
Published as a conference paper at COLM 2025

RRO: LLM Agent Optimization Through Rising Reward
Trajectories

Zilong Wang1 Jingfeng Yang2 Sreyashi Nag2 Samarth Varshney2

Xianfeng Tang2 Haoming Jiang2 Jingbo Shang1 Sheikh Muhammad Sarwar2

1University of California, San Diego 2Amazon

{zlwang, jshang}@ucsd.edu smsarwar@amazon.com

Abstract

Large language models (LLMs) have exhibited extraordinary performance
in a variety of tasks while it remains challenging for them to solve complex
multi-step tasks as agents. In practice, agents are sensitive to the outcome
of certain key steps which makes them likely to fail the task because of
a subtle mistake in the planning trajectory. Recent approaches resort to
calibrating the reasoning process through reinforcement learning. They
reward or penalize every reasoning step with process supervision, known
as Process Reward Models (PRMs). However, PRMs are difficult and costly
to scale up with a large number of next action candidates since they require
extensive computations to acquire the training data through per-step trajec-
tory exploration. To mitigate this issue, we focus on the relative reward trend
across successive reasoning steps and propose maintaining an increasing
reward in the collected trajectories for process supervision, which we term
Reward Rising Optimization (RRO). Specifically, we incrementally augment
the process supervision until we identify a step exhibiting positive reward
differentials, i.e. rising rewards, relative to its preceding iteration. This
method dynamically expands the search space for the next action candi-
dates, efficiently capturing high-quality data. We provide mathematical
groundings and empirical results on the WebShop and InterCode-SQL
benchmarks, showing that our proposed RRO method achieves superior
performance while requiring much less exploration cost.

1 Introduction

Large language models (LLMs) have achieved remarkable advancements in numerous
domains, ranging from natural language understanding to code generation (Brown et al.,
2020; Kojima et al., 2022; Wei et al., 2022; Chen et al., 2023b; Zhou et al., 2023; Zhong et al.,
2024). Their ability to process and generate human-like text has significantly expanded their
utility in real-world applications. However, solving complex multistep tasks that require
reasoning and decision-making capabilities continue to pose substantial challenges for these
models (Lightman et al., 2024; Wang et al., 2024b; Song et al., 2024). This limitation has
led researchers to explore novel methodologies to enhance the reasoning abilities of LLMs,
particularly in the context of agentic tasks requiring temporal sequential decision-making
based on the environment feedback (Song et al., 2024; Xiong et al., 2024).

Recent efforts have introduced the reinforcement learning framework into the agent training
process. They leverage Process Reward Models (PRMs) to evaluate and guide every reason-
ing step (Wang et al., 2024c; Luo et al., 2024; Xiong et al., 2024). PRMs utilize reinforcement
signals from each step to encourage effective reasoning trajectories while penalizing subop-
timal steps, thereby enhancing problem-solving. Despite their promise, the scalability of
PRMs remains a tricky problem. Acquiring training data for these models often relies on the
next action exploration for every reasoning step, which is computationally expensive and
time-intensive (Wang et al., 2024b; Xiong et al., 2024; Luo et al., 2024). Such requirements

1

Published as a conference paper at COLM 2025

(b) Process Reward Estimation(a) Direct Preference Optimization

LLM
<latexit sha1_base64="LvGrjKY5OkOcsLoQv1QJyK+Df7o=">AAACD3icbVC7SgNBFJ2NrxhfUUub0aBEkLAbIdoIARsthCjGBJKwzE5mkyGzD2buimHZP7DxV2wsFLG1tfNH7EQnj0KNBy4czrmXe+9xQsEVmOa7kZqanpmdS89nFhaXlleyq2tXKogkZVUaiEDWHaKY4D6rAgfB6qFkxHMEqzm944Ffu2ZS8cC/hH7IWh7p+NzllICW7OyOtOMmsBuIKxdnSZJXNt/DxOa7+Ag3XUloXEzi/cTO5syCOQSeJNaY5MpW8vG5+VWo2Nm3Zjugkcd8oIIo1bDMEFoxkcCpYEmmGSkWEtojHdbQ1CceU614+E+Ct7XSxm4gdfmAh+rPiZh4SvU9R3d6BLrqrzcQ//MaEbiHrZj7YQTMp6NFbiQwBHgQDm5zySiIviaESq5vxbRLdAqgI8zoEKy/L0+Sq2LBKhVK51aufIpGSKMNtIXyyEIHqIxOUAVVEUW36B49oifjzngwno2XUWvKGM+so18wXr8BUOmgAQ==</latexit>

rPRM(si, ai) = 2
3

Average the
outcome rewards

Trajectory Prefix Trajectory Rollouts

<latexit sha1_base64="3aVaCPh1LM7+otU8z03RZi03pRk=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4sop0BG+0imA9IjjC32UuW7O0du3tCOPIjbCwUsfXniJ3/xs0lhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVFHWpLGIVSdAzQSXrGm4EayTKIZRIFg7GN/M/PYjU5rH8sFMEuZHOJQ85BSNldq9EZoMp/1yxa26Ocgq8Rakcv0JORr98ldvENM0YtJQgVp3PTcxfobKcCrYtNRLNUuQjnHIupZKjJj2s/zcKTmzyoCEsbIlDcnV3xMZRlpPosB2RmhGetmbif953dSEV37GZZIaJul8UZgKYmIy+50MuGLUiIklSBW3txI6QoXU2IRKNgRv+eVV0rqoerVq7d6r1O/maUARTuAUzsGDS6jDLTSgCRTG8AQv8OokzrPz5rzPWwvOYuYY/sD5+AEBuJDQ</latexit>

â
<latexit sha1_base64="3aVaCPh1LM7+otU8z03RZi03pRk=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4sop0BG+0imA9IjjC32UuW7O0du3tCOPIjbCwUsfXniJ3/xs0lhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVFHWpLGIVSdAzQSXrGm4EayTKIZRIFg7GN/M/PYjU5rH8sFMEuZHOJQ85BSNldq9EZoMp/1yxa26Ocgq8Rakcv0JORr98ldvENM0YtJQgVp3PTcxfobKcCrYtNRLNUuQjnHIupZKjJj2s/zcKTmzyoCEsbIlDcnV3xMZRlpPosB2RmhGetmbif953dSEV37GZZIaJul8UZgKYmIy+50MuGLUiIklSBW3txI6QoXU2IRKNgRv+eVV0rqoerVq7d6r1O/maUARTuAUzsGDS6jDLTSgCRTG8AQv8OokzrPz5rzPWwvOYuYY/sD5+AEBuJDQ</latexit>

â
<latexit sha1_base64="3aVaCPh1LM7+otU8z03RZi03pRk=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4sop0BG+0imA9IjjC32UuW7O0du3tCOPIjbCwUsfXniJ3/xs0lhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVFHWpLGIVSdAzQSXrGm4EayTKIZRIFg7GN/M/PYjU5rH8sFMEuZHOJQ85BSNldq9EZoMp/1yxa26Ocgq8Rakcv0JORr98ldvENM0YtJQgVp3PTcxfobKcCrYtNRLNUuQjnHIupZKjJj2s/zcKTmzyoCEsbIlDcnV3xMZRlpPosB2RmhGetmbif953dSEV37GZZIaJul8UZgKYmIy+50MuGLUiIklSBW3txI6QoXU2IRKNgRv+eVV0rqoerVq7d6r1O/maUARTuAUzsGDS6jDLTSgCRTG8AQv8OokzrPz5rzPWwvOYuYY/sD5+AEBuJDQ</latexit>

â

<latexit sha1_base64="VQE8sLzyI29SOkQiYxrOdZboiG0=">AAAB6nicbZDLSgMxFIbP1EtrvVVdihIsgqsy46K6LLhRVxXtBdqhZNJMG5pJhiSjlKGP4MaFIm59Inc+gw+h6WWhrT8EPv7/HHLOCWLOtHHdTyeztLyyms2t5dc3Nre2Czu7dS0TRWiNSC5VM8CaciZozTDDaTNWFEcBp41gcDHOG/dUaSbFnRnG1I9wT7CQEWysdYs7rFMouiV3IrQI3gyKlcPvr+z1w0G1U/hodyVJIioM4VjrlufGxk+xMoxwOsq3E01jTAa4R1sWBY6o9tPJqCN0bJ0uCqWyTxg0cX93pDjSehgFtjLCpq/ns7H5X9ZKTHjup0zEiaGCTD8KE46MROO9UZcpSgwfWsBEMTsrIn2sMDH2Onl7BG9+5UWon5a8cql84xUrVzBVDvbhCE7AgzOowCVUoQYEevAIz/DicOfJeXXepqUZZ9azB3/kvP8AiauQ/Q==</latexit>ai
<latexit sha1_base64="e8nay6vVnMUaWrP3Q0jT+UAshI8=">AAAB6nicbZDLSgMxFIbP1EtrvVVdihIsgqsy46K6LLhRVxXtBdqhZNJMG5pJhiSjlKGP4MaFIm59Inc+gw+h6WWhrT8EPv7/HHLOCWLOtHHdTyeztLyyms2t5dc3Nre2Czu7dS0TRWiNSC5VM8CaciZozTDDaTNWFEcBp41gcDHOG/dUaSbFnRnG1I9wT7CQEWysdSs7rFMouiV3IrQI3gyKlcPvr+z1w0G1U/hodyVJIioM4VjrlufGxk+xMoxwOsq3E01jTAa4R1sWBY6o9tPJqCN0bJ0uCqWyTxg0cX93pDjSehgFtjLCpq/ns7H5X9ZKTHjup0zEiaGCTD8KE46MROO9UZcpSgwfWsBEMTsrIn2sMDH2Onl7BG9+5UWon5a8cql84xUrVzBVDvbhCE7AgzOowCVUoQYEevAIz/DicOfJeXXepqUZZ9azB3/kvP8Anv+RCw==</latexit>oi

Step-level Preference Data

<latexit sha1_base64="2s/7/b9xXczdcPhXWSNOibBfe1Q=">AAAB7HicbZDLSsNAFIZPvLXWW9WlKMEiuCqJi+qy4EZdVTBtoQ1lMp20QyeTMHOilNBncONCEbc+kDufwYfQ6WWhrT8MfPz/Ocw5J0gE1+g4n9bS8srqWi6/XtjY3NreKe7u1XWcKso8GotYNQOimeCSechRsGaiGIkCwRrB4HKcN+6Z0jyWdzhMmB+RnuQhpwSN5ZFOhqNOseSUnYnsRXBnUKoefX/lbh4Oa53iR7sb0zRiEqkgWrdcJ0E/Iwo5FWxUaKeaJYQOSI+1DEoSMe1nk2FH9olxunYYK/Mk2hP3d0dGIq2HUWAqI4J9PZ+Nzf+yVorhhZ9xmaTIJJ1+FKbCxtgeb253uWIUxdAAoYqbWW3aJ4pQNPcpmCO48ysvQv2s7FbKlVu3VL2GqfJwAMdwCi6cQxWuoAYeUODwCM/wYknryXq13qalS9asZx/+yHr/AV8RkhQ=</latexit>at
<latexit sha1_base64="lHRYJPLdtJRKZBgIpy9Ti5JYWOw=">AAAB6nicbZDLSgMxFIYz9dJab1WXogSL4KrMuKguC27UVUV7gXYomTTThmaSITmjlKGP4MaFIm59Inc+gw+h6WWhrT8EPv7/HHLOCWLBDbjup5NZWl5ZzebW8usbm1vbhZ3dulGJpqxGlVC6GRDDBJesBhwEa8aakSgQrBEMLsZ5455pw5W8g2HM/Ij0JA85JWCtW9WBTqHoltyJ8CJ4MyhWDr+/stcPB9VO4aPdVTSJmAQqiDEtz43BT4kGTgUb5duJYTGhA9JjLYuSRMz46WTUET62TheHStsnAU/c3x0piYwZRoGtjAj0zXw2Nv/LWgmE537KZZwAk3T6UZgIDAqP98ZdrhkFMbRAqOZ2Vkz7RBMK9jp5ewRvfuVFqJ+WvHKpfOMVK1doqhzaR0foBHnoDFXQJaqiGqKohx7RM3pxhPPkvDpv09KMM+vZQ3/kvP8Ar6uRFg==</latexit>ot

<latexit sha1_base64="uaoEeDf+D9Zui5LG//6IAeM9gLc=">AAAB8nicbZDLSsNAFIYn9VbrrerSTbAIQqFkXFSXBTcKLirYC6SxTKaTdugkE2ZOhBLyGG5EFHHrO7h078538CGcXhba+sPAx/+fw5xz/FhwDY7zZeWWlldW1/LrhY3Nre2d4u5eU8tEUdagUkjV9olmgkesARwEa8eKkdAXrOUPz8d5644pzWV0A6OYeSHpRzzglICxXHKblrNuCmWcdYslp+JMZC8CnkGpht+/+48fV/Vu8bPTkzQJWQRUEK1d7MTgpUQBp4JlhU6iWUzokPSZazAiIdNeOhk5s4+M07MDqcyLwJ64vztSEmo9Cn1TGRIY6PlsbP6XuQkEZ17KozgBFtHpR0EibJD2eH+7xxWjIEYGCFXczGrTAVGEgrlSwRwBz6+8CM2TCq5Wqte4VLtEU+XRATpExwijU1RDF6iOGogiie7RE3q2wHqwXqzXaWnOmvXsoz+y3n4AfZOVMg==</latexit>

a+
t+1

<latexit sha1_base64="W1qM2dV0B5pA2EEqpjtZJ++HX0k=">AAAB8nicbZDLSsNAFIYn9VbrrerSzWARBLEkLqrLghsFFxXsBdJYJtNJO3QyCTMnQgl5DDciirj1HVy6d+c7+BBOLwtt/WHg4//PYc45fiy4Btv+snILi0vLK/nVwtr6xuZWcXunoaNEUVankYhUyyeaCS5ZHTgI1ooVI6EvWNMfnI/y5h1TmkfyBoYx80LSkzzglICxXHKbHmedFI6crFMs2WV7LDwPzhRKVef9u/f4cVXrFD/b3YgmIZNABdHadewYvJQo4FSwrNBONIsJHZAecw1KEjLtpeORM3xgnC4OImWeBDx2f3ekJNR6GPqmMiTQ17PZyPwvcxMIzryUyzgBJunkoyARGCI82h93uWIUxNAAoYqbWTHtE0UomCsVzBGc2ZXnoXFSdirlyrVTql6iifJoD+2jQ+SgU1RFF6iG6oiiCN2jJ/RsgfVgvVivk9KcNe3ZRX9kvf0AgKmVNA==</latexit>

a→
t+1

Optimize the LLM
with DPO Loss

DPO with Process Rewards

<latexit sha1_base64="lHRYJPLdtJRKZBgIpy9Ti5JYWOw=">AAAB6nicbZDLSgMxFIYz9dJab1WXogSL4KrMuKguC27UVUV7gXYomTTThmaSITmjlKGP4MaFIm59Inc+gw+h6WWhrT8EPv7/HHLOCWLBDbjup5NZWl5ZzebW8usbm1vbhZ3dulGJpqxGlVC6GRDDBJesBhwEa8aakSgQrBEMLsZ5455pw5W8g2HM/Ij0JA85JWCtW9WBTqHoltyJ8CJ4MyhWDr+/stcPB9VO4aPdVTSJmAQqiDEtz43BT4kGTgUb5duJYTGhA9JjLYuSRMz46WTUET62TheHStsnAU/c3x0piYwZRoGtjAj0zXw2Nv/LWgmE537KZZwAk3T6UZgIDAqP98ZdrhkFMbRAqOZ2Vkz7RBMK9jp5ewRvfuVFqJ+WvHKpfOMVK1doqhzaR0foBHnoDFXQJaqiGqKohx7RM3pxhPPkvDpv09KMM+vZQ3/kvP8Ar6uRFg==</latexit>ot

K candidates
K candidates

(c) Next Action Exploration for DPO Data

Fixed-sized Exploration Space (Baselines)

<latexit sha1_base64="XDGaogh950I8tkxEEcvr+8FACBg=">AAAB9HicbVC7SgNBFJ31GeMramkzGISIEHYsomXARsEignlAsobZyWwyZPbhzN1AWPY7bFIoYusvWNrb+Q9+hJNHoYkHLhzOuZd773EjKTTY9pe1tLyyurae2chubm3v7Ob29ms6jBXjVRbKUDVcqrkUAa+CAMkbkeLUdyWvu/3LsV8fcKVFGNzBMOKOT7uB8ASjYCSH3icFcpK2EzglaTuXt4v2BHiRkBnJl8n7d3f0cVNp5z5bnZDFPg+ASap1k9gROAlVIJjkabYVax5R1qdd3jQ0oD7XTjI5OsXHRulgL1SmAsAT9fdEQn2th75rOn0KPT3vjcX/vGYM3oWTiCCKgQdsusiLJYYQjxPAHaE4Azk0hDIlzK2Y9aiiDExOWRMCmX95kdTOiqRULN2SfPkaTZFBh+gIFRBB56iMrlAFVRFDD+gRPaFna2CNrBfrddq6ZM1mDtAfWG8/UMaVnQ==</latexit>

a
(1)
t+1

Dynamic Exploration Space (RRO)

<latexit sha1_base64="BVCh8QFqGyeBPgEcgHU4mhvP6ec=">AAAB9HicbVDLSgNBEOyNrxhfUY9eFoMQEcKOQvQY8KLgIYJ5QLKG2clsMmR2dp2ZDYQl3+ElB0W8+gsevXvzH/wIJ4+DJhY0FFXddHd5EWdKO86XlVpaXlldS69nNja3tneyu3tVFcaS0AoJeSjrHlaUM0ErmmlO65GkOPA4rXm9y7Ff61OpWCju9CCiboA7gvmMYG0kF98n+bPjYSvRJ2jYyuacgjOBvUjQjORK6P27M/q4Kbeyn812SOKACk04VqqBnEi7CZaaEU6HmWasaIRJD3dow1CBA6rcZHL00D4yStv2Q2lKaHui/p5IcKDUIPBMZ4B1V817Y/E/rxFr/8JNmIhiTQWZLvJjbuvQHidgt5mkRPOBIZhIZm61SRdLTLTJKWNCQPMvL5LqaQEVC8VblCtdwxRpOIBDyAOCcyjBFZShAgQe4BGe4NnqWyPrxXqdtqas2cw+/IH19gNT3pWf</latexit>

a
(3)
t+1

<latexit sha1_base64="XVug4smEUT7MJGkszmb1LeHOcJ0=">AAACBHicbVDLSsNAFL2pr1pfUZfdBIugCCVxUV0W3Oiugn1AGsNkOmmHTh7MTIQyBHTjr7hxoYhbP8Kdf+OkdaGtBy4czrmXe+8JUkaFtO0vo7S0vLK6Vl6vbGxube+Yu3sdkWQckzZOWMJ7ARKE0Zi0JZWM9FJOUBQw0g3GF4XfvSNc0CS+kZOUeBEaxjSkGEkt+WZVoVt1kvtK5rnqR0iOglC5Tt328tw3a3bdnsJaJM4PqTWP76FAyzc/+4MEZxGJJWZICNexU+kpxCXFjOSVfiZIivAYDYmraYwiIjw1fSK3DrUysMKE64qlNVV/TygUCTGJAt1ZnCnmvUL8z3MzGZ57isZpJkmMZ4vCjFkysYpErAHlBEs20QRhTvWtFh4hjrDUuVV0CM78y4ukc1p3GvXGtVNrXsEMZajCARyBA2fQhEtoQRswPMATvMCr8Wg8G2/G+6y1ZPzM7MMfGB/fZgKZWw==</latexit>

a+
t [1.0]

<latexit sha1_base64="1gDBt0s6KUtTp6GRsV9ojGqXEvY=">AAAB8nicbZDLSgMxFIYz9VbrrepSF4NFaBHKjIvqsiCC7irYC0zHkkkzbWgmGZIzQhn6GN24UMStj+AbuHPn25heFtr6Q+Dj/88h55wg5kyD43xbmZXVtfWN7GZua3tndy+/f9DQMlGE1onkUrUCrClngtaBAaetWFEcBZw2g8HVJG8+UqWZFPcwjKkf4Z5gISMYjOXhh7TolkadFEadfMEpO1PZy+DOoVAtHV9/fpyNa538V7srSRJRAYRjrT3XicFPsQJGOB3l2ommMSYD3KOeQYEjqv10OvLIPjVO1w6lMk+APXV/d6Q40noYBaYywtDXi9nE/C/zEggv/ZSJOAEqyOyjMOE2SHuyv91lihLgQwOYKGZmtUkfK0zAXClnjuAurrwMjfOyWylX7txC9RbNlEVH6AQVkYsuUBXdoBqqI4IkGqNn9GKB9WS9Wm+z0ow17zlEf2S9/wDtgpQM</latexit>

a
(1)
t

<latexit sha1_base64="UJl36bDnuaflvk+x6aUKBMZ6kF4=">AAAB8nicbZDLSgMxFIYzXmu9VV3qYrAILUKZcVFdFkRQ3FSwF5iOJZNm2tBMMiRnhDL0MbpxoYhbH8E3cOfOtzG9LLT1h8DH/59DzjlBzJkGx/m2lpZXVtfWMxvZza3tnd3c3n5dy0QRWiOSS9UMsKacCVoDBpw2Y0VxFHDaCPqX47zxSJVmUtzDIKZ+hLuChYxgMJaHH9LCbXHYTmHYzuWdkjORvQjuDPKV4tHV58fpqNrOfbU6kiQRFUA41tpznRj8FCtghNNhtpVoGmPSx13qGRQ4otpPJyMP7RPjdOxQKvME2BP3d0eKI60HUWAqIww9PZ+Nzf8yL4Hwwk+ZiBOggkw/ChNug7TH+9sdpigBPjCAiWJmVpv0sMIEzJWy5gju/MqLUD8rueVS+c7NV27QVBl0iI5RAbnoHFXQNaqiGiJIohF6Ri8WWE/Wq/U2LV2yZj0H6I+s9x8VlZQm</latexit>

a
(K)
t

<latexit sha1_base64="UJl36bDnuaflvk+x6aUKBMZ6kF4=">AAAB8nicbZDLSgMxFIYzXmu9VV3qYrAILUKZcVFdFkRQ3FSwF5iOJZNm2tBMMiRnhDL0MbpxoYhbH8E3cOfOtzG9LLT1h8DH/59DzjlBzJkGx/m2lpZXVtfWMxvZza3tnd3c3n5dy0QRWiOSS9UMsKacCVoDBpw2Y0VxFHDaCPqX47zxSJVmUtzDIKZ+hLuChYxgMJaHH9LCbXHYTmHYzuWdkjORvQjuDPKV4tHV58fpqNrOfbU6kiQRFUA41tpznRj8FCtghNNhtpVoGmPSx13qGRQ4otpPJyMP7RPjdOxQKvME2BP3d0eKI60HUWAqIww9PZ+Nzf8yL4Hwwk+ZiBOggkw/ChNug7TH+9sdpigBPjCAiWJmVpv0sMIEzJWy5gju/MqLUD8rueVS+c7NV27QVBl0iI5RAbnoHFXQNaqiGiJIohF6Ri8WWE/Wq/U2LV2yZj0H6I+s9x8VlZQm</latexit>

a
(K)
t

<latexit sha1_base64="XUgLPn0O5hWonwGSqfpBbPVEiCQ=">AAAB8nicbZDLSgMxFIYzXmu9VV3qYrAILUKZ6aK6LIiguwr2Au1YMmmmDc0kQ3JGKMM8RjcuFHHrI/gG7tz5NqaXhbb+EPj4/3PIOcePONPgON/Wyura+sZmZiu7vbO7t587OGxoGStC60RyqVo+1pQzQevAgNNWpCgOfU6b/vBqkjcfqdJMinsYRdQLcV+wgBEMxmrjbgLpQ1IoF9NuLu+UnKnsZXDnkK8WT64/P87HtW7uq9OTJA6pAMKx1m3XicBLsAJGOE2znVjTCJMh7tO2QYFDqr1kOnJqnxmnZwdSmSfAnrq/OxIcaj0KfVMZYhjoxWxi/pe1YwguvYSJKAYqyOyjIOY2SHuyv91jihLgIwOYKGZmtckAK0zAXClrjuAurrwMjXLJrZQqd26+eotmyqBjdIoKyEUXqIpuUA3VEUESjdEzerHAerJerbdZ6Yo17zlCf2S9/wDyapQN</latexit>

a
(2)
t

<latexit sha1_base64="JY91ywa+6w2PXIOf4AoD2G93uSg=">AAACAnicbVDLSsNAFL3xWesr6krcBIvQbkIiWF0W3Oiugn1AGsNkOmmHTh7MTIQSgi78FTcuFHHrV7jzb5y0XWjrgQuHc+7l3nv8hFEhLetbW1peWV1bL22UN7e2d3b1vf22iFOOSQvHLOZdHwnCaERakkpGugknKPQZ6fijy8Lv3BMuaBzdynFC3BANIhpQjKSSPP0QeZnM77KqXct7IZJDP8gcyzxzc0+vWKY1gbFI7BmpNGqPUKDp6V+9fozTkEQSMySEY1uJdDPEJcWM5OVeKkiC8AgNiKNohEIi3GzyQm6cKKVvBDFXFUljov6eyFAoxDj0VWdxpZj3CvE/z0llcOFmNEpSSSI8XRSkzJCxUeRh9CknWLKxIghzqm418BBxhKVKraxCsOdfXiTtU9Oum/Ubu9K4hilKcATHUAUbzqEBV9CEFmB4gGd4hTftSXvR3rWPaeuSNps5gD/QPn8AltSXsg==</latexit>

a
(1)
t [0.5]

<latexit sha1_base64="XVug4smEUT7MJGkszmb1LeHOcJ0=">AAACBHicbVDLSsNAFL2pr1pfUZfdBIugCCVxUV0W3Oiugn1AGsNkOmmHTh7MTIQyBHTjr7hxoYhbP8Kdf+OkdaGtBy4czrmXe+8JUkaFtO0vo7S0vLK6Vl6vbGxube+Yu3sdkWQckzZOWMJ7ARKE0Zi0JZWM9FJOUBQw0g3GF4XfvSNc0CS+kZOUeBEaxjSkGEkt+WZVoVt1kvtK5rnqR0iOglC5Tt328tw3a3bdnsJaJM4PqTWP76FAyzc/+4MEZxGJJWZICNexU+kpxCXFjOSVfiZIivAYDYmraYwiIjw1fSK3DrUysMKE64qlNVV/TygUCTGJAt1ZnCnmvUL8z3MzGZ57isZpJkmMZ4vCjFkysYpErAHlBEs20QRhTvWtFh4hjrDUuVV0CM78y4ukc1p3GvXGtVNrXsEMZajCARyBA2fQhEtoQRswPMATvMCr8Wg8G2/G+6y1ZPzM7MMfGB/fZgKZWw==</latexit>

a+
t [1.0]

<latexit sha1_base64="+4LDv9F/fo/JvwnROrQroUc1eM0=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiKEJJXFTdFdzoroJ9QBvDZDpph04ezEyEEgP6K25cKOLW33Dn3zhpu9DWAwOHc+7lnjlezJlUlvVtFBYWl5ZXiqultfWNzS1ze6cpo0QQ2iARj0Tbw5JyFtKGYorTdiwoDjxOW97wMvdb91RIFoW3ahRTJ8D9kPmMYKUl19zDd+lJ5irUDbAaeH7asSoXTuaaZatijYHmiT0l5drxI+Sou+ZXtxeRJKChIhxL2bGtWDkpFooRTrNSN5E0xmSI+7SjaYgDKp10nD9Dh1rpIT8S+oUKjdXfGykOpBwFnp7MU8pZLxf/8zqJ8s+dlIVxomhIJof8hCMVobwM1GOCEsVHmmAimM6KyAALTJSurKRLsGe/PE+apxW7Wqne2OXaNUxQhH04gCOw4QxqcAV1aACBB3iGV3gznowX4934mIwWjOnOLvyB8fkDRjKWaQ==</latexit>

a+
t [0.9]

<latexit sha1_base64="PN2iacPuBusOWAbJDrLh46PhGkM=">AAACAHicbVBNS8NAEJ3Ur1q/oh48eAkWQQ+WxEP1WPCitwr2A9IYNttNu3SzCbsboYSA+Fe8eFDEqz/Dm//GTduDtj4YeLw3w8y8IGFUKtv+NkpLyyura+X1ysbm1vaOubvXlnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wuir8zgMRksb8To0T4kVowGlIMVJa8s0DdJ+d5X6m8l6E1DAIM9euOV7um1W7Zk9gLRJnRqqN00co0PTNr14/xmlEuMIMSek6dqK8DAlFMSN5pZdKkiA8QgPiaspRRKSXTR7IrWOt9K0wFrq4sibq74kMRVKOo0B3FlfKea8Q//PcVIWXXkZ5kirC8XRRmDJLxVaRhtWngmDFxpogLKi+1cJDJBBWOrOKDsGZf3mRtM9rTr1Wv3WqjRuYogyHcAQn4MAFNOAamtACDDk8wyu8GU/Gi/FufExbS8ZsZh/+wPj8AbjTl0U=</latexit>

a→
t [0.1]

Case 1: Over-explored Case 2: Under-explored Case 3: Scale up to the exploration until
finding the action with the rising reward

<latexit sha1_base64="4rVwKXPpXZPcx5F9blRpWAVVF50=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSLopiQuqsuCG91VsA9IQ5hMJ+3QySTMTJQSC/6IGxeKuPVL3Pk3TtoutPXAwOGce7lnTphyprTjfFsrq2vrG5ulrfL2zu7evl05aKskk4S2SMIT2Q2xopwJ2tJMc9pNJcVxyGknHF0VfueeSsUScafHKfVjPBAsYgRrIwV2BQc5m/RirIdhlHvSnwR21ak5U6Bl4s5JtXH2BAWagf3V6ycki6nQhGOlPNdJtZ9jqRnhdFLuZYqmmIzwgHqGChxT5efT6BN0YpQ+ihJpntBoqv7eyHGs1DgOzWSRUS16hfif52U6uvRzJtJMU0Fmh6KMI52gogfUZ5ISzceGYCKZyYrIEEtMtGmrbEpwF7+8TNrnNbdeq9+61cYNzFCCIziGU3DhAhpwDU1oAYEHeIZXeLMerRfr3fqYja5Y851D+APr8wcmnJVe</latexit>

ai[r]
i: Step Index

r: Process Reward

Action with the
lowest reward

Action with the
rising reward
compared the

preceding action

<latexit sha1_base64="vqovqI5AAWuo94RP5IiW/XqZOyk=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiurHOuKguC25014K9SDuUTJppQ5PMkGSEMvQN3LlxoYhbH0dQ8G1MLwtt/SHw8f/nkHNOEHOmjet+O5ml5ZXVtex6bmNza3snv7tX11GiCK2RiEeqGWBNOZO0ZpjhtBkrikXAaSMYXI3zxj1VmkXy1gxj6gvckyxkBBtr3aW4k5pTbzTq5Atu0Z0ILYI3g0L5+LP69cDOKp38R7sbkURQaQjHWrc8NzZ+ipVhhNNRrp1oGmMywD3asiixoNpPJwOP0JF1uiiMlH3SoIn7uyPFQuuhCGylwKav57Ox+V/WSkx46adMxomhkkw/ChOOTITG26MuU5QYPrSAiWJ2VkT6WGFi7I1y9gje/MqLUD8veqViqeoVyjcwVRYO4BBOwIMLKMM1VKAGBAQ8wjO8OMp5cl6dt2lpxpn17MMfOe8/e16T7A==</latexit>at→1
<latexit sha1_base64="AQa2Q0X2ae8aKvI+LVqUOtMeFXw=">AAAB7HicbZDNSsNAFIVv6l+tf1WXbgaLoJuQuGi7LLjRXQXTFtJQJtNJO3QyCTMToYSCb+DGhSJufSB3vo2TtgttPTDwcc69zL03TDlT2nG+rdLG5tb2Tnm3srd/cHhUPT7pqCSThHok4YnshVhRzgT1NNOc9lJJcRxy2g0nN0XefaRSsUQ86GlKgxiPBIsYwdpYnu/YzWBQrTm2MxdaB3cJtdbVExRqD6pf/WFCspgKTThWynedVAc5lpoRTmeVfqZoiskEj6hvUOCYqiCfDztDF8YZoiiR5gmN5u7vjhzHSk3j0FTGWI/ValaY/2V+pqNmkDORZpoKsvgoyjjSCSo2R0MmKdF8agATycysiIyxxESb+1TMEdzVldehc227dbt+79Zad7BQGc7gHC7BhQa04Bba4AEBBs/wCm+WsF6sd+tjUVqylj2n8EfW5w8BSY7y</latexit>

[0.8]

Figure 1: Reward Rising Optimization: We dynamically adjust the scope of the next action
exploration and prioritize action steps that exhibit a “rising reward trend” compared to their
predecessors, avoiding the over-exploration or under-exploration. (a) The illustration of
Direct Preference Optimization (Rafailov et al., 2024) where a pair of the preference data is
used to optimize the LLM agent. (b) The process reward estimation used in RRO where the
average outcome reward of a set of rollouts serves as the process reward of an intermediate
step. (c) The comparison of different strategies in the next action exploration stage where
our RRO achieves a balance between the computation and data quality.

limit the feasibility of deploying PRMs at scale, particularly in scenarios requiring extensive
exploration of decision paths.

In this paper, we address these challenges by re-thinking the process supervision paradigm.
Rather than uniformly expanding data collection efforts for every step, we propose a novel
approach, Reward Rising Optimization (RRO), that prioritizes actions exhibiting a “rising
reward” trend compared to their predecessors, as shown in Figure 1. By focusing on the
relative reward tendencies of neighboring reasoning steps, our method dynamically adjusts
the scope of candidate action exploration to efficiently identify high-quality data points.
This strategy significantly reduces the computational burden in terms of the number of
action candidates that need to be explored, while preserving the ability to capture critical
decision-making patterns, enabling scalable process supervision for LLMs.

We provide theoretical foundations to support our approach, demonstrating the feasibility
of exploring the action candidate with the rising rewards. Additionally, we conduct compre-
hensive empirical evaluations on automated agent benchmarks, WebShop (Yao et al., 2022)
and InterCode-SQL (Yang et al., 2023). The results highlight the efficacy of our method in
improving task performance while maintaining computational efficiency. By redefining
the data collection paradigm for process supervision, our work paves the way for scalable
and effective reinforcement learning frameworks in enhancing the reasoning capabilities of
LLMs. We summarize our contribution as follows,

• We propose Reward Rising Optimization (RRO), a scalable process supervision
framework that prioritizes reasoning steps with rising reward trends, reducing the
burden of extensive data collection.

2

Published as a conference paper at COLM 2025

• The proposed dynamic expansion strategy for sampling next action candidates
efficiently identifies and captures high-quality data for training.

• We provide theoretical insights and empirical evidence demonstrating the feasibility
of the dynamic expansion strategy and the improved performance and computa-
tional efficiency of RRO, on diverse benchmarks, InterCode-SQL and WebShop.

2 Preliminary

Task Formulation Automated agents play a crucial role in real-world applications. The
overall paradigm can be formulated as a partially observable Markov decision process
(POMDP) defined by the elements (U ,S ,A,O, T ,R). Here, we denote the instruction space
as U , the state space as S , the action space as A, the observation space as O, the transition
function as T : S × A → S , and the reward function as R : S × A → [0, 1]. Since we
investigate automated agents powered by LLMs in this paper, U ,A,O are represented in the
form of natural language. Formally, given a task description u ∈ U , the LLM-based agent,
serving as a policy model πθ , generates the next action a ∈ A and observes the execution
result o ∈ O, iteratively. The whole trajectory follows the ReAct style (Yao et al., 2023)
and can be formulated as e = [u, a1, o1, ..., an−1, on−1, an], where n is the number of steps,
ai ∼ πθ(·|u, a1, o1, ..., oi−1) ∈ A, and the last action an serves as the final outcome from the
agent. The interaction loop between the agent and the execution environment repeats until
the task completes or exceeds the maximum iteration limit.

Outcome Supervision The outcome reward model (ORM) rewards or penalizes the policy
model based on the final outcome of a trajectory, which is formulated as rORM(u, e) ∈
[0, 1], where u is the task description and e is the generated trajectory. This outcome
supervision evaluates the ultimate success of the agent in accomplishing the specified task
rather than focusing on intermediate steps. The normalized reward range [0, 1] provides
a standardized measure of task completion quality, with higher values indicating more
successful outcomes. Unlike process-level rewards that provide feedback on individual
actions, outcome supervision captures the holistic performance of the entire action sequence,
enabling the model to learn task completion strategies that may involve different valid
approaches to reach the same successful outcome.

Process Supervision To further enhance the capability of LLM-based agents, process
supervision has been proposed to capture the fine-grained rewards for each action in the
trajectory (Lightman et al., 2023; Xiong et al., 2024), also known as the process reward
model (PRM). Unlike outcome supervision that evaluates only the final result, process
supervision provides feedback on individual actions, enabling more precise guidance
throughout the decision-making sequence. Formally, we denote a prefix of trajectory
as e1:t = [u, a1, o1, ..., at, ot], where u is the task description, ai represents actions, and oi
represents observations or environment feedback. The process reward model is represented
as r(st, at) ∈ [0, 1], where st and at are the state and action at the tth step. This formulation
allows for evaluating the quality of each decision point within the trajectory. Recent work
has leveraged Monte Carlo tree search (MCTS) (Wang et al., 2024a;c; Xiong et al., 2024) to
build effective step-wise reward models. In this paper, we also adopt the MCTS-based
process reward model which is formulated as:

rPRM(st, at) =
1
m

m

∑
j

rORM(u, e1:t ⊕ ê(j)
t+1:n)

where ⊕ represents the concatenation operation and ê(j)
t+1:n denotes one of the sampled

rollouts subsequent to the prefix e1:t. The approach involves sampling m possible future
trajectories from the current state-action pair and calculating the average of their correspond-
ing outcome rewards. This Monte Carlo estimation provides a measure of the expected
future return when taking action at at state st.

3

Published as a conference paper at COLM 2025

3 Reward Rising Optimization

As introduced in the preliminary (§2), process supervision is promising in improving LLM-
based agents. However, how to effectively sample candidates during next action exploration
and construct a robust training set for reinforcement learning algorithms remains an open
question. In this paper, we focus on the relative reward trend of successive reasoning steps
and propose to scale up the exploration until we find a step with rising rewards compared
to the previous step. The complete pipeline of our proposed Reward Rising Optimization
(RRO) contains three stages: (1) supervised fine-tuning (§3.1); (2) reward rising sampling
(§3.2); and (3) agent optimization (§3.4).

3.1 Supervised Fine-tuning

Similar to previous work (Song et al., 2024; Xiong et al., 2024), we introduce the basic
knowledge of the targeted task by first fine-tuning our base model with a supervised dataset
to develop basic planning capabilities and adhere to the expected format for each task. We
denote this fine-tuned model as πSFT. The supervised dataset consists of expert trajectories
for the agent tasks, providing demonstrations of successful task completion sequences.

We denote the supervised dataset as D =
{
(u, e)(i)

}|D|
i=1

where u represents the user instruc-

tion or task specification, and e = [u, a1, o1, ..., at] is the corresponding expert trajectory. The
loss function for the supervised fine-tuning stage is formulated as:

LSFT(πθ) = −E(u,e)∼D [log πθ(e|u)] = −E(u,e)∼D

[
n

∑
t=1

log πθ(at|e1:t−1)

]

This formulation decomposes the trajectory modeling problem into a sequence of next-
action predictions, where at is the action subsequent to the trajectory prefix e1:t−1. By
maximizing the log likelihood of expert trajectories with this loss function, πSFT learns
to imitate the decision-making process demonstrated in the expert data. This supervised
learning phase is crucial as it provides the initial policy that will later be refined through
preference optimization techniques.

3.2 Reward Rising Sampling

After the supervised fine-tuning phase, the supervised fine-tuned model πSFT acquires
fundamental planning capabilities for the target agent task and can function effectively as a
policy model. The subsequent challenge lies in better aligning this policy with the specific
requirements and objectives of the agent task. Before delving into the agent optimization
paradigm (§3.4), we introduce in this section our novel Reward Rising Sampling approach,
which dynamically scales the exploration process for next action candidates while efficiently
capturing the reward rising tendency.

The preference data for process supervision consists of contrastive action pairs (a+t , a−t)
where a+t ≻ a−t |e1:t−1, indicating that action a+t is preferred over action a−t given the
trajectory prefix e1:t−1. To generate these contrastive pairs, we sample multiple action
candidates using the policy model: a(i)t ∈ {ât|ât ∼ πSFT(·|e1:t−1)}
A straightforward approach to constructing contrastive action pairs would be to select
the action candidate with the highest process reward as the chosen sample and the action
candidate with the lowest process reward as the rejected sample. However, this naive
approach presents a critical trade-off: scaling up the sampling size would increase the
probability of generating stronger preferred candidates but would simultaneously introduce
substantial computational costs. This raises an important question: what criteria should
determine when to stop the sampling process, ensuring that the sampled action candidate
is sufficiently strong to serve as a good preferred sample?

Our key insight is to focus on the relative reward tendency between neighboring actions
rather than pursuing an absolute maximum. Specifically, we stop scaling up the sampling

4

Published as a conference paper at COLM 2025

Algorithm 1: Reward Rising Optimization (RRO)

Data: u is the task instruction; πθ is the supervised fine-tuned policy model; e1:t is the trajectory
prefix from step 1 to t; m is the number of samples in Monte-Carlo Tree Search.

1 Function ProcessReward(u, e1:t = [u, a1, o1, ..., at, ot], πθ , m):
2 MC ← []
3 for i = 1 to m do
4 êt+1:n ∼ πθ(·|e1:t) ▷ Sample the rollout êt+1:n from the policy model πθ

5 e← e1:t ⊕ êt+1:n ▷ Concatenate the trajectory prefix and rollout to have the full trajectory e.

6 MC.append(rORM(u, e)) ▷ Evaluate the outcome reward based on the full trajectory.

7 end
8 rPRM ← 1

m ∑rORM∈MC rORM ▷ Estimate the process reward with the average outcome rewards.

9 return rPRM
10

11 Function RRO(u, πθ , t):
12 e1:t−1 = [u, a1, o1, ..., at−1, ot−1] ∼ πθ(u) ▷ Sample t− 1 steps as the trajectory prefix.

13 rPRM,t−1 ← ProcessReward(u, e1:t−1, πθ , m) ▷ Estimate the process reward via Monte-Carlo Sampling.

14 Cand← []
15 repeat
16 ât ∼ πθ(·|e1:t−1) ▷ Explore the candidates for the next action.
17 e1:t ← e1:t ⊕ ât
18 rPRM,t ← ProcessReward(u, e1:t, πθ , m) ▷ Estimate the process reward for the next action candidate.

19 Cand.append((ât, rPRM,t))
20 until rPRM,t ≥ rPRM,t−1 ▷ Stop the exploration until showing a rising reward compared to at−1.

21 a+t ← arg maxrPPM,t{ât|(ât, rPRM,t) ∈ Cand}
22 a−t ← arg minrPPM,t{ât|(ât, rPRM,t) ∈ Cand}
23 πθ ← DPO(πθ , (a+t , a−t)) ▷ Update the policy model with the preference pair from the sampling.

size when we identify an action candidate with a higher process reward compared to
its preceding action, as detailed in Algorithm 1. This approach offers a more efficient
exploration strategy while maintaining the quality of preference data.

The algorithm operates as follows: suppose our last action in the trajectory prefix is at−1
with a process reward of rt−1 = r(st−1, at−1), we sample the next action candidate and
calculate the corresponding process reward iteratively:

a(i)t ∈ {ât|ât ∼ πθ(·|e1:t−1)}; r(i)t = r(st, a(i)t)

In this iterative sampling process, we compare the reward of each sampled action with that
of its preceding action in the trajectory, meaning we compare rt−1 and r(i)t . Once we sample

an action a(τ)t whose process reward r(τ)t is greater than or equal to the preceding action’s

reward rt−1, we terminate the sampling process and designate a(τ)t as our preferred sampled
action in the preference data. We then select the candidate with the lowest process reward
encountered during sampling as the rejected action in the preference data.

This reward rising criterion provides an efficient stopping condition that balances explo-
ration quality with computational efficiency. By identifying actions that improve upon
the current reward state, we can construct meaningful preference pairs without exhaus-
tively sampling the action space. This approach is particularly valuable in complex agent
environments where the action space is vast and the computation of rewards can be resource-
intensive.

3.3 Math Grounding

In this section, we provide math grounding on the feasibility of the dynamic sampling
strategy based on the process reward setting adopted in RRO. Following previous work,

5

Published as a conference paper at COLM 2025

we define the process reward as:

rPRM(st, at) =
1
m

m

∑
j=1

rORM(u, e1:t ⊕ ê(j)
t+1:n)

which represents the expected success probability of the current action. Expanding this
further, we express the process reward as:

rPRM(st, at) =
1
m

m

∑
j=1

rORM(u, e1:t ⊕ ê(j)
t+1:n) = P(1|u, a1, o1, . . . , at, ot) = P(1|e1:t).

Using the law of total probability, we rewrite the probability of success as:

P(1|e1:t) = ∑
at+1

P(1|e1:t, at+1)P(at+1|e1:t) = ∑
at+1

P(1|e1:t+1)P(at+1|e1:t).

We now replace the probability terms with their corresponding process rewards:

rPRM(st, at) = ∑
at+1

P(1|e1:t+1)P(at+1|e1:t) = ∑
at+1

rPRM(st+1, at+1)P(at+1|e1:t)

Since P(at+1|e1:t) ∈ [0, 1], there must exist at least one sampled action a(τ)t+1 such that its
corresponding process reward satisfies:

rPRM(st+1, a(τ)t+1) ≥ rPRM(st, at).

This result follows from the fact that the process reward is an expectation over multiple
sampled outcomes, and at least one of them must meet or exceed the previous step’s reward.
Furthermore, this formulation aligns naturally with the Bellman equation, reinforcing the
iterative improvement of the expected success probability.

3.4 Agent Optimization

We follow the classic Direct Preference Optimization (DPO) training paradigm and continu-
ously train the supervised fine-tuned model πSFT through DPO on the collected preference
data. This approach enables us to effectively align the model with human preferences
without requiring a separate reward model. The resulting model is denoted as πDPO.

The DPO training objective is formulated as:

LDPO(πθ) = −E(x,yw ,yl)

[
log

(
σ

(
β log

πθ(yw)

πref(yw)
− β log

πθ(yl)

πref(yl)

))]
where (x, yw, yl) represents a preference data point with input prompt x and a pair of model
responses where yw ≻ yl indicates our sampled preference data shows yw is preferred
over yl . The action yw is considered superior to yl under the policy model πθ that we are
optimizing.

The DPO objective effectively maximizes the likelihood of the model correctly ranking
preferred responses higher than non-preferred ones, while maintaining reasonable proximity
to the original reference model distribution. The sigmoid function σ(·) converts the log
probability ratio differences into a probability space, allowing the model to learn from
preference comparisons rather than absolute reward values.

4 Experiments

4.1 Dataset

We evaluate our method on two representative agent datasets that cover distinct interactive
domains: WebShop (Yao et al., 2022) for web navigation and InterCode-SQL (Yang et al.,
2023) for SQL database querying.

6

Published as a conference paper at COLM 2025

WebShop WebShop presents a simulated e-commerce environment where agents must
navigate through product listings, apply filters, and make purchase decisions based on
specific user requirements. This dataset effectively captures the challenges of sequential
decision-making in web interfaces, requiring agents to understand natural language instruc-
tions and translate them into appropriate navigation actions.

InterCode-SQL InterCode-SQL focuses on database interaction scenarios where agents
must formulate and execute SQL queries to retrieve, manipulate, or analyze data according
to user specifications. This dataset tests the agent’s ability to understand database schemas,
compose syntactically correct SQL statements, and iteratively refine queries based on
execution results.

Both WebShop and InterCode-SQL provide a dense reward scale from 0 to 1 to measure the
task completion, enabling fine-grained evaluation of agent performance. We employ the
average reward as the evaluation metric for all tasks, which effectively captures the overall
performance across varying difficulty levels within each dataset.

4.2 Baseline

In our experimental evaluation, we compare our proposed Reward Rising Optimization
(RRO) approach against several established baselines using Gemma-22B Team et al. (2024)
as the base model. These baselines represent the current state-of-the-art methods in agent
planning for WebShop and InterCode-SQL tasks.

• Few-shot: This approach uses in-context learning with a small number of examples,
without any additional training. It serves as our most basic baseline to demonstrate
the performance gap between zero/few-shot prompting and more sophisticated
techniques.

• Supervised Fine-tuning (SFT) (Chen et al., 2023a): Supervised Fine-Tuning uses
direct imitation learning to train the model on expert demonstrations, capturing the
mapping from inputs to desired outputs.

• Exploration-based Trajectory Optimization (ETO) (Song et al., 2024): Exploration-
based Trajectory Optimization improves upon SFT by focusing on trajectories that
maximize the outcome reward, showing modest improvements over standard SFT.

• Iterative Step-level Process Refinement (IPR) (Xiong et al., 2024): Iterative Step-
level Process Refinement iteratively improves the agent’s planning and execution
steps through feedback on intermediate processes.

• Fixed-sized Exploration: We sample a fixed number of candidates for the next
action and select the one with the highest reward as the chosen action and the one
with the lowest reward as the rejected action. The key difference from our proposed
RRO is the absence of the dynamic exploration of next actions and the reward rising
selection criteria.

Our proposed RRO builds upon these process supervision approaches, introducing a
novel optimization strategy that dynamically extends the exploration space. This approach
achieves superior performance while significantly reducing computational costs, as demon-
strated by the results in Table 1.

4.3 Implementation

We utilize the Gemma-22B-base model as the foundation for our experiments, running on a
computational infrastructure of 8 NVIDIA A100-80G GPUs. This hardware setup accom-
modates the demands of our preference optimization framework and supports extensive
ablation studies across varying experimental configurations. During the supervised fine-
tuning stage, we fine-tune the base model using expert trajectories from each dataset over
3 epochs, with a batch size of 48 and a learning rate of 2× 10−5. A cosine learning rate
scheduler with a warmup ratio of 0.03 is employed to enhance training stability. In the

7

Published as a conference paper at COLM 2025

Table 1: Agent planning results of RRO and the baselines on Webshop and InterCode-SQL.
The methods are using Gemma-22B as the base model. (underline denotes the second-best
performance; bold denotes the best performance; the improvement is measured against the
second-best performing method.)

Base Model Method

Agent Planning

WebShop InterCode-SQL

Reward ↑ # Sample ↓ Reward ↑ # Sample ↓

Gemma-22B

Without Post-training
+ Few Shot 12.62 0 3.86 0

Outcome Supervision
+ SFT (Chen et al., 2023a) 48.94 0 45.33 0
+ ETO (Song et al., 2024) 52.34 1 47.13 1

Process Supervision
+ IPR (Xiong et al., 2024) 61.39 4 52.39 3
+ Fixed-sized Exploration 61.20 5 54.68 5
+ Reward Rising Optimization (RRO) 62.91 (+1.52) 1.86 55.08 (+0.40) 1.64

reward rising optimization sampling stage, candidate actions are sampled to identify those
with a rising trend in process rewards. Sampling continues until an action yields a higher
reward than the previous one or a maximum of 5 candidates is reached; if no rising reward
is found, that step is omitted in the agent optimization phase. Each candidate action’s
process reward is estimated by averaging the outcome rewards of 5 generated rollouts, with
a maximum of 10 rollout iterations. Finally, in the agent optimization stage, we apply the
standard Direct Preference Optimization (DPO) algorithm to fine-tune the actor model over
3 epochs, using a batch size of 32, a constant learning rate of 3× 10−6, and a warmup ratio
of 0.1. These hyperparameters are held consistent across all baseline and ablation settings.

4.4 Main Results

We compare our method with the strong baseline methods listed in Table 1. Based on
the results, the proposed RRO demonstrates superior performance compared to other ap-
proaches across both WebShop and InterCode-SQL. RRO achieves the highest reward scores
(62.91 for WebShop and 55.08 for InterCode-SQL) while requiring a reasonable number of
samples (1.86 and 1.64 respectively). This represents a significant improvement over both
outcome supervision methods (SFT and ETO) and other process supervision approaches
(IPR and Fixed-sized Exploration). The results clearly show that RRO outperforms existing
techniques, suggesting that the dynamic exploration strategy and reward rising criteria
effectively balances exploration and reward maximization in agent planning scenarios. This
empirical evidence strongly supports the effectiveness of the RRO method as a promising
advancement in improving language model performance on complex reasoning tasks.

To further assess the robustness and scalability of Reward Rising Optimization (RRO), we
extended our experiments to the larger Gemma-29B-base model. On this model, SFT achieved
reward scores of 63.59 on WebShop and 61.41 on InterCode-SQL; Fixed-sized Exploration
improved performance to 68.87 and 65.30 respectively, using a fixed sample budget of 3.
In contrast, RRO further elevated performance, reaching 71.24 on WebShop and 67.27 on
InterCode-SQL, while requiring only 1.38 and 1.55 average samples respectively. These
results confirm that RRO maintains its advantages even at larger model scales, achieving
higher performance with improved sample efficiency. This successful scaling underscores
the potential of RRO in complex, real-world environments.

4.5 Sampling Efficiency Analysis

Based on Figure 2, the results show that our proposed RRO significantly outperforms IPR in
terms of sampling efficiency across both WebShop and InterCode-SQL tasks. For WebShop
(Figure 2a), RRO achieves a high reward of 62.91 using only 1.86 sampled trajectories on
average, while IPR requires 5 trajectories in the iterative DPO training to reach a comparable
reward of 61.32, with performance improving gradually from 47.8 to 61.39 as trajectory

8

Published as a conference paper at COLM 2025

count increases. Similarly, for InterCode-SQL (Figure 2b), RRO attains a reward of 55.08
with just 1.64 sampled trajectories on average, whereas IPR shows a peak performance of
52.39 at 3 trajectories before declining to 42.5 at 5 trajectories. These results demonstrate
RRO’s superior efficiency, requiring fewer sampled trajectories to achieve higher rewards
across both benchmarks.

1 2 3 4 5
Number of Required Sampled Trajectories (RRO vs IPR)

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Re
wa

rd

RRO achieves 62.91 reward
with only 1.86 trajectories

47.8 47.18

51.99

61.39 61.32

Reward Rising Optimization (RRO) IPR (Xiong et al., 2024)

(a) WebShop

1 2 3 4 5
Number of Required Sampled Trajectories (RRO vs IPR)

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

Re
wa

rd

RRO achieves 55.08 reward
with only 1.64 trajectories

44.22

49.57

52.39

45.7

42.5

Reward Rising Optimization (RRO) IPR (Xiong et al., 2024)

(b) InterCode-SQL

Figure 2: Sampling efficiency of RRO and IPR on WebShop and InterCode-SQL.

4.6 Rising Rewards Analysis

We analyze the reward tendency in the trajectories generated by the supervised fine-tuned
model πSFT and the reward rising optimized model πRRO. Specifically, we check if the
neighboring actions demonstrate a rising tendency and calculate the proportion of actions
with the rising rewards. We divide each trajectory into three equal stages (Initial, Middle,
and Final), with each covering one-third of the trajectory length. As shown in Table 2, we
find that πRRO consistently outperforms πSFT across both WebShop and InterCode-SQL
datasets. On WebShop, our method shows modest improvements in the Middle (+1.20%)
and Final (+1.36%) phases, while initially performing slightly lower (-0.58%). The benefits
are more pronounced on InterCode-SQL, with significant gains across all stages: Initial
(+6.75%), Middle (+2.08%), and Final (+4.42%). By the Final phase, our approach achieves
45.29% of actions with rising reward versus 40.87% for the baseline method, demonstrating
more effective optimization and better reward alignment throughout the trajectory.

Table 2: Reward tendency of RRO and SFT on WebShop and InterCode-SQL in the Initial,
Middle, and Final stages (each covering one-third of the trajectory length).

Method

Proportion of Actions with Rising Reward (%)

WebShop InterCode-SQL

Initial Middle Final Initial Middle Final

Supervised Fine-tuning 1.33 32.75 9.00 15.67 41.75 40.87

Reward Rising Optimization 0.75 (-0.58) 33.95 (+1.20) 10.36 (+1.36) 22.42 (+6.75) 43.83 (+2.08) 45.29 (+4.42)

5 Related Work

Reinforcement Learning Fine-tuning large language models (LLMs) with reinforcement
learning has proven effective for aligning model outputs with user preferences. Instruct-
GPT (Ouyang et al., 2022) demonstrated the potential of reinforcement learning from human
feedback (RLHF) to improve truthfulness and reduce toxicity in generated outputs. How-
ever, RLHF’s complexity and instability have motivated simpler alternatives, such as Direct
Preference Optimization (DPO), which leverages a closed-form optimal policy to align
LLMs with human preferences more efficiently (Rafailov et al., 2024). Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017), a foundational algorithm in reinforcement learning,

9

Published as a conference paper at COLM 2025

also underpins many RLHF methods by enabling stable policy updates through surrogate
objectives. These advancements highlight the growing body of work aimed at enhancing
the alignment and utility of LLMs.

Process Reward Model Recent advancements in reinforcement learning have explored
process reward models (PRMs) to enhance agent training by evaluating intermediate actions
or decision-making steps. Christiano et al. (2017) introduced reward models based on
human preferences, demonstrating the potential of fine-grained feedback for aligning
agent behavior with human expectations. Bai et al. (2022) extended this by incorporating
iterative feedback for multi-step tasks, enabling more effective supervision in reasoning-
heavy domains. In the context of structured decision-making, Fu et al. (2022) proposed
leveraging hierarchical rewards to guide agents through complex processes, improving
sample efficiency and task generalization. These works collectively highlight the role of
PRMs in bridging the gap between traditional RL and multi-step reasoning tasks.

6 Conclusion

In conclusion, we propose Reward Rising Optimization (RRO) which dynamically extends
the next action exploration in training process reward models and focuses on the relative
reward tendencies between reasoning steps. By identifying steps with rising rewards, the
proposed RRO offers a more efficient and scalable solution to process reward modeling
compared to traditional computational-intensive approaches. The mathematical foundations
and empirical evidence across WebShop and InterCode-SQL underscore the potential of this
technique to improve multi-step reasoning capabilities in large language models. Future
work could explore the generalizability of this method across diverse task domains and
further optimize the reward identification mechanism.

References
Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,

Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and
harmless assistant with reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu
Yao. Fireact: Toward language agent fine-tuning. arXiv preprint arXiv:2310.05915, 2023a.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks.
Transactions on Machine Learning Research, 2023b.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. Advances in neural information
processing systems, 30, 2017.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based
prompting for multi-step reasoning. In The Eleventh International Conference on Learning
Representations, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. Advances in neural information processing
systems, 35:22199–22213, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
In The Twelfth International Conference on Learning Representations, 2023.

10

Published as a conference paper at COLM 2025

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
In The Twelfth International Conference on Learning Representations, 2024.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu,
Yun Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models
by automated process supervision. arXiv preprint arXiv:2406.06592, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. Advances in Neural Information Processing Systems, 36, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization of LLM agents. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7584–7600, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
409. URL https://aclanthology.org/2024.acl-long.409.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human
annotations. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 9426–9439, Bangkok, Thailand, August 2024a. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.510. URL https://aclanthology.org/
2024.acl-long.510.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human
annotations. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 9426–9439, 2024b.

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo
Shang. Multi-step problem solving through a verifier: An empirical analysis on model-
induced process supervision. arXiv preprint arXiv:2402.02658, 2024c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in neural information processing systems, 35:24824–24837, 2022.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, Xun Wang, Ke Wang, Cheng Li, Wei
Peng, and Sujian Li. Watch every step! llm agent learning via iterative step-level process
refinement. arXiv preprint arXiv:2406.11176, 2024.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standard-
izing and benchmarking interactive coding with execution feedback. Advances in Neural
Information Processing Systems, 36:23826–23854, 2023.

11

https://aclanthology.org/2024.acl-long.409
https://aclanthology.org/2024.acl-long.510
https://aclanthology.org/2024.acl-long.510

Published as a conference paper at COLM 2025

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards
scalable real-world web interaction with grounded language agents. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 20744–20757. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In International
Conference on Learning Representations (ICLR), 2023.

Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a human: A large language model
debugger via verifying runtime execution step by step. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics, ACL
2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, pp. 851–870. Association
for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.49. URL
https://doi.org/10.18653/v1/2024.findings-acl.49.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting en-
ables complex reasoning in large language models. In The Eleventh International Conference
on Learning Representations, 2023.

12

https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.findings-acl.49

	Introduction
	Preliminary
	Reward Rising Optimization
	Supervised Fine-tuning
	Reward Rising Sampling
	Math Grounding
	Agent Optimization

	Experiments
	Dataset
	Baseline
	Implementation
	Main Results
	Sampling Efficiency Analysis
	Rising Rewards Analysis

	Related Work
	Conclusion

