−1, we thus obtain

sup
𝑥

𝜆max (∇2 log 𝜋𝑇∗ (𝑥)) ≤ (1 + ∥𝑄∥)
(
∥𝑄∥𝜒∥𝑄∥ (𝜋) − 1

)
. (53)

■

Lemma 14 (Isotropic Tilt of a Gaussian Mixture). If 𝜋 = 𝜇 ★ 𝛾𝛿 , then
T𝑡 𝐼 ,𝑧𝜋 = �̃� ★ 𝛾𝜎2 , (54)

where 𝜎−2 = 𝛿−1 + 𝑡 and
�̃�( �̃�) ∝ 𝜇((𝜎−2 �̃� − 𝑧)𝛿)𝑒 1

2 (𝜎−2 ∥ �̃� ∥2−𝛿 ∥𝜎−2 �̃�−𝑧 ∥2) . (55)

Proof. By definition, we have

T𝑡 𝐼 ,𝑧𝜋 ∝
∫

d𝜇(𝑦)𝑒− 1
2 𝑡 ∥𝑥 ∥

2+𝑥 ·𝑧− 1
2 𝛿
−1 ∥𝑥−𝑦 ∥2 .

By expressing

−1
2
𝑡∥𝑥∥2 + 𝑥 · 𝑧 − 1

2
𝛿−1∥𝑥 − 𝑦∥2 = −1

2
𝜎−2∥𝑥 − �̃�∥2 + 𝐶

we have
𝜎−2 = 𝛿−1 + 𝑡 , (56)

�̃� =
𝛿−1𝑦 + 𝑧
𝛿−1 + 𝑡

, (57)

𝐶 =
1
2

[
𝜎−2∥ �̃�∥2 − 𝛿−1∥𝑦∥2

]
, (58)

which gives the desired result after performing the affine change of variables from 𝑦 to �̃�. ■
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Proof of Examples 8. The first example is immediate, after observing that T𝑡𝛾 is a Gaussian of
variance (1 + 𝑡)−1. For the Gaussian mixture example, we observe from Lemma 14 that T𝑡 (𝜇★𝛾𝛿) is
a Gaussian mixture of variance (𝑡 + 𝛿−1)−1, where the mixture distribution is supported in a ball of
radius 𝑅 𝛿−1

𝛿−1+𝑡 . Moreover, the covariance of a homogeneous mixture of the form 𝜇★𝛾Σ is Σ +Cov(𝜇).

If 𝜇 is a product measure, we observe that the isotropic tilt T𝑡𝜇 is also a product measure, and
therefore its covariance is diagonal. Finally, by the previous argument, if 𝜋 is the uniform measure on
the hypercube, then 𝜒𝑡 (𝜋) = 𝜒𝑡 ( 1

2 (𝛿−1 + 𝛿+1)) = 1. ■

Proof of Corollary 10. We plug the spread function 𝜒𝑡 (𝜋) = 𝜒𝑡 (𝜇 ★ 𝛾𝛿) ≤
(

𝑅
1+𝛿𝑡

)2 + 𝛿
1+𝛿𝑡 from

Example 8 (ii) into eq. (12) to get (we use 𝜅 to denote 𝜅(𝐴) for simplicity

∥𝑄∥−1 𝜅2

(𝜅2 − 1)
>

(
𝑅

1 + 𝛿∥𝑄∥

)2
+ 𝛿

1 + 𝛿∥𝑄∥ (59)

⇔ (1 + 𝛿∥𝑄∥)
(
((1 + 𝛿∥𝑄∥))𝜅2

∥𝑄∥(𝜅2 − 1)
− 𝛿

)
> 𝑅2 (60)

⇔ ((1 + 𝛿∥𝑄∥)(𝜅
2 + 𝛿∥𝑄∥)

∥𝑄∥(𝜅2 − 1)
> 𝑅2 (61)

⇔ (1 + 𝛿SNR2) (𝛿𝜅2 + SNR−2)
𝜅2 − 1

> 𝑅2 (62)

■

C.2 Exponential Complexity of Importance Sampling in High SNR Regime

As shown in the main text, the proposed boosted posterior provably works for both low SNR and high
SNR regimes. In this section, we formally argue that the importance sampling method is a nature
baseline for posterior sampling with a large noise (low SNR regime) , but can suffer from exponential
complexity when the SNR is high.
In order to estimate an integral of a function 𝑓 with respect to the posterior measure 𝜈:

𝐼 ( 𝑓 ) B
∫
ℝ𝑑

𝑓 (𝑥)d𝜈(𝑥),

the idea of importance sampling is to independently sample 𝑋1, . . . , 𝑋𝑛 from the prior 𝜋 and calculate

𝐼𝑛 ( 𝑓 ) B
∑𝑛

𝑖=1 𝑓 (𝑋𝑖)𝜏(𝑋𝑖)∑𝑛
𝑖=1 𝜏(𝑋𝑖)

,

where 𝜏(𝑥) is the observation likelihood exp(− 1
2𝑥
⊤𝑄𝑥 + 𝑥⊤𝑟). With the Denoising Oracle, we can

sample from the prior efficiently. Intuitively, one can think if the posterior and prior are very similar,
for example, when 𝜎 is large such that the ratio 𝜏 is close to 1, 𝐼𝑛 ( 𝑓 ) computed from prior samples
can efficiently approximate 𝐼 ( 𝑓 ). On the contrary, if 𝜎 is small, 𝜏(𝑥) can have very large variance
and the importance sampling can be inefficient since many prior proposals have very small weights.
The work [15, Theorem 1.2] proves that, in a fairly general setting, a sample of size approximately
exp(KL(𝜈 | |𝜋)) is necessary and sufficient for accurate estimation by importance sampling, where
KL(𝜈 | |𝜋) is the Kullback–Leibler divergence of 𝜋 from 𝜈:

KL(𝜈 | |𝜋) =
∫
ℝ𝑑

log
(

d𝜈
d𝜋

)
d𝜈 =

∫
ℝ𝑑

(−1
2
𝑥⊤𝑄𝑥 + 𝑥⊤𝑏)d𝜈(𝑥).

This result confirms one part of the intuition above: if 𝜎 is sufficiently small, then the magnitude of 𝑄
and 𝑟 will be sufficiently small, and so is (𝜈 | |𝜋) and the number of samples needed in the importance
sampling. Next we show that for a fairly generic prior distribution 𝜋, when the SNR is large, KL(𝜈 | |𝜋)
will be also large such that we need approximately O(𝑒𝑑 ·SNR) examples to implement importance
sampling, which is unachievable.
Without loss of generality, we assume the covariance of the prior 𝜋 is 𝐼𝑑 .
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Proposition 15 (Importance Sampling Sample Complexity Lower Bound). Assume ∇ log 𝜋(𝑥) is
𝐿-Lipschitz:

∥∇ log 𝜋(𝑥) − ∇ log 𝜋(𝑧)∥ ≤ 𝐿∥𝑥 − 𝑧∥ . (63)

Then, when SNR > 𝐿 + 2, we have

KL(𝜈 | |𝜋) ≥ O(𝑑 · SNR) , (64)

and therefore the sample complexity of IS is exponential in dimension.

Proof. We wish to lower bound KL(𝜈 | |𝜋) with tools of functional inequalities for the concentration
of measure. By the celebrated work [51, 10] that the log-Sobolev inequality implies the Talagrand
transport-entropy inequality, we have

KL(𝜈 | |𝜋) ≥ LSI(𝜈)𝑊 (𝜈, 𝜋)2
2

. (65)

Here 𝑊 (𝜈, 𝜋) denotes the Wassertain distance between 𝜈 and 𝜋:

𝑊 (𝜈, 𝜋) =
√︂

inf
𝛾∈Γ (𝜈, 𝜋 )

∥𝑥 − 𝑦∥2d𝛾(𝑥, 𝑦) ,

where Γ(𝜈, 𝜋) denotes the set of probability measures on ℝ𝑑 ×ℝ𝑑 with marginals 𝜈 and 𝜋.
First by Equation (63), we have

∇2 (− log 𝜈) ⪰ (SNR − 𝐿)Id , (66)

which gives
LSI(𝜈) ≥ (SNR − 𝐿) , (67)

by Bakry-Emery criterion [3]. Furthermore, we have the lower bound for the Wasserstain distance [28]

𝑊2 (𝜈, 𝜋) ≥ ∥mean(𝜈) −mean(𝜋)∥2 + trace(Cov(𝜈) + Cov(𝜋) − 2(Cov(𝜋) 1
2 Cov(𝜈)Cov(𝜋) 1

2 ) 1
2 )

(68)

≥ trace(Cov(𝜈) + 𝐼𝑑 − 2Cov(𝜈) 1
2 ) (69)

= trace(Diag(Cov(𝜈)) + 𝐼𝑑 − 2Diag(Cov(𝜈)) 1
2 ) (70)

=

𝑑∑︁
𝑖=1
((1 − Std(𝜈)𝑖)2) , (71)

where the second-to-last equality comes from the fact that the trace remains unchanged under orthogonal
transformation. By (66) and Brascamp-Lieb Inequality (Theorem 16), we have Std(𝜈)𝑖 ≤

√︃
1

SNR−𝐿 .
With the condition SNR − 𝐿 > 2,

𝑊2 (𝜈, 𝜋) ≥
(
1 −

√︂
1
2

)2

𝑑 . (72)

Collecting eqs. (65), (67) and (72), we obtain our final estimate

KL(𝜈 | |𝜋) ≥ O(𝑑 · SNR) . (73)

■

Theorem 16 (Brascamp-Lieb Inequality, [11]). If 𝜋 is a strongly-log-concave measure on ℝ𝑑 , i.e., of
the form 𝜋 = 𝑒− 𝑓 with ∇2 𝑓 (𝑥) ⪰ 𝛼Id for all 𝑥 ∈ ℝ𝑑 , then ∥Cov(𝜋)∥ ≤ 𝛼−1.
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C.3 Stability Analysis

In the numerical implementation of boosted posterior, we typically encounter certain errors. Especially,
we may have imperfect score subject to certain 𝐿2 errors, and we may not be able to sample the boosted
posterior 𝜈𝑡 exactly. Suppose that instead of starting from 𝜈𝑡 at 𝑡 and run the exact reverse SDE (5),
we start from an approximate distribution 𝑞𝑡 ≈ 𝜈𝑡 and run the reverse SDE (5) with approximating
score 𝑠𝜃 (𝑥, 𝑡) ≈ ∇ log 𝜋𝑡 (𝑥) where 𝜃 denote the parameters parametrizing the score. Denote the
distribution of the final samples by 𝑞0, we have the following error estimate
Proposition 17. Suppose 𝜈𝑡 , 𝑞𝑡 ,∇ log 𝜋𝑡 , 𝑠𝜃 (𝑥, 𝑡) has enough regularities such that the reverse SDEs
exist, if the Novikov’s condition 𝔼

[
exp(

∫ 𝑡

0 ∥∇ log 𝜋𝜏 (𝑥) − 𝑠𝜃 (𝑥, 𝜏)∥2d𝜏)
]
< ∞, then

KL(𝜈 | |𝑞0) ≤
∫ 𝑡

0
𝔼𝜈𝜏 ∥∇ log 𝜋𝜏 (𝑥) − 𝑠𝜃 (𝑥, 𝜏)∥2d𝜏 + KL(𝜈𝑡 | |𝑞𝑡 ). (74)

The above proposition ensures that if both the initialization error and score error (over the posterior
paths) are small, then the distribution of our final samples is close to the target posterior. The proof is
provided in Appendix C.3. Note that we consider the reverse dynamics in continuous-time without
time discretization error. There are various works [44, 45, 17, 8] analyzing the time discretization
error and those techniques can be further incorporated into the above error estimate.
The proof is similar to that in [59]. Here we provide the proof in our posterior sampling context for
completeness.

Proof. Consider the following two reverse dynamics needed for the error estimate: one is based on
the exact score and starts from the exact boosted posterior

d𝑋𝜏 = (−𝑋𝜏 − 2∇ log 𝜋𝜏 (𝑋𝜏))d𝜏 +
√

2d𝑊𝜏 , 𝑋𝑡 ∼ 𝜈𝑡 , (75)
and another one is based on the approximate score and starts from the approximation to the boosted
posterior

d�̃�𝜏 = (−�̃�𝜏 − 2𝑠𝜃 ( �̃�𝜏 , 𝜏))d𝜏 +
√

2d𝑊𝜏 , �̃�𝑡 ∼ 𝑞𝑡 , (76)
Note that these two dynamics are defined backwardly for 𝜏 ∈ [0, 𝑡] and we drop the superscript ←
for notation simplicity. We denote the path measure of {𝑋𝜏}𝜏∈[0,𝑡 ] and {�̃�𝜏}𝜏∈[0,𝑡 ] by ν and q,
respectively. Then 𝜈 and 𝑞0 are the marginal distributions of the two path measures at 𝑡 = 0. By data
processing inequality and chain rule of KL divergence, we have

KL(𝜈 | |𝑞0) ≤ KL(ν | |q) (77)
≤ KL(𝜈𝜏 | |𝑞𝜏) + 𝔼𝑧∼𝜈𝜏KL(ν (·|𝑋𝑡 = 𝑧) | |q(·| �̃�𝑡 = 𝑧)) (78)

Given the Novikov’s condition, we can apply the Girsanov theorem [50] to eq. (75)76 to compute the
second term above

𝔼𝑧∼𝜈𝜏KL(ν (·|𝑋𝑡 = 𝑧) | |q(·| �̃�𝑡 = 𝑧)) (79)

≤ − 𝔼ν

[
log

dq
dν

]
(80)

= 𝔼ν

[
2
∫ 𝑡

0
(∇ log 𝜋𝜏 (𝑥) − 𝑠𝜃 (𝑥, 𝜏))d𝑊𝜏 +

∫ 𝑡

0
∥∇ log 𝜋𝜏 (𝑥) − 𝑠𝜃 (𝑥, 𝜏)∥2d𝜏

]
(81)

= 𝔼ν

[∫ 𝑡

0
∥∇ log 𝜋𝜏 (𝑥) − 𝑠𝜃 (𝑥, 𝜏)∥2d𝜏

]
(82)

=

∫ 𝑡

0
𝔼𝜈𝜏 ∥∇ log 𝜋𝜏 (𝑥) − 𝑠𝜃 (𝑥, 𝜏)∥2d𝜏 (83)

■

D Iterated Tilted Transport

We have shown that posterior sampling of 𝜈 = T𝑄𝜋 can be reduced to sampling from 𝜈𝑇∗ by running
the reverse SDE. While 𝜈𝑇∗ is easy to sample under the conditions presented in Section 5, these may
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not be verified in several situations of interest. In this context, a natural question is whether one
could still leverage the tilted transport, at the expense of introducing sampling error. This is what we
address in this section.
Let 𝜆1, . . . 𝜆𝑑 be the eigenvalues of 𝑄. Let us assume for simplicity that 𝑏 = 0 and all eigenvalues
have multiplicity 1, so 𝜆𝑖 > 𝜆𝑖+1. We define the events 𝑇∗

𝑗
for 𝑗 = 1 . . . 𝑑 given by

𝑇∗𝑗 :=
1
2

log(1 + 𝜆−1
𝑗 ) . (84)

Denote by

�̄� 𝑗 (𝑡) =
{
∞ if 𝑡 ≥ 𝑇∗

𝑗
,

𝜆 𝑗 (𝑡) otherwise,

where 𝜆 𝑗 (𝑡) = 𝑒2𝑡/(1 + 𝜆−1
𝑗
− 𝑒2𝑡 ) is the solution to the ODE ¤𝑞𝑡 = 2(1 + 𝑞𝑡 )𝑞𝑡 . By abusing

notation, we denote by �̄�𝑡 , 𝑡 ≥ 𝑇∗ the matrix that shares eigenvectors with 𝑄, and with eigenvalues
(�̄�1 (𝑡), . . . , �̄�𝑑 (𝑡)). Denote by 𝑉𝑘 = [𝑣𝑑−𝑘 . . . 𝑣𝑑] ∈ ℝ𝑑×𝑘 the orthogonal projection onto the last 𝑘
eigenvectors.
While previously we considered only the transport between 𝜈 and 𝜈1 := 𝜈𝑇∗1 , now we can consider the
sequence 𝜈𝑘 := T�̄�𝑇∗

𝑘

𝜋𝑇∗
𝑘

for 𝑘 = 1, . . . , 𝑑. Observe that 𝜈𝑘 is a measure supported on a subspace Ω𝑘

of dimension 𝑑 − 𝑘; in other words, where 𝑘 directions are singular, corresponding to the eigenvectors
associated with the∞ eigenvalues of �̄�𝑇∗

𝑘
, and thus Ω𝑘 = {𝑥 ∈ ℝ𝑑;𝑉⊤

𝑘
𝑥 = y𝑘} for some y𝑘 ∈ ℝ𝑘 .

Now, let us consider 𝑘∗ = min{𝑘; 𝜈𝑘 is s.l.c.}; that is, the first 𝑘 such that 𝜈𝑘 is strongly log-
concave, and therefore efficiently sampleable by Langevin dynamics. Under the same assumptions as
Corollary 10, and by defining 𝜅𝑘 := 𝜆𝑘

𝜆𝑑
as the condition number of the truncated 𝑄, we immediately

obtain the bound

𝑘∗ ≤ min
{
𝑘;
(1 + 𝛿2SNR) (𝛿2𝜅𝑘 + SNR−1)

𝜅𝑘 − 1
> 𝑅2

}
. (85)

For 𝑘 < 𝑘∗, assume first that one had sampling access to 𝜈𝑘+1. Running the reverse tilted transport
for time 𝜂𝑘 = 𝑇∗

𝑘+1 − 𝑇
∗
𝑘

would produce samples from a tilted measure �̃�𝑘 := T�̃�𝑘
𝜋𝑇∗

𝑘
, where �̃�𝑘 has

eigenvalues (𝜓(𝜂𝑘), . . . , 𝜓(𝜂𝑘), 𝜆𝑘+1 (𝑇∗𝑘 ), . . . , 𝜆𝑑 (𝑇∗𝑘 )), where we defined 𝜓(𝑡) := (𝑒−2𝑡 − 1)−1 as
the inverse of 𝜆 ↦→ 1

2 log(1 + 𝜆−1). It is thus a non-singular measure in ℝ𝑑 , capturing the fact that the
denoising oracle driving the reverse dynamics is isotropic, and thus oblivious to the existence of the
singular support of 𝜈𝑘 .
We thus need a procedure to transform samples from �̃�𝑘 to samples of 𝜈𝑘 . The easiest procedure is to
simply marginalize the coordinates (𝑥1, . . . , 𝑥𝑘) = 𝑉⊤

𝑘
𝑥 ∈ ℝ𝑘 , ie

�̄�𝑘 (𝑥𝑘+1, . . . , 𝑥𝑑) =
∫
ℝ𝑘

�̃�𝑘 (d𝑥1, . . . , d𝑥𝑘 , 𝑥𝑘+1, . . . , 𝑥𝑑) ∈ P(ℝ𝑑−𝑘) ,

and then ‘lift’ this measure in the subspace Ω𝑘 , i.e.,

�̂�𝑘 (x𝑘 ; x−𝑘) := 𝛿(x𝑘 − y𝑘) �̄�𝑘 (x−𝑘) , (86)

where we defined x𝑘 = (𝑥1, . . . , 𝑥𝑘) and x−𝑘 = (𝑥𝑘+1, . . . , 𝑥𝑑).
We can then iteratively run the tilted transport backwards, from 𝑘 = 𝑘∗ − 1 to 𝑘 = 0, as illustrated in
Algorithm 2:

Algorithm 2 Sampling Using Iterated Tilted Transport
1: Start by sampling 𝑋𝑘∗ ∼ 𝜈𝑘∗ .
2: for 𝑘 = 𝑘∗ − 1 to 0 do
3: Run tilted transport starting at 𝑋𝑘+1 for time 𝜂𝑘 , resulting in �̃� .
4: Set 𝑋𝑘 = (y𝑘 ; X̃−𝑘).
5: end for
6: return 𝑋0
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By the data-processing inequality, the TV error will accumulate linearly at each step. Denoting �̂� the
law of 𝑋0, we have

TV(�̂�, 𝜈) ≤
∑︁

0<𝑘<𝑘∗
TV(�̂�𝑘 , 𝜈𝑘) . (87)

This bound can be interpreted as the accumulation of errors arising from conditioning a measure by
marginalizing over its first components. To the extent that 𝜓(𝜂𝑘) is large, these variables are nearly
deterministic, so one would expect that marginalization is a good approximation of conditioning. The
outstanding question is to understand conditions when this error guarantee can be quantified.
Inspired by [18], a natural extension of this simple iterative procedure is to apply ‘thermalization’
towards the stationary measure 𝜈𝑘 after line 4 of Algorithm 2 above, by running Langevin dynamics
in Ω𝑘 with score ∇ log 𝜈𝑘 :

d𝑋𝑡 = ∇ log 𝜈𝑘 (𝑋𝑡 )d𝑡 +
√

2d𝑊𝑡 , 𝑋0 ∼ �̂�𝑘 . (88)

The drift of this diffusion is available, since both 𝑄𝑇∗
𝑘

and ∇ log 𝜋𝑇∗
𝑘

are known, so is ∇ log 𝜈𝑘 .

Denote by �̌�𝑘 the law of 𝑋𝑡 after time 𝑡 = 𝐵𝑘 . While the time to relaxation of such Langevin
dynamics is generally not quantitative (otherwise 𝑘∗ ≤ 𝑘), even a short amount of thermalization
is able to improve upon the previous method. Indeed, by the reverse transport inequality [10,
Lemma 4.2], a weaker Wasserstein guarantee 𝑊2 (�̂�𝑘 , 𝜈𝑘) can be ‘upgraded’ to a TV guarantee of
the form TV(�̌�𝑘 , 𝜈𝑘) = 𝑂 (

√
𝐿𝑘𝑊2 (�̂�𝑘 , 𝜈𝑘)) by running Langevin dynamics for time 𝐵𝑘 = Θ(1/𝐿𝑘),

where 𝐿𝑘 = sup𝑥 𝜆max (∇2 log 𝜈𝑘 (𝑥)) > 0 is the largest eigenvalue of ∇2 log 𝜈𝑘 , which is positive by
definition of 𝑘∗ and 𝑘 < 𝑘∗. In summary, the ‘thermalized’ iterated tilted transport satisfies an error
bound of the form

TV(�̂�, 𝜈) ≲
∑︁

0<𝑘<𝑘∗

√︁
𝐿𝑘𝑊2 (�̂�𝑘 , 𝜈𝑘) . (89)

E Experimental Details

E.1 Gaussian mixture models

For a given dimension 𝑑 with 𝑑 mod 2 = 0, we consider prior data a mixture of 25 Gaussian distributions,
the same as considered in [13]. The Gaussian distribution has mean (8𝑖, 8 𝑗 , · · · , 8𝑖, 8 𝑗) ∈ ℝ𝑑 for
(𝑖, 𝑗) ∈ {−2,−1, 0, 1, 2}2 and unit variance. Each (unnormalized) mixture weight is independently
drawn according to a 𝜒2 distribution.
For the measurement model considered in Figure 3, we generate 𝐴 in the following way. We first
sample a 𝑑 × 𝑑 matrix with each entry sampled from the standard normal and compute its SVD to
get 𝑈 and 𝑉 for 𝐴. The singular value is given by [1, · · · , 1/20] where each component in between
is independently sampled from Unif ( [1/20, 1]) such that the condition number of 𝐴 is 20. The
observation noise is then determined by SNR. For the measurement model considered in Table 1,
the matrix 𝑈 and 𝑉 for the SVD form of 𝐴 is the same to the above. Each singular value in 𝑆 is
independently sampled from Unif ( [0, 1]), and 𝜎 is sampled from Unif ( [0.2 max 𝑆,max 𝑆]).
For all the experiments we run the boosted posterior from 𝑇∗ − 0.01 such that the ODE solution 𝑄, 𝑏
is well-defined. We use BlackJAX [12] to implement the No-U-turn sampler.
Besides results reported in Figure 3, we further test tilted transport when 𝑑′ < 𝑑. In this setting,
𝜆min (𝑄𝑡 ) remains zero but the signal corresponding to the non-zero eigenvalues still gets enhanced.
Therefore, although it becomes more difficult for 𝜈𝑇∗ to be strongly log-concave, the tilted transport
can still make the new posterior easier to sample even if it is not strongly log-concave yet. As shown
in Table 1, when 𝑑′ = 0.9𝑑, 10% percent eigenvalues of 𝑄𝑡 are zero, our tilted transport technique still
reduces the statistical distance of the posterior samples significantly. We also consider an even more
challenging case where 𝑑′ = 1 such that the target posterior is still heavlily multimodal (as visualized
in the 2D example in Figure 2). In this case, LMC suffers from the local maxima of the potential and
thus cannot explore the multimodal distribution efficiently. We use the No-U-turn sampler[34], a
Hamilton Monte Carlo (HMC) method, as the baseline method, which can move among different
modes more efficiently than Langevin. We find that the tilted transport technique can still boost the
performance of HMC in this challenging setting. We also verify Theorem 5 by sampling from the
boosted posterior directly from its analytical formula and running the reverse SDE, and the obtained
samples approximate the target posterior well, as reported in Table 1.
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Table 1: Sliced Wasserstein distance for Gaussian mixture prior for degenerate case

𝑑

𝑑′ = 0.9𝑑 𝑑′ = 1

Langevin Boosted
Langevin

Analytic
Boost HMC Boosted

HMC
Analytic
Boost

20 4.21 ± 1.87 2.32± 2.42 0.02 ± 0.00 1.33 ± 1.02 1.11± 0.83 0.12 ± 0.07
40 4.09 ± 2.02 2.45± 1.79 0.02 ± 0.00 2.04 ± 1.26 1.81± 1.03 0.13 ± 0.07
80 4.40 ± 2.31 2.75± 2.10 0.02 ± 0.00 2.98 ± 2.15 2.77± 2.32 0.11 ± 0.06

E.2 Imaging Problems

We perform four inverse tasks on the Flickr-Faces-HQ Dataset (FFHQ) [39] to demonstrate the
application of the tilted transport technique on imaging data as a proof of concept. To apply the
proposed tilted transport technique to these problems, we still need to select a baseline method for
sampling from the boosted posterior 𝜈𝑇∗ . In the case of ill-conditioned problems, sampling 𝜈𝑇∗

may still be challenging for principled algorithms like LMC, and we still need to rely on heuristic
methods for imaging tasks. However, as noted in the introduction, most existing heuristic methods
primarily facilitate conditional generation based on the measurement, lacking principled guarantees
for posterior sampling. Consequently, we lack a principled interpretation for enhancing these methods
with tilted transport. Nevertheless, we can still experiment with such methods as a proof of concept.
We chose Diffusion Model Based Posterior Sampling (DMPS) [48] as the baseline method for the
following reasons: The main assumption of DMPS in approximating the time-dependent conditional
score is that the prior 𝜋 is uninformative (flat) with respect to 𝑋𝑡 , such that 𝑝(𝑋0 |𝑋𝑡 ) ∝ 𝑝(𝑋𝑡 |𝑋0).
This assumption only holds approximately in early phases of the forward diffusion, and hopefully a
higher SNR provided by tilted transport makes the effect of this approximation error smaller.
We conducted four tasks: (a) denoising; (b) inpainting with random masks from [53]; (c) 4×
super-resolution; and (d) deblurring using a Gaussian kernel. Our algorithm was implemented using
the NVIDIA codebase [47] with 1000 diffusion steps for posterior sampling, and utilized the score
function from a pretrained diffusion model [20]. Similar to our Gaussian mixture model experiments
where we adjusted the timing for the boosted posterior to avoid the singularity of 𝑄𝑡 , we shifted 6 -
10 timesteps for setting the boosted posterior. Experiments show that the final performance is robust
with respect to the number of shifted steps. Figure 4 showcases examples from the inpainting task,
demonstrating how tilted transport enhances the baseline DMPS method. Additionally, we report
various sample statistics including peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM), and Learned Perceptual Patch Similarity (LPIPS). However, it is important to note that while
these statistics assess the quality of prior data generation, they may not accurately reflect the quality
of posterior samples.

Table 2: Performance for tasks on FFHQ Dataset.
Task Denoising Inpainting Super-resolution Deblur
Metrics DMPS Boost DMPS Boost DMPS Boost DMPS Boost
PSNR(dB) ↑ 32.153 32.350 22.458 23.312 26.761 26.899 29.088 29.155
SSIM ↑ 0.886 0.886 0.786 0.800 0.760 0.754 0.815 0.815
LPIPS ↓ 0.060 0.039 0.131 0.098 0.129 0.109 0.098 0.094
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Figure 4: Examples for inpainting with random masks over FFHQ dataset
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.
Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the relevant

information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.
The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.
IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

(i) Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This work focuses on provable sampling of posterior distribution with denoising
oracles and the proposed tilted transport technique.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

(ii) Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: See the last section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

(iii) Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All the details of proof are provided in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
(iv) Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

(v) Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: Code for Gaussian mixture is uploaded in a single zip file. Our results on
imaging tasks in Appendix E.2 are mainly for a proof-of-concept.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

(vi) Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See the main text, Appendix E and code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
(vii) Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In each experiment, we report percentiles or standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

(viii) Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: Our experiments with the Gaussian mixture model require only a few seconds
per run on a laptop.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

(ix) Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform the the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
(x) Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper mainly focuses provable sampling of the posterior distribution.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

(xi) Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

(xii) Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We use open-source packages.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

(xiii) New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: No new asset is released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

(xiv) Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main

contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

(xv) Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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