
Proceedings of Machine Learning Research – 095:1–10, 2024 Full Paper – MIDL 2024

Style Randomization Improves the Robustness of Breast
Density Estimation in MR Images

Goksenin Yuksel 1 Goksenin.yuksel@student.uva.nl

Koen Eppenhof 2 koen.eppenhof@screenpointmed.com

Marcel Worring 3 m.worring@uva.nl

Jaap Kroes 4 jaap.kroes@screenpointmed.com
1,3 UvA Amsterdam, Netherlands
2,4 Screenpoint Nijmegen, Netherlands

Editors: Accepted for publication at MIDL 2024

Abstract

Breast density, a crucial risk factor for future breast cancer development, is defined by
the ratio of fat to fibro-glandular tissue (FGT) in the breast. Accurate breast and FGT
segmentation is essential for robust density estimation. Previous research on FGT segmen-
tation in MRI has highlighted the significance of training on both images with and without
fat suppression to enhance network’s robustness. In this study, we propose a novel data
augmentation technique to further exploit the multi-modal training setup motivated by the
research in style randomization. We demonstrate that the network trained with the pro-
posed augmentation is resilient to variations in fat content, showcasing improved robustness
compared to solely training with multi-modal data. Our method effectively improves FGT
segmentation, thereby enhancing the overall reliability of breast density estimation.

Keywords: Breast Density Estimation, MRI, Style Randomization, Deep Learning, FGT
Segmentation, Robustness, Representation Learning, Dixon Images

1. Introduction

Breast density is defined as the amount of fibro-glandular tissue (FGT) in the breast, and
it is a well-established risk factor for the future development of breast cancer (Boyd et al.,
2007). While automated software solutions for breast density estimation are readily avail-
able for mammography, limited efforts have been directed towards creating an automated
robust breast density calculation tool tailored for breast MRI (Chalfant and Hoyt, 2022).
Yet, MRI allows for more accurate quantification of breast density compared to digital
mammography (Gubern-Mérida et al., 2014).

There are multiple ways of performing breast density estimation in MRI (van der Velden
et al., 2020). Recent literature in this area mostly focused on breast density estimation via
segmentation (Doran et al., 2017; van der Velden et al., 2020). Volumetric breast density
estimation is then calculated by comparing the number of voxels classified as FGT to the
overall volume of the breast.

Automatic breast and FGT segmentation in breast MRI has been addressed by several
papers (Dalmış et al., 2017; Huo et al., 2021; Zhang et al., 2019). Recent literature suggests
that deep learning methods have consistently shown great results in automating various
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medical imaging tasks, consistently outperforming traditional methods including breast-
FGT segmentation.

Dalmış et al. (2017) were the first to propose a deep learning-based approach to breast
density estimation, exceeding the performance of previously developed traditional machine
learning-based approaches. Later, Zhang et al. (2019) extended the previous research on
2D U-Net for FGT segmentation using a multi-vendor dataset. Later, Huo et al. (2021)
used a 3D U-Net, exceeding the performance of all known 2D U-Net architectures on FGT
segmentation.

The papers mentioned above did not carry out testing on both fat-suppressed (FS)
and without fat-suppressed (WOFS) acquisitions. To address this issue, Samperna et al.
(2022) trained a 3D U-Net architecture on both FS and WOFS acquisitions. They utilized
Dixon images in the training set to include both acquisitions of the same patient. The
study demonstrates that incorporating both WOFS and FS acquisitions in the training set
enables the achievement of similar results, while training exclusively on one modality leads
to sub-optimal performance when tested on the other.

Sub-optimal results may be attributed to the style difference in the WOFS and FS
images since Convolutional Neural Networks (CNNs) exhibit bias towards styles (Baker
et al., 2018). This style bias does not arise from the inductive properties of the CNNs,
but rather from the contents of the training data (Geirhos et al., 2018). The observed
performance improvement in Samperna et al. (2022) may be attributed to the elimination
of style bias by including different styles of the same patient.

The style bias can be further reduced by appearance-modifying data augmentation (Her-
mann et al., 2020). Xu et al. (2021) proposes to modify the amplitude information of images
where mostly low-level signals are present, and keep the phase information intact where
high-level semantics are present. This augmentation leads to a model that can better ex-
tract the semantic concepts, and is more robust to domain shift. Moreover Jackson et al.
(2019) introduces style randomization as data augmentation. This technique incorporates
various styles of the same image during training. This approach aids in developing a more
robust model and shows enhanced performance across multiple domains without requiring
specific data from each.

In this paper, we apply style randomization with Dixon images to enhance robustness
of breast and FGT segmentation, and thus breast density estimation. We argue that this
randomization technique introduces more style variability while keeping the high level se-
mantics present. This method forces the network to be more robust by eliminating the style
bias even further, and teaches the network to focus more on the shape rather than texture.

We find that style randomization helps the network to generalize better, and alleviates
the style bias even further. Another important finding is that style randomization improves
FGT dice score on both training and test sets. These findings imply that utilizing style
randomization during the training not only boosts the robustness of the network but also
helps adapt the network to various potential target domains.

2. Methods

Dixon Images
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The Dixon method provides fat-water separation in MR images. The key idea behind
Dixon imaging is to acquire multiple images at different echo times, exploiting the chemical
shift difference between fat and water protons. Fat and water have slightly different resonant
frequencies due to their different chemical compositions, and by acquiring images at specific
echo times, it’s possible to create separate images highlighting fat and water components
(Dixon, 1984).

2.1. Style Randomization

By style randomization, we extend on the methodology from Samperna et al. (2022). Given
that Dixon images contain water (W) and fat (F), we randomize the style of the image by
introducing mix-up parameter α. We call this Mixed Modality.

I =


W FS
W + αF 0 < α < 1
W + F WOFS

To randomize the style of an image we follow two strategies. First, we use alpha levels
from [0, 0.2, 0.5, 0.8, 1]. Second, we use alpha levels from 0 to 1, with uniform steps of
0.1. From now on, for the sake of readability, we will refer to these as Augmented and
More Augmented strategies. We use both strategies to quantify the effect of different
style randomization levels. Style randomization is applied intra-patient to achieve linear
mixture of WOFS and FS modalities. Figure 1 visualizes an MR acquisition augmented
with a More Augmented strategy. The below visualization demonstrates that adding fat
to the water image does not alter the global shape of the FGT, and the breast remains
unchanged while mixing the WOFS and FS domains linearly. We can achieve the same
training setup as Samperna et al. (2022) when we utilize style randomization with [0,1] fat
levels

Figure 1: Gradient of fat augmentation, each title depicts the weight of fat in the image.
When the image has 0 or 1 fat weight it results FS and WOFS images.

Additionally, we employ a test time augmentation for evaluation purposes. We randomly
chose two fat fractions and augment one image. We refer to this strategy as Randomly
Weighted Fat.
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2.2. Model

We employ the nn-UNet framework (Isensee et al., 2021). We used patch-based full-
resolution 3D U-Net for all our experiments. We treat each image as a separate sample
while using the same ground truth segmentation for the same patients. The network’s
input was a single patch of size 192 × 192 × 64, with a batch size of 2. We trained all
networks for 1000 epochs with 250 iterations per epoch. The default augmentation strategy
was applied with instance-based z-score normalization. No post-processing was applied.

2.3. Data

To implement the proposed method, we employed an in-house training set with Dixon
images. They are acquired between the periods between 2015-2017. Breast MRI acquisitions
were obtained using a 3T breast MRI scanner. All the acquisitions included in this study
were pre-contrast T1-weighted acquisitions. We divided the dataset into training (n = 51
patients) and testing (n = 9 patients, 18 acquisitions (9 WOFS, 9 FS)). Additionally, we
employed 5-fold cross-validation. Ground truth labels were artificially generated using a
pre-trained network.

For independent test sets, we used an evaluation set published by Müller-Franzes et al.
(2023). This is a subset of DUKE, which was collected between 2000 and 2014 at the
Duke Hospital, USA, which is publicly available Saha et al. (2021). This dataset con-
tains acquisitions from 40 patients. The acquisitions were obtained by a 1.5 Tesla, or
3.0 Tesla scanner from General Electric or Siemens. The MRI protocol consisted of a T1-
weighted fat-suppressed sequence(one pre-contrast, and four post-contrast scans) and a non-
fat-suppressed T1-weighted sequence. We used a pre-contrast T1-weighted fat-suppressed
image to evaluate our algorithm. We refer to this test set as Müller-Franzes et al. (2023).
Additionally, we utilized published breast segmentation and FGT segmentations by DUKE.
This set contains 100 patients and has the same characteristics as the set described above.
After processing the masks, we decided to exclude the ones that we could not parse in SITK.
We also found that some images has more than 3 dimensions. Due to lack of metadata to
guide us on how to use them, we decided to drop these as well. This left us with 88 patients.
Later, we only used segmentation labels for breast and FGT. We refer to this test set as
Saha et al. (2021).

For the BI-RADS density estimation task, we employed radiologists estimations from
DUKE. This data contains BIRADS density label estimations from three radiologists for 50
instances. In all cases two out of three radiologists agreed on the density grade, with the
third radiologist estimate differing at most one grade from the other. Therefore we utilized
majority voting to consolidate the estimations into a single label.

3. Results

Table 1 demonstrates that mixed modality training does not show significant performance
drift when tested on WOFS or FS modality. We visualize the lowest performance case from
the test set. The visualization of the test sample is included in Table 2. This patient has
a breast implant. In the WOFS image, we classify the implant as part of the FGT tissue,
therefore breast density prediction is higher than the ground truth.
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Test Augmentation Strategy Breast DSC [95% CI] FGT DSC [95% CI] Pearson’s r

WOFS Augmented 0.97 [0.96,0.98] 0.93 [0.88,0.97] 0.98 [0.95, 1.00]
WOFS More Augmented 0.99 [0.99,0.99] 0.97 [0.96,0.98] 1.00 [1.00, 1.00]
WOFS Mixed Modality 0.96 [0.94, 0.98] 0.91 [0.84, 0.95] 0.92 [0.86, 1.00]

FS Augmented 0.95 [0.92,0.97] 0.89 [0.86,0.92] 0.99 [0.96, 1.00]
FS More Augmented 0.98 [0.97,0.98] 0.90 [0.88,0.93] 1.00 [1.00, 1.00]
FS Mixed Modality 0.95 [0.92, 0.97] 0.87 [0.84, 0.91] 0.99 [0.97− 1.00]

Randomly Weighted Fat Augmented 0.97 [0.96,0.98] 0.90 [0.86,0.93] 0.97 [0.93,1.00]
Randomly Weighted Fat More Augmented 0.98 [0.98,0.99] 0.94 [0.92,0.96] 1.00 [1.00,1.00]
Randomly Weighted Fat Mixed Modality 0.94 [0.92,0.97] 0.80 [0.71,0.87] 0.96 [0.92, 1.00]

Saha et al. (2021) Augmented 0.87 [0.86,0.88] 0.72 * [0.70,0.75] 0.98 ** [0.97,0.99]
Saha et al. (2021) More Augmented 0.87 [0.86,0.88] 0.72 * [0.69,0.74] 0.98 ** [0.96,0.99]
Saha et al. (2021) Mixed Modality 0.87 [0.85,0.88] 0.71 [0.68,0.74] 0.97 [0.94,0.98]

Müller-Franzes et al. (2023) Augmented 0.84 [0.83,0.86] 0.69 ** [0.64,0.73] 0.92 ** [0.86-0.96]
Müller-Franzes et al. (2023) More Augmented 0.84 [0.83,0.85] 0.69 ** [0.64,0.73] 0.92 ** [0.85-0.96]
Müller-Franzes et al. (2023) Mixed Modality 0.83 [0.81,0.84] 0.63 [0.58-0.68] 0.84 [0.75-0.93]
**p < 0.05, *p < 0.1

Table 1: Augmentation results. We use sign test to calculate P values. We compared only
the results of independent test sets.

Moreover, Table 1 shows that style randomization improves on mixed-modality training
in every dataset. Domain shift does not affect the performance of the networks trained with
augmentations. We see that the test performance of mixed modality in Randomly Weighted
Fat degraded heavily on FGT segmentation, while augmented networks are not affected by
it. Moreover, in independent test sets, more augmented network significantly outperforms
mixed modality training. More augmented network demonstrates a significant performance
improvement over mixed modality training. Notably, the more augmented network not only
suppresses the results of mixed modality and augmentation but also eliminates outliers, such
as the case with a breast implant in the test set.

Figure 2 illustrates that more augmentation enhances the dice scores of individual cases
by up to 0.4 compared to the baseline. Additionally, it reveals that augmentation may result
in a deterioration in dice scores for certain cases. Nevertheless, the overall enhancement
outweighs the instances of decline. Table 2 shows that failing segmentations from mixed-
modality training are over segmented. Whereas a network trained on style randomized
images correctly segments the FGT tissue, yielding a better FGT segmentation performance.

3.1. Numerical Density Estimation

Pearson’s r from Table 1 shows that predicted density estimations from style randomized
networks correlate significantly more with the ground truth compared to mixed modality
training.

Figure 3 visualizes the Bland-Altman plots for numerical agreement between predicted
density, and ground truth density. We observe that all models predict the breast den-
sity well. The mean disagreement falls between 0.02% to 0.04%. Furthermore, density
predictions from networks trained with the proposed augmentation are more precise. The
confidence intervals indicate that proposed augmentation has less variance in predicted den-
sity error, and is closer to 0. The outliers in the Bland-Altman plots are alleviated with the

5



Yuksel Eppenhof Worring Kroes

(a) Müller-Franzes et al. (2023) (b) Saha et al. (2021)

Figure 2: Instance based dice score difference between mixed modality, and more aug-
mented.

Image Slice Ground Truth Mixed Modality More Augmentation

Table 2: Test acquisitions where we achieve the biggest performance improvements in FGT
Dice score with style randomization. Red indicates FGT, and green indicates
breast voxels. First row shows the acquisition with the breast implant. Following
two rows are taken from Saha et al. (2021), and last row Müller-Franzes et al.
(2023)

style randomization. Figure 3 depicts a positive correlation between the density of breast
and error in predictions for (Saha et al., 2021).

3.2. BI-RADS Density Estimation

We quantify the agreement between radiologists and the density predictions from the net-
work using the BI-RADS labeled data. Figure 4 depicts a box plot of BIRADS density
labels to the numerical density estimation. All networks show a clear trend of increased
density when from left to right agreeing with the radiologists.

Whisker in Figure 4 depicts that the network trained on mixed modality over-estimates
the density. This phenomenon is especially visible for BIRADS label B. On the other hand,
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(a) Müller-Franzes et al. (2023)

(b) Saha et al. (2021)

Figure 3: Bland-Altman plots visualizing the breast density estimation agreement between
predicted and ground truth. The results are in percentage. Means indicate the
average between predicted, and ground truth density. Difference is calculated by
subtracting predicted from ground truth density.

(a) Mixed Modality
Training

(b) Augmentation (c) More Augmentation

Figure 4: Density predicted by network to average BI-RADS assessments by radiologists.
Whiskers indicate the 0th, and 100th percentile.

networks trained on style randomization yields more reliable density estimations for all the
density labels. This suggests that predicting BIRADS density labels from numerical output
is less prone to false positives.
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4. Discussion

In this study, we explored the effect of style randomization for breast density estimation
and proposed the implementation using Dixon images. Experimental results indicate that
the network trained with style randomization reduces style bias and forces robustness.

Firstly, style randomization helps with the out-of-domain distribution performance. This
finding is inline with Jackson et al. (2019), and Xu et al. (2021). Compared to mixed modal-
ity training, we do not observe performance degradation in the FGT Dice score, resolving the
style bias observed with mixed modality training. This finding suggests that style random-
ization may improve the generalization capabilities of the network. Furthermore, correctly
segmenting the patient with breast implant may suggest that it forces networks to recognize
breast and FGT shape better. This finding is reinforced by significantly higher dice scores
with augmentation in independent test sets, and better breast density estimations.

Style randomization improves the breast density estimates both in BIRADS, and nu-
merical estimation tasks. We find that style randomization significantly improves the cor-
relation between predicted and ground truth density. In Figure 3 and 4 we observe that
augmentation alleviates the positive outliers. Additionally, the strong agreement between
radiologists’ assessments and the network predictions reinforces the reliability of the pro-
posed technique. We observe that all networks overshoot the breast density estimation in
denser breasts regardless of style randomization. However, this trend is less noticeable with
style randomization.

Moreover, we do not observe a statistically significant difference between augmentation
strategies in independent test sets. However, we see that using more augmentation further
improves the segmentation, and density estimation results in the held-out test set. This
finding may emphasize that having more augmentation further reduces the style bias, and
enforces more robustness.

There are several limitations of the study. Firstly, we only trained two different augmen-
tation strategies with arbitrarily chosen α values. Comparing more augmentation strategies
would better quantify the effect of different style randomization levels. Secondly, training
dataset relies on labeled information generated by a pre-trained network. This network
over-segments the FGT areas, resulting in lower resolution of FGT segmentation. Net-
works trained on biased data not only fail to alleviate but can also exacerbate these biases.
Consequently, irrespective of the chosen training schema, our model tends to exhibit an
over-segmentation tendency in FGT, and may not generate high-resolution FGT segmen-
tations. This may explain the trend we observed with breast density estimations in denser
breasts. Denser breasts have more FGT tissue, and thus over segmenting it yields erroneous
density estimates.

5. Conclusion

Our paper introduces novel style randomization using Dixon’s images, demonstrating its ef-
ficacy in enhancing network robustness. The proposed technique further reduces style bias,
offering a valuable approach for leveraging Dixon images in breast density estimation. Fur-
ther research may explore style randomization as random data augmentation and training
diverse network families to quantify its broader impact.
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