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Figure 1: Top: Semantic Multiple Clustering (SMC) deals with automatically organizing an unstructured
image collection into semantically meaningful and human interpretable groups (or semantic clusters), under
multiple shared themes (or clustering criteria), without requiring any prior information. Bottom: Our proposed
SMC system enables various applications like discovering novel biases in text-to-image generative (T2I) models.

ABSTRACT

Organizing unstructured visual data into semantic clusters is a key challenge in
computer vision. Traditional deep clustering (DC) approaches focus on a single
partition of data, while multiple clustering (MC) methods address this limitation
by uncovering distinct clustering solutions. The rise of large language models
(LLMs) and multimodal LLMs (MLLMs) has enhanced MC by allowing users
to define clustering criteria in natural language. However, manually specifying
criteria for large datasets is impractical. In this work, we introduce the task
Semantic Multiple Clustering (SMC) that aims to automatically discover clustering
criteria from large image collections, uncovering interpretable substructures without
requiring human input. Our framework, Text Driven Semantic Multiple Clustering
(TeDeSC), uses text as a proxy to concurrently reason over large image collections,
discover partitioning criteria, expressed in natural language, and reveal semantic
substructures. To evaluate TeDeSC, we introduce the COCO-4c and Food-4c
benchmarks, each containing four grouping criteria and ground-truth annotations.
We apply TeDeSC to various applications, such as discovering biases and analyzing
social media image popularity, demonstrating its utility as a tool for automatically
organizing image collections and revealing novel insights.

Disclaimer: Potentially sensitive content.
1 INTRODUCTION

Organizing large volumes of unstructured visual data into semantic clusters is a crucial problem in
computer vision and has traditionally been addressed through the lens of unsupervised deep clustering
(DC) (Caron et al., 2018; Van Gansbeke et al., 2020). Despite the advancements and improved
performance, DC remains limited due to its inherently ill-posed nature (Estivill-Castro, 2002) as it
assumes a single clustering structure. For instance, a dataset can often be clustered in multiple ways
(e.g., a dataset of a deck of cards can be grouped by suit or rank). What forms a clustering depends
on the needs of the users. Furthermore, the clusters discovered by DC rely on factors such as the
inductive biases of the network, augmentations, and pretext tasks; and do not necessarily adhere to a
particular partitioning criteria that a user may have in mind (e.g., suit).
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The limitation of DC in exploring visual data only along a single partition is addressed by multiple
clustering (MC) methods (Yu et al., 2024), which uncover distinct clustering solutions. Multiple
partitions reveal hidden patterns in the data and allow for analysis from different perspectives.
The recent advent of large language models (LLMs) and multimodal LLMs (MLLMs) has further
enhanced MC by enabling users to specify the clustering criterion (e.g., group by suit) in natural
language (Kwon et al., 2024; Yao et al., 2024). While incorporating a human in the loop is appealing,
as it grants the user control over the clustering results, specifying a meaningful text criterion still
requires prior understanding of the entire image collections. This task becomes cumbersome,
especially due to the proliferation and high scene complexity inherent in large volumes of visual data.

Table 1: Overview of clustering solutions and their
key differences. Unlike Deep Clustering (Caron et al.,
2018) and Multiple Clustering methods (IC|TC (Kwon
et al., 2024) and MMaP (Yao et al., 2024)), the pro-
posed TeDeSC (Ours) requires no auxiliary prior
knowledge, while offering interpretable outputs.

DC MMaP IC|TC Ours

Pr
io

r User-provided Criteria % ! ! %

Knowledge # Clusters ! ! ! %

O
ut

. Multiple Clustering % ! ! !

Interpretability % % ! !

In this work, we propose to ease the burden of
specifying text criteria off the user, and introduce
the task of Semantic Multiple Clustering (SMC).
As shown in Fig. 1(top), given an unstructured im-
age collection, SMC aims to comprehensively dis-
cover all clustering criteria and their correspond-
ing semantic clusters in natural language, entirely
without requiring human priors. Tab. 1 outlines
key distinctions between SMC and existing clus-
tering solutions, with further discussions provided
in App. A. SMC presents unique challenges to cur-
rent machine learning systems. First, it requires
reasoning over all provided images concurrently
to identify valid clustering criteria. This capability is beyond the reach of existing vision-and-language
models, which cannot effectively process thousands of images simultaneously. Second, SMC does not
assume prior knowledge of user-preferred clustering granularity (i.e., the number of clusters). Instead,
it should adaptively determine the appropriate clustering structure for each discovered criterion,
ensuring that the resulting clusters align with the underlying semantic substructure of the data.

To tackle SMC, we propose a general two-stage framework Text Driven Semantic Multiple Clustering
(TeDeSC), powered by cutting-edge MLLMs and LLMs, that first discovers latent criteria (e.g.,
Activity and Location) from a given collection of images, and then groups the images into
semantic clusters (e.g., “Surfing”,“Skateboarding” under Activity) for every discovered clustering
criterion. To reason at a dataset level, TeDeSC first translates the visual data into textual data (e.g.,
captions), which in turn are then collectively used as a proxy for the LLM to discover the hidden
patterns in the image collection. The uniqueness of TeDeSC lies in its: (i) comprehensiveness, as it can
exhaustively discover multiple clustering criteria that may not be evident to a user; (ii) interpretability,
as it outputs cluster names in natural language as opposed to traditional MC methods; (iii) flexibility,
as it can discover clusters at multiple granularities (coarse to fine-grained), without needing to specify
the number of clusters a priori; and (iv) generality, as, unlike the existing work (Yao et al., 2024), it is
not limited to object-centric images but can handle complex scenes having fine-grained details.

Current benchmarks for evaluating multiple clustering either lack realism (Clevr-4c, Fruit-2c, Card-
2c) or offer a limited number of criteria (Action-3c), as shown in Fig. 2. To advance research in
SMC, we introduce two challenging new benchmarks, COCO-4c and Food-4c, which depict images
in daily life contexts and allow the dataset to be clustered as per four distinct criteria. Extensive
experimental analyses on both existing and novel benchmarks demonstrate that the proposed TeDeSC
can effectively discover meaningful clustering criteria and successfully group semantically similar
images (some examples of clustering results by TeDeSC are shown in Fig. 1 (top)).

Lastly, we apply TeDeSC to a variety of applications, including discovering biases in real-world
datasets and text-to-image generative models, as well as analyzing the popularity of social media
images. For example, as shown in Fig. 1(bottom), TeDeSC can uncover less commonly studied biases
(e.g., Hair color) in DALL·E3-generated (Betker et al., 2023) images, beyond the well-known
biases (e.g., Gender) that may have already been corrected for. It achieves this by discovering various
human-interpretable semantic clusters (e.g., “Dark Hair”, “Grey Hair”) across different discovered
criteria and identifying overpopulated clusters. Similarly, it can identify the semantic visual elements
that contribute to the popularity of social images, offering valuable insights to related practitioners.
These results suggest that TeDeSC is an automatic, versatile, and highly practical tool, opening up
numerous new application opportunities for future research and providing the potential to generate
insights from unstructured visual data at scale across various domains.
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2 SEMANTIC MULTIPLE CLUSTERING

In this section, we first formally define the task of Semantic Multiple Clustering (SMC), and then
introduce the existing and newly proposed benchmarks for SMC.

Task Definition: Given a collection of N unlabeled images D = {xn}Nn=1, the goal of SMC is to
categorize D into semantic clusters based on multiple criteria R = {Rl}Ll=1, where L is the total
number of criteria. In detail, a criterion Rl refers to the grouping theme according to which a set
of images can be organized (or partitioned), such as Activity, Location, Mood, or Time of Day.
All semantic clusters Cl under a given criterion Rl should align with the theme of that criterion. For
instance, the semantic clusters under the criterion Activity should reflect activities depicted in the
images (e.g., “Kayaking”, “Cooking”). The same dataset D, when grouped by a different criterion
such as Location, could be clustered into categories like “Outdoor”, “Indoor”, and so on.

Unlike IC|TC (Kwon et al., 2024) and MMaP (Yao et al., 2024), where a human operator pre-defines
the clustering criteria and the number of clusters Kl, both the criteria names and the cluster counts
are unknown in SMC. A SMC framework must automatically discover both the criteria and the
corresponding clusters from D. In contrast to classic MC setting, SMC not only discovers both
the criteria and cluster names but also describes them in natural language, making the discovered
substructures human-interpretable.

LabelCriterion
Caprese saladFood Type:
ItalianCuisine:
AppetizerCourse:
VegetarianDiet:

LabelCriterion
GreenColor:
MetalTexture:
TorusShape:
7Count:

LabelCriterion
JumpingAction:
Residential areaLocation:
JoyfulMood:

LabelCriterion
BananaSpecies:
YellowColor:

LabelCriterion
AceRank:
SpadesSuit:

LabelCriterion
SkateboardingActivity:
Urban area or city streetLocation:
AdventurousMood:
AfternoonTime of Day:COCO-4c (New)

Action-3c

Food-4c (New)

Fruit-2c

Clevr-4c

Card-2c
Figure 2: Overview of the SMC benchmarks. We show all clustering criteria and the corresponding ground-
truth labels for the example images. We introduce two new challenging benchmarks: COCO-4c and Food-4c.

Benchmarks: Evaluating SMC methods requires benchmarks that can be partitioned under multiple
valid criteria. Currently, only a few benchmarks (Yu et al., 2024) support the evaluation of SMC
methods: Fruit-2c (Muresan & Oltean, 2018), Card-2c (Kaggle, 2022), Action-3c (Kwon et al.,
2024), and Clevr-4c (Vaze et al., 2024). As shown in Fig. 2, these benchmarks are limited by their
object-centric nature with simple backgrounds (e.g., Fruit-2c), an insufficient number of criteria (e.g.,
up to three in Action-3c), and a lack of photorealism due to synthetic generation (e.g., Clevr-4c).

Given that the data encountered in real-world applications is more complex, we propose two new
benchmarks for SMC: Food-4c and COCO-4c. Food-4c is sourced from Food-101 (Bossard et al.,
2014), which includes 101 Food type (original annotations), along with new annotations for 15 Cui-
sine types, 5 Courses types, and 4 Diet preferences, totaling four clustering criteria. Additionally,
we constructed COCO-4c using images from COCO-val (Lin et al., 2014), where we annotated four
criteria with varying number of clusters: 64 Activity, 19 Location, 20 Mood, and 6 Time of day.
Examples of these newly constructed benchmarks are shown in Fig. 2. Further details, including the
full list of cluster names and the annotation pipeline, are provided in App. B.

3 METHODOLOGY: TEXT DRIVEN SEMANTIC MULTIPLE CLUSTERING

Partitioning an unstructured image collection into semantic clusters based on different (unknown)
criteria is challenging, as it requires reasoning over the visual contents of all the images concurrently.
Specifically, the system needs to first find commonalities among the images for discovering the
partitioning criterion (or theme) and then group the images into semantic clusters according to the
discovered criterion. To tackle the challenging SMC task, we propose a two-stage framework, named
Text Driven Semantic Multiple Clustering (TeDeSC), that significantly deviates from the commonly
used technique of deep feature-based clustering, and instead uses text descriptions as a proxy to
reason over the images and uncover hidden patterns in D. We elaborate the key design differences
between TeDeSC and related work in App. A.
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Semantic Grouper Substructures

Mood
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Activity

Caption-based (main)Caption-based (main)

Criteria Proposer Criteria Pool(Prompts in App. C.1) (Prompts in App. C.2)

Figure 3: TeDeSC is composed of a Criteria Proposer and a Semantic Grouper. (Left) The Proposer processes
the entire image set to discover and propose diverse grouping criteria expressed in natural language, which
are accumulated in the Criteria Pool. (Middle) The Grouper takes these proposed criteria from the pool,
discovers semantic clusters linked to the criteria at three different granularity levels, and assigns images to their
respective clusters. (Right) The discovered criteria reveal multiple substructures of the image set across different
granularities by aggregating cluster assignments. We explored various design choices and set the best-performing
method (marked ) as the main configuration of TeDeSC. Click the hyperlink in the figure for prompt details.

System overview: As illustrated in Fig. 3, the proposed TeDeSC consists of two modules: Criteria
Proposer and Semantic Grouper. The Criteria Proposer (or Proposer in short) processes the entire
image set D to discover diverse common themes among the images and proposes grouping criteria
R in natural language (e.g., Location). Once the criteria are proposed, the Semantic Grouper (or
Grouper in short) discovers distinct semantic clusters that adhere to each criterion Rl at varying levels
of semantic granularity and assigns images to their respective clusters (e.g., “Climbing gym”). In this
work, we explore various design choices for both the Proposer and Grouper, detailed in the following
subsections. Full implementation details, including exact prompts, are provided in App. C.

3.1 CRITERIA PROPOSER

As shown in Fig. 3(left), the Proposer processes the input image collection to generate grouping
criteria in natural language. The core of the Proposer design lies in its ability to concurrently analyze
and reason over a large set of images. With this in mind, we explore three systematic approaches
detailed below. We provide exact prompt details used in the proposer in App. C.1.

Image-based Proposer: We start with a baseline that leverages a state-of-the-art MLLM (Li et al.,
2024) designed for multi-image reasoning out-of-the-box to directly infer the criteria given a set of
images. To reason over a set of images, which is crucial for discovering the criterion, we stitch a
batch of images into a 8× 8 image grid and input it to the MLLM as a single image. We then prompt
the MLLM to propose grouping criteria for the images in the grid. All the resulting criteria from all
such image grids are accumulated in a criteria pool, denoted as R̃.

Tag-based Proposer: Next, we explore a tag-based approach that uses an open-vocabulary tag-
ger (Radford et al., 2021) to assign 10 tags to each image in D, using the vocabulary from Word-
Net (Miller, 1995). These tags serve as semantic descriptors, translating the visual content of each
image into textual form. We then gather all the assigned tags from the images, input them into a
LLM, and prompt it to discover grouping criteria based on these tags.

Caption-based Proposer (Main): While image tags effectively capture certain visual semantics,
we found that they predominantly reflect object-related content. To encompass a broader spectrum
of visual information—such as environmental settings or interactions—we instead use a MLLM
to generate captions for each image in D. Descriptive captions provide a richer and more holistic
semantic context. Staying within the 128k token limit of modern LLMs (Meta, 2024b; OpenAI, 2024),
we feed a subset of captions into a LLM, which we prompt to elicit partitioning criteria. The criteria
generated for each subset are accumulated in R̃. Experiments in Sec. 4.1 show that the Caption-based
Proposer is the most effective; so we use it as our main method and consider the others as baselines.

Criteria refinement: Since the Proposers operate on subsets, the criteria accumulated in R̃ may
include redundant or noisy entries. To address this, we input all initially proposed criteria from R̃
into a LLM (Meta, 2024b), prompting it to consolidate similar criteria and discard noisy ones. This
step refines and updates the criteria pool into R, which is ready to be used in the subsequent stage.
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3.2 SEMANTIC GROUPER

The automatically discovered criteria R serve as thematic indicators for revealing the semantic
substructures (or clusters) within the image set D. To uncover these substructures, as shown in
Fig. 3(right), the Grouper takes D and each criterion Rl as inputs. It then discovers cluster names
Cl = {slk}

Kl

k=1 conditioned on Rl and assigns each image to its corresponding cluster. The core design
of the Grouper focuses on aligning semantic substructure discovery with a specified partitioning
criterion. Similar to the Proposer, we also explore three distinct approaches for the Grouper.

Furthermore, as clusters under a given criterion can be formed at varying semantic granularities, de-
pending on user preferences, we have designed our Grouper to cluster D at three levels of granularity:
coarse, middle, and fine-grained. This design enables TeDeSC to provide new insights into the data at
different granularities. For example, for the criterion food Cuisine, TeDeSC can organize images at
a coarse-grained continental level (e.g., “European” or “Asian”), a middle-grained regional level (e.g.,
“Mediterranean” or “Southeast Asian”), or a fine-grained national level (e.g., “Italian” or “Thai”). We
provide the implementation details for the groupers and their multi-granularity design in App. C.2.

Image-based Grouper: Given a target criterion Rl ∈ R, we first prompt a LLM to generate a
question ql specific to Rl-i.e., for criterion Mood the generated question is: “What mood is conveyed
by this image? Answer with an abstract, common, and specific category name, respectively.” We then
use ql to guide a visual question answering (VQA) model to infer semantic cluster names for each
image as

(
slcoarse, s

l
mid, s

l
fine

)
= VQA(xn, ql). Consequently, by aggregating the cluster assignment

results at each granularity level across D, we can derive multi-granularity semantic substructures.

Tag-based Grouper: Given a criterion, we prompt a LLM to generate a list of common, middle-
grained tags specific to that criterion (e.g., “Recreational facility”). Following Liu et al. (2024d), we
then obtain coarse- and fine-grained tags by querying the LLM to generate super- and sub-categories
(e.g., “Indoor” and “Climbing gym”) for each middle-grained tag. Unlike lexical databases such
as WordNet or ConceptNet (Speer et al., 2017), which do not support free-form input and may be
limited in accommodating certain criteria, tag synthesis using a LLM provides a flexible and reliable
alternative. Subsequently, we use an image tagger to assign the most relevant tag from the candidate
tags at each granularity to each image, resulting in multi-granularity substructures after aggregation.

Caption-based Grouper (Main): We prompt a MLLM to generate captions that specifically fo-
cus on the target criterion for each image, as eln = MLLM(xn, Rl). Next, we use a LLM in a
three-step process to assign images to clusters at multiple granularity levels: i) Initial Naming:
First, we prompt the LLM to assign a class name to each caption as sln = LLM(eln, Rl), resulting
in an initial set of names Sl

init of size N ; ii) Multi-granularity Cluster Refinement: Using these
initial names as basis, we prompt the LLM to refine them into three structured granularity levels:(
Sl

coarse,Sl
mid,Sl

fine

)
= LLM(Sl

init, Rl). These structured names serve as candidates for cluster assign-
ment; iii) Final Assignment: Each image is then assigned a class name from each granularity level
based on its caption, as

(
slcoarse, s

l
mid, s

l
fine

)
= LLM(eln,Scoarse,Smid,Sfine). Experiments in Sec. 4.2

show that the Caption-based Grouper performs the best; thus we use it as our main method.

4 EXPERIMENTS

Implementation details: We run with our proposed TeDeSC framework using: i) CLIP ViT-
L/14 (Radford et al., 2021) as the Tagger, ii) LLaVA-NeXT-7B (Liu et al., 2024b) as the MLLM, iii)
Llama-3.1-8B (Meta, 2024b) as the LLM, and iv) BLIP-2 Flan-T5XXL (Li et al., 2023a) as the VQA
model. For the Image-based Proposer we use LLaVA-NeXT-Interleave-7B (Li et al., 2024) as the
MLLM due to its strong multi-image reasoning capability. Additionally, we explore a variant of the
Image-based Grouper using LLaVA-NeXT-7B as the VQA model. Further implementation details,
including exact prompts, are provided in App. C.

Evaluation metrics for criteria discovery: We asses the quality of the criteria R discovered by the
Proposer from two dimensions: i) Comprehensiveness: We compute True Positive Rate (TPR) (Csurka
et al., 2024) for the predicted criteria relative to the annotated ones as TPR = |R∩Y|

|Y| , to assess to
what extent the predicted set covers the ground-truth set Y; ii) Diversity: We compute the pairwise
semantic similarity between the predicted criteria R, using Sentence-BERT (Reimers & Gurevych,
2019), and convert it into a diversity measure by subtracting the similarity from 1. The final score is
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the average of these pairwise values, reflecting how well the proposed criteria avoid redundancy and
capture distinct aspects of the data—i.e., criteria such as Location and Place are nearly identical
and provide little additional insight. A higher score indicates better diversity. It is important to
note that the number of valid grouping criteria is subjective and potentially unlimited, making False
Positives difficult to define. Thus, we use TPR as the primary evaluation metric.

Evaluation metrics for substructure uncovering: Following Conti et al. (2023) and Liu et al.
(2024e), for each criterion and its substructure uncovered by the Grouper, we evaluate its alignment
with the substructure defined by the ground-truth labels along two dimensions: i) Semantic Consis-
tency: For each image xn ∈ D, we compute the semantic similarity between its assigned cluster
name pl ∈ Pl and the ground-truth label cl ∈ Cl under the current criterion Rl as ⟨E(pl), E(cl)⟩,
where E is the Sentence-BERT encoder and ⟨·, ·⟩ represents the cosine similarity function. The
average similarity across the dataset is reported as Semantic Accuracy (SAcc), reflecting how well
the predicted substructure semantically aligns with the ground-truth. ii) Structural Consistency:
We compute the clustering accuracy (CAcc) using the Hungarian algorithm that finds the optimal
permutation between the ground-truth label and clustering assignment of each image (Han et al.,
2021). CAcc and SAcc complement each other in evaluating the overall semantic clustering quality.

Since we do not process ground-truth annotations at different levels of granularity – coarse, medium
and fine – we choose the substructure level that achieves the highest CAcc as the final predictions of
the model. We deem this evaluation strategy as fair when compared to existing methods (Kwon et al.,
2024; Yao et al., 2024) that rely on the knowledge of the number of ground-truth clusters.
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Figure 4: Comparison of Criteria Proposers. (a) Comprehensiveness: TPR performance of each proposer is
evaluated against Basic and Hard ground-truth criteria and visualized using a Progress Bar Chart. Each block
represents one ground-truth criterion, with Colored blocks indicating successfully discovered criteria and Gray
blocks representing undiscovered criteria. (b) Diversity: We report the Diversity Score measured from the
criteria discovered by each proposer. Best diversity is highlight in Green . See expanded results in App. E.1.

4.1 STUDY OF THE CRITERIA PROPOSER

Expanding ground-truth criteria for comprehensive evaluation: For complex image collections
like COCO-4c, four ground-truth criteria may not cover all valid grouping options. To address
this, we expanded the ground-truth criteria for each of the six benchmarks in Sec. 2 using human
annotators, resulting in {10, 4, 11, 7, 17, 11} distinct criteria for {Fruit-2c, Card-2c, Action-3c,
Clevr-4c, COCO-4c, Food-4c}. We refer to the original per-image annotated criteria set (see Fig. 2)
as Basic ground truth and the expanded set as Hard during evaluation. See App. B.2 for annotations.

Which Criteria Proposer is the best? In Fig. 4(a-b) we compare different variants of the Proposer
along the dimensions of comprehensiveness and diversity. From Fig. 4(a) we observe that in terms of
comprehensiveness the Caption-based Proposer consistently outperforms its counterparts in both the
Hard set and Basic set across all six benchmarks. Its superior performance is particularly evident
under the Hard criteria set, where it surpasses the second-best Tag-based Proposer by +32.2%
TPR. Intuitively, the Caption-based Proposer works better because captions capture more diverse and
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nuanced aspects of the image set, which further guides the LLM to comprehensively discover different
grouping criteria. Contrarily, the Tag-based Proposer is less effective in complex benchmarks (e.g.,
COCO-4c and Action-3c) since tags provide less contextual and descriptive information. Similarly,
the Image-based Proposer is subpar in terms of performance since it is limited to reasoning over a
small subset of images and loses visual details when combining images into a grid.

In Fig. 4(b) we notice similar trends for the diversity metric, where the Caption-based Proposer
shows greater diversity on average across all the benchmarks when compared with the other two
counterparts. Interestingly, the Tag-based Proposer works the best in the object centric benchmarks,
such as Clevr-4c and Food-4c, since the foreground objects convey the bulk of the information.
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Figure 5: Impact of image quantity on
criteria discovery. TPR of the caption-
based proposer is reported for Hard
ground-truth criteria set across varying
image scales used for discovery

Studying the influence of image quantity on Criteria Dis-
covery: In Fig. 5 we show the TPR performance of the caption-
based proposer across varying image scales used for criteria
proposing, tested on the Hard criteria sets of six benchmarks.
Interestingly, satisfactory performance is achieved with just
a few images in object-centric benchmarks like Card-2c and
Clevr-4c. In fact, even a single image often provides sufficient
information for reasonable criteria discovery in these object-
centric datasets, where a brief glimpse often represents the
entirety adequately. For example, seeing one playing card al-
lows the proposer to easily suggest criteria like “Rank” and
“Suit” in the Card-2c dataset. However, this does not hold for
more complex datasets like COCO-4c, Food-4c, and Action-3c,
which contain diverse and realistic scenarios. Here, a reduction
in image scale leads to a clear drop in TPR performance, as
these datasets require a larger set of images to capture their
intricate and varied thematic criteria. Since TeDeSC operates
without prior knowledge of the dataset, we default to using the
entire dataset to ensure comprehensive criteria discovery.

4.2 STUDY OF THE SEMANTIC GROUPER

Which Semantic Grouper is the best? We evaluate this by using the Harmonic Mean (HM) of
CAcc and SAcc under each criterion, as these metrics complement each other. To provide context for
our framework’s performance, we establish a pseudo upper-bound reference using CLIP ViT-L14 in a
zero-shot classification setup with ground-truth labels, where grouping criteria, cluster names, and the
number of clusters are all known. Additionally, we use K-means with ground-truth cluster numbers
and visual features from CLIP ViT-L14, DINOv1-B/16 (Li et al., 2022), and DINOv2-G/14 (Oquab
et al., 2023) as baselines for clustering performance.

From Fig. 6, we observe that the Caption-based Grouper performs best, ranking first in 12 out of 19
tested criteria based on the HM across six benchmarks. It achieves an average CAcc of 59.9%, closely
matching the pseudo upper-bound of 58.1% highlighting the effectiveness of our text-driven approach.
For SAcc, the Caption-based Grouper achieves an average of 60.5%, surpassing its counterparts but
falling short of the upper-bound 74.2%, which benefits from exact ground-truth class names. This
gap is expected due to the open nature of the semantic space—e.g.,, terms like “Joyful,” “Happy,” and
“Cheerful” often describe the same Mood but lack full semantic equivalence. The BLIP-2 image-based
grouper ranks first in 5 out of 19 criteria. Its criterion-customized prompts help label visual content
accurately, though its per-image labeling can lead to noisy clusters. In contrast, the tag-based grouper
lags across all benchmarks, likely due to mismatches between generated tags and dataset concepts.

Comparison with criterion-conditioned clustering methods: We compare our top-performing
Caption-based Grouper with two recent text-conditioned clustering methods: IC|TC (Kwon et al.,
2024), which clusters images using LLaVA (Liu et al., 2024c) and GPT-4 (OpenAI, 2023) based
on user-specified criteria, and MMaP (Yao et al., 2024), which generates pseudo prototypes with
GPT-4 for user-specified criteria, then applies prompt-tuned CLIP (Radford et al., 2021) and KMeans
clustering. Note that both IC|TC and MMaP require user-provided (ground-truth) criteria and
the number of clusters (Kl) as auxiliary prior input to work. In stark contrast, our grouper uses
the criteria discovered by the proposer and requires no pre-set cluster counts to forge high-quality
clusters, operating entirely automatically. As shown in Tab. 2, our Caption-based Grouper outperforms
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Figure 6: Comparison of the Semantic Groupers. CAcc, SAcc, and their Harmonic Mean (HM) scores
are reported for different Semantic Groupers ( ) on the basic criteria across six benchmarks. CLIP zero-shot
classification ( ) performance is included as a pseudo upper bound, while KMeans ( ) using various strong
visual features is provided as a baseline for CAcc. See expanded results in App. E.2.

Table 2: Comparison with criterion-conditioned clustering methods. For each benchmark, we report the
average CAcc (%) and SAcc (%) across all criteria. We provide CLIP ViT-L/14 zero-shot performance as the
pseudo upper-bound reference (UB). See expanded per-criterion results in App. E.3.

COCO-4c Food-4c Clevr-4c Action-3c Card-2c Fruit-2c Avg
CAcc SAcc CAcc SAcc CAcc SAcc CAcc SAcc CAcc SAcc CAcc SAcc CAcc SAcc

UB 40.1 60.6 64.1 80.2 56.7 72.5 79.8 82.3 41.4 66.9 69.4 88.3 50.2 64.4
IC|TC 48.9 53.2 50.5 61.7 58.3 36.8 76.4 56.3 74.8 81.2 63.3 55.1 53.1 49.2
MMaP 33.9 - 43.8 - 62.8 - 60.6 - 36.9 - 51.0 - 41.3 -
TeDeSC (Ours) 51.2 48.4 48.1 64.9 64.9 54.3 68.3 60.6 73.3 84.3 65.1 61.1 53.0 53.4

MMaP and delivers results comparable to IC|TC across six benchmarks. This demonstrates that
our framework achieves high-quality clusters for the SMC task without requiring users to pre-define
criteria or cluster counts. Implementation details for IC|TC and MMaP are provided in App. D.
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Food-4cFruit-2c

Card-2c

Action-3c

Clevr-4c

COCO-4c

Food-4cFruit-2c

Card-2c

Action-3c

Clevr-4c

Clustering
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Figure 7: Ablation study of multi-granularity refine-
ment. See expanded results in App. E.4.

Necessity of multi-granularity cluster refine-
ment: To validate the effectiveness of the multi-
granularity cluster refinement design, we de-
sign control experiments with our Caption-based
Grouper, using three different methods for con-
structing cluster names to organize images: i)
Initial Names: using the initially assigned names
as the final output, ii) Flat Refinement: prompt-
ing the LLM to refine the initial names into a flat
list with a unified granularity, and our iii) Multi-
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granularity Refinement. We then compare the performance of these approaches in Fig. 7. We observe
that both refinement methods significantly improve clustering accuracy compared to using noisy
initial names, highlighting the importance of having granularity-consistent cluster names for accu-
rately revealing substructures. Additionally, our proposed multi-granularity method surpasses flat
refinement, as it enables the grouper to generate clustering results at different granularities, providing
greater flexibility in aligning with the label granularity-the user-preferred level of detail.

Additional studies: In App. F, we report studies on: i) Fine-grained Scenario: We examine how to
integrate our framework with more advanced cross-modal Chain-of-Thought prompting strategies
to better handle fine-grained criteria. ii) Sensitivity Analysis: We analyze the system sensitivity
to various MLLMs and LLMs. Additionally, Sec. G offers a Qualitative Analysis by visualizing
clustering results for different criteria, and Sec. H includes a Failure Case Analysis.

5 APPLICATIONS

Discovering and mitigating dataset bias: Given an image collection that contains spurious cor-
relations (Geirhos et al., 2020), we are curious whether we can proactively find this issue caused
by data bias directly from the training images without relying on either the annotations (Sagawa
et al., 2020) or post hoc misclassified images (Kim et al., 2024). As a case study, we applied the
proposed TeDeSC framework to the 162k training images of the CelebA (Liu et al., 2015) dataset—a
binary hair color classification dataset where the target label “Blond” is spuriously correlated with
the demographic attribute “Female” in its training split. Additional details are provided in App. I.1.
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(b) Debiasing results
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Figure 8: Results of dataset bias discovery
and mitigation. Worst group and average
accuracies(%) are reported.

Findings: Our method successfully identified the group-
ing criteria Hair color and Gender. We then analyzed
the predicted gender distributions within the “Blond” and
“Not Blond” clusters. As shown in Fig. 8(a), the “Blond”
cluster is highly skewed, with 86.5% of the images de-
picting females, closely aligning with the ground-truth dis-
tribution (94.3%). This confirms the spurious correlation
between “Blond” and “Female”. To further validate this
observation, we followed B2T (Kim et al., 2024) by using
the predicted distributions to train a debiased model with
GroupDRO (Sagawa et al., 2020) and compared it with
other unsupervised bias mitigation methods (JTT (Liu et al., 2021), CNC (Zhang et al., 2022),
B2T, and GroupDRO with ground-truth labels). As shown in Fig. 8(b), our model achieved robust
performance comparable to B2T, demonstrating the reliability of the discovered distributions.
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Figure 9: Bias discovery results in T2I models. Bias evaluation results are shown for the associated occupations.

Discovering Novel Bias in Text-to-Image Diffusion Models: Stereotypical biases related to gen-
der or race (Naik & Nushi, 2023) in images generated by text-to-image (T2I) models like Stable
Diffusion XL (SDXL) (Podell et al., 2024) and DALL·E3 (Betker et al., 2023) have been widely
studied (Nicoletti & Bass, 2023; Bianchi et al., 2023). However, we ask: Are there other biases
present in T2I-generated images? To explore this, we selected nine occupations (e.g.,, Nurse, CEO)
from prior studies (Bianchi et al., 2023; Bolukbasi et al., 2016) and generated 100 images for each
using the prompt “A portrait photo of a <OCCUPATION>,” resulting in 1.8k images from both
DALL-E3 and SDXL (see Fig. 21 and Fig. 22). Using TeDeSC, we automatically discovered 10
grouping criteria (bias dimensions) and their predicted distributions for each occupation. To measure
bias, we quantified the normalized entropy of each distribution (D’Incà et al., 2024) as bias intensity
and identified the dominant cluster (with the most images) as the potential bias direction. We also
conducted a user study with 54 participants to evaluate our findings. The system’s bias intensity
scores closely matched human ratings, with an Absolute Mean Error (AME) of 0.1396 (scale: 0 to 1),
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and its predicted bias directions aligned with human evaluations 72.3% of the time. Key findings are
summarized below, with full results in App. I.2.

Findings: In Fig. 9, we present key findings. Without predefined biases, our method identifies
known social biases in occupations. For example, as shown in Fig. 9(a–c), SDXL-generated images
display pronounced gender and racial imbalances for roles like Nurse, Firefighter, and Basketball
Player, exceeding official statistics (U.S. Bureau of Labor Statistics, 2021). In contrast, DALL·E3
demonstrates improved bias mitigation, likely due to its “guardrails” (OpenAI, 2022b). More notably,
as shown in Fig. 9(d–f), our method uncovers novel, previously unrecognized bias dimensions.
For instance, SDXL strongly associates CEOs with “Grey” hair, while DALL·E3 favors “Dark”
hair. Interestingly, DALL·E3 exhibits stronger biases than SDXL in Hair style and Grooming for
occupations like Nurse (Fig. 9(e)) and Teacher (Fig. 9(f)). These findings suggest that industrial T2I
models, even with guardrail systems, may address well-known biases while overlooking novel ones,
emphasizing the need for broader bias examination.
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Figure 10: Analysis of social media photo popularity on SPID dataset. We show the viral and major popular
clusters along with the popularity distribution of data points within these clusters across five criteria (in Grey).

Analyzing Social Media Image Popularity: What visual elements make a photo popular? To
explore this, we applied TeDeSC to 4.1k Flickr photos from the SPID dataset (Ortis et al., 2019),
each with a popularity score based on the number of views. Our method grouped the photos into
semantic clusters based on 10 discovered criteria. For each cluster, we calculated: i) P̄ , the average
popularity of photos in the cluster, and ii) P̄w, the weighted average popularity based on the cluster’s
proportion in the dataset. The cluster with the highest P̄ is identified as viral (highly popular but few
in number), while the one with the highest P̄w is major popular (concentrating most of the general
popular photos). Key findings are discussed below, with full results in App. I.3.

Findings: As shown in Fig. 10, combining our method’s interpretable groupings with popularity
scores reveals the visual elements driving virality (clusters with the highest P̄ ) and the common traits
of widely popular images (clusters with the highest P̄w). Interestingly, we observe that viral elements
often sharply contrast with those of popular images, such as Musical activities vs. Rest and relaxation,
or High-intensity expressions vs. Neutral emotion, suggesting that attention-grabbing visuals stand
out due to their novelty or intensity, especially given today’s short attention spans (McSpadden, 2015;
Farid, 2024). Additionally, we unexpectedly found that some highly popular images in certain clusters
contained not safe for work (NSFW) content, previously undiscovered in the SPID dataset. This
underscores how provocative visuals can drive popularity and highlights the importance of thorough
dataset inspection, where our framework proves valuable.

6 CONCLUSION

In this work, we introduce the task of semantic multiple clustering and propose TeDeSC, a system
that automatically discovers grouping criteria in natural language from large image collections and un-
covers interpretable data substructures based on these criteria. We rigorously evaluate various design
choices of TeDeSC on four existing and two newly proposed benchmarks, and demonstrate its ability
to reveal valuable insights that might otherwise go unnoticed in various real-world applications.
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ETHICS STATEMENT

We do not anticipate any immediate negative societal impacts from our work. However, we encourage
future researchers building on this work to remain vigilant, as we have, about the potential for
TeDeSC, which integrates LLMs and MLLMs–particularly their human-like reasoning abilities– to
be used both for good and for harm.

The motivation behind our studies on biases in existing datasets and text-to-image (T2I) generative
model outputs, as well as our exploration of social media image popularity, is to reveal and address
these biases and the presence of sensitive or not-safe-for-work (NSFW) content that objectively exist
in the datasets and models. We emphasize that our aim is to study and mitigate these issues, and in
doing so, we do not create any new biases or disturbing content. Specifically, in Sec. 5, we use well-
established benchmarks, such as CelebA (Liu et al., 2015), for our study of dataset bias, and for bias
discovery in T2I generative models, we select occupation-related subjects known to be associated with
biases from prior studies (Bianchi et al., 2023; Bolukbasi et al., 2016). Furthermore, our framework
reveals previously undisclosed sensitive and sexual content in the SPID dataset (Ortis et al., 2019). We
responsibly present these findings in Sec. 5, applying significant blurring to disturbing content, with
the intention of raising community awareness about the need to further scrutinize NSFW content in
existing benchmarks. However, we acknowledge that our methodology and findings could potentially
be misused by malicious actors to promote harmful narratives or discrimination against certain groups.
We strongly oppose any such misuse or misrepresentation of our work. Our research is conducted
with the aim of advancing technology while prioritizing public welfare and well-being.

For the creation of our two new benchmarks, COCO-4c and Food-4c, we sourced images exclusively
from the COCO-val-2017 (Lin et al., 2014) and Food-101 (Bossard et al., 2014) datasets, strictly
adhering to their licensing agreements. Additionally, we utilized voluntary human annotators for
proposing valid grouping criteria and creating annotations along these criteria, rather than employing
annotators from crowdsourcing platforms. This decision was made to ensure sustainability, fair
compensation, and high-quality work, as well as to safeguard the psychological well-being of
participants. Similarly, for our user study on T2I model bias evaluation, we recruited voluntary
participants via questionnaires to collect human evaluation results. The user study was conducted
entirely anonymously, with participants providing informed consent. Our project, including data
annotation and the user study involving human subjects, was approved by the Ethical Review Board
of our university.

Lastly, we emphasize that our proposed framework, TeDeSC, relies on open-source LLMs and
MLLMs, allowing full deployment on local machines. We refrain from using APIs from industrial
LLMs or MLLMs, both to ensure reproducibility and to protect data privacy.

REPRODUCIBILITY STATEMENT

We will release all essential resources required to reproduce the experimental results presented in this
project, including source code, exact prompts, benchmarks with their data splits, and generated images,
upon publication. Our proposed framework, TeDeSC, is built on open-source, publicly accessible
models to ensure reproducibility. In Sec. 3, we provide a detailed description of how our framework is
constructed. Additionally, App. C contains further implementation details, including exact prompts, to
help practitioners easily reproduce our method. Details regarding the implementation of the compared
methods are also provided in App. D. Moreover, we present extended numerical experimental results
in App. E, alongside comprehensive findings for the application study in App. I. We believe that the
thorough descriptions of our methodology, the extensive presentation of experimental results, and the
open-source nature of our framework ensure that this work is highly reproducible, enabling future
researchers and practitioners to readily apply our method to various domains.
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This appendix provides detailed supplementary information supporting the implementations, ex-
periments, and findings presented in the paper. First, in App. A, we offer an extensive discussion
of Related Work, covering tasks and methods pertinent to our study. In App. B, we describe the
benchmarks used in our study, including the construction of the newly proposed COCO-4c and Food-
4c datasets, along with the process for creating hard ground-truth criteria for evaluating different
proposers. App. C outlines the prompts and implementation details for our proposed framework,
including both Criteria Proposers and Semantic Groupers. App. D provides a deep dive into the
implementation specifics of the compared methods used in our experiments. In App. E, we present
additional quantitative results that supplement the findings reported in the main paper, covering evalu-
ations of the Criteria Proposer, Semantic Grouper, and comparisons with other clustering methods.
App. F extends our analysis of the proposed framework, including system sensitivity and studies on
fine-grained image collections. App. G presents further qualitative results for the predicted clusters,
while App. H offers a more detailed analysis of the failure cases encountered by our method. App. I
provides additional findings, along with implementation details and user study results for the three
applications explored in this work. App. J presents a deeper discussion of related settings pertinent
to our research. App. K presents an analysis of the computational cost and runtime of the proposed
TeDeSC framework. In App. L, we outline potential directions for future work. App. M offers an
in-depth discussion on the impact of invalid criteria on system performance, while App. N addresses
the limitations of this work. Additionally, App. O further investigates the effect of multi-granularity
clustering output on image grouping. App. P provides insights into how LLMs can enhance image
clustering, and App. Q includes a detailed discussion of the evaluation metrics employed in this work.

We will release all essential resources for reproducing this work, including code, prompts, benchmarks,
and annotations, upon publication.

A RELATED WORK

Deep Clustering. Image clustering (Xu & Wunsch, 2005) discovers hidden grouping structures
within large, unstructured, and unlabeled image collections, serving as a tool for various data-driven
applications (Wazarkar & Keshavamurthy, 2018). To achieve this, deep clustering (DC) methods such
as DEC (Xie et al., 2016) and SCAN (Van Gansbeke et al., 2020) focus on simultaneously learning
feature representations and cluster assignments using deep neural networks via self-supervised
techniques (Caron et al., 2020; Zhong et al., 2021; Ren et al., 2024). Furthermore, large-scale
pre-trained feature representations like DINOv1 (Caron et al., 2021), DINOv2 (Oquab et al., 2023),
and CLIP (Radford et al., 2021) have also been shown to be effective at clustering image collections
in a zero-shot fashion with the help of KMeans (Vaze et al., 2022; Liu et al., 2024f; Han et al., 2023).

Multiple Clustering. However, it is well-known that “clusters are in the eye of the beholder” (Estivill-
Castro, 2002); there often exist multiple ways to partition the same image collection into clusters, and
what constitutes a cluster depends on the user’s needs. This insight has led to the study of Multiple
Clustering (MC) (Ren et al., 2022; Yao et al., 2023; Yu et al., 2024), which aims to simultaneously
learn feature representations and cluster assignments from different perspectives to find various ways
of grouping the same data, enabling alternative interpretations from different viewpoints. Early
approaches primarily focused on discovering multiple clusterings directly within the original data
space (Gondek & Hofmann, 2005). Building on these foundations, subsequent methods shifted
toward uncovering multiple clusterings within subspaces (Qi & Davidson, 2009). Unlike traditional
subspace clustering methods, which identify clusters in low-dimensional subspaces (Kriegel et al.,
2009), subspace-based multiple clustering techniques explore distinct subspaces, each associated
with unique, non-redundant clusterings (Wang et al., 2019). Although existing MC methods have
achieved impressive results (Yao et al., 2023; 2024; Kwon et al., 2024) on some benchmarks, they
share similar limitations with deep clustering approaches (Xie et al., 2016; Van Gansbeke et al.,
2020). Their results require intensive manual post-analysis, and they also hold strong assumptions:
users must specify (i) the number of potential clusterings and (ii) the number of clusters within
each clustering. However, when dealing with millions of unstructured images, it is infeasible for
users—who are trying to understand the data—to know this information a priori.

To address this challenge, recent works such as IC|TC (Kwon et al., 2024) and MMaP (Yao et al.,
2024) propose a relaxed assumption: users may have certain criteria and corresponding cluster counts
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in mind for grouping images. They leverage these user-provided priors as auxiliary information to
generate multiple criteria-conditioned clusterings through the cooperation of large language models
(e.g.,, GPT-4 (OpenAI, 2023)), multimodal large language models (e.g.,, LLaVA (Liu et al., 2024c)),
or vision-language models (e.g.,, CLIP (Radford et al., 2021)). However, as image collections—like
those from social media platforms (Ortis et al., 2019)—continue to diversify, the complexity of the
data structure grows. It is impractical to expect the user to specify grouping criteria for a large image
collection that they are not familiar with. Moreover, relying solely on human-defined criteria limits
our ability to discover novel patterns and insights that might otherwise remain unnoticed. Besides,
data analysis tools such as REVISE (Wang et al., 2022) and Know Your Data (Google People + AI
Research, 2021) also allow users to explore visual data through multiple dimensions. However, they
require human annotations to function and are thus limited to existing annotated datasets only.

In stark contrast to prior work, we introduce and study the task of semantic multiple clustering (SMC).
Instead of requiring users to specify the grouping criteria, SMC seeks to actively and automatically
discover criteria expressed in natural language from large visual data and uncover the corresponding
semantic substructures, without access to any of the aforementioned human priors. As demonstrated
in Sec. 5, the flexibility provided by our proposed SMC framework adds significant value to various
data-driven applications, unveiling novel insights about the data that might not have been noticed
before.

Topic Discovery. The setting of semantic multiple clustering (SMC) is also related to the field of
Topic Discovery (Blei et al., 2003; Wang et al., 2009; Eklund & Forsman, 2022) in natural language
processing, which aims to identify textual themes from large text corpora (e.g.,, documents). Our
work shares motivational similarities with topic discovery because both tasks seek to find common,
thematic concepts from large volumes of data. In contrast, our work focuses on discovering thematic
criteria from large visual content. However, indeed, the core challenges of SMC and topic discovery
are highly similar: they both require systems that can concurrently reason over large volumes of
data. Nevertheless, SMC is an even more challenging task than topic discovery for two reasons: i)
semantics are not explicitly expressed in images, whereas they are in text; ii) there is currently no
vision model that can encode large sets of images and reliably reason over them. Thus, in this work,
we translate images to text and use text as a proxy to elicit the large-scale reasoning capability of
large language models (Meta, 2024b).

Multimodal Large Language Model. Recent advancements in multimodal large language mod-
els (MLLMs) have been driven by the availability of large-scale vision-language aligned training
data. The typical paradigm (Liu et al., 2024c) involves using a pre-trained large language model
(LLM) (Meta, 2024a; Chiang et al., 2023; Jiang et al., 2023; Meta, 2024b) alongside a pre-trained
vision encoder (Radford et al., 2021). A projector is learned to align visual inputs with the LLM in
the embedding space, which enhances visual understanding by utilizing the reasoning capabilities
of LLMs. Several models have achieved significant success in zero-shot image captioning and
visual question answering (VQA), including BLIP-2 (Li et al., 2023a), BLIP-3 (Xue et al., 2024),
Kosmos-2 (Peng et al., 2023), and the LLaVA series (Liu et al., 2024c;b; Li et al., 2024). In our
proposed TeDeSC framework, we employ MLLM primarily as a zero-shot image parser, converting
visual information into text and using this text as a proxy to elicit LLMs for reasoning over large
image collections and discovering grouping criteria. Additionally, we leverage the multi-image
reasoning capability of LLaVA-NeXT-Interleave (Li et al., 2024) to establish a baseline image-based
proposer for the SMC task, while utilizing BLIP-2 with customized prompts in a VQA style (Shao
et al., 2023; Zhu et al., 2023) as the image-based grouper to form semantic clusters linked to specific
visual content within the images.

Large Language Model. In the era of large language models (LLMs) advancement (Ouyang et al.,
2022), modern LLMs, such as the Llama series (Touvron et al., 2023; Meta, 2024a;b), Vicuna (Chiang
et al., 2023), Mistral-7B (Jiang et al., 2023), and the GPT series (Brown et al., 2020), have demon-
strated remarkable zero-shot capabilities in tasks involving text analysis, completetion, generation,
and summarization. With advanced prompting techniques like Chain-of-Thought (CoT) (Wei et al.,
2022), the reasoning abilities of LLMs can be further enhanced. In the proposed TeDeSC framework,
we design CoT prompts (see App. C) to harness the text generation and summarization capabilities
of Llama-3.1 as a reasoning engine. This aids TeDeSC in several key areas: discovering group-
ing criteria from large sets of image captions, automatically prompting VQA models, generating
criterion-specific tags, uncovering cluster semantics, and grouping images based on their captions.
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Unlike prior works (Zhuge et al., 2023) that focus on set difference captioning (Dunlap et al., 2024),
fine-grained concept discovery (Liu et al., 2024e), or video understanding (Wang et al., 2024b), we
leverage LLMs to tackle the challenging semantic multiple clustering task. While IC|TC (Kwon et al.,
2024) also uses the LLM (GPT-4 (OpenAI, 2023)) for grouping visual data, our proposed TeDeSC
differs in two key aspects: i) TeDeSC does not require user-defined grouping criteria or the number
of clusters, and ii) TeDeSC provides multi-granularity outputs to meet various user preferences.

Text-Driven Image Retrieval. Given a query text (e.g.,, “sofa” or “person wearing a blue T-shirt”),
text-driven image retrieval methods (Karthik et al., 2024; Liu et al., 2023; Wu et al., 2023) aim to
find images from an image collection that are relevant to the query. In other words, in the scenario
we are considering, given the image collection and a list of text queries, one can organize images
according to the text using text-driven image retrieval techniques. In this context, the query can be
considered as a sort of “cluster name”. However, this differs significantly from the proposed task
of semantic multiple clustering (SMC), because SMC requires both discovering the textual criteria
and the corresponding textual clusters. Thus, without knowing text queries as prior information,
text-driven image retrieval methods are not able to accomplish SMC.

B BENCHMARK DETAILS

B.1 BENCHMARK CONSTRUCTION OF COCO-4C AND FOOD-4C

Table 3: Summary of number of classes for the basic criteria annotation across the six benchmarks.
Dataset Number of Images Basic Criterion Number of Classes

COCO-4c 5,000

Activity 64
Location 19
Mood 20
Time of Day 6

Food-4c 25,250

Food Type 101
Cuisine 15
Course 5
Diet 4

Action-3c 1,000
Action 40
Location 10
Mood 4

Clevr-4c 10,000

Color 10
Texture 10
Shape 10
Count 10

Card-2c 8,029 Rank 14
Suit 5

Fruit-2c 103 Species 34
Color 15

To create high-quality benchmarks for COCO-4c and Food-4c, we designed a four-step annotation
pipeline:

(1) Criteria Identification: We first split COCO-val-2017 (Lin et al., 2014) and Food-101 (Bossard
et al., 2014) images into batches of 100. Each batch was stitched into a 10×10 grid to form a
single image. These grid images were then distributed to 5 human annotators, who were tasked with
identifying grouping criteria. For each dataset, we selected the 4 most frequently occurring criteria,
as shown in Tab. 3, to proceed with per-image annotation.

(2) Label Candidate Generation: To facilitate the annotation process, we used GPT-4V (OpenAI,
2023) to generate an initial list of candidate labels for each criterion. Specifically, for each criterion
of COCO-4c and Food-4c, GPT-4V was prompted to assign a label that reflected the criterion for
each image. This resulted in a list of criterion-specific label candidates for each dataset.
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(3) Image Annotation: Next, 10 human annotators were tasked with assigning a label from the
criterion-specific candidates to each image in COCO-4c and Food-4c for each criterion. The entire
annotation process took 25 days to complete.

(4) Label Merging: Image annotation is inherently subjective, with annotators potentially assigning
different labels for the same criterion. For example, one annotator might label the Mood criterion as
“Happy”, while another might label it as “Joyful” or “Delightful”. To resolve such discrepancies, we
used majority voting to determine the final label for each image. Specifically, the most frequently
assigned label among the 10 annotators was chosen as the final label for each criterion.

Following these steps, we constructed COCO-4c and Food-4c. Note that we used the official COCO-
val-2017 (Lin et al., 2014) and Food-101 (Bossard et al., 2014) images for our benchmarks and did
not collect any new images. We adhered strictly to the licenses of the datasets during their creation.
The exact number of classes is presented in Tab. 3. Additionally, the annotated class names for each
criterion of COCO-4c are provided in Tab. 4, and for Food-4c in Tab. 5.

Table 4: Full class names for COCO-4c across the four basic criteria.

Criterion COCO-4c

Activity “repairing a toilet”, “playing volleyball”, “playing guitar”, “haircutting”, “cut-
ting a cigar”, “kayaking”, “applauding”, “tying a tie”, “playing basketball”,
“washing dishes”, “gardening”, “texting messages”, “repairing a car”, “peeing”,
“cleaning the floor”, “writing on a book”, “feeding a horse”, “singing”, “baking”,
“hiking”, “smoking”, “riding an elephant”, “pouring liquid”, “waving hands”,
“swimming”, “meditating”, “fixing a bike”, “cutting vegetables”, “walking a
dog”, “reading a book”, “celebrating”, “queuing”, “cutting a cake”, “brushing
teeth”, “playing soccer”, “jumping”, “snowboarding”, “playing”, “touching
animals”, “pushing a cart”, “watching tv”, “rowing a boat”, “taking photos”,
“running”, “flying a kite”, “riding a horse”, “playing video games”, “holding up
an umbrella”, “throwing a frisbee”, “lying down”, “riding a bike”, “drinking”,
“cooking”, “phoning”, “chatting”, “skiing”, “driving”, “surfing”, “skateboard-
ing”, “playing baseball”, “playing tennis”, “using a computer”, “posing”, “eat-
ing”

Location “amusement or theme park”, “healthcare facility”, “virtual or digital space”, “ed-
ucational institution”, “industrial area”, “historical landmark”, “public event or
gathering”, “store or market”, “underground or enclosed space”, “transportation
hub”, “zoo”, “water body”, “office or workplace”, “park or recreational area”,
“restaurant or dining area”, “sports facility”, “natural environment”, “urban area
or city street”, “residential area”

Mood “anxious”, “sombre”, “contemplative”, “suspenseful”, “serene”, “nostalgic”,
“inspired”, “whimsical”, “romantic”, “mysterious”, “melancholic”, “chaotic”,
“humorous”, “vibrant”, “peaceful”, “energetic”, “focused”, “joyful”, “relaxed”,
“adventurous”

Time of Day “evening”, “afternoon”, “night”, “morning”, “indoor lighting”, “midday”

B.2 DETAILS ON HARD GROUPING CRITERIA ANNOTATION

In Tab. 6, we present the additional annotated Hard grouping criteria ground truth alongside the
Basic criteria for each benchmark.

While we have established more rigorous and challenging benchmarks such as COCO-4c and Food-4c,
which feature up to four distinct grouping criteria, these annotated criteria sets do not encompass all
potential grouping criteria within the image collections. This is particularly true for more complex
and realistic datasets like COCO-4c, Food-4c, and Action-3c. As a result, the performance differences
between different criteria proposers on these basic criteria, as shown in Fig. 4, tend to be close to
each other, limiting our understanding of each proposer’s ability to generate comprehensive grouping
criteria.

To address this limitation, we employed human annotators to further identify and propose grouping
criteria across the six benchmarks, resulting in a more extensive ground-truth set for each benchmark.
This provides a better basis for evaluating the comprehensiveness of the different proposers. We refer
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Table 5: Full class names for Food-4c across the four basic criteria.

Criterion Food-4c

Food Type “apple pie”, “baby back ribs”, “baklava”, “beef carpaccio”, “beef tartare”,
“beet salad”, “beignets”, “bibimbap”, “bread pudding”, “breakfast burrito”, “br-
uschetta”, “caesar salad”, “cannoli”, “caprese salad”, “carrot cake”, “ceviche”,
“cheesecake”, “cheese plate”, “chicken curry”, “chicken quesadilla”, “chicken
wings”, “chocolate cake”, “chocolate mousse”, “churros”, “clam chowder”,
“club sandwich”, “crab cakes”, “creme brulee”, “croque madame”, “cup cakes”,
“deviled eggs”, “donuts”, “dumplings”, “edamame”, “eggs benedict”, “escar-
gots”, “falafel”, “filet mignon”, “fish and chips”, “foie gras”, “french fries”,
“french onion soup”, “french toast”, “fried calamari”, “fried rice”, “frozen yo-
gurt”, “garlic bread”, “gnocchi”, “greek salad”, “grilled cheese sandwich”,
“grilled salmon”, “guacamole”, “gyoza”, “hamburger”, “hot and sour soup”,
“hot dog”, “huevos rancheros”, “hummus”, “ice cream”, “lasagna”, “lobster
bisque”, “lobster roll sandwich”, “macaroni and cheese”, “macarons”, “miso
soup”, “mussels”, “nachos”, “omelette”, “onion rings”, “oysters”, “pad thai”,
“paella”, “pancakes”, “panna cotta”, “peking duck”, “pho”, “pizza”, “pork chop”,
“poutine”, “prime rib”, “pulled pork sandwich”, “ramen”, “ravioli”, “red velvet
cake”, “risotto”, “samosa”, “sashimi”, “scallops”, “seaweed salad”, “shrimp
and grits”, “spaghetti bolognese”, “spaghetti carbonara”, “spring rolls”, “steak”,
“strawberry shortcake”, “sushi”, “tacos”, “takoyaki”, “tiramisu”, “tuna tartare”,
“waffles”

Cuisine “japanese”, “indian”, “american”, “greek”, “spanish”, “mexican”, “italian”,
“vietnamese”, “canadian”, “korean”, “chinese”, “middle eastern”, “french”,
“thai”, “general”

Course “appetizer”, “main course”, “side dish”, “dessert”, “breakfast”
Diet “omnivore”, “vegan”, “vegetarian”, “gluten free”

to this set of larger annotation criteria as the Hard criteria, in contrast to the Basic criteria, which
involve per-image annotations. Note that for the Hard criteria, per-image label annotation is not
provided due to the high cost of annotation. The procedure for obtaining the Hard grouping criteria
is as follows:

(1) Criteria Discovery: We divided each dataset into batches of 100 images, displaying each batch in
a 10×10 grid. Five human annotators were assigned to each batch and instructed to identify as many
valid grouping criteria as possible. The proposed criteria from each annotator were then combined to
form a comprehensive set of grouping criteria for the dataset.

(2) Criteria Merging: After collecting the annotated criteria from all five annotators, we aggregated
the criteria and manually cleaned the set by merging semantically similar criteria (e.g.,, Location
and Place) and discarding binary grouping criteria, as the inclusion of binary criteria can result in an
unmanageable number of grouping criteria for complex datasets.

By following this process, we developed a more comprehensive grouping criteria set as the Hard
ground-truth for each benchmark, as shown in Tab. 6. This resulted in sets containing 8 criteria for
Fruit-2c, 4 criteria for card, 11 criteria for Action-3c, 7 criteria for Clevr-4c, 17 criteria for COCO-4c,
and 11 criteria for Food-4c. These expanded ground-truth sets enable us to more effectively evaluate
the capabilities of various criteria discovery methods, providing a clearer understanding of different
criteria proposers.

C FURTHER IMPLEMENTATION DETAILS

In this section, we provide detailed descriptions of the exact prompts used in our framework, along
with additional implementation details for the proposed Criteria Proposer in App. C.1 and the
Semantic Grouper in App. C.2.
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Table 6: Annotated criteria for the six benchmarks. The basic criteria are annotated on per-image level for
each benchmark, while the hard criteria (those not in the basic criteria) are further exhaustively annotated by
human annotators for further evaluating the performance of the rule proposer in SMC task.

COCO-4c Food-4c Action-3c
Basic criteria Hard criteria Basic criteria Hard criteria Basic criteria Hard criteria
Total: 4 Total: 17 Total: 4 Total: 11 Total: 3 Total: 11

Activity Activity Food Type Food Type Action Action
Location Location Cuisine Cuisine Mood Mood
Mood Mood Course Course Location Location
Time of Day Time of Day Diet Diet Clothing Style

Interaction Tableware Type Number of People
Present

Number of People
Present

Presentation Style Age or Age Composi-
tion

Group Dynamics Color Palette Race or Race Compo-
sition

Clothing Style Setting/Theme Occasion or Event
Type

Occasion or Event
Type

Primary Taste Group Dynamics

Photo Style Primary Ingredient Lighting Condition
Type of Animal
Present

Cooking Method Gender or Gender
Composition

Weather
Type of Primary Ob-
ject
Continent
Age or Age Composi-
tion
Race or Race Compo-
sition
Gender or Gender
Composition

Clevr-4c Card-2c Fruit-2c
Basic criteria Hard criteria Basic criteria Hard criteria Basic criteria Hard criteria
Total: 4 Total: 7 Total: 2 Total: 4 Total: 2 Total: 8
Color Color Rank Rank Species Species
Texture Texture Suit Suit Color Color
Shape Shape Color Size
Count Count Illustration Style Seasonality

Spatial Positioning Primary Taste
Count of Surface Texture
Complexity of Geome-
try

Ripeness

Fruit Quantity and Ar-
rangement

Table 7: Prompts for the MLLM in the image-based proposer for criteria proposing.
Prompt purpose Prompt
System Prompt You are a helpful AI assistant
Input Explanation This image contains 64 individual images arranged in 8 columns and 8

rows.
Goal Explanation I am a machine learning researcher trying to identify all the possible

clustering criteria or rules that could be used to group these images so I
can better understand my data.

Task Instruction Your job is to carefully analyze the entire set of the 64 images, and identify
five distinct clustering criteria or rules that could be used to cluster or
group these images. Please consider different characteristics.

Output Instruction Please write a list of the 5 identified clustering criteria or rules (separated
by bullet points “*”).

Task Reinforcement Again, I want to identify all the possible clustering criteria or rules that
could be used to group these images. List the 5 distinct clustering criteria or
rules that you identified from the 64 images. Answer with a list (separated
by bullet points “*”).
Your response:

C.1 PROMPTS AND IMPLEMENTATION DETAILS OF CRITERIA PROPOSER

Image-based Proposer: In Tab. 7, we present the exact prompt used in the image-based proposer for
querying the MLLM LLaVA-NeXT-Interleave-7B (Li et al., 2024). Given a target image set, we first
randomly shuffle the images and divide them into disjoint subsets, each containing 64 images. Each
subset is then stitched into an 8× 8 image grid, treated as a single image, and fed into the MLLM.
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Table 8: Prompts for the LLM used in the tag-based proposer for criteria proposing. We embed the exact
image captions by replacing the placeholders "{TAGS}" in the prompt.

Prompt purpose Prompt
System Prompt You are a helpful assistant.
Input Explanation The following are the tagging results of a set of images in the format of

“Image ID: tag 1, tag 2, ..., tag 10”. These assigned tags reflect the visible
semantic content of each image:

Tag Embedding Image 1: "{TAGS}"
Image 2: "{TAGS}"
...
Image N: "{TAGS}"

Goal Explanation I am a machine learning researcher trying to figure out the potential clus-
tering or grouping criteria that exist in these images. So I can better
understand my data and group them into different clusters based on differ-
ent criteria.

Task Instruction Please analyze these images by using their assigned tags. Come up with
an array of distinct clustering criteria that exist in this set of images.

Output Instruction Please write a list of clustering criteria (separated by bullet points “*”).
Task Reinforcement Again, I want to figure out what are the potential clustering or grouping

criteria that I can use to group these images into different clusters. List an
array of clustering or grouping criteria that often exist in this set of images
based on the tagging results. Answer with a list (separated by bullet points
“*”).
Your response:

Table 9: Prompts for the MLLM in the caption-based proposer for generating detailed descriptions of the
images.

Prompt purpose Prompt
System Prompt You are a helpful AI assistant
Task Instruction Describe the following image in detail.

For each subset, the MLLM is prompted to propose 5 distinct grouping criteria for organizing the
images within that subset, using the prompt shown in Tab. 7. After iterating through all subsets, we
take the union of the criteria proposed for each subset as the discovered criteria for the target image
set. Finally, we deduplicate the discovered criteria and accumulate them into the criteria pool.

Tag-based Proposer: In Tab. 8, we present the exact prompt used in the tag-based proposer for
querying the LLM Llama-3.1-8B (Meta, 2024b). For a given target image set, we first utilize an
open-vocabulary tagger, CLIP ViT-L/14 (Radford et al., 2021), to assign 10 related natural language
tags to each image. These tags are selected from the WordNet (Miller, 1995) vocabulary, which
contains 118k English synsets, and represent the semantic content of the images. We employ the
standard prompt “A photo of {concept}” provided by CLIP for image tagging. Next, we embed
the assigned tags into the prompt shown in Tab. 8 to carry the semantics of the entire image set and
query the LLM to propose grouping criteria. The criteria proposed by the LLM are then added to the
criteria pool. Note that in this case, we embed the tags for the entire dataset into a single prompt for
criteria proposal, without reaching the LLM context length limits (e.g.,, 128k for Llama-3.1-8B) for
the datasets used in our experiments. However, for larger datasets, it may be necessary to split the
dataset into subsets, prompt the LLM for each subset, and use the union of the proposed criteria as
the final output.

Caption-based Proposer: We present the prompt used in the caption-based proposer for the MLLM
LLaVA-NeXT-7B (Liu et al., 2024b) in Tab. 9, and the prompt for the LLM Llama-3.1-8B (Meta,
2024b) in Tab. 10. Specifically, we first use the MLLM with a general prompt to generate detailed
descriptions for each image in the target dataset, effectively translating the visual information into
natural language. The generated captions are then randomly shuffled and split into disjoint subsets,
each containing 400 captions. Next, we embed the captions from each subset into the prompt shown
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Table 10: Prompts for the LLM used in the caption-based proposer for criteria proposing. We embed the
exact image captions by replacing the placeholders "{CAPTION}" in the prompt.

Prompt purpose Prompt
System Prompt You are a helpful assistant.
Input Explanation The following are the result of captioning a set of images:
Caption Embedding Image 1: "{CAPTION}"

Image 2: "{CAPTION}"
...
Image N: "{CAPTION}"

Goal Explanation I am a machine learning researcher trying to figure out the potential clus-
tering or grouping criteria that exist in these images. So I can better
understand my data and group them into different clusters based on differ-
ent criteria.

Task Instruction Come up with ten distinct clustering criteria that exist in this set of images.
Output Instruction Please write a list of clustering criteria (separated by bullet points “*”).
Task Reinforcement Again I want to figure out what are the potential clustering/grouping

criteria that I can use to group these images into different clusters. List ten
clustering or grouping criteria that often exist in this set of images based
on the captioning results. Answer with a list (separated by bullet points
“*”).
Your response:

Table 11: Prompts for the LLM used in Proposed Criteria Refinement step We embed the exact initially
discovered criteria by replacing the placeholders "{CRITERION}" in the prompt.

Prompt purpose Prompt
System Prompt You are a helpful assistant.
Input Explanation I am a machine learning researcher working with a set of images. I aim to

cluster this set of images based on the various clustering criteria present
within them. Below is a preliminary list of clustering criteria that I’ve
discovered to group these images:

Criteria Embedding: * Criterion 1: "{CRITERION}"
* Criterion 2: "{CRITERION}"
...
* Criterion L: "{CRITERION}"

Goal Explanation My goal is to refine this list by merging similar criteria and rephrasing
them using more precise and informative terms. This will help create a set
of distinct, optimized clustering criteria.

Task Instruction Your task is to first review and understand the initial list of clustering
criteria provided. Then, assist me in refining this list by:
* Merging similar criteria.
* Expressing each criterion more clearly and informatively.

Output Instruction Please respond with the cleaned and optimized list of clustering criteria,
formatted as bullet points (using “*”).
Your response:

in Tab. 10 and use it to query the LLM to propose grouping criteria for the images represented by the
captions. After iterating through all subsets, we take the union of the proposed criteria across subsets
as the discovered criteria for the target image set. Finally, we deduplicate these criteria and add them
to the criteria pool. Due to the context window limitations of LLMs, embedding all captions into a
single prompt is infeasible. To address this, we limit each subset to 400 captions, which results in
approximately 115k tokens per subset. This strategy allows us to remain within the context length
limits of modern LLMs (e.g.,, 128k tokens for both Llama-3.1 and GPT-4o) while maximizing the
number of samples per query to effectively propose clustering criteria.

Criteria Pool Refinement: In Tab. 11, we present the exact prompt used for criteria pool refinement
when querying the LLM Llama-3.1-8B (Meta, 2024b). Since the accumulated criteria pool R̃ may
contain highly similar or noisy clustering criteria, we embed the criteria from the pool into the prompt
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Table 12: Prompts for the LLM used in the image-based grouper for automatic criterion-specific VQA
question generation. We embed the exact discovered criterion by replacing the placeholder "{CRITERION}" in
the prompt.

Prompt purpose Prompt
System Prompt You are a helpful assistant.
Goal Explanation Hello! I am a machine learning researcher focusing on image categoriza-

tion based on the aspect of "{CRITERION}" depicted in images.
Task Instruction Therefore, I need your assistance in designing a prompt for the Visual

Question Answering (VQA) model to help it identify the "{CRITERION}"
category in a given image at three different granularity. Please help me
design and generate this prompt using the following template: ”Question:
[Generated VQA Prompt Question] Answer (reply with an abstract, a
common, and a specific category name, respectively):”. The generated
prompt should be simple and straightforward.

Output Instruction Please respond with only the generated prompt using the following format
“* Answer *”.
Your response:

Table 13: Prompts for the LLM used in the tag-based grouper for generating middle-grained criterion-
specific tags. We embed the exact discovered criterion by replacing the placeholder "{CRITERION}" in the
prompt.

Prompt purpose Prompt
System Prompt You are a helpful assistant.
Goal Explanation Hello! I am a machine learning researcher focusing on image catego-

rization of a certain aspect. I’m interested in generating a list of tags
specifically for categorizing the types of "{CRITERION}" depicted in im-
ages.

Task Instruction Please provide a list of potential "{CRITERION}" category names. Please
generate diverse category names. Do not include too general or specific
category names such as “Sports”.

Output Instruction Please respond with the list of category names. Each category should be
formatted as follows: “* Category Name”.
Your response:

shown in Tab. 11 and ask the LLM to merge similar criteria and rephrase their names to enhance
clarity. This process yields a refined set of grouping criteria, which is then passed to the next stage
for image grouping.

C.2 PROMPTS AND IMPLEMENTATION DETAILS OF SEMANTIC GROUPER

Image-based Grouper: In Tab. 12, we present the prompt used to query the LLM Llama-3.1-
8B (Meta, 2024b) for automatically generating criterion-specific VQA questions for the image-based
grouper. The objective at this stage is to condition the VQA model BLIP-2 Flan-T5XXL (Li et al.,
2023a) to label each image across three different semantic granularity levels based on a specific
criterion. To guide the VQA model effectively, a criterion-specific question is required.

Rather than manually creating these questions, we embed the target criterion into the prompt shown
in Tab. 12 and query the LLM to automatically generate high-quality, criterion-specific questions.
These questions are then used to direct the VQA model, enabling it to accurately label each image
according to the visual content relevant to the target criterion.

Tag-based Grouper: We present the prompts used in the tag-based grouper for querying the
LLM Llama-3.1-8B. The prompt for generating criterion-specific tags is shown in Tab. 13, while
the prompts for generating coarse-grained and fine-grained tags are shown in Tab. 14 and Tab. 15,
respectively.

In the tag-based grouper, we begin by embedding the target criterion into the prompt from Tab. 13
to generate criterion-specific tags at a middle granularity. To enhance the diversity and coverage of
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Table 14: Prompts for the LLM used in the tag-based grouper for generating coarse-grained criterion-
specific tags. We embed the exact discovered criterion and middle-grained category by replacing the placeholder
"{CRITERION}" and "{MIDDLE-GRAINED CATEGORY NAME}" in the prompt, respectively.

Prompt purpose Prompt
System Prompt You are a helpful assistant.
Task Instruction Generate a list of three more abstract or general "{CRITERION}" super-

categories that the following "{CRITERION}" category belongs to and
output the list separated by “&” (without numbers): "{MIDDLE-GRAINED
CATEGORY NAME}"

Output Instruction Your response:

Table 15: Prompts for the LLM used in the tag-based grouper for generating fine-grained criterion-specific
tags. We embed the exact discovered criterion and middle-grained category by replacing the placeholder
"{CRITERION}" and "{MIDDLE-GRAINED CATEGORY NAME}" in the prompt, respectively.

Prompt purpose Prompt
System Prompt You are a helpful assistant.
Task Instruction Generate a list of ten more detailed or specific "{CRITERION}" sub-

categories of the following "{CRITERION}" category and output the list
separated by “&” (without numbers): "{MIDDLE-GRAINED CATEGORY
NAME}"

Output Instruction Your response:

Table 16: Prompts for the MLLM used in the caption-based grouper for generating criterion-specific
captions. We embed the exact discovered criterion by replacing the placeholder "{CRITERION}" in the prompt.

Prompt purpose Prompt
System Prompt You are a helpful AI assistant.
Task Instruction Analyze the image focusing specifically on the "{CRITERION}". Provide

a detailed description of the "{CRITERION}" depicted in the image. High-
light key elements and interactions relevant to the "{CRITERION}" that
enhance the understanding of the scene.

Output Instruction Your response:

the tags, we query the LLM 10 times and take the union of the generated tags after deduplication
as candidates. Following the SHiNe framework (Liu et al., 2024d), for each middle-grained tag,
we further embed it into the prompts from Tab. 14 and Tab. 15 to generate 3 super-categories
(coarse-grained) and 10 sub-categories (fine-grained) for each tag.

After generating coarse and fine-grained categories for all middle-grained tags, we take the union of
the super-categories as the coarse-grained tag candidates and the union of the sub-categories as the
fine-grained tag candidates. Lastly, we use the open-vocabulary tagger CLIP ViT-L/14 to assign the
most relevant tags to each image based on cosine similarity, using candidates from each granularity
level. After tagging all the images, we group those sharing the same tag into clusters, yielding the
clustering result. Note that we do not utilize lexical databases such as WordNet (Miller, 1995) or
ConceptNet (Speer et al., 2017) for tag generation, as they do not support free-form input and may
not capture certain discovered criteria.

Caption-based Grouper: We first present the MLLM prompt used for LLaVA-NeXT-7B (Liu
et al., 2024b) to generate criterion-specific captions in Tab. 16. Following this, we present the LLM
Llama-3.1-8B prompts used in the caption-based grouper for the Initial Naming step in Tab. 17, the
Multi-granularity Cluster Refinement step in Tab. 18, and the Final Assignment step in Tab. 19.

Specifically, we begin by generating criterion-specific captions for each image using LLaVA-NeXT-
7B with the prompt shown in Tab. 16. For each image, we then embed its criterion-specific caption
and the relevant criterion into the LLM prompt shown in Tab. 17, querying the LLM to assign an
initial name based on the target criterion. Once the initial names for all images in the dataset are
obtained, we embed these names along with the target criterion into the prompt in Tab. 18 to query

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 17: Prompts for the LLM used in the caption-based grouper at the Initial Naming step for initially
assigning a criterion-based category name to the image based on its criterion-specific caption. We embed
the exact discovered criterion and the corresponding criterion-specific caption by replacing the placeholder
"{CRITERION}" and "{CRITERION-SPECIFIC CAPTION}" in the prompt, respectively.

Prompt purpose Prompt
System Prompt You are a helpful assistant.
Input Explanation The following is the description about the "{CRITERION}" of an image:
Caption Embedding "{CRITERION-SPECIFIC CAPTION}"
Goal Explanation I am a machine learning researcher trying to assign a label to this image

based on what is the "{CRITERION}" depicted in this image.

Task Instruction Understand the provided description carefully and assign a label to this
image based on what is the "{CRITERION}" depicted in this image.

Output Instruction Please respond in the following format within five words: ”*Answer*”.
Do not talk about the description and do not respond long sentences. The
answer should be within five words.

Task Reinforcement Again, your job is to understand the description and assign a label to this
image based on what is the "{CRITERION}" shown in this image.
Your response:

the LLM for cluster name refinement across three semantic granularity levels: coarse, middle, and
fine.

Finally, for each image, we embed the target criterion, its criterion-specific caption, and cluster
candidates from each granularity level into the prompt shown in Tab. 19, and use this to query the
LLM for final cluster assignment at each granularity level.

D FURTHER IMPLEMENTATION DETAILS OF THE COMPARED METHODS

In this section, we provide the implementation details of the compared methods, IC|TC (Kwon et al.,
2024) and MMaP (Yao et al., 2024).

Implementation details of IC|TC (Kwon et al., 2024): In the original implementation of IC|TC,
LLaVA-1.5 (Liu et al., 2024c) was used as the MLLM, and GPT-4-2023-03-15-preview (OpenAI,
2023) as the LLM. However, since the GPT-4-2023-03-15-preview API has been deprecated, we
re-implemented IC|TC using the state-of-the-art MLLM LLaVA-NeXT-7B (Liu et al., 2024b) and
the latest version of GPT-turbo-2024-04-09 as the LLM, while strictly adhering to the original IC|TC
prompt design in our experiments to ensure a fair comparison.

Implementation details of MMaP (Yao et al., 2024): We closely followed the training configuration
outlined in the original MMaP paper. Specifically, GPT-turbo-2024-04-09 was used as the LLM
to generate reference words for each dataset. We then prompt-tuned CLIP-ViT/B32 using Adam
with a momentum of 0.9, training the model for 1,000 epochs for each criterion across all datasets.
Hyperparameters were optimized according to the loss score of MMaP, with the learning rate searched
in {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}, weight decay in {0.0005, 0.0001, 0.00005, 0.00001, 0}, α
and β in {0.0, 0.1, 0.2, ..., 1.0}, and λ fixed at 1 for all experiments. After training, KMeans, with the
ground-truth number of clusters, was applied for each criterion and dataset to perform clustering.

E SUPPLEMENTARY RESULTS OF THE QUANTITATIVE EXPERIMENTS

In this section, we present additional numerical experiment results to supplement the figures in the
main paper. In Sec. E.1, we provide supplementary results for the evaluation of the Criteria Proposer
in our framework. In Sec. E.2, we present additional results for the evaluation of the Semantic
Grouper across various criteria on the six tested benchmarks. Furthermore, we include expanded
results comparing our framework to prior criteria-conditioned clustering methods. Lastly, we present
detailed results from the ablation study of the multi-granularity refinement component in Sec. E.4.
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Table 18: Prompts for the LLM used in the caption-based grouper at the Multi-granularity Cluster
Generation step for refining the initially assigned names to a structured three granularity levels. We
embed the exact discovered criterion and the initially assigned name categories by replacing the placeholder
"{CRITERION}" and "{MIDDLE-GRAINED CATEGORY NAME}" in the prompt, respectively.

Prompt purpose Prompt
System Prompt You are a helpful assistant.
Input Explanation The following is an initial list of "{CRITERION}" categories. These cate-

gories might not be at the same semantic granularity level. For example,
category 1 could be “cutting vegetables”, while category 2 is simply “cut-
ting”. In this case, category 1 is more specific than category 2.

Category Embedding * "{MIDDLE-GRAINED CATEGORY NAME}"
* "{MIDDLE-GRAINED CATEGORY NAME}"
...
* "{MIDDLE-GRAINED CATEGORY NAME}"

Task Instruction These categories might not be at the same semantic granularity level. For
example, category 1 could be “cutting vegetables”, while category 2 is
simply “cutting”. In this case, category 1 is more specific than category 2.
Your job is to generate a three-level class hierarchy (class taxonomy, where
the first level contains more abstract or general coarse-grained classes,
the third level contains more specific fine-grained classes, and the second
level contains intermediate mid-grained classes) of "{CRITERION}" based
on the provided list of "{CRITERION}" categories. Follow these steps to
generate the hierarchy.

Sub-task Instruction Follow these steps to generate the hierarchy:
Step 1 - Understand the provided initial list of "{CRITERION}" categories.
The following three-level class hierarchy generation steps are all based on
the provided initial list.
Step 2 - Generate a list of abstract or general "{CRITERION}" categories
as the first level of the class hierarchy, covering all the concepts present in
the initial list.
Step 3 - Generate a list of middle-grained "{CRITERION}" categories
as the second level of the class hierarchy, in which the middle-grained
categories are the subcategories of the categories in the first level. The
categories in the second-level are more specific than the first level but
should still cover and reflect all the concepts present in the initial list.
Step 4 - Generate a list of more specific fine-grained "{CRITERION}"
categories as the third level of the class hierarchy, in which the categories
should reflect more specific "{CRITERION}" concepts that you can infer
from the initial list. The categories in the third-level are subcategories of
the second-level.
Step 5 - Output the generated three-level class hierarchy as a JSON object
where the keys are the level numbers and the values are a flat list of
generated categories at each level, structured like:
{
“level 1”: [“categories”],
“level 2”: [“categories”],
“level 3”: [“categories”]
}

Output Instruction Please only output the JSON object in your response and simply use a flat
list to store the generated categories at each level.
Your response:

E.1 SUPPLEMENTARY RESULTS FOR CRITERIA PROPOSER EVALUATION

We provide detailed numerical results corresponding to Fig. 4(a) in Tab. 20 and Fig. 4(c) in Tab. 21
for the six tested benchmarks.

Although captions generated by the MLLM may exhibit some information loss (e.g.,, ignoring small
objects or attributes) (He et al., 2024) and hallucinations (e.g.,, introducing objects not present in the
images) Liu et al. (2024a), these issues generally occur at the object or fine-grained attribute level.
However, when reasoning about grouping criteria for SMC task, the focus is on identifying general
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Table 19: Prompts for the LLM used in the caption-based grouper at the Final Assignment step. We embed
the exact discovered criterion and the refined category names from each granularity level, by replacing the
placeholder "{CRITERION}" and "{CANDIDATE CATEGORY NAME}" in the prompt, respectively.

Prompt purpose Prompt
System Prompt You are a helpful assistant.
Input Explanation The following is a detailed description about the "{CRITERION}" of an

image.
Caption Embedding "{CRITERION-SPECIFIC CAPTION}"
Task Instruction Based on the content and details provided in the description, classify the

image into one of the specified "{CRITERION}" categories listed below:
Candidate Category
Embedding

"{CRITERION}" categories:
* "{CANDIDATE CATEGORY NAME}"
* "{CANDIDATE CATEGORY NAME}"
...
* "{CANDIDATE CATEGORY NAME}"

Output Instruction Ensure that your classification adheres to the details mentioned in the
image description. Respond with the classification result in the following
format: “*category name*”.
Your response:

thematic elements shared across the image set. As a result, these minor inconsistencies in the captions
do not hinder the LLM in our framework from effectively reasoning about grouping criteria, helping
the Caption-based Proposer to achieve the best performance among all the studied design choices.

Table 20: Comparison of True Positive Rate (TPR) (%) for criteria proposers across the six SMC
benchmarks. TPR performance is reported for both Basic and Hard ground-truth criteria. The best performance
is highlighted in bold.

COCO-4c Food-4c Action-3c Clevr-4c Card-2c Fruit-2c Average
Basic Hard Basic Hard Basic Hard Basic Hard Basic Hard Basic Hard Basic Hard

Image-based 100.0 52.9 25.0 36.4 66.7 54.6 50.0 28.6 50.0 25.0 50.0 20.0 56.9 36.2
Tag-based 50.0 35.3 100.0 72.7 66.7 36.4 75.0 42.9 50.0 50.0 50.0 20.0 65.3 42.9
Caption-based 100.0 64.7 100.0 81.8 100.0 72.7 100.0 71.4 100.0 100.0 100.0 60.0 100.0 75.1

Table 21: Study of the impact of data scale on criteria discovery. The Caption-based Proposer is used for
criteria discovery, and TPR performance (%) is reported on the Hard ground-truth criteria sets across the six
SMC benchmarks for different data scales. The best performance is highlighted in bold.

Data scales COCO-4c Food-4c Action-3c Clevr-4c Card-2c Fruit-2c Average

100% 64.7 81.8 72.7 71.4 100.0 60.0 75.1
80% 47.1 72.7 54.6 71.4 75.0 30.0 58.5
60% 52.9 63.6 54.6 71.4 100.0 50.0 65.4
40% 41.2 45.5 45.5 85.7 100.0 40.0 59.6
20% 35.3 45.5 36.4 42.9 100.0 40.0 50.0
1 img 23.5 36.4 27.3 57.1 75.0 50.0 44.9

E.2 SUPPLEMENTARY RESULTS FOR SEMANTIC GROUPER EVALUATION

In this section, we present the expanded numerical results comparing different semantic groupers to
supplement the summary in Fig. 6. Specifically, we provide detailed results for the evaluation of the
six tested datasets as follows:

• COCO-4c (Fig. 6(a)) in Tab. 22
• Card-2c (Fig. 6(b)) in Tab. 23
• Action-3c (Fig. 6(c)) in Tab. 24
• Food-4c (Fig. 6(d)) in Tab. 25
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Table 22: Comparison of Semantic Groupers on COCO-4c. We report Clustering Accuracy (CAcc), Semantic
Accuracy (SAcc), and their Harmonic Mean (HM) in percentages (%). These results are plotted in Fig. 6(a).

Methods
Activity Location Mood Time of Day

CAcc SAcc HM CAcc SAcc HM CAcc SAcc HM CAcc SAcc HM

CLIP Zero-shot 62.6 73.5 67.6 34.3 51.5 41.1 22.4 43.3 29.5 40.6 74.1 52.4
KMeans CLIP 34.4 - - 32.7 - - 18.9 - - 38.6 - -
KMeans DINOv1 34.8 - - 37.5 - - 17.9 - - 36.5 - -
KMeans DINOv2 38.2 - - 37.9 - - 22.5 - - 43.8 - -
Img-based BLIP-2 48.7 64.1 55.3 39.6 48.0 43.4 30.2 37.5 33.4 40.7 60.3 48.6
Img-based LLaVA 46.5 61.8 53.1 34.0 46.3 39.2 28.0 24.7 26.3 39.4 51.7 44.7
Tag-based 43.2 51.5 47.0 28.6 46.6 35.5 13.0 25.6 17.2 19.3 48.8 27.7
Caption-based 44.1 48.9 46.4 55.2 55.6 55.4 38.1 32.6 35.2 67.6 56.7 61.7

Table 23: Comparison of Semantic Groupers on Card-2c. We report Clustering Accuracy (CAcc), Semantic
Accuracy (SAcc), and their Harmonic Mean (HM) in percentages (%). These results are plotted in Fig. 6(b).

Methods
Suit Rank

CAcc SAcc HM CAcc SAcc HM

CLIP Zero-shot 47.9 69.5 56.7 35.0 64.2 45.3
KMeans CLIP 45.0 - - 28.6 - -
KMeans DINOv1 38.5 - - 20.7 - -
KMeans DINOv2 36.7 - - 22.3 - -
Img-based BLIP-2 66.7 77.7 71.8 47.5 54.4 50.7
Img-based LLaVA 36.8 65.8 47.2 24.6 49.8 32.9
Tag-based 39.2 32.9 35.8 22.3 39.1 28.4
Caption-based 54.5 73.6 62.6 92.1 95.1 93.6

Table 24: Comparison of Semantic Groupers on Action-3c. We report Clustering Accuracy (CAcc), Semantic
Accuracy (SAcc), and their Harmonic Mean (HM) in percentages (%). These results are plotted in Fig. 6(c).

Methods
Action Location Mood

CAcc SAcc HM CAcc SAcc HM CAcc SAcc HM

CLIP Zero-shot 97.1 99.2 98.1 66.7 67.1 66.9 75.5 80.7 78.0
KMeans CLIP 62.3 - - 58.3 - - - -
KMeans DINOv1 49.3 - - 61.4 - - - -
KMeans DINOv2 75.7 - - 67.6 - - - -
Img-based BLIP-2 79.7 80.9 80.3 43.3 42.4 42.8 43.1 43.8 43.4
Img-based LLaVA 70.1 60.5 65.0 45.8 42.8 44.2 32.0 38.0 34.7
Tag-based 70.2 55.0 61.6 36.8 48.1 41.7 50.7 47.6 49.1
Caption-based 82.8 82.8 82.8 69.8 55.2 61.6 52.3 50.2 51.2

• Fruit-2c (Fig. 6(e)) in Tab. 26

• Clevr-4c (Fig. 6(f)) in Tab. 27

In addition, we present the statistics of the predicted clusters at each granularity level in Tab. 28.

E.3 SUPPLEMENTARY RESULTS FOR COMPARISON CRITERIA-CONDITIONED CLUSTERING
METHODS

We provide expanded results in Tab. 29 for each criterion and benchmark, detailing the comparison
of criteria-conditioned clustering methods presented in Tab. 2 in the main paper.
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Table 25: Comparison of Semantic Groupers on Food-4c. We report Clustering Accuracy (CAcc), Semantic
Accuracy (SAcc), and their Harmonic Mean (HM) in percentages (%). These results are plotted in Fig. 6(d).

Methods
Food Type Cuisine Course Diet

CAcc SAcc HM CAcc SAcc HM CAcc SAcc HM CAcc SAcc HM

CLIP Zero-shot 90.6 94.6 92.6 54.9 81.4 65.6 63.5 84.7 72.6 47.6 59.9 53.0
KMeans CLIP 66.1 - - 29.8 - - 49.5 - - 36.9 - -
KMeans DINOv1 33.6 - - 15.3 - - 38.1 - - 41.4 - -
KMeans DINOv2 72.7 - - 22.5 - - 47.6 - - 43.4 - -
Img-based BLIP-2 54.2 71.4 61.6 54.8 73.3 62.7 42.3 71.0 53.0 34.2 53.8 41.9
Img-based LLaVA 42.2 64.0 50.9 33.7 57.6 42.6 46.9 73.1 57.1 27.0 40.5 32.4
Tag-based 45.0 63.3 52.6 48.8 42.1 45.2 42.7 70.1 53.1 25.2 34.1 29.0
Caption-based 34.6 54.2 42.2 47.0 65.9 54.9 69.1 85.7 76.5 41.5 54.0 46.9

Table 26: Comparison of Semantic Groupers on Fruit-2c. We report Clustering Accuracy (CAcc), Semantic
Accuracy (SAcc), and their Harmonic Mean (HM) in percentages (%). These results are plotted in Fig. 6(e).

Methods
Species Color

CAcc SAcc HM CAcc SAcc HM

CLIP Zero-shot 84.0 93.1 88.3 54.8 83.5 66.1
KMeans CLIP 67.1 - - 39.6 - -
KMeans DINOv1 53.8 - - 36.0 - -
KMeans DINOv2 71.2 - - 36.7 - -
Img-based BLIP-2 70.7 68.3 69.5 40.9 70.6 51.8
Img-based LLaVA 63.9 67.8 65.8 51.0 83.2 63.2
Tag-based 64.0 67.1 65.5 54.1 44.1 48.6
Caption-based 76.9 70.7 73.7 53.3 51.5 52.4

Table 27: Comparison of Semantic Groupers on Clevr-4c. We report Clustering Accuracy (CAcc), Semantic
Accuracy (SAcc), and their Harmonic Mean (HM) in percentages (%). These results are plotted in Fig. 6(f).

Methods
Color Texture Count Shape

CAcc SAcc HM CAcc SAcc HM CAcc SAcc HM CAcc SAcc HM

CLIP Zero-shot 77.7 94.0 85.1 34.1 41.9 37.6 43.7 81.5 56.9 71.1 72.7 71.9
KMeans CLIP 48.8 - - 61.4 - - 44.2 - - 56.1 - -
KMeans DINOv1 53.0 - - 58.4 - - 47.5 - - 67.0 - -
KMeans DINOv2 44.1 - - 46.9 - - 52.5 - - 87.0 - -
Img-based BLIP-2 69.3 76.5 72.7 57.8 34.4 43.1 25.7 55.9 35.2 69.1 62.6 65.7
Img-based LLaVA 56.5 63.5 59.8 51.9 26.9 35.4 53.7 39.4 45.4 64.3 71.3 67.6
Tag-based 66.6 55.3 60.4 57.2 40.2 47.3 47.4 8.3 14.1 62.7 36.5 46.2
Caption-based 70.3 63.4 66.7 65.3 42.1 51.2 65.7 73.3 69.3 58.4 38.5 46.4

E.4 SUPPLEMENTARY RESULTS FOR STUDYING THE NECESSITY OF MULTI-GRANULARITY
CLUSTER GENERATION.

We present expanded results in Tab. 30 for the ablation study on multi-granularity refinement,
providing a detailed breakdown of the summary shown in Fig. 7 in the main paper.

F FURTHER STUDIES OF THE PROPOSED FRAMEWORK

In this section, we provide additional studies on our proposed framework, using the main configuration
(Caption-based Proposer and Caption-based Grouper) for the analysis. In Sec. F.1, we conduct control
experiments to examine the system sensitivity of our framework to different multimodal large
language models (MLLMs) and large language models (LLMs). In Sec. F.2, we demonstrate how
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Table 28: Summary of cluster counts across six benchmarks for the comparison of semantic groupers.
The results yield by the main Caption-based Grouper is reported. Specifically, we report: i) GT: the number
of ground-truth clusters; ii) Pred-Init: predicted clusters from initial names; iii) Pred-Coarse: predicted coarse-
grained clusters after multi-granularity refinement; iv) Pred-Middle: predicted middle-grained clusters after
multi-granularity refinement; and v) Pred-Fine: predicted fine-grained clusters after multi-granularity refinement.

Dataset Criteria GT Pred-Init Pred-Corase Pred-Middle Pred-Fine

COCO-4c

Activity 64 203 12 23 52
Location 19 145 7 14 28
Mood 20 122 15 25 30
Time of Day 6 96 2 8 31

Food-4c

Food Type 101 301 7 37 127
Cuisine 15 141 9 18 53
Course 5 97 4 12 78
Diet 4 139 5 8 64

Action-3c
Action 40 71 8 15 51
Location 10 82 5 10 67
Mood 4 95 6 18 55

Clevr-4c

Color 10 25 6 12 17
Texture 10 23 2 5 12
Shape 10 22 5 11 14
Count 10 11 2 4 11

Card-2c Rank 14 147 4 7 16
Suit 5 56 4 7 30

Fruit-2c Species 34 54 8 25 38
Color 15 66 5 15 39

incorporating advanced prompting strategies can further enhance the framework’s performance on
fine-grained criteria.

F.1 FURTHER SYSTEM SENSITIVITY ANALYSIS OF VARIOUS MLLMS AND LLMS

In Fig. 11, we perform a system-level sensitivity analysis using our default system configuration
(caption-based proposer and caption-based grouper) to examine the impact of different MLLMs and
LLMs on the system performance. Since all variants successfully propose the basic criteria in each
benchmark, we report the average clustering accuracy (CAcc) and semantic accuracy (SAcc) across
various criteria for comparative analysis.

Specifically, in Fig. 11(a), we first fix the LLM in our system to Llama-3.1-8B (Meta, 2024b) and
assess the influence of various MLLMs: GPT-4V (OpenAI, 2023), BLIP-3-4B (Xue et al., 2024), and
LLaVA-NeXT-7B (Liu et al., 2024b). Next, in Fig. 11(b), we set the MLLM to LLaVA-NeXT-7B and
evaluate different LLMs: GPT-4-turbo (OpenAI, 2023), GPT-4o (OpenAI, 2024), Llama-3-8B (Meta,
2024a), and Llama-3.1-8B.

Findings in Fig. 11(a) indicate a direct correlation between the size of the MLLM and the ability of
our system to uncover substructures, highlighting the significant role of MLLMs in translating visual
information into natural language. On the other hand, this scalability demonstrates that our system
can enhance performance with more robust MLLMs, thanks to its training-free design, which ensures
compatibility with any MLLM. Despite this, we use LLaVA-NeXT-7B as our default MLLM due
to its reproducibility, being open-source and unaffected by API changes, and its capacity for local
deployment, which upholds privacy by not exposing sensitive image data to external entities.

As for the LLMs, as depicted in Fig. 11(b), despite GPT-4-turbo showing marginally superior
performance, the open-source Llama-3.1-8B achieves similar results across benchmarks, making
it our default LLM. Notably, except for the Card-2c dataset, system performance remains largely
consistent regardless of the power of the LLM. This consistency suggests that the reasoning task for
SMC, given the capabilities of modern LLMs to tackle complex problems (Street et al., 2024), is
relatively straightforward.
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Table 29: Comparison with criteria-conditioned clustering methods on the six SMC benchmarks. We
report Clustering Accuracy (CAcc) and Semantic Accuracy (SAcc)as percentages (%). Average (Avg.) CAcc and
SAcc across different criteria on each dataset is also provided. For reference, we include the pseudo upper-bound
(UB) performance of CLIP ViT-L/14 in zero-shot transfer, using ground-truth criteria and class names. Note that
both IC|TC and MMaP utilize ground-truth criteria and the number of clusters for clustering. These expanded
results correspond to Tab. 2.

Benchmark Criterion UB IC|TC MMaP Ours
CAcc SAcc CAcc SAcc CAcc SAcc CAcc SAcc

COCO-4c

Activity 62.6 73.5 51.3 53.2 33.8 - 44.1 48.9
Location 34.3 51.5 58.5 54.0 35.3 - 55.2 55.6
Mood 22.4 43.3 23.2 40.4 20.9 - 38.1 32.6
Time of Day 40.6 74.1 62.8 65.2 45.7 - 67.6 56.7
Avg. 40.1 60.6 48.9 53.2 33.9 - 51.2 48.4

Food-4c

Food Type 90.6 94.6 36.0 52.6 48.9 - 34.6 54.2
Cuisine 54.9 81.4 46.8 42.4 31.7 - 47.0 65.9
Course 63.5 84.7 70.5 89.5 48.6 - 69.1 85.7
Diet 47.6 59.9 48.5 62.1 45.9 - 41.5 54.0
Avg. 64.1 80.2 50.5 61.7 43.8 - 48.1 64.9

Clevr-4c

Color 77.7 94.0 51.2 43.2 75.3 - 70.3 63.4
Texture 34.1 41.9 64.9 26.4 56.5 - 65.3 42.1
Count 43.7 81.5 46.9 39.0 53.9 - 65.7 73.3
Shape 71.1 72.7 70.0 38.7 65.5 - 58.4 38.5
Avg. 56.7 72.5 58.3 36.8 62.8 - 64.9 54.3

Action-3c

Action 97.1 99.2 86.4 58.7 51.3 - 82.8 76.3
Location 66.7 67.1 82.0 52.9 59.4 - 69.8 55.2
Mood 75.5 80.7 60.8 57.4 71.0 - 52.3 50.2
Avg. 79.8 82.3 76.4 56.3 60.6 - 68.3 60.6

Card-2c
Suit 47.9 69.5 54.9 65.6 41.3 - 54.5 73.6
Rank 35.0 64.2 94.6 96.8 32.6 - 92.1 95.1
Avg. 41.4 66.9 74.8 81.2 36.9 - 73.3 84.3

Fruit-2c
Species 84.0 93.1 69.3 66.9 58.8 - 76.9 70.7
Color 54.8 83.5 57.2 43.3 43.3 - 53.3 51.5
Avg. 69.4 88.3 63.3 55.1 51.0 - 65.1 61.1

F.2 FURTHER STUDY ON FINE-GRAINED IMAGE COLLECTIONS

Image collections may include fine-grained grouping criteria, such as Bird species in bird photog-
raphy. Fine-grained criteria pose unique challenges for substructure discovery due to small inter-class
differences and large intra-class variations (Zhang et al., 2014; Vedaldi et al., 2014; He & Peng, 2017).
This requires the model to detect subtle visual distinctions to accurately infer cluster names and guide
the grouping process. The straightforward captioning process in our current framework may not
fully capture these subtle visual nuances. However, the modular design of our framework allows
for seamless integration of advanced cross-modal chain-of-thought (CoT) prompting strategies to
address this issue.

We demonstrate this by enhancing our Caption-based Grouper with FineR (Liu et al., 2024e), a
cross-modal CoT prompt method specifically designed for fine-grained visual recognition. When
the proposer identifies fine-grained criteria, such as Bird species, the framework switches to a
FineR-enhanced captioning strategy that provides more detailed attribute descriptions, such as “Wing
color: Blue-grey,” to enrich the captions and capture per-attribute visual characteristics to better
support the subsequent substructure uncovering process.

We evaluate this on two image collections containing fine-grained criteria: CUB200 (Wah et al.,
2011) and Stanford Cars196 (Khosla et al., 2011). Our framework successfully discovers the fine-
grained criteria Bird species for CUB200 and Car model for Cars196. As shown in Tab. 31,
when uncovering fine-grained substructures, integrating the FineR prompting strategy significantly
improves performance by up to +15.0% CAcc and +12.2% SAcc, achieving results comparable to
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Table 30: Ablation study of multi-granularity refinement on the six SMC benchmarks. We compare three
ways of constructing cluster names: Initial Names (IN), Flat Refinement (FR), Multi-granularity Refinement
(MR). We report Clustering Accuracy (CAcc) and Semantic Accuracy (SAcc)as percentages (%). Average (Avg.)
CAcc and SAcc across different criteria on each dataset is also provided. These expanded results correspond to
the plotting shown in Fig. 7.

Benchmark Criterion IN FR MR
CAcc SAcc CAcc SAcc CAcc SAcc

COCO-4c

Activity 14.1 48.5 34.5 40.5 44.1 48.9
Location 30.0 51.9 41.4 56.0 55.2 55.6
Mood 6.6 34.7 21.9 32.1 38.1 32.6
Time of Day 24.4 50.5 28.2 54.4 67.6 56.7
Avg. 18.8 46.4 31.5 45.8 51.2 48.4

Food-4c

Food Type 33.9 52.4 35.5 54.3 34.6 54.2
Cuisine 30.6 39.7 27.6 36.5 47.0 65.9
Course 52.9 81.1 62.8 83.0 69.1 85.7
Diet 14.0 46.6 36.8 58.2 41.5 54.0
Avg. 32.9 55.0 40.7 58.0 48.1 64.9

Clevr-4c

Color 56.5 49.7 60.9 53.0 70.3 63.4
Texture 56.5 26.0 60.9 33.0 65.3 42.1
Count 56.5 39.6 56.5 40.8 65.7 73.3
Shape 47.8 33.6 47.8 41.8 58.4 38.5
Avg. 54.3 37.2 56.5 42.2 64.9 54.3

Action-3c

Action 72.2 63.6 90.5 63.0 82.8 76.3
Location 46.0 50.4 65.9 59.3 69.8 55.2
Mood 20.6 41.9 46.0 51.0 52.3 50.2
Avg. 46.3 52.0 67.5 57.8 68.3 60.6

Card-2c
Suit 40.9 50.1 45.7 45.7 54.5 73.6
Rank 43.0 55.1 47.7 54.6 92.1 95.1
Avg. 42.0 52.6 46.7 50.2 73.3 84.3

Fruit-2c
Species 59.2 68.6 64.1 67.0 76.9 70.7
Color 41.8 56.7 44.7 42.3 53.3 51.5
Avg. 50.5 62.7 54.4 54.7 65.1 61.1

Table 31: Study of substructure discovery for fine-grained criteria. We report clustering accuracy (CAcc)
and semantic accuracy (SAcc) as percentages (%). The pseudo upper-bound (UB) performance is obtained using
CLIP (Radford et al., 2021) ViT-L/14 in a zero-shot transfer setting with the ground-truth class names. †: We
compare with FineR (Liu et al., 2024e) without its post-class name refinement step to ensure a fair comparison.

CUB200 Car196

CAcc SAcc CAcc SAcc

UB 57.4 80.5 63.1 66.3

FineR† 44.8 64.5 33.8 52.9

Ours 30.1 56.7 21.3 35.9

Ours + FineR 45.1 68.9 31.1 47.3

FineR itself. This demonstrates the flexibility of our system, allowing future adaptations to specific
application needs, such as fine-grained image collections.
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Figure 11: Sensitivity analysis of different MLLMs and LLMs on the six SMC benchmarks. Top (a): We
fix the LLM to Llama-3.1-8B and study the impact of different MLLMs. Bottom (b): We fix the MLLM to
LLaVA-NeXT-7B and study the impact of different LLMs. The average clustering accuracy(%) across different
criteria is reported on the left, while the average semantic accuracy(%) is reported on the right.
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G FURTHER QUALITATIVE RESULTS

In this section, we visualize the grouping results predicted by the best configuration of our proposed
framework (Caption-based Proposer and Caption-based Grouper). Specifically, we present example
clustering results across different criteria for COCO-4c in Fig. 12, Food-4c in Fig. 13, Action-3c in
Fig. 14, Clevr-4c in Fig. 15, and Card-2c in Fig. 16. Additionally, we showcase example clustering
results at different predicted granularity levels for COCO-4c in Fig. 17.

Criterion
Activity

Gaming Tooth brushing Business meetings Commuting

…

Criterion
Location

Rural countryside Sports stadium Public park Forest area

…

Criterion
Mood

Tranquil Exhilarating Determined Melancholic

…

Criterion
Time of Day

Daytime Evening Nighttime Indoor lighting

…

Figure 12: Example predicted clusters of COCO-4c.

H FURTHER FAILURE CASE ANALYSIS

In Fig. 18, we present several failure cases from the best configuration of our proposed framework
(Caption-based Proposer and Caption-based Grouper). As observed, our method frequently mis-
assigns “Surfing” to the “Kayaking” cluster under the Activity criterion. Upon examining the
intermediate criterion captions generated by the MLLM, we found that this error is largely due to
the MLLM incorrectly describing a “Surfboard” as a “Kayak”. This highlights the importance of
the MLLM’s ability to accurately describe images, as it is critical for the performance of our system.
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Criterion
Food Type

Italian pasta dish Sandwich meal Layered cake Japanese noodle

…

Criterion
Cuisine

Italian cuisine French cuisine Japanese cuisine Chinese cuisine

…

Criterion
Course

Appetizer Main course Side dish Dessert

…

Criterion
Diet

Non-vegetarian meal Vegetarian meal Vegan meal Undetermined

…

Figure 13: Example predicted clusters of Food-4c.

Potential improvements could include majority voting or model ensembling using different MLLM
models.

Another issue arises in crowded scenes. When multiple people are present in an image, the model
consistently assigns the Mood label “Communal” to the images. We speculate that this occurs because,
in the presence of multiple people, the model struggles to accurately determine the mood of one key
individual.

Finally, we observed that our method sometimes fails to distinguish subtle, fine-grained differences
between images, leading to incorrect labels. For example, as shown in Fig. 18, “Edamame” or “Pho”
are typical dishes from China, Vietnam, and Japan, but they may be presented differently depending
on the cuisine. The “Edamame” shown in Fig. 18 is presented in a traditional Japanese style, yet
our model incorrectly predicted it as Chinese cuisine. This oversight of fine-grained details could be
improved by employing a more advanced prompting strategy (Liu et al., 2024e).
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Criterion
Action

Indoor rock climbing Cooking meals Working remotely Tree felling

…

Criterion
Location

Sports and fitness facilities Residential interiors Natural landscapes Stores and showrooms

…

Criterion
Mood

Relaxed leisure Determined adventure Intense focus Joyful celebration

…

Figure 14: Example predicted clusters of Action-3c.
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Criterion
Color

Purple Cyan Red Blue

…

Criterion
Texture

Metallic textures Matte textures Checkerboard patterns Faceted patterns

…

Criterion
Shape

Standard spheres Circular gear-like objects Toroidal shapes Cones

…

Criterion
Count

One object Two objects Three objects Four objects

…

Figure 15: Example predicted clusters of Clevr-4c.
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Criterion
Rank

Queen of any suit Ace of any suit Seven of any suit Joker

…

Criterion
Suit

Clubs Hearts Diamonds Absent

…

Figure 16: Example predicted clusters of Card-2c.

Criterion
Location

Granularity
Fine

Rural countryside Sports stadium Public park Forest area

…

Criterion
Location

Granularity
Coarse

Domestic environment Natural environment

Criterion
Location

Granularity
Middle

Natural wilderness Natural water body

… …

Figure 17: Example predicted clusters of COCO-4c at different granularities.
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COCO-4cBenchmark:

ActivityCriterion:

KayakingPredicted Cluster:

GT: Surfing GT: Surfing GT: Surfing

GT: Surfing GT: Surfing GT: Surfing

Action-3cBenchmark:

LocationCriterion:

Professional workspacesPredicted Cluster:

GT: Restaurant or
dining area

Action-4cBenchmark:

MoodCriterion:

CommunalPredicted Cluster:

GT: Focused GT: Focused GT: Adventurous

GT: Joyful GT: Focused GT: Joyful

Food-4cBenchmark:

CuisineCriterion:

Chinese cuisinePredicted Cluster:

GT: Thai GT: Japanese GT: Vietnamese

GT: Vietnamese GT: Korean GT: Vietnamese

GT: Restaurant or
dining area

GT: Restaurant or
dining area

GT: Restaurant or
dining area

GT: Restaurant or
dining area

GT: Restaurant or
dining area

Figure 18: Failure case analysis. We show wrongly predicted images with their ground-truth label for four
clusters.
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I FURTHER DETAILS ON APPLICATION STUDY

In this section, we present additional implementation details, evaluation results, and findings for the
application study discussed in Sec. 5 of the main paper. Specifically, Sec. I.1 offers further evaluation
results and implementation details on using our predicted distribution to train a debiased model with
GroupDRO (Sagawa et al., 2020). Sec. I.2 outlines the implementation of the user study that assesses
the alignment between predicted biases and human judgments, along with comprehensive findings
for all studied occupations and identified criteria. Finally, Sec. I.3 provides additional insights from
the analysis of social media image popularity.

I.1 FURTHER DETAILS ON DISCOVERING AND MITIGATING DATASET BIAS

In this section, we provide additional evaluation results and implementation details for the application
study presented in Sec. 5 of the main paper.

Additional Evaluation: To further evaluate the prediction quality of our method for hair color and
gender, we used the ground-truth labels from the CelebA dataset (Liu et al., 2015) to assess the
classification accuracy of them. Our method achieved an impressive classification accuracy of 99.1%
for gender and 87.4% for hair color on the 162,770 training images, demonstrating its effectiveness
for uncovering gender and hair color substructures within the training set.

In addition, we quantified the spurious correlation between hair color and gender using the metric
proposed by Yang et al. (2023). Specifically, given the correlated gender attribute distribution A and
the target hair color distribution Y , we computed the normalized mutual information between A and
Y to quantify the spurious correlation as:

I(A;Y ) =
2I(A;Y )

H(A) +H(Y )
(1)

where H(A) and H(Y ) represent the normalized entropy of the gender and hair color distributions,
respectively. A value of H(A) or H(Y ) equal to 1 indicates a uniform distribution (i.e., no class
imbalance). We then used the ground-truth distribution from the dataset’s labels and our predicted
distribution to estimate the spurious correlation intensity using the score from Eq. 1. For gender and
hair color, our method’s predictions yielded a score of IPred = 0.10, which is nearly identical to
the ground-truth score of IGT = 0.11. This demonstrates that our method effectively identifies and
confirms the bias directly from the training set.

Implementation Details of Training GroupDRO: To conduct debiased training using Group-
DRO (Sagawa et al., 2020), we first used our predicted distribution to define four distinct training
groups, rather than relying on the ground-truth distribution. We closely followed the training protocol
outlined in B2T (Kim et al., 2024) and GroupDRO (Sagawa et al., 2020). Specifically, we fine-tuned a
ResNet-50 (He et al., 2016) model pre-trained on ImageNet (Deng et al., 2009), using the training split
of the CelebA dataset (Liu et al., 2015). The training was performed using the SGD optimizer (Ruder,
2016) with a momentum of 0.9, a batch size of 64, and a learning rate of 1 × 10−5. We applied a
weight decay of 0.1 and set the group adjustment parameter to zero. The model was trained over 50
epochs. For evaluation, we reported both the average and worst-group test accuracies, selecting the
model from the epoch that achieves the highest worst-group accuracy on the validation set. The final
evaluation and comparison results are provided in Fig. 8.

I.2 FURTHER DETAILS ON DISCOVERING NOVEL BIAS IN TEXT-TO-IMAGE DIFFUSION
MODELS

Image Generation for the Subject Occupation: Following prior studies (Bianchi et al., 2023;
Bolukbasi et al., 2016), we selected nine occupations for our study: three stereotypically biased
towards females (Nurse, Cleaning staff, Call center employee), three biased towards males (CEO,
Firefighter, Basketball player), and three considered gender-neutral (Teacher, Computer user, Market-
ing coordinator). We used two state-of-the-art T2I diffusion model, DALL·E3 (Betker et al., 2023)
and Stable Diffusion (SDXL) (Podell et al., 2024) to generate 100 images for each occupation for
our study. This resulted in a total of 1,800 images. For each occupation, we provide some examples
of images generated by DALL·E3 in Fig. 21, while provide some examples of images generated by
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Gender

0 10.5

Race Age Skin Tone Hair Color Grooming Mood Atire Accessories Props Used

0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5 0 10.5

DALL·E3 SDXL Human rating score on images generated by the two models

Stronger Bias

Criteria (bias dimensions)

Bias intensity score

O
cc

up
at

io
ns

Figure 19: Bias quantification results and human evaluation for each occupation and criterion across the two
studied T2I models, DALL·E3 and SDXL. The bias intensity score is reported.

SDXL in Fig. 22. We only used the simple prompt “A portrait photo of a <OCCUPATION>” for
image generation for all occupations and did not include any potential biases in the prompt.

Bias Discovery and Quantification: We applied our method to 1,800 generated images and automat-
ically identified 10 grouping criteria (bias dimensions) along with their predicted distributions for
each occupation image set. For this study, we utilized the mid-granularity output of our system. To
evaluate the biases, we first identified the dominant cluster for each criterion—the cluster containing
the largest number of images—as the bias direction. We then calculated the normalized entropy of
the distribution for each criterion of the occupation’s images to determine the bias intensity score,
following the method proposed by D’Incà et al. (2024):

Hl
bias = 1 +

∑
cl∈Cl log(p(cl|Cl,DOccupation))

log(|Cl|)
(2)

where DOccupation represents the generated images for each occupation, Cl denotes the clusters dis-
covered under the l-th criterion, and p(cl|Cl) is the probability of each cluster under the current
distribution. The resulting score is bounded between Hl

bias ∈ [0, 1], where 0 indicates no bias
towards a specific cluster (concept) under the evaluated criterion, and 1 indicates that the images are
completely biased towards a particular cluster (concept) (e.g.,, “Grey” hair color) within the current
bias dimension (e.g., Hair color). We used the score defined in Eq. 2 to quantify the biases for
each occupation across the 10 discovered grouping criteria. We report the bias intensity score for
each occupation and each model across the 10 discovered grouping criteria in Fig. 19.

Human Evaluation Study Details: To assess the alignment between our method’s predictions and
human judgments on bias detection, we conducted a user study to gather human evaluation results for
the generated images. As shown in the questionnaire example in Fig. 23, participants were presented
with images generated by DALL-E3 and SDXL for each occupation and were asked to identify the
bias direction (dominant class) for each of the 10 discovered criteria and rate the bias intensity on a
scale from 0 to 10. We collected responses from 54 anonymous participants, resulting in 6 human
evaluations for each occupation and each criterion.

The Absolute Mean Error (AME) between the bias intensity scores predicted by our system and those
rated by humans (scaled to 0 to 1) was 0.1396. Additionally, our system’s predicted bias directions
aligned with human evaluations 72.3% of the time, with most discrepancies occurring in the criteria
of “Age group,” “Skin tone,” and “Accessories worn.” These findings indicate a strong correlation
between our system’s predictions and human judgments, validating the effectiveness of our approach.
Detailed user study results are provided in Sec. I.2. We believe the discrepancies in certain criteria
may be due to the influence of personal subjective cognition on respondents’ answers. In Fig. 19, we
present the human evaluation results, averaged across all participants for each model, occupation,
and criterion, with the human ratings scaled from 0 to 1.
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Complete Results and Additional Findings: In Fig. 19, we present the detailed bias detection
results for each model, occupation, and criterion, alongside human evaluation scores for reference.
A particularly interesting phenomenon emerges: While DALL·E3 significantly outperforms SDXL
on the well-known bias dimensions (e.g.,, Gender, Race, Age, and Skin tone), both DALL·E3 and
SDXL exhibit moderate to strong biases along the novel bias dimensions (e.g.,, Hair color, Mood,
Attire, and Accessories).

We speculate that DALL·E3’s superior performance in mitigating well-known biases may be attributed
to its “guardrails” (OpenAI, 2022b), designed as part of its industrial deployment to avoid amplifying
social biases via its easily accessible APIs. However, these guardrails do not prevent it from exhibiting
biases along the novel dimensions discovered by our method, as these dimensions remain understudied.
This observation highlights the importance of studying novel biases that could potentially exist in
widely used T2I generative models to prevent further bias amplification.

I.3 FURTHER DETAILS ON ANALYZING SOCIAL MEDIA IMAGE POPULARITY
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Figure 20: Complete analysis of social media photo popularity on the SPID dataset. We display the viral
and major popular clusters, along with the popularity distribution of data points within these clusters across all
ten discovered criteria (in Grey).

With the rise of image-centric content on social media platforms like Instagram, Flickr, and TikTok,
understanding what makes an image popular has become crucial for applications such as market-
ing, content curation, and recommendation systems. Traditional research often approaches image
popularity as a regression problem (Ortis et al., 2019; Cheng et al., 2024), utilizing metadata like
hashtags, titles, or follower counts. However, the specific semantic visual elements that contribute
to an image’s popularity remain largely unexplored. In this study, we applied our proposed method
to automatically categorize social media images based on semantic visual elements across different
dimensions (criteria). By analyzing these interpretable results alongside image popularity metrics
(e.g.,, number of views), we gained insights into the factors contributing to virality and identified
common visual traits among popular images. These insights can provide valuable guidance for
content creators and advertisers, enhancing productivity and informing strategic decision-making.

To expand on the discussion in Sec. 5 of the main paper, we present the complete findings across
all ten discovered criteria in Fig. 20. Notably, we consistently observed a sharp semantic contrast
between the visual elements in viral images and those in the majority of popular images across all ten
criteria. For instance, there is a contrast between Urban sophisticated and Modern minimalist under
Interior Design, Rustic architecture and Modern architecture under Architecture Style, and
Event venues versus Urban residential areas under Location.

This recurring observation reinforces the idea that viral content tends to capture more attention, likely
because it features novel, surprising, or striking visual elements. Humans are inherently attracted to
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stimuli that deviate from the norm (Priester et al., 2004; Bruni et al., 2012; Palmer & Gore, 2014). On
the other hand, widely popular yet “neutral” content is shared more often due to its familiarity and
broad appeal, though it is less likely to provoke the strong emotional responses that fuel virality. We
believe the insights generated by our method could offer valuable guidance to social media platform
practitioners, helping them tailor their content more effectively to target audiences and gain a deeper
understanding of social media image trends from various perspectives.

Nurse

Cleaning
Staff

Call Center
Employee

CEO

Firefighter

Basketball
Player

Teacher

Computer
User

Marketing
Coordinator

Figure 21: Samples of DALL·E3 generated images. For each occupation, the simple prompt “A portrait photo
of a <OCCUPATION>”, that does not reference any potential bias dimensions such as gender, race or hair
color, is fed to DALL·E3 to generate 100 images. We present a random sample of 30 generated images.
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Figure 22: Samples of SDXL generated images. For each occupation, the simple prompt “A portrait photo of a
<OCCUPATION>”, that does not reference any potential bias dimensions such as gender, race or hair color, is
fed to SDXL to generate 100 images. We present a random sample of 30 generated images.
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Figure 23: Example of the questionnaire for human evaluation study.
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J IN-DEPTH DISCUSSION OF RELATED SETTINGS

Distinction from Multiple Clustering: Multiple clustering involves finding diverse clusterings from
the same dataset in either a semi-supervised (Bae & Bailey, 2006; Ren et al., 2022) or unsuper-
vised (Caruana et al., 2006; Mautz et al., 2020; Yao et al., 2023) manner. However, multiple clustering
methods require users to specify the number of clusterings and clusters (or rely on ground-truth
annotations for evaluation) (Yu et al., 2024). In other words, L (the number of clusterings) and
Kl (the number of clusters within each clustering) are assumed as prior knowledge in multiple
clustering settings. This strong assumption creates a chicken-or-egg dilemma and is often impractical
in real-world applications: Users want to employ multiple clustering methods to understand their
data, but how can they predefine the number of valid clusterings and clusters without already having
a deep understanding of the entire dataset? Although some strategies exist to determine the number
of clusters, most of these methods (Monti et al., 2003; Zhang et al., 2017; Liu et al., 2024e) only
work for single clustering. In contrast, SMC requires the model to automatically discover both the
number of clusterings and the clusters within them.

Additionally, while multiple clustering methods can reveal diverse sample division patterns and
underlying data structures, they do not provide interpretations of the results—specifically, what rules
the output clustering follows and the semantic meaning of the clusters. As a result, users often need to
manually investigate the clustering outcomes. In stark contrast, SMC methods provide interpretability
by describing both the clustering rules and the semantic meanings of the clusters in natural language.
This not only offers a more comprehensive understanding of the data but also allows users to combine
different clusterings to gain deeper insights into the data distribution.

Although recent work such as IC|TC Kwon et al. (2024) and MMaP (Yao et al., 2024) allows users to
specify clustering criteria and propose text-conditioned clustering based on user-defined criteria and
cluster numbers, these approaches do not resolve the dilemma of traditional multiple clustering. They
still require users to have prior knowledge of large image collections, which is impractical in many
real-world scenarios. In contrast, our method automatically discovers clustering criteria, expressed in
natural language, from unstructured image collections and provides interpretable results, allowing
users to freely explore their data.

Distinction from Multi-label Zero-shot Classification: SMC differs from multi-label zero-shot
classification in that the latter (Lee et al., 2018; Huang et al., 2020; Ali & Khan, 2023; Gupta et al.,
2023) requires predefined sets of classes under different rules, with the goal being to assign each
image to multiple classes from these sets. In contrast, SMC requires discovering the class names (or
cluster semantics). In fact, multi-label zero-shot classification can be viewed as a specific instance
of SMC when the user explicitly and precisely defines all the clusters and their semantic meanings
under different clustering rules.

K FURTHER COMPUTATIONAL COST ANALYSIS

The proposed TeDeSC framework is training-free, requiring only inference processes. Specifically, our
main framework (Caption-based) requires up to 31 GB of GPU memory to operate. All experiments
reported in the paper were conducted on 4 Nvidia A100 40GB GPUs. In Tab. 32, we provide a
detailed analysis of the computational efficiency of our main TeDeSC framework (Caption-based
Proposer and Caption-based Grouper) on the COCO-4c benchmark (5,000 images with four criteria)
across various hardware configurations. For these experiments, we used LLaVA-NeXT-7B (Liu et al.,
2024b) as the MLLM and Llama-3.1-8B (Meta, 2024b) as the LLM.

As shown in Tab. 32, organizing 5,000 images based on all four discovered criteria can be completed
by TeDeSC in 29.1 hours on a single A100 GPU or 16.7 hours on a single H100 GPU. More
importantly, most steps in our framework, such as per-image captioning and per-caption cluster
assignment, are parallelizable across multiple GPUs, significantly accelerating the process. Therefore,
when parallelizing the framework on 4 A100 or H100 GPUs, we achieve approximately a 4× speedup,
reducing computational time to 7.6 hours on 4 A100 GPUs and 4.3 hours on 4 H100 GPUs.

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

Table 32: Computational cost analysis on the COCO-4c benchmark (5,000 images with four criteria). We
report the average and total time costs on various machines. The time costs were calculated for organizing
all 5,000 images according to all the 4 criteria. Our main caption-based TeDeSC framework is used in this
experiment.

Method Hardware Average time cost (sec/img) ↓ Total time cost (hrs) ↓

TeDeSC

1 Nvidia A100-40GB 20.9 29.1
4 Nvidia A100-40GB 5.5 7.6
1 Nvidia H100-80GB 12.0 16.7
4 Nvidia H100-80GB 3.1 4.3

L FUTURE WORK

Closed-Loop Optimization. In this work, we designed our prompts following the Iterative Prompt
Engineering methodology (DeepLearning.AI, 2024) introduced by Isa Fulford and Andrew Ng. In
App. C, we provide the exact LLM and MLLM prompts used in our framework and break down
each prompt to explain the objectives and purposes behind each design choice. These explanations
cover elements such as system prompts, input formatting, task and sub-task instructions, and output
instructions. Our focus in this work is on creating a highly generalizable framework, TeDeSC, and we
do not perform any closed-loop, dataset-specific prompt optimizations. However, in future work or
application scenarios where a labeled training/validation dataset is available, practitioners could build
upon our design objectives. By leveraging our proposed evaluation metrics (see Sec. 4) for each step,
it would be possible to develop a Semantic Multiple Clustering (SMC) system with a closed-loop
optimization pipeline to achieve improved performance.

TeDeSC on Other Data Types. The core idea of our proposed framework, TeDeSC, is to use
text as a proxy (or medium) for reasoning over large volumes of unstructured data, generating
human-interpretable insights at scale. As such, TeDeSC can be directly applied to textual data (e.g.,,
documents). Moreover, since natural language is a highly versatile and widely-used medium of
representation, TeDeSC can be extended to other data types by converting these data into text (by
replacing the captioning module with suitable tools) in future work, such as:

• Audio Data: Speech-to-Text models like Whisper (Radford et al., 2023) can convert audio
data into text, enabling subsequent analysis with TeDeSC.

• Tabular Data: Table-to-Text models, such as TabT5 (Andrejczuk et al., 2022), can translate
tabular data into text, making it compatible with TeDeSC. For tables containing figures,
modern MLLMs like LLaVA-Next, which support both OCR and image-to-text capabilities,
can handle these elements to create a unified textual representation for TeDeSC.

• Protein Structures: Protein structure-to-text models, such as ProtChatGPT (Wang et al.,
2024a), can convert protein sequences into textual descriptions for analysis with TeDeSC.

• Point Cloud Data: 3D captioning models, like Cap3D (Luo et al., 2024), can transform
point cloud data or rendered 3D models into text, enabling their analysis using TeDeSC.

We believe the versatile nature of TeDeSC has the potential to open up a broad range of applications
across diverse data modalities, fostering new directions in future research.

M DISCUSSION ON HANDLING INVALID CRITERIA

At the criteria refinement step, invalid grouping criteria (False Positives) may be proposed due to
hallucinations from large language models (LLMs). While we did not observe hallucinated criteria
being introduced during our experiments across six datasets and three application studies, it is
important to further investigate the potential impact of such invalid criteria on the proposed TeDeSC
system.

To this end, we design and conduct a control experiment using the Fruit-2c dataset (Muresan &
Oltean, 2018), where we artificially introduced two “hallucinated” invalid grouping criteria (False
Positives), Action and Clothing Style, into the refined criteria pool. These invalid criteria were
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then used in the subsequent grouping process to evaluate their effect on our system. We apply the
main Caption-based Grouper to group fruit images based on these “hallucinated” criteria.

The grouping results for the two invalid criteria are presented in Tab. 33. As observed, when
processing invalid “hallucinated” criteria, nearly all images are assigned to a cluster named “Not
visible” by our framework. This occurs because, in the absence of relevant visual content in the
images, the MLLM-generated captions do not include descriptors corresponding to the invalid criteria.
Consequently, the LLM creates a “Not visible” cluster and assigns the images to it. Since the system
provides interpretable outputs, users can easily identify and disregard such invalid groupings. This
control experiment highlights the robustness of our system against hallucination in practical scenarios.

Table 33: Study of the Influence of Invalid Grouping Criteria (False Positives) on the Fruit-2c Dataset. We
report the distribution of predicted groupings under the two “hallucinated” invalid grouping criteria. The main
Caption-based Semantic Grouper is used for this experiment. †: For simplicity, all other minority clusters are
grouped as “Others”.

Predicted Clusters Action (%) Clothing Style (%)
Not visible 98.3 96.7
Others† 1.7 3.3

N LIMITATION

Model hallucination. LLM hallucination (Wang et al., 2024c) typically occurs when LLMs are tasked
with complex queries requiring world knowledge or factual information—for instance, answering
a question like ”Who was the 70th president of the United States?” might lead to a fabricated
response. However, in our system, the use of LLMs is fully grounded in the visual descriptions
(tags or captions) of the images. Consequently, the LLM output is strongly constrained to analyzing
these visual descriptions, significantly reducing the likelihood of hallucination. That said, LLM
hallucination can still have mild effects on clustering results. For example, as discussed in the failure
case analysis in Sec. H, the LLM incorrectly grouped “Korean bibimbap” and “Vietnamese rice
noodles” under “Chinese cuisine” (see Fig. 18). MLLMs also play a crucial role in our system,
as they are responsible for translating images into text for subsequent processing steps. MLLM
hallucination (Wang et al., 2024c) typically involves incorrectly identifying the existence of objects,
attributes, or spatial relationships within an image. However, since our proposed system operates
at the dataset level rather than on a per-image basis, it is largely insensitive to such hallucinations,
especially at the fine-grained visual detail level. Moreover, as our system is training-free, it can be
further enhanced with LLM or MLLM hallucination mitigation techniques, such as the Visual Fact
Checker (Ge et al., 2024), which we leave as a direction for future work.

Model Bias. Foundation models such as LLMs and MLLMs are known to inherit biases from
their training data (Bommasani et al., 2021). In our system, we addressed potential biases using
Hard Positive Prompting techniques: i) MLLM Bias Mitigation: The MLLM is further prompted
to generate criterion-specific captions that focus solely on describing the criterion-related content
in each image. This approach constrains the MLLM from generating irrelevant content influenced
by inherent biases; ii) LLM Bias Mitigation: Similarly, when prompting the LLM to assign image
captions to clusters, we condition it to concentrate exclusively on the Criterion depicted in each image
(see Tab. 17).

To validate the effectiveness of these bias mitigation techniques, we conducted a fair clustering
experiment. Specifically, following Kwon et al. (2024), we sampled images for four occupations
(Craftsman, Laborer, Dancer, and Gardener) from the FACET (Gustafson et al., 2023) dataset, which
contains images from 52 occupations. For each occupation, we selected 10 images of men and 10
images of women, totaling 80 images, ensuring a ground-truth gender proportion disparity of 0% for
each occupation. Using our main TeDeSC system, we grouped these images based on the criterion
Occupation using three bias mitigation strategies: i) No mitigation: using general descriptions from
the MLLM for LLM grouping; ii) Our default hard positive prompting strategy: using criterion-
specific captions from the MLLM for LLM grouping; and iii) Our default strategy with additional
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negative prompt: adding a simple negative prompt, “Do not consider gender,” to both the MLLM
captioning and LLM grouping prompts.

In this experiment, non-biased result is defined as achieving equal gender proportions within each
cluster. Tab. 34 presents the average gender ratios of the clustering results for each method across
the four occupations. As observed, without bias mitigation, TeDeSC exhibits noticeable gender bias
in the studied occupations, with a gender disparity of 19.4%. However, our default bias mitigation
techniques effectively reduce this disparity to 4.9%, achieving performance comparable to the addition
of a manual negative prompt. This experiment demonstrates the effectiveness of our bias mitigation
strategy and highlights the potential for further reducing model bias in our framework using more
advanced techniques.

Table 34: Average gender ratio and disparity across the four studied occupations (Craftsman, Laborer, Dancer,
and Gardener) from the FACET dataset. Images sampled from each occupation have an equal proportion of
genders. Results from different bias mitigation strategies are reported.

Bias Mitigation Strategy Male (%) Female (%) Gender Disparity (%)
Ground-truth 50.0 50.0 0.0
No mitigation 40.3 59.7 19.4
Ours (default) 47.6 52.5 4.9
Ours w. Negative prompt 48.4 51.6 3.2

O FURTHER STUDY ON MULTI-GRANULARITY CLUSTERING

In this section, we provide a detailed study on how different levels of multi-granularity output from
our TeDeSC framework impact grouping results. Specifically, for the Action-3c dataset, we employed
human annotators to label two additional granularity levels for the criteria Action and Location. For
the Action criterion, we consider the original annotation as fine-grained (L3) and tasked annotators to
name the action in the image using more abstract and general coarse-grained (L1) and middle-grained
(L2) labels. For the Location criterion, we consider the original annotation as middle-grained (L2)
and tasked annotators to provide both more abstract coarse-grained (L1) labels and more specific
fine-grained (L3) labels. This process resulted in expanded ground-truth annotations at three distinct
semantic granularity levels for both the Action and Location criteria of the Action-3c dataset.
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Figure 24: Further study on the influence of multi-
granularity clustering output. We evaluate the CAcc
and SAcc of the multi-granularity grouping results at
each predicted clustering granularity level against each
ground-truth annotation granularity level for the Ac-
tion and Location criteria of the Action-3c dataset.
The Harmonic Mean of CAcc and SAcc is reported
for each granularity pair. L1, L2, and L3 represent the
coarse-grained, middle-grained, and fine-grained levels,
respectively, for both predictions and annotations.

Next, we quantitatively evaluated the multi-
granularity grouping results at each predicted
clustering granularity level against each ground-
truth annotation granularity level by measuring
clustering accuracy (CAcc) and semantic accu-
racy (SAcc). The main caption-based TeDeSC
framework was used for this experiment. In
Fig. 24, we report the Harmonic Mean of CAcc
and SAcc for the Action and Location criteria
of Action-3c, across each predicted clustering
granularity level evaluated against each ground-
truth annotation level. As clearly shown, the high-
est grouping performance consistently appears
along the diagonal. This indicates that the best
grouping performance is achieved when the pre-
dicted granularity matches the annotation granu-
larity.

These experimental results not only highlight the
importance of the multi-granularity output of our
framework but also validate the effectiveness of
our multi-granularity design in aligning with user-preferred granularities that is reflected by the
annotations in these experiments.
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P WHY LLMS IMPROVE IMAGE CLUSTERING?

The most compelling aspect of this work lies in our TeDeSC framework’s ability to transform large
volumes of unstructured images into natural language and leverage the advanced text understanding
and summarization capabilities of LLMs to tackle the challenging Semantic Multiple Clustering
(SMC) task. This approach draws inspiration from the use of LLMs in the Topic Discovery task
within the NLP domain (Eklund & Forsman, 2022). Our core motivation is: “If LLMs can discover
topics from documents and organize them, then by converting images into text, we can similarly use
LLMs to organize unstructured images.”

Traditional clustering methods (Estivill-Castro, 2002; Caron et al., 2018; Van Gansbeke et al., 2020;
Li et al., 2023b; Yu et al., 2024) often depend on pre-defined criteria, pre-determined numbers of
clusters, fixed feature representations (which require training), and are typically not interpretable.
These limitations hinder their applicability to diverse datasets in open-world scenarios, as they
demand significant human priors and retraining for each new dataset.

In contrast, LLMs (OpenAI, 2022a; 2023; Touvron et al., 2023; Meta, 2024a;b) excel at understanding,
summarizing, and reasoning over high-level semantics expressed in natural language across diverse
domains (e.g.,, everyday content, cultural knowledge, or medical content). Operating in a zero-
shot (Kojima et al., 2022), interpretable manner, LLMs are uniquely suited to the SMC task, which
aims to discover meaningful and interpretable clustering criteria without requiring prior knowledge
or training. By integrating LLMs with MLLMs (Liu et al., 2024b) into the carefully designed
TeDeSC framework, we enable the discovery and refinement of clustering criteria directly from the
dataset’s content, followed by automatic grouping of the dataset. This design allows our framework to
overcome the rigid assumptions of traditional clustering methods, making it automatic, generalizable,
and training-free. Our approach provides a novel perspective, demonstrating how clustering tasks can
evolve beyond traditional paradigms.

Challenges of employing LLMs to facilitate the SMC task. The main challenge of employing
LLMs for the SMC task lies in accurately translating visual content from images into natural language
that LLMs can effectively reason with. This is evident from the sensitivity analysis results in App. F.1:
TeDeSC’s performance improves with larger or more powerful MLLMs (see Fig. 11 (a)), while
it remains relatively insensitive to the specific choice of LLM (see Fig. 11 (b)). In other words,
the quality of image captions generated by MLLMs is critical for the effective use of LLMs in
the SMC task. Specifically, in the first stage of TeDeSC (criteria proposal), captions need to be as
comprehensive as possible to provide rich information for LLMs to discover grouping criteria. In the
second stage (semantic grouping), criterion-specific captions should precisely capture relevant visual
content to provide accurate information for assigning images to clusters.

To enhance caption quality, techniques such as MLLM model ensembling, prompt ensembling (Liu
et al., 2024c), or stronger models like GPT-4V (OpenAI, 2023) can improve comprehensiveness. For
better precision, advanced prompting methods like CoT (Wei et al., 2022) or FineR (Liu et al., 2024e)
can capture nuanced details, while hallucination mitigation tools like Visual Fact Checker (Ge et al.,
2024) can reduce noise caused by hallucinations. However, these techniques increase computational
costs and framework complexity. In this work, we choose to keep TeDeSC simple yet effective, and
we outline these potential improvements for future practitioners.

Q FURTHER EVALUATION DETAILS

Further Discussion on Clustering Accuracy (CAcc). Clustering Accuracy (CAcc) (Han et al.,
2021) is evaluated by applying the Hungarian algorithm (Kuhn, 1955) to determine the optimal
assignment between the predicted cluster indices and ground-truth labels. As extensively discussed in
the GCD (Vaze et al., 2022) literature, if the number of predicted clusters (groups) exceeds the total
number of ground-truth classes (groups), the extra clusters (not matched by the Hungarian algorithm)
are assigned to a null set, and all instances in those clusters are considered incorrect during evaluation.
On the other hand, if the number of predicted clusters is lower than the number of ground-truth
classes, the extra classes are assigned to a null set, and all instances with those ground-truth labels are
similarly considered incorrect. Thus, CAcc is maximized only when the number of predicted clusters
matches the number of ground-truth clusters.
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In the Semantic Multiple Clustering (SMC) task newly proposed in this work, we do not assume
access to the ground-truth number of clusters as prior input. Consequently, our proposed method
TeDeSC does not rely on the ground-truth number of clusters to achieve an ”optimal” CAcc with
respect to the testing dataset. All clusters are automatically predicted by the TeDeSC system. In
stark contrast, in the comparison with criterion-conditioned clustering methods shown in Tab. 2, both
IC|TC (Kwon et al., 2024) and MMaP (Yao et al., 2024) use the ground-truth number of clusters as
prior input.
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