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ABSTRACT

Crossbar-enabled analog computing-in-memory (CACIM) systems can signifi-
cantly improve the computation speed and energy efficiency of deep neural net-
works (DNNs). However, the transition of DNN from the digital systems to
CACIM systems usually reduces its accuracy. The major issue is that the weights
of DNN are stored and calculated directly on analog quantities in CACIM sys-
tems. The variation and programming overhead of the analog weight limit the
precision. Therefore, a suitable quantization algorithm is important when deploy-
ing a DNN into CACIM systems to obtain less accuracy loss. The analog weight
has its unique advantages when doing quantization. Because there is no encod-
ing and decoding process, the set of quanta will not affect the computing process.
Therefore, a generalized quantization method that does not constrain the range of
quanta and can obtain less quantization error will be effective in CACIM systems.
For the first time, we introduced a generalized quantization method into CACIM
systems and showed superior performance on a series of computer vision tasks,
such as image classification, object detection, and semantic segmentation. Using
the generalized quantization method, the DNN with 8-level analog weights can
outperform the 32-bit networks. With fewer levels, the generalized quantization
method can obtain less accuracy loss than other uniform quantization methods.

1 INTRODUCTION

Deep neural networks (DNNs) have been widely used in a variety of fields, such as computer vision
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; He et al., 2016), speech recognition (Graves
et al., 2013; Hinton et al., 2012; Graves & Jaitly, 2014), natural language processing (Kim, 2014;
Yang et al., 2016; Lai et al., 2015) and so on (Mnih et al., 2015; Silver et al., 2016). However, the
high complexity of DNN models makes them hard to be applied on edge devices (mobile phones, on-
board computers, smart sensors, wearable devices, etc.), which can only provide limited computing
speed and power (Sze et al., 2017).

Crossbar-enabled analog computing-in-memory (CACIM) systems is a promising approach to fa-
cilitate the applications of DNN on edge devices (Yang et al., 2013). It can carry out some typical
operations in situ, exactly where the data are located (Ielmini & Wong, 2018). Such as the multiply-
accumulate operation (MAC), which is the most frequently performed operation in DNNs. The cost
of data transferring for doing the operations can be reduced. Both the computation speed and energy
efficiency can be improved significantly (Yao et al., 2020).

The footstone of CACIM systems for DNN is the crossbar array of the computational memory units
(Hu et al., 2012). As shown in Figure 1, taking the memristor device as an example, each weight
(Wij) of the connection in one layer of a neural network is stored as the conductance state (Gij) of a
memristor. The input data are represented as the voltage (Vi). After applying the voltage (Vi) to each
row, the current (Ij) collected at each column is exactly the MAC result according to Kirchhoff’s
law and Ohm’s law, Ij =

∑
i

ViGij .

Before applying a DNN in CACIM systems, an essential step is writing the weights of DNN into
the memory units, which is usually called as mapping. However, the mapping overhead is directly
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Figure 1: Schematic illustration of one layer of neural network performed in a crossbar array.

(a) (b) (c)

Figure 2: The example results of a uniform LAQ (Hou & Kwok, 2018) quantizer (a), a non-uniform
(log-wise) INQ (Zhou et al., 2017) quantizer (b), and a generalized (Lloyd’s) quantizer (c). We
quantized the last fully connected layer’s weight of ResNet-18 with 8-level quantizers. The gener-
alized quantizer can obtain less quantization error.

related to the precision of weights.Therefore, a weight quantization method that compresses high-
precision weights in DNN is important for an efficient implementation of DNN in CACIM systems.

The most important criterion of a weight quantization method is the accuracy loss, which has a
strong correlation with the quantization error. The quantization error is determined by the quantizer
used in the quantization method. As far as our knowledge is concerned, the generalized quantizer has
not been used to quantize DNN weights in CACIM systems. The previous work used either uniform
quantizers (Jung et al., 2019; Yang et al., 2019) or non-uniform quantizers (Tang et al., 2017; Sun
et al., 2018). However, an empirical study has shown that the weights in one layer of DNN usually
follow a bell-shape and long-tailed distribution (Han et al., 2016). Meanwhile, we found that weights
in the last fully-connected layer of DNN for the classification tasks usually follow an asymmetric
distribution. The generalized density-aware quantizer (GDQ), which means the quantization results
are determined all depends on the data without any constraints, can obtain less quantization error
than either uniform or non-uniform quantizer (Figure 2). Since the weights are stored and operated
as analog quantities in CACIM systems, using GDQ to quantize the weights won’t produce extra
cost in the inference phase.

In CACIM systems, the noise of analog weights is inevitable and can not be ignored. The pertur-
bations of weights will degrade the performance of networks severely. It is better to quantize the
weights and improve the robustness to noise in the training process together.
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In this work, we introduced a generalized density-aware quantization method and noise-aware train-
ing scheme (NATS) for DNN in CACIM systems and achieved no degradation of performance by
using 8-level weights on a series of computer vision tasks. Under the same weight level, our pro-
posed method performed better than others.

2 PRELIMINARY

A quantization method for DNNs consists of two parts, one is the quantizer, the other is the quanti-
zation algorithm which describes how to use the quantizer in a neural network.

2.1 QUANTIZER

Formulation: A quantizer is a function, f : R → q, where q = {qi ∈ R|i = 1, 2, · · · , v}.
x = {xi ∈ R|i = 1, 2, · · · , d} is the data to be quantized. Each qi has a corresponding domain
Qi ⊂ R that

f(x) = qi, if x ∈ Qi, (1)
where

⋃v
i=1Qi = R, and Qi ∩Qj = ∅ when i 6= j. In most cases, {Qi|i = 1, 2, · · · , v} are v

intervals separated by v − 1 endpoints e = {ei ∈ R|i = 1, 2, · · · , v − 1} on the real axis. Without
loss of generality, we assume that q1 < q2 < · · · < qv and e1 < e2 < · · · < ev−1, that is,

Q1 = {x : −∞ < x ≤ e1},
Q2 = {x : e1 < x ≤ e2},

...
Qv−1 = {x : ev−2 < x ≤ ev−1},
Qv = {x : ev−1 < x <∞} .

(2)

We use Θ = {q, e} to denote a quantizer, and call v = |q| the precision of the quantizer. The
quantization error of a data point z(xi) is defined as

z(xi) = f(xi)− xi = qα − xi, if xi ∈ Qα . (3)

A quantizer Θ = {q, e} is uniform if q is an arithmetic progression. The quantization method using
uniform quantizer is referred as a uniform quantization method, such as the BinaryConnect (Cour-
bariaux et al., 2015), binary weight network (BWN) (Rastegari et al., 2016), which have two levels,
the ternary weight networks (TWN) (Li et al., 2016) and the trained ternary quantization (TTQ)
(Zhu et al., 2016), which have three levels, and some other methods that have more levels (He &
Fan, 2019; Jung et al., 2019; Yang et al., 2019; Shin et al., 2017; Esser et al., 2019).

The q in a non-uniform quantizer is constrained to be a kind of non-uniform distribution. Such as q is
a geometric sequence (Li et al., 2020; Miyashita et al., 2016; Zhou et al., 2017). These quantization
methods work best when the data to be quantized follows the corresponding exponential distribution.
The work (Choi et al., 2016) adopts a k-means like algorithm to quantized the weights.

Beyond the uniform quantization and non-uniform quantization, the generalized quantization meth-
ods do not constrain the distribution of q. q is determined based on the distribution of the data to be
quantized, which is robust to all kinds of data distribution.

2.2 QUANTIZATION ALGORITHM

To accelerate the inference process of a neural network, the quantizer is usually applied to both the
weights and feature maps. In most of CACIM systems, the activations are still implemented by
digital circuits, which is significantly different from the analog weights. So in this work, we focused
on the weight quantization problem. There are two main strategies for weight quantization. The
first one directly quantizes the weights in a trained neural network without fine-tuning or retraining
(Zhao et al., 2019; Banner et al., 2019). This strategy is fast and convenient, but its accuracy loss
is usually greater than the other one, which will repeat the training and quantization iteratively until
the performance is better enough (Courbariaux et al., 2015; Rastegari et al., 2016; Li et al., 2016;
Zhu et al., 2016). In the iterative quantization scheme, starts from the pre-trained neural network is
more likely to get better performance than starts from scratch (Yang et al., 2019).
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3 GENERAL QUANTIZATION ALGORITHMS FOR DNNS IN CACIM SYSTEMS

3.1 LLOYD’S QUANTIZER

We used Lloyd (1982)’s quantizer to quantize the weights of DNN in this work. The Θ = {q, e} is
a quantizer as defined in Section 2.1. Quantization distortion E of a quantizer is defined as

E =

∫ +∞

−∞
z2(x) dF (x), (4)

=

v∑
α=1

∫
Qα

(qα − x)2 dF (x), (5)

where F (x) is the cumulative probability distribution function of x. To minimize E, the quantizer
iteratively optimizes the q and e until the relative error of E of two consecutive iterations is smaller
than a given threshold.

3.2 NOISE-AWARE TRAINING SCHEME

We used the noise-aware training scheme (Murray & Edwards, 1994) to improve the robustness to
weight noise in this work. A Gaussian noise with zero mean and σ standard deviation was added
to each weight when doing the forward calculation. The σ is determined by the production of the
maximum of quantized weights (|W̄ |) and a constant ratio δ.

W̃ = N(0, δ · |W̄ |max) (6)

3.3 TRAIN A WEIGHT QUANTIZED NEURAL NETWORK

Algorithm 1 Training a L-layers quantization network:
Input: A mini-batch of inputs and targets(I , Y ), the pretrained full precision weights W , v
distinguish quantized levels, learning rate η.
Initialize: quantizer Θ by Lloyd (1982), projection thresh T
for i = 1 to L do

quantized weight W̄i is calculated by Θi

noised weight Ŵi = W̄i + W̃ i

end for
compute model output: Ŷ = forward(I, Ŵ )
compute loss L
for i = L to 1 do

compute weight gradient
∂L
∂Wi

=
∂L
∂Ŵi

update the full presicion weight Wi according to
∂L
∂Wi

and η

if | ‖ W̄i

⊙
Wi ‖1

‖ W̄i

⊙
W̄i ‖1

− 1| > T then

re-initialize Θ by Lloyd (1982)
end if

end for

The training algorithm with quantization and noise awareness is shown in Algorithm 1. ‖ X ‖p=
(
∑
i

∑
j | xij |p)

1
p is its p−norm, X

⊙
Y denotes the element-wise multiplication. There is one

quantizer for each layer in the neural network. As some previous work do (Courbariaux et al., 2015;
Rastegari et al., 2016), the quantized weights are used in the forward and backward propagations, but
the update is applied on the full-precision weights. The Straight-Through-Estimator (STE) method
(Bengio et al., 2013) are used during backward propagations. In order to reduce the frequency of
optimizing the quantizer, we used the projection of the quantized weight vector on the full-precision
weight vector to determine whether the quantizer need to be updated after each iteration. When the
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projection exceeds a certain range, the quantizer will be updated. It is found that, if we start from
a pre-trained neural network, the distribution of weights won’t have too much change. This means
the projection won’t exceed the proper range during the whole training phase and the quantizer will
be optimized only once at the beginning.

4 EXPERIMENTS

4.1 IMAGE CLASSIFICATION

In this section, we validate our quantization method on the CIFAR-10 (Krizhevsky et al., 2009) and
the ImageNet-ILSVRC2012 (Russakovsky et al., 2015) dataset.

4.1.1 EVALUATION ON CIFAR-10

ResNet-20: We first evaluated the quantization method with ResNet-20 on the CIFAR-10 dataset,
which consist of 50k training images and 10k test images in 10 classes. The data augmentation
method is same as the previous work (He et al., 2016). For fine-tuning, we set the initial learning rate
to 0.1, and scaled by 0.1, 0.1, 0.5 at epoch 80, 120, 160. The projection thresh T was set to 1.5. We
compared the performance of quantized model with several previous works, TTQ (Zhu et al., 2016),
He (He & Fan, 2019), Lq-net (Zhang et al., 2018) and Li (Li et al., 2020). As shown in Table 1, our
ternary model achieves 91.11% accuracy which is 0.42% lower than the full-precision model. Our
4-level model achieves 91.40% accuracy which is only 0.08% lower than the full-precision model.

Table 1: Classification Accuracy (%) of ResNet-20 architecture with 3-level and 4-level weights on
CIFAR-10. “FP” denotes “Full Precision”, “Quan” denotes “Quantization” and “Gap” means the
accuracy of FP model minus the accuracy of Quan model.

Method Levels
Accuracy(%)

FP Quan Gap

TTQ (Zhu et al., 2016)∗ 3 91.77 91.13 0.64
He & Fan (2019) 3 91.7 90.39 1.31
Ours 3 91.48 91.06 0.42
Ours w/ 1% noise 3 91.48 91.08±0.19 0.40±0.19

Lq-net (Zhang et al., 2018)∗ 4 91.6 90.2 1.4
Li et al. (2020)+ 4 91.6 91.0 0.6
Ours 4 91.48 91.40 0.08
Ours w/ 1% noise 4 91.48 91.45±0.14 0.04±0.14

∗Weights in first and last layer keep full precision. +Weights in first and last layer use 8-bit precision.

VGG-like Network: We also quantized VGG-like network on CIFAR-10 with ternary weights for
evaluation. The model architecture and hyper-parameters are same as Hou’s works (Hou & Kwok,
2018). The model has 6 convolutional layers and 2 fully-connected layers. Batch size was set to 50
and the learning rate starts 0.002 and decayed by a factor of 0.5 after every 15 epochs. The adam
optimizer was used and the maximum number of epoch was set to 200. The projection thresh T was
set to 0.1.

We compared the classification accuracy of our method and several related methods (Table 2). The
average accuracy of five trials using our method is higher than others. For DNNs which don’t have
pre-trained weights, training and quantizing it with our proposed method from scratch can also
obtain good results. However, the quantizer may be updated frequently since the distribution of the
weights will change a lot at the early stage of training. The closer to the solution, the more stable
the weights distribution, that is, the fewer update times in the method.
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Table 2: Classification Accuracy (%) of VGG-like architecture with 3-level weights on CIFAR-10
(FP:89.62).

Method Accuracy (%)

TWN (Li et al., 2016) 89.36
LAT (Hou & Kwok, 2018) 89.62
TTQ (Zhu et al., 2016) 89.41
Ours (from scratch) 89.67 ± 0.14
Ours (fine tuning) 89.62 ± 0.15

4.1.2 EVALUATION ON IMAGENET

The ImageNet dataset consists of 1.2M training and 50K validation images. We conducted the
experiment with the ResNet-18b and ResNet-50b (He et al., 2016). The pre-trained models from
the PyTorch model zoo were used1 . The data preprocessing is same as the origin paper (He et al.,
2016). A 224 × 224 crop was randomly sampled from an image or its horizontal flip. Stochastic
gradient descent (SGD) with the momentum of 0.9 was used to optimize weight parameters. The
mini-batch was set to 64 and weight decay to 0.0001. The network was trained up to 90 epochs.
The learning rate started from 1e-4, change to 2e-5, 4e-6 at epoch 30, 40 correspondingly, and then
scaled by 0.5 after every 5 epochs. The projection thresh T was set to 0.1.

To make more generalization, we quantized the weights in all the layers of a DNN, including the
first and the last layer in the experiments. For a fair comparison with some previous work, we also
conducted the experiments that did not quantize the first and last layer.

When the precision is up to 8-level, both the top-1 and top-5 accuracy (70.0%/89.3%) outperform
the full precision model (69.8%/89.1%). Similar results were obtained in ResNet-50b network.
The top-1 accuracy of ResNet-50b model with 4-level precision is only 0.3% lower than the full-
precision model. We compared our methods with some previous studies, which were also based on
the ResNet architecture. The experimental results are listed in Table 3. In most experiments, our
results achieved the least classification accuracy gap.

Table 3: Comparison the validation Top-1 and Top-5 accuracies gap (%) between ResNet-18b and
ResNet-50b with quantized weights or float weights using various quantization methods on Ima-
geNet. The baselines of these two full precision models are 69.8/89.1 and 76.1/92.9.

Method
weight levels of ResNet-18b weight levels of ResNet-50b

3 4 8 3 4 8

TTQ-B∗(Zhu et al., 2016) 3.0/2.0 - - - - -
ABCnet∗(Lin et al., 2017) - 5.6/4.0 - - - -
Lq-net∗(Zhang et al., 2018) - 2.3/1.5 1.0/0.7 - 1.3/0.9 -
Jung∗(Jung et al., 2019) - - 0.3/0.3 - - -
He & Fan (2019)∗ 1.7/1.2 - - - - -
He & Fan (2019) 3.9/2.4 - - 2.1/1.2 - -
Yang et al. (2019)∗ 1.2/0.6 - -0.1/-0.1 1.2/0.6 - 0.2/0
Ours∗ 1.2/0.7 - - 0.8/0.4 - -
Ours 2.5/1.4 1.3/0.6 -0.2/-0.2 1.3/0.7 0.3/0.2 -0.3/-0.3

∗Weights in first and last layer keep full precision.

We searched the relative noise δ during training the ResNet-18b with ternary weights. No significant
difference was involved when δ ranges from 1% to 4%, so we used 2% in all following experiments.
The comparisons of the inference performance between our quantized models with weight noise and
previous models without weight noise are shown in Figure 3.

1https://pytorch.org/docs/stable/ modules/torchvision/models/resnet.html
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Figure 3: Quantization performance comparison between our quantized model with weight noise
and others’ model without weight noise.

4.2 OBJECT DETECTION

In this section, we evaluated our proposed approach on a general object detection task. Our exper-
iments were conducted on SSD (single shot multibox detection) architecture (Liu et al., 2016). All
methods were fine-tuned on the same pre-trained VGG16 network. The models are trained on the
PASCAL VOC 2007 and 2012 training datasets and tested on the PASCAL VOC 2007 test dataset.
For a fair comparison, except for the final convolutional layers with 1 × 1 kernels and the first
convolution layer, the parameters of all other layers in the backbone VGG16 are quantized.

The input images were resized to 300 × 300. SGD optimizer with the momentum set to 0.9 was
used. We used the 1e−3 learning rate for 80k iterations, then continue training for 20k iterations
with 1e−4 and 1e−5. The batch size was set to 16, and the weight decay was 5e−4. The results
are shown in Table 4. When our ternary weights was injected with 1% noise, the mAP gap (1.5%±
0.06%) of our method was still not less than ADMM (Leng et al., 2018)’s and Yang et al. (2019)’
without noise. Our 8-level model performed better than full-precision model.

Table 4: mAP(%) of SSD on PASCAL VOC object detection. The performance of the full-precision
model is 77.8.

Methods
Weight levels

3 4 8

ADMM 76.2 - 77.6
Yang 76.3 - 77.7
Ours 76.7 77.1 77.9

Ours w/ 1% noise 76.3±0.06 77.1±0.03 78.0±0.08

4.3 SEMANTIC SEGMENTATION

We evaluated our method on the PASCAL VOC 2012 segmentation dataset (Everingham et al., 2010)
and used the PSPNet (pyramid scene parsing network) architecture. Following the same settings in
Zhao et al. (2017), we used augmented data with the annotation of Hariharan et al. (2011) resulting
10,582, 1,449 and 1,456 images for training, validation and testing. The backbone of our model
was ResNet50. We evaluated the model with several-scale input and used the average results. The
batch size was set to 8 constrained by limited memory. The learning rate was initialized by 1e−2

and decayed by power policy with 0.9. SGD optimizer with the momentum set to 0.9 was used. Our
8-level model can achieve the same performance with full-precision model 5.
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Table 5: Average IoU (mIoU%) and pixel Accuracy (pAcc%) of PSPNet on PASCAL VOC 2012
valid set with our proposed method.

Weight levels mIou pAcc

3 75.5 93.6
4 76.3 93.9
8 77.3 93.9

float 77.3 94.2

4.4 PERFORMANCE ON REAL DEVICES

To further demonstrate the reliability of the results, we map the weights to the real memristors
and use the measurement conductance to verify our method. The conductance (µS) range of our
memristor device is [2.1, 17.85]. To represent the negative weights, the differential conductance (G)
of two devices is used. G is given byG = G+−G−, whereG+ (G−) is the conductance of a positive
(negative) device. To reduce the mapping overhead, we used a unified reference conductance (Gref )
in all differential fairs. To represent a positive (negative) weight, the negative (positive) device is
mapped with Gref . For one layer’s quantized weights in DNN model, we firstly normalized them
by dividing with the maximum value of absolute weights. Then we mapped the normalized weights
to G by multiplying with 15.75µS and used 2.1µS as Gref .

Taking an example of a well-trained ResNet-18b model with 4-level weight, the set of quanta in
the first convolutional layer is [-0.25, -0.01, 0.11, 0.38]. After scaling the weight set, we get the G
(µS) set which is [-10.36, -0.57, 4.52, 15.75]. The G+ (µS) set is [2.1, 2.1, 6.62, 17.85], the G−
(µS) set is [12.46, 2.67, 2.1, 2.1]. The standard deviation of the measured G is 0.32µS, which is
approximately equal to 0.02 ∗ |G|max. Figure 4(a) shows the simulated and measured distribution
of the differential conductance. The measured and simulated differential conductance have the same
statistical property. As shown in Figure 4(b), we compared the inference performance of three types
of weights: A) simulated weights training with NATS, B) measured weights training with NATS, C)
measured weights training without NATS, using 4L, 8L ResNet-18b and SSD model. The results of
type A and type B are very close. The results of type B are better than those of type C indicating
that NATS improved the robustness of the DNN model.

(a) (b)

Figure 4: (a) shows the simulated and measured distribution of differential conductance (µS) which
mapped from the 4L weight of the first convolutional layer in ResNet-18b. (b) shows the top-
1 accuracy gap (%) of ResNet-18b and mAP gap (%) of SSD model using 4L, 8L weights with
simulated or measured noise.
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5 DISCUSSION

5.1 GENERALIZED QUANTIZATION METHOD IN DIGITAL SYSTEMS

A generalized quantizer can obtain less quantization error than a uniform one in theory when the
data distribution is non-uniform. However, in digital computers, it needs more memory or additional
operations to process a set of non-uniform data. As shown in Figure 5, a series of data are quantized
to {1, 2, 4, 6}. In a digital system, it will use 3 bits to store each number with binary code. Although
we can store these numbers also with 2 bits per number, a mapping function, that is ‘00’ = 1, ‘01’ =
2, ‘10’= 4, ‘11’ = 6 must be stored and called whenever using these numbers. This additional cost
limits the application of the generalized method in digital systems to a certain extent. However, in
the CACIM systems, the data is stored in analog quantities, and the operation is based on the analog
computing scheme. No matter what the exact value is, there is no significant difference in the storing
or computing operation. This is why the generalized quantization method is more suitable for the
CACIM system.

Figure 5: Processing of a series of non-uniform data in digital computers. Additional memory
overhead or additional operation of projection is needed.

5.2 PRINCIPLES OF CACIM-ORIENTED ALGORITHM DESIGN

Different from the digital system, the CACIM system is mainly based on analog computing, which
may introduce a great difference when designing and using neural network algorithms. For the
quantization methods, the analog computing scheme means that the weights are represented and
calculated on real quantities, not binary numbers implemented by high and low levels in the digital
system. No matter what the exact weight is, the read or the computing is in the same process, that
is, apply a voltage and collect the current. Therefore, we can utilize this characteristic to select a
more powerful quantization algorithm, such as the GDQ, which may obtain non-uniform results.
Besides the quantization, the characteristics of analog computing may also play important roles in
other scenarios. Since the current is directly accumulated and collected along the column of the
crossbar, the behavior of each device at the column may influence the results. If we ignore these
behaviors when designing the algorithm, they will degrade the performance of the algorithms. That
is why we usually call them non-ideal characteristics. However, if we have a clear understanding of
these characteristics, we can overcome them. Such as we used the noise-aware training scheme to
improve the accuracies in this work. Furthermore, we can even utilize them to achieve better results,
such as using the variation of the device to provide the stochasticity needed in the algorithm (Lin
et al., 2018; 2019), using the I-V nonlinearity of the device to introduce the nonlinearity and displace
the activation functions, or using the relaxation behavior of the device to efficiently implement the
weight decay operation in the training process. As demonstrated in this work, the understanding of
the hardware system is helpful for us to design better algorithms.
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