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ABSTRACT

Similar to the way of human learning, the aim of semi-supervised learning (SSL)
method is to harness vast unlabeled data alongside a limited set of labeled sam-
ples. Inspired by theories of category representation in cognitive psychology, an
innovative SSL algorithm named Exemplar-Contrastive Self-Training (EXCOST)
is proposed in this paper. This algorithm ascertains pseudo-labels for unlabeled
samples characterized by both substantial confidence and exemplar similarity, sub-
sequently leveraging these pseudo-labels for self-training. Furthermore, a novel
regularization term named Category-Invariant Loss (CIL) is applied for SSL. CIL
promotes the generation of consistent class probabilities across different repre-
sentations of the same sample under various perturbations, such as rotation or
translation. Notably, the proposed approach does not depend on either the preva-
lent weak and strong data augmentation strategy or the use of exponential moving
average (EMA). The efficacy of the proposed EXCOST is demonstrated through
comprehensive evaluations on semi-supervised image classification tasks, where
it attains state-of-the-art performance on benchmark datasets, including MNIST
with 2, 5 and 10 labels per class, SVHN with 25 labels per class, and CIFAR-10
with 25 labels per class.

1 INTRODUCTION

Inspired by theories of category representation in cognitive psychology, we propose a semi-
supervised learning (SSL) algorithm called Exemplar-Contrastive Self-Training (EXCOST). In cog-
nitive psychology, two main theories explain how humans categorize: prototype theory (Rosch &
Mervis, 1975; Rosch, 1975) and exemplar theory (Nosofsky, 1986; 1991), both extensively dis-
cussed in mainstream cognitive psychology textbooks (Anderson, 2020; Solso et al., 2007; Gold-
stein, 2018; Smith & Kosslyn, 2019). Prototype-based theories include central tendency theory and
attribute-frequency theory. According to central tendency theory (Posner & Keele, 1968; Posner,
1969), prototypes are the average of features across a set of exemplars, an idea reflected in neural net-
work models used for few-shot learning (Snell et al., 2017). On the other hand, attribute-frequency
theory (Neumann, 1974; 1977; Solso & McCarthy, 1981) suggests that prototypes are combina-
tions of the most frequent features. In contrast to prototype theory, exemplar theory emphasizes
the distinctiveness of individual instances within a category, explaining how we make judgments
about atypical cases. Although these seemingly opposing theories capture certain characteristics
of human category representation, they are more complementary than contradictory: Prototypes
prioritize commonalities and may overlook intra-class variability, while exemplars emphasize indi-
viduality at the risk of sacrificing generalization abilities. While early research aimed to determine
whether categories are represented by exemplars or prototypes, it is more reasonable to consider that
both representations are available. Some categories may be better represented by exemplars, while
others may be better represented by prototypes (Smith, 2014).

Self-training (Yarowsky, 1995) is a SSL approach aimed at leveraging unlabeled data to improve
the performance of supervised learning models. This method assumes the availability of a certain
amount of well-labeled data for training. However, due to various reasons, acquiring a sufficient
amount of labeled data is challenging. In such scenarios, leveraging predictions on unlabeled data
can assist in training an improved model, thereby enhancing performance and reducing reliance on
labeled data. However, this approach also has certain limitations. For instance, prediction errors
can lead to incorrect labels, subsequently affecting the model’s performance. This phenomenon is
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known as confirmation bias (Tarvainen & Valpola, 2017; Arazo et al., 2020). Confirmation bias
refers to the tendency of individuals to favor information that aligns with their existing beliefs while
disregarding information that contradicts them. In the context of models with limited predictive
capabilities, there is a risk of making erroneous predictions on unlabeled samples and using these
mislabeled samples for subsequent training, thus reinforcing this bias.

Based on the aforementioned observations, we propose a SSL algorithm called Exemplar-
Contrastive Self-Training (EXCOST). It combines prototype and exemplar information to pro-
vide higher-quality pseudo-labels during the self-training process. EXCOST consistently maintains
highly accurate predictions for unlabeled data, thus mitigating the issue of confirmation bias to a sig-
nificant extent. Notably, the proposed model achieves performance comparable to state-of-the-art
supervised learning models on the MNIST dataset, requiring only two labeled samples per class.

The notion of typicality gradient plays a fundamental role in our understanding of category process-
ing (Smith & Kosslyn, 2019). It highlights the continuous nature of the similarity relationship be-
tween members and category prototypes within a given category. Typicality gradients are observed
across various cognitive domains, including language, perception, and memory. For instance, typical
category members (e.g., “apple” for the category of fruits) elicit faster and more accurate responses
in classification tasks compared to atypical ones (e.g., “durian”) (Rosch, 1975; Posner & Keele,
1968). The presence of typicality gradients in category processing has important implications for
our understanding of how categories are represented and classified. It suggests that categories are not
simply defined by a fixed set of features or a binary categorization, but rather exhibit a graded struc-
ture where some members are more representative of the category than others. This graded structure
enables us to make fine-grained distinctions among entities and respond to category-related stimuli
in a nuanced manner.

Building upon the research findings mentioned above, we introduce the Category-Invariant Loss
(CIL) as a novel regularization term. We emphasize the preservation of invariance and typicality
gradients at the category level. Invariance plays a crucial role in the principles of contrastive learning
and consistency regularization, and the main objective of the CIL is to emphasize the presence of
typicality gradients at the abstract level of categories, while ensuring that these gradients remain
invariant across different views of the same instance.

In summary, our main contributions are as follows:

• The proposal of Exemplar-Contrastive Self-Training (EXCOST), a SSL algorithm that gen-
erates more reliable pseudo-labels by combining measures of confidence and exemplar
similarity.

• The proposal of Category-Invariant Loss (CIL), a regularization term that does not require
the support of pseudo-labels and encourages the model to produce similar class probabili-
ties for the same sample under various perturbations.

• The proposed algorithm was empirically evaluated on semi-supervised image classification
tasks using the MNIST, CIFAR-10/100, and SVHN datasets. The results demonstrated
the proposed algorithm achieves state-of-the-art performance on MNIST with 2, 5, and 10
labels per class, as well as on SVHN and CIFAR-10 with 25 labels per class.

It is worth noting that the proposed method did not employ the recent popular weak and strong
data augmentation strategy (Sohn et al., 2020; Berthelot et al., 2020; Zhang et al., 2021; Wang et al.,
2023), nor did it utilize exponential moving average (EMA) (Tarvainen & Valpola, 2017; Sohn et al.,
2020; Zhang et al., 2021; Wang et al., 2023).

2 RELATED WORK

Self-Training (Yarowsky, 1995) is a prominent technique in the field of semi-supervised learning
(SSL). The core idea behind Self-Training involves training a model using labeled data and then ex-
ploiting this model to predict labels for unlabeled data instances. These predicted labels, referred to
as pseudo-labels, are treated as ground truth during the subsequent training iterations. This iterative
process is repeated until convergence is achieved. Self-Training has garnered significant attention
and yielded impressive results across various domains, including image classification (Lee, 2013;
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Xie et al., 2020b), object detection (Rosenberg et al., 2005), and natural language processing (Mc-
Closky et al., 2006).

Consistency regularization (Bachman et al., 2014) plays a crucial role in SSL by promoting robust-
ness and generalization. By encouraging consistent predictions under perturbations, it helps the
model capture meaningful patterns and reduce sensitivity to noisy variations. The use of data aug-
mentation techniques, such as random rotations, translations, and flips, or adversarial perturbation,
introduces diverse views of the same samples during training (Sajjadi et al., 2016; Samuli & Timo,
2017; Tarvainen & Valpola, 2017; Berthelot et al., 2019; Miyato et al., 2019; Berthelot et al., 2020;
Sohn et al., 2020; Xie et al., 2020a). This increases the model’s exposure to different variations of
the data and enhances its ability to generalize to unseen samples. Similarly, model perturbations
are also employed to maintain consistency. Dropout (Srivastava et al., 2014), as a widely used reg-
ularization technique, randomly masks out neurons during training, forcing the model to adapt to
different subsets of the network (Sajjadi et al., 2016; Samuli & Timo, 2017; Tarvainen & Valpola,
2017). Alternatively, applies random max-pooling operations to the input data, introducing spatial
perturbations (Sajjadi et al., 2016). Furthermore, ensembling models trained at different epochs ef-
fectively creates an ensemble of models with different training dynamics (Samuli & Timo, 2017;
Tarvainen & Valpola, 2017). These perturbations, whether applied to samples or models, aim to
enrich the training process by injecting diverse sources of information and inducing a form of regu-
larization that enhances the model’s robustness.

Contrastive learning has emerged as a powerful paradigm for learning effective representations in
few-shot learning. The core idea behind contrastive learning is to train a model to distinguish be-
tween positive and negative pairs, thus encouraging the model to capture meaningful patterns and
similarities. Tasks such as signature verification (Bromley et al., 1993), face verification (Chopra
et al., 2005; Taigman et al., 2014), and one-shot image recognition (Koch et al., 2015) have benefited
from the principles of contrastive learning. By leveraging contrastive learning, these tasks can ef-
fectively learn discriminative representations and achieve promising performance, even with limited
data available. Moreover, contrastive learning has emerged as a popular paradigm in the realm of
self-supervised learning (He et al., 2020; Chen et al., 2020; Grill et al., 2020; Caron et al., 2020;
Chen & He, 2021). By formulating pretext tasks that require models to capture meaningful patterns
or relationships within the data, contrastive learning enables unsupervised representation learning.
Furthermore, the concept of contrastive learning has been extended to multimodal learning (Rad-
ford et al., 2021), where it enables effective fusion of information from different modalities. By
employing contrastive learning principles, multimodal models can learn joint representations that
capture relevant cross-modal interactions, ultimately enhancing the understanding and utilization of
multimodal data.

3 THE PROPOSED METHOD

3.1 CATEGORY-INVARIANT LOSS

In deep neural networks, it has been observed that feature vectors in the last hidden layer exhibit sig-
nificant semantic similarity (Krizhevsky et al., 2012; Wu et al., 2018). Different visual perspectives
of the same object should have similar feature vector representations, upon which the classification
head can generate category representations robust to viewpoint changes. This observation aligns
with findings in neuroscience, where researchers often refer to this phenomenon as perceptual con-
stancy (Kandel et al., 2021), which denotes the ability to recognize objects stably despite variations
in viewpoint or lighting conditions. Similar to the human visual system, in which higher cortical
areas process more abstract information and exhibit greater invariance (Freedman et al., 2002). It
is worth noting that demanding invariance in feature vectors can potentially threaten the model’s
performance, as we will elucidate in Appendix D.

Furthermore, considering the characteristics of neural networks based on backpropagation, it is
known that weights of connections get strengthened when high-frequency features co-occur with
specific class labels. Thus, to some extent, category learning in neural networks aligns with the
prototype theory based on attribute frequency. As prototype theory emphasizes the existence of
typicality gradients, when predictions of the network are regarded as a representation of categories,
we expect it to retain a form of typicality gradient. In the context of semi-supervised learning
with sparse labeled data, due to the lack of comprehensive class labels, the network’s predictions
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Figure 1: An overview of the EXCOST algorithm is presented. Both original (blue lines) and aug-
mented images (red lines) are input to the backbone for feature extraction. These features then go to
the classification head, where the Softmax function transforms them, resulting in class probabilities.
The Category-Invariant Loss (CIL) is computed in this process, with no gradient passing through
the pathway of original images. The generated feature vectors for original images are kept for gen-
erating pseudo-labels used for the next epoch. Images with labels (green lines) use cross-entropy
loss for optimization.

inherently carry gradients. In other words, the network exhibits varying levels of confidence in pre-
dicting different data samples. However, popular models for semi-supervised learning using “hard”
pseudo-label optimization may lead to the disappearance of typicality gradients. This is because
strict assignment of samples to discrete categories essentially lacks the concept of typicality. In the
absence of guaranteed label quality, this may result in confirmation bias appearing early in training.

Based on the aforementioned requirements regarding invariance and typicality gradients, we propose
the Category-Invariant Loss (CIL), specifically, the formula for CIL is as follows:

Lu =
1

Bu

Bu∑
i=1

max

(
max(f(xi; θ̃))− ψ

1− ψ
, 0

)
·

(
1− f(xi; θ̃)

∥f(xi; θ̃)∥
· f(T (xi);θ)

∥f(T (xi);θ)∥

)
(1)

where ψ is a threshold, f(x;θ) represents the model’s predicted class probabilities for the sample x,
with θ denoting the model’s trainable parameters. θ̃ does not participate in gradient backpropagation
and serves as a fixed replica of θ. T (·) denotes the data augmentation function, and Bu is the batch
size.

It is noteworthy that CIL shares a striking resemblance to the negative cosine similarity utilized
in self-supervised contrastive learning (Chen & He, 2021). The primary distinction lies in CIL’s
emphasis on achieving semantic-level abstraction invariance within the context of SSL tasks, thus
operating on class probabilities. Moreover, to alleviate the influence of irrelevant or outlier samples,
we introduce a threshold. During the early stages of model training, a relatively lower threshold is
employed to expose the model to a broader range of samples. As training progresses, the model
tends to assign higher confidence to samples, necessitating a higher threshold to safeguard against
the impact of outlier samples. Samples’ confidence falling below the threshold contribute no loss,
while samples’ confidence surpassing the threshold have their loss weights adjusted based on their
confidence. This adaptive weighting scheme enables the model to prioritize highly confident sam-
ples, granting them greater influence throughout the learning process.

By incorporating CIL into the training process, we expect the model to learn more robust and se-
mantically consistent representations, effectively addressing the limitations imposed by excessive
invariance demands and potential confirmation bias caused by “hard” pseudo-labels. This novel
loss function promotes the preservation of the typicality gradient while ensuring category invariance
across different views of the same instance.
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3.2 EXEMPLAR-CONTRASTIVE SELF-TRAINING

In the context of SSL tasks, we define D = {(xi,yi)}NS
i=1 as the dataset, where xi represents the

i-th sample within the dataset D, while yi denotes its associated label. The label, yi, is an integer
value ranging from −1 to C − 1, with C denoting the total number of classes. Samples with a label
of yi = −1 means that the corresponding sample xi has not yet been labeled. The total number of
samples is denoted by NS . Furthermore, we define the original label sequence as lO. Due to the fact
that only the samples associated with non-“-1” labels in lO provide category-related information,
we refer to these samples as “exemplars” to distinguish them from the remaining samples.

According to exemplar theory, instances belonging to the same category should exhibit similarity.
Therefore, we need to compute the similarity between samples and exemplars. Given that the output
of the classification head provides category probabilities but lacks fine-grained details, we com-
pare the feature vectors output from the backbone network. Let x denote samples, and e represent
exemplars. We use cosine similarity to compute the similarity scores S between x and e:

Si,j =
h(xi;θ)

∥h(xi;θ)∥
· h(ej ;θ)

∥h(ej ;θ)∥
(2)

where Si,j denotes the similarity between the i-th sample and the j-th exemplar, h(·;θ) denotes the
feature vector output from the backbone network. Each epoch of EXCOST consists of two sequen-
tial phases: training and pseudo-label generation. During the training phase, we store the values of
h(x;θ). Given the relatively limited number of exemplars, the computation of h(e;θ) is deferred
until the labeling phase, ensuring a more up-to-date output of the network. By employing this strat-
egy, we effectively mitigate the overall computational burden, thus enhancing training efficiency.

In addition, we employ a classification head to generate class probabilities for predictions on
h(x;θ). These class probabilities are referred to as P , with Pi,k representing the model’s pre-
diction probability that the i-th sample belongs to the k-th class. This approach aligns with the
prototype theory based on attribute frequencies. In the context of classification tasks, the optimiza-
tion process of deep neural networks involves establishing associations between features and class
labels, wherein features with higher frequencies form stronger connections with their corresponding
classes. Indeed, employing high-confidence model predictions as pseudo-labels has been widely
adopted (Sohn et al., 2020; Zhang et al., 2021; Rizve et al., 2021; Wang et al., 2023). Therefore, we
also underscore the significance of exemplars. By integrating prototype theory and exemplar theory,
we capitalize on the strengths of both approaches, resulting in a robust framework for pseudo-label
generation. Prototype theory explains how we capture the essential characteristics of distinct cate-
gories. On the other hand, exemplar theory elucidates how we harness the rich information inherent
in the data distribution.

Throughout the entire training process, we gradually assign labels to unlabeled samples based on
S and P . To adjust the labeling rate, we employ labeling rate functions that are contingent on the
training progress, denoted as ΦS (based on sample similarity) and ΦC (based on confidence). As
training progresses, ΦS and ΦC increase gradually, allowing the model to incorporate more pseudo-
labeled samples into the learning process.

As described in Algorithm 1, EXCOST selects samples that simultaneously satisfy the following
conditions for labeling: (1) The samples have a confidence ranking within the top kP as predicted
by the model for that class. Here, kP is calculated by multiplying ϕC with the estimation of the
number of samples belonging to that class. Due to the unknown sample distribution, we obtain this
estimation by applying a weighted average using ϕC for the class-specific prediction count and the
total number of samples divided by the number of classes. During the early stages of training, when
the model is still immature and lacks substantial information, a small value of ϕC implies fewer
labels need to be generated. Under this circumstance, considering a uniform distribution of data is
reasonable. In contrast, as training progresses, ϕC generally becomes larger, indicating the model’s
maturity. Consequently, we believe that the model’s judgment about the data distribution of the class
is more accurate. Therefore, this estimation gradually transforms from a uniform distribution to the
model’s predicted class marginal distribution as ϕC increases. (2) The feature vector of a sample
exhibits the highest similarity with the feature vector of a specific exemplar belonging to the same
class as predicted by the model, with the similarity score ranking among the top kS . As the model
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Algorithm 1 EXCOST algorithm during labeling phase
Input: number of classes C, number of samples NS , original sequence of labels lO, similarity
scores matrix S, class probabilities matrix P , margin δ, labeling rate based on confidence ϕC ,
labeling rate based on exemplar similarity ϕS .
lP ← lO {Initialize sequence of labels lP }
ξE ← argwhere(lO ̸= −1) {Find the indices of exemplars}
pV ,pI ← max(P ) {Find the maximum value and index for each sample in the P }
sV , sI ← max(S) {Find the maximum value and index for each sample in the S}
if ϕC > 0 and ϕS > 0 then

for i = 0 to C − 1 do
ξP ← argwhere(pI = i)
if length(ξP ) > 0 then
kP ← min(length(ξP ), ceil(ϕC · (ϕC · length(ξP ) + (1− ϕC) · NS

C )))
ξP ← ξP [pV [ξP ] ≥ max(1 − δ,min(topk(pV [ξP ], kP )))] {Update ξP by selecting in-
dices with values greater than both 1− δ and the kP -th largest confidence}
ξE,i ← argwhere(lO[ξE ] = i) {Find the indices of exemplars that belong to class i}
for j = 0 to length(ξE,i) do
ξS ← argwhere(sI = ξE,i[j])
if length(ξS) > 0 then
kS ← ϕS · length(ξS)
ξS ← ξS [sV [ξS ] ≥ min(topk(sV [ξS ], kS))] {Update ξS by selecting indices with
values greater than the kS-th largest similarity score}
lP [({ξP } ∩ {ξS})\{ξE}]← i

end if
end for

end if
end for

end if
Return: lP

comprehensively learns from exemplars right from the outset, and each exemplar holds distinct
characteristics, there exists no justification to assume that data would naturally partition uniformly
based on exemplars. Therefore, kS is directly obtained by multiplying ϕS with the number of
samples that are most similar to that specific exemplar. (3) In order to ensure the avoidance of
selecting samples with excessively low confidence during the early stages of model training when it
is less mature, and to prevent the model from choosing outlier samples that could disrupt stability in
the later stages of training when ϕC is significantly larger, we introduce a additional hyperparameter,
referred to as “margin,” denoted by δ. This hyperparameter further constrains the confidence values
within the interval range of [1− δ, 1]. We will demonstrate the accuracy of the EXCOST algorithm
in generating pseudo-labels in Appendix E.

During the training phase, we treat labels indistinguishably, whether they are ground truth labels
or pseudo-labels. During the initial epoch, only the ground truth labels are utilized as the pseudo-
label generation process has not yet commenced. In the training phase, we need to store feature
vectors for all samples. To ensure that each sample passes through the backbone network at least
once, we must evenly distribute all training samples across different iterations of each epoch. For
labeled samples, we ensure an even distribution across iterations for each class. This practice serves
to maintain balance among classes, preventing the model from exhibiting bias towards any specific
class. We employ cross-entropy loss to optimize the proposed model using the labels lP along with
their corresponding samples:

Ls =
1

Bs

Bs∑
i=1

− log
ef(xi;θ)yi∑C−1
j=0 e

f(xi;θ)j
(3)

whereBs is the batch size. Finally, the overall loss of EXCOST results from a weighted combination
(using wu) of the CIL loss, denoted as Lu, which is applied to the entire set of samples, and the
cross-entropy loss, denoted as Ls, which is computed from the labeled samples:
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L = wuLu + Ls (4)

4 EXPERIMENTS

4.1 SETUP

We evaluated EXCOST on the following datasets: MNIST (LeCun et al., 1998), CIFAR-10/100
(Krizhevsky, 2009), and SVHN (Netzer et al., 2011). Before 2019, MNIST stood as a pivotal dataset
in the field of semi-supervised image classification. Despite researchers gradually shifting towards
more challenging datasets for image classification tasks in recent years, MNIST remains a significant
benchmark dataset. Another reason for including MNIST is that, to the best of our knowledge, no
prior studies have reported semi-supervised learning results that match supervised learning perfor-
mance across all these datasets simultaneously. We conducted experiments with various quantities
of labeled samples commonly used in previous research for each dataset.

Within the EXCOST algorithm, several hyperparameters require consideration: the total number of
training epochs T , the number of training iterations per epoch K, the number of labeled samples
per class per iteration NC , the threshold scheduling function for CIL denoted as Ψ, the scheduling
function for labeling rate based on confidence denoted as ΦC , the scheduling function for labeling
rate based on exemplar similarity denoted as ΦS , and the margin δ ensuring stable labeling. The
batch size Bu for CIL does not require an additional setting, as it is determined by ⌊NS

K ⌋, ensuring
that all samples pass through the backbone network once in each epoch. Consequently, the total
number of samples NS must be divisible by K. Similarly, the batch size Bs in the cross-entropy
loss is also not set separately, it is obtained from NC · C. For T , we set it to 200 for both MNIST
and SVHN, while for CIFAR-10/100, we set it to 600. As for K, the values are 75 for MNIST, 732
for SVHN, and 500 for CIFAR-10/100. Please note that, as the total number of samples in SVHN
is 73257, the value of Bu calculated above is 100. Therefore, we have utilized only 73200 samples.
For NC , we directly compute it using NS

K·C , resulting in Bu being equal to Bs in this scenario.
The parameter δ is set uniformly to 0.01 across all datasets. Ψ, ΦC , and ΦS are constructed using
the sigmoid function and are adjusted through truncation, translation, and scaling operations, all of
which can be expressed in the following form:

σ(t;α0, α1, β0, β1, γ) = min

(
max

(
α1

1 + e−
t·(β1−β0)+β0

α0

+ γ, 0

)
, 1

)
(5)

The parameters α0 and α1 control the scaling factors of the sigmoid function along the X and Y axes
respectively, while β0 and β1 set the starting and ending points of the function along the X-axis. The
parameter γ enables the function to be shifted along the Y-axis. The variable t represents the current
training progress, with a range of (0, 1]. For the function Ψ, we utilize the following parameter
values across all datasets: (α0 = 10

T , α1 = 2 · (0.9 − 1
C ), β0 = 0, β1 = 1, γ = −(0.9 − 2

C )).
This choice gradually increases the threshold from 1

C to approximately 0.9, reaching its peak value
after around 80 epochs of training. As for the function ΦC , we adopt different parameter values for
different datasets. For MNIST and CIFAR-10/100, we use (α0 = 0.3, α1 = 0.99, β0 = −1, β1 =
2, γ = 0), while for SVHN, the parameters are (α0 = 0.5, α1 = 0.99, β0 = −1, β1 = 4, γ = 0).
For the function ΦS , we set it as a sigmoid function with parameters identical to those of ΦC in the
MNIST and SVHN datasets. However, in the case of CIFAR-10/100, due to the greater diversity of
samples, we observed better performance when it was set as a constant function with a value of 1.

With the exception of CIFAR-100, we employed the Adam optimization algorithm (Kingma & Ba,
2017) for the remaining datasets. We chose the default recommended parameters, specifically (α =
0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8). We initiated a linear decrease in the learning rate once
the training progress reached 60%, gradually reducing it to 1

10 of the initial value. However, for
CIFAR-100, we observed that achieving satisfactory results with the Adam optimization algorithm
in this context was challenging. As a result, we opted for the SGD optimization algorithm with a
learning rate of 0.03 and a momentum of 0.9. Additionally, a weight decay of 10−5 was applied.
The learning rate is decreased to 30% of its previous value at every 10% training progress interval.
In all cases, we set wu to 1, except for the CIFAR-100, where we set wu to 10.
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Table 1: Error rates on MNIST, CIFAR-10/100, and SVHN datasets. Methods annotated with †
indicate that they report the median error rate of the last 20 epochs, while methods annotated with
‡ indicate that they report the minimum error rate among all epochs. Bold type highlights the
minimum value in that column, and an underline means a value that is not greater than 110% of the
minimum value. Due to the additional 531,131 samples in the SVHN dataset, we present separately
the methods that utilize this extra data.

Dataset MNIST CIFAR-10 CIFAR-100 SVHN SVHN+Extra

Labels 20 50 100 250 4000 2500 10000 250 1000 250 1000

LadderNetwork (Rasmus et al., 2015) 0.89±0.50 20.40±0.47
ImprovedGAN (Salimans et al., 2016) 11.34±4.45 1.42±0.96 0.86±0.06 15.59±0.47 5.88±1.00

SNTG (Luo et al., 2018) 1.36±0.78 0.94±0.42 0.66±0.07 9.89±0.34 37.97±0.29 4.29±0.23 3.82±0.25
MixMatch† (Berthelot et al., 2019) 4.95±0.08 25.88±0.30 3.78±0.26 3.27±0.31 2.22±0.08 2.18±0.06

FixMatch† (Sohn et al., 2020) 5.07±0.65 4.26±0.05 28.29±0.11 22.60±0.12 2.48±0.38 2.28±0.11
UDA (Xie et al., 2020a) 4.32±0.08 2.23±0.07

ReMixMatch† (Berthelot et al., 2020) 6.27±0.34 5.14±0.04 3.10±0.50 2.83±0.30
MPL (Pham et al., 2021) 3.89±0.08 1.99±0.07

FlexMatch‡ (Zhang et al., 2021) 4.98±0.09 4.19±0.01 26.49±0.20 21.90±0.15 6.72±0.30
NP-Match (Wang et al., 2022) 4.96±0.06 4.11±0.02 26.03±0.26 21.22±0.13

FreeMatch‡ (Wang et al., 2023) 4.88±0.18 4.10±0.02 26.47±0.20 21.68±0.03 1.97±0.01 1.96±0.03
EXCOST (minimum of all epochs) 0.32±0.02 0.34±0.04 0.32±0.02 4.56±0.18 4.07±0.04 35.67±0.80 25.88±0.14 2.36±0.03 2.33±0.06

EXCOST (median of last 20 epochs) 0.39±0.06 0.40±0.05 0.40±0.03 4.74±0.16 4.28±0.04 35.95±0.70 26.23±0.12 2.50±0.05 2.44±0.03

For the MNIST dataset, we employed a network architecture consisting of 5 convolutional layers
followed by 2 fully connected layers. In the case of SVHN and CIFAR-10/100, we adopted a
variant of wide residual networks (WRNs) (Zagoruyko & Komodakis, 2016). This variant employed
the Mish activation function (Misra, 2019) and allowed for an adjustable number of convolutional
kernels in the first layer, as opposed to a fixed 16. Moreover, we permitted the use of global max
pooling in lieu of global average pooling. Specifically, for SVHN, we employed the WRN-28-2
architecture. However, the first convolutional layer utilized 64 kernels, resulting in a significantly
increased number of parameters compared to the original version; moreover, global max pooling
was employed. On the other hand, for both CIFAR-10 and CIFAR-100, we implemented a WRN-
28-8 architecture. Notably, the distinguishing factor between them lay in the number of kernels in
their first convolutional layers. CIFAR-10 employed 16 kernels, while CIFAR-100 utilized 32; both
employed global average pooling.

For the MNIST dataset, we employed four types of random transformations, namely rotation, trans-
lation, scaling, and shearing, as data augmentation strategy. For SVHN, we opted for random affine
transformations. Interestingly, we observed that a single random affine transformation performed
on the SVHN dataset consistently outperformed applying the aforementioned four spatial transfor-
mations individually. Additionally, we introduce various random color adjustments and incorporate
random erasing (Zhong et al., 2020). For the CIFAR-10 and CIFAR-100 datasets, we adopt an
identical set for data augmentation, encompassing the four aforementioned spatial transformations,
random color adjustments, and random erasing. Please refer to Appendix A for more details.

4.2 RESULTS

We present the performance of all baselines and EXCOST in Table 1. The error rates reported for the
baseline methods are taken from the original papers. For EXCOST, we conducted experiments using
different random seeds and reported the results as averages. For the MNIST dataset, we performed
10 runs. For CIFAR-10/100 and SVHN, we conducted 3 runs. These results demonstrate that
EXCOST achieves state-of-the-art performance on MNIST with 2, 5 and 10 labels per class, SVHN
with 25 labels per class, and CIFAR-10 with 25 labels per class. Additionally, we analyze the labels
produced by EXCOST on MNIST that are inconsistent with the dataset’s ground truth labels. It is
noteworthy that most of these inconsistencies cannot be attributed to erroneous EXCOST labeling;
rather, they mainly stem from ambiguously defined samples and human labeling errors. Further
details are presented in Appendix B. Due to limited hardware resources, we encountered challenges
in identifying a sufficiently satisfactory set of hyperparameters for CIFAR-100. It’s worth noting that
in optimal conditions, there’s a possibility that EXCOST could demonstrate improved performance
on CIFAR-100.
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4.3 ABLATION STUDY

EXCOST consists primarily of two key components: CIL and the labeling algorithm of EXCOST.
For ease of exposition, we define the following experimental settings:

• S1: Employing CIL with Ψ being a sigmoid function parameterized as (α0 = 10
T , α1 =

2 · (0.9− 1
C ), β0 = 0, β1 = 1, γ = −(0.9− 2

C )).
• S2: Employing CIL with Ψ being a constant function with a value of 0.
• S3: Considering exemplar similarity in the labeling algorithm, with both ΦC and ΦS being

sigmoid functions parameterized as (α0 = 0.3, α1 = 0.9, β0 = −1, β1 = 2, γ = 0).
• S4: Considering exemplar similarity in the labeling algorithm, with both ΦC and ΦS being

sigmoid functions parameterized as (α0 = 0.3, α1 = 0.99, β0 = −1, β1 = 2, γ = 0).
• S5: Considering exemplar similarity in the labeling algorithm, with both ΦC and ΦS being

sigmoid functions parameterized as (α0 = 0.3, α1 = 1.0, β0 = −1, β1 = 2, γ = 0).
• S6: Labeling algorithm with a margin of 0.01.
• S7: Labeling algorithm with a margin of 1.0.
• S8: Not using CIL.
• S9: Not considering exemplar similarity in the labeling algorithm.
• S10: Considering exemplar similarity in the labeling algorithm with ΦC being a sigmoid

function parameterized as (α0 = 0.3, α1 = 0.99, β0 = −1, β1 = 2, γ = 0), and ΦS being
a constant function with a value of 1.

Given the various combinations of experimental settings, conducting comprehensive ablation exper-
iments on complex datasets can be challenging. Therefore, we initially conducted experiments on
the MNIST dataset with 20 labels. S1 . . .S7 can be partitioned into three sets, resulting in 12 dif-
ferent experimental setting combinations by selecting one element from each subset. Surprisingly,
we found that the proposed model is not sensitive to these parameters across all 12 different exper-
imental setting combinations. The lowest error rate was 0.324%, the highest was only 0.505%, and
the average error rate was 0.394%. When S9 was added, the average error rate increased to 0.402%.
When we replaced S1 and S2 with S8, the average error rate rose to 1.636%, and further adding S9
resulted in an average error rate of 1.748%. Therefore, it is evident that satisfactory results were
achieved using only CIL in the semi-supervised task on the MNIST dataset with 20 labels.

The experiments mentioned above suggest that the role of exemplar similarity may not be signifi-
cant, but experiments on other datasets have confirmed the importance of exemplar similarity. For
instance, we conducted ablation experiments on the more challenging CIFAR-10 dataset with 250
labeled samples, to investigate the impact of exemplar similarity in the labeling function. The er-
ror rate was 4.933% when using experimental settings {S1,S4,S6}. After including S9, the error
rate increased to 4.967%. However, when we used experimental settings {S1,S10,S6}, the error
rate decreased to 4.560%. Clearly, for this task, a loose constraint on exemplar similarity is neces-
sary to achieve optimal results, indicating that exemplar similarity remains crucial. Please refer to
Appendix C for detailed experimental particulars.

5 CONCLUSIONS

Inspired by cognitive psychology, we proposed the EXCOST algorithm. EXCOST only requires
data augmentation suitable for the dataset without being restricted to specific forms of data augmen-
tation, thus demonstrating its wide applicability. The excellent performance of EXCOST on both
MNIST and CIFAR-10, two datasets with significant differences, further underscores this point.
The proposed approach achieves state-of-the-art or highly competitive results on MNIST, SVHN,
and CIFAR-10. It is worth noting that these results were obtained without the use of EMA. The
further discussion about the superiority of the proposed algorithm can be found at Appendix F.
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A DETAILS OF DATA AUGMENTATION

Table 2: List of data augmentations employed in our experiments.

Transformation Description

RandomRotation(t0, t1, p) With a probability of p, perform a random rotation within the
range of [t0, t1] degrees.

RandomTranslation(x, y, p) With a probability of p, perform a random translation within the
horizontal range of [−x, x] and the vertical range of [−y, y].

RandomScaling(t0, t1, p) With a probability of p, perform a random scaling within the
range of [t0, t1], where a value of 1 means no scaling.

RandomShear(x0, x1, y0,
y1, p)

With a probability of p, perform a random shear within the hori-
zontal range of [x0, x1] and the vertical range of [y0, y1].

RandomAffine(t0, t1, x0,
y0, t2, t3, x1, x2, y1, y2)

Apply a random affine, including rotation between [t0, t1] de-
grees, translation within [−x0, x0] horizontally and [−y0, y0]
vertically, scaling between [t2, t3], and shearing horizontally be-
tween [x1, x2] and vertically between [y1, y2].

RandomBrightness(t0, t1, p) With a probability of p, apply a random brightness adjustment
within the range of [t0, t1], allowing values from -1 to 1, and 0
means no brightness adjustment.

RandomSaturation(t0, t1, p) With a probability of p, apply a random saturation adjustment
within the range of [t0, t1], allowing values from -1 to 1, and 0
means no saturation adjustment.

RandomContrast(t0, t1, p) With a probability of p, apply a random contrast adjustment
within the range of [t0, t1], allowing values from -1 to 1, and
0 means no contrast adjustment.

RandomSharpness(t0, t1, p) With a probability of p, apply a random sharpness adjustment
within the range of [t0, t1], allowing values from -1 to 1, and 0
means no sharpness adjustment.

RandomHue(t0, t1, p) With a probability of p, apply a random hue adjustment within
the range of [t0, t1], allowing values from -0.5 to 0.5, and 0
means no hue adjustment.

RandomSolarize(t0, t1, p) With a probability of p, generate a threshold within the range of
[t0, t1], and invert all pixels above the threshold. The threshold
value is in the range of [0, 1].

RandomPosterize(t0, t1, p) With a probability of p, generate a positive integer within the
range of [t0, t1], and adjust the bit depth of all color channels to
that value.

RandomEqualize(p) With a probability of p, equalize the histogram of the image.
RandomAutocontrast(p) With a probability of p, autocontrast the pixels of the image.
RandomHorizontalFlip(p) With a probability of p, horizontally flip the image.
RandomErasing(p, t) Randomly erase a square region of the image, with probability

p, using an area fraction t between 0 and 1.

Table 2 presents all the data augmentation techniques utilized in our experiments. Below, we will
provide detailed descriptions of the parameters and application specifics for each augmentation tech-
nique employed on the MNIST, CIFAR-10/100, and SVHN datasets.

In the experiments conducted on the MNIST dataset, the following four data augmentations were
applied in random order:

• RandomRotation(−10, 10, 1.0)

• RandomTranslation(1, 1, 1.0)

• RandomScaling(0.9, 1.1, 1.0)

• RandomShear(−10, 10, −10, 10, 1.0)
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On CIFAR-10/100, we employed an identical data augmentation strategy. Firstly, we applied
RandomHorizontalFlip(0.5) to randomly flip images horizontally. Next, we padded the edges of
the images by 16 pixels using reflection mode. Subsequently, the following four data augmentations
were applied in a random order:

• RandomRotation(−30, 30, 0.3)
• RandomTranslation(8, 8, 0.3)
• RandomScaling(0.9, 1.1, 0.3)
• RandomShear(−30, 30, −30, 30, 0.3)

To minimize image distortion, we utilized the bicubic interpolation algorithm in this context. After
applying the spatial transformations mentioned above, we cropped images to a size of 32×32 pixels
from their centers. Subsequently, the following data augmentations were performed in a random
order:

• RandomBrightness(−0.25, 0.25, 1.0)
• RandomContrast(−0.5, 0.5, 1.0)
• RandomSharpness(−0.5, 0.5, 1.0)
• RandomSaturation(−1.0, 1.0, 1.0)
• RandomSolarize(0.0, 1.0, 0.2)
• RandomPosterize(4, 8, 0.2)
• RandomEqualize(0.2)
• RandomAutocontrast(0.2)

Finally, we employed RandomErasing(1.0, 0.1) to randomly erase 10% of the pixels.

For the SVHN dataset, we padded the edges of the images by 8 pixels using reflection mode. Next,
we applied RandomAffine(−10, 10, 1, 1, 0.9, 1.1, −10, 10, −10, 10). Subsequently, we cropped
images to a size of 32 × 32 pixels from their centers. Following the cropping step, the following
data augmentations were performed in a random order:

• RandomHue(−0.5, 0.5, 1.0)
• RandomBrightness(−0.25, 0.25, 0.5)
• RandomContrast(−0.5, 0.5, 0.5)
• RandomSharpness(−0.5, 0.5, 0.5)
• RandomSaturation(−1.0, 1.0, 0.5)
• RandomSolarize(0.0, 1.0, 0.2)
• RandomPosterize(4, 8, 0.2)
• RandomEqualize(0.2)
• RandomAutocontrast(0.2)

Ultimately, we applied RandomErasing(1.0, 0.2).

The principles followed by the above data augmentation strategies were to generate as much diver-
sity as possible while minimizing any potential damage to the images. However, it is important to
note that despite these efforts, these data augmentations may still fall short in accurately simulating
the variations that these entities may encounter in the real world.

B INCONSISTENCIES BETWEEN EXCOST-GENERATED PSEUDO-LABELS
AND GROUND TRUTH LABELS

As shown in Figure 2, the i-th row in the figure represents pseudo-labels generated by EXCOST for
the i-th class that are inconsistent with ground truth labels. Upon observation, it becomes evident
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Figure 2: Pseudo-labels generated by EXCOST are inconsistent with ground truth labels. The final
epoch of training on MNIST with a seed value of 0.

that many of these cases are a result of human annotation errors, and there are also several instances
of ambiguous and low-quality samples. Given that similar situations exist in the test dataset and
considering that the proposed model achieves an average error rate of only 0.32% on the test set, it
is possible that there is limited room for further improvement.

C DETAILS OF ABLATION STUDY

Table 3: Error rates on MNIST with 20 labels using CIL when considering exemplar similarity in
the labeling algorithm.

Settings Minimum of All Epochs Median of Last 20 Epochs

S1 S3 S6 0.327±0.031 0.450±0.129
S1 S3 S7 0.325±0.030 0.410±0.054
S2 S3 S6 0.489±0.083 1.214±0.677
S2 S3 S7 0.505±0.066 1.229±0.576
S1 S4 S6 0.324±0.022 0.389±0.057
S1 S4 S7 0.328±0.022 0.409±0.063
S2 S4 S6 0.426±0.057 0.624±0.213
S2 S4 S7 0.410±0.069 0.605±0.179
S1 S5 S6 0.360±0.085 0.498±0.202
S1 S5 S7 0.368±0.082 1.052±1.132
S2 S5 S6 0.443±0.058 0.684±0.160
S2 S5 S7 0.422±0.082 0.678±0.443

In Section 4.3, we provided a description of the experimental settings and basic conclusions regard-
ing the ablation study. In this section, we will elaborate further on these details. Table 3 presents the
results when using CIL and considering exemplar similarity in the labeling algorithm. Although the
differences in average minimum error rates among different experimental settings are not substan-
tial, they do have some impact on result stability. Notably, when both experimental settings S1 and
S4 were applied simultaneously, the standard deviation of the minimum error rates was the smallest
among all different experimental configurations, at 0.022. Conversely, when experimental settings
S2 and S3 were used concurrently, the median error rates of the last 20 epochs were significantly
higher. These patterns are also reflected in Table 4, which excludes considering exemplar similarity
in the labeling algorithm. Table 5 and Table 6 present results obtained without using CIL, where
it is evident that these error rates are significantly higher compared to the scenarios where CIL is
employed.

We present the ablation experiments on exemplar similarity in Table 7, conducted on the CIFAR-
10 dataset with 250 labels. The results indicate that, when a loose constraint on exemplar sim-
ilarity is applied, the error rate is significantly lower compared to the other two conditions. We

16



Under review as a conference paper at ICLR 2024

Table 4: Error rates on MNIST with 20 labels using CIL when not considering exemplar similarity
in the labeling algorithm.

Settings Minimum of All Epochs Median of Last 20 Epochs

S1 S3 S6 S9 0.354±0.046 0.545±0.202
S1 S3 S7 S9 0.353±0.046 0.538±0.206
S2 S3 S6 S9 0.498±0.124 1.150±0.368
S2 S3 S7 S9 0.497±0.111 1.131±0.386
S1 S4 S6 S9 0.328±0.035 0.400±0.057
S1 S4 S7 S9 0.334±0.032 0.410±0.069
S2 S4 S6 S9 0.415±0.040 0.789±0.391
S2 S4 S7 S9 0.406±0.048 0.832±0.463
S1 S5 S6 S9 0.332±0.059 0.421±0.113
S1 S5 S7 S9 0.342±0.053 0.459±0.141
S2 S5 S6 S9 0.475±0.072 1.057±0.606
S2 S5 S7 S9 0.490±0.058 1.090±0.325

Table 5: Error rates on MNIST with 20 labels without using CIL when considering exemplar simi-
larity in the labeling algorithm.

Settings Minimum of All Epochs Median of Last 20 Epochs

S3 S6 S8 1.832±0.396 1.928±0.398
S3 S7 S8 1.834±0.397 1.935±0.401
S4 S6 S8 1.599±0.568 1.713±0.609
S4 S7 S8 1.476±0.660 1.712±0.897
S5 S6 S8 1.660±0.419 1.733±0.427
S5 S7 S8 1.415±0.445 1.620±0.473

Table 6: Error rates on MNIST with 20 labels without using CIL when not considering exemplar
similarity in the labeling algorithm.

Settings Minimum of All Epochs Median of Last 20 Epochs

S3 S6 S8 S9 1.837±0.440 1.939±0.449
S3 S7 S8 S9 1.827±0.434 1.932±0.445
S4 S6 S8 S9 1.709±0.426 1.831±0.449
S4 S7 S8 S9 1.694±0.438 1.828±0.473
S5 S6 S8 S9 1.707±0.430 1.789±0.448
S5 S7 S8 S9 1.715±0.439 1.895±0.508

Table 7: Error rates on CIFAR-10 with 250 labels.

Settings Minimum of All Epochs Median of Last 20 Epochs

S1 S4 S6 4.933±0.095 5.163±0.147
S1 S4 S6 S9 4.967±0.754 5.190±0.711
S1 S10 S6 4.560±0.180 4.743±0.156

attribute this phenomenon to the substantial dissimilarity among samples in the CIFAR-10 dataset.
Since manually designed data augmentations may not yield very effective generalization due to the
dataset’s inherent diversity, imposing a high degree of similarity between samples and exemplars
would overly restrict the model’s generalization. Conversely, eliminating the need for similarity
leads to a higher risk of confirmation bias. Therefore, in this context, a loose constraint on exem-
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plar similarity yields superior results. Nonetheless, we believe that if data augmentations can better
mimic transformations in natural scenes, enhancing the model’s generalization capabilities, it may
generate more abstract category representations. In such a scenario, a relatively tighter constraint on
exemplar similarity might yield even better results.

D REQUIREMENT FOR INVARIANCE IN FEATURE VECTORS

Table 8: Comparison of invariance requirements on class probabilities and feature vectors using
experimental settings {S1,S4,S6} on the MNIST dataset with 20 labels.

Loss Minimum of All Epochs Median of Last 20 Epochs

Using CIL 0.324±0.022 0.389±0.057
Requiring Feature Vectors Invariance 1.558±0.538 2.623±1.432

Table 9: Comparison of invariance requirements on class probabilities and feature vectors using
experimental settings {S1,S10,S6} on the CIFAR-10 dataset with 250 labels.

Loss Minimum of All Epochs Median of Last 20 Epochs

Using CIL 4.560±0.180 4.743±0.156
Requiring Feature Vectors Invariance 5.280±0.372 5.563±0.462

In our experiments, we employed the experimental settings {S1,S4,S6} on the MNIST dataset
with 20 labels (for specific experimental setup settings, please refer to Section 4.3). We compared
the results between utilizing CIL (i.e., requiring network outputs’ class probabilities to be invariant
under different views of the same instance) and shifting the contrast operation to feature vectors, as
shown in Table 8. We also conducted experiments on the CIFAR-10 dataset with 250 labels with the
experimental settings {S1,S10,S6}, as presented in Table 9. In both scenarios, it is evident that
requiring feature vectors to be invariant results in a significant increase in error rates compared to
using CIL.
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Figure 3: Comparison of labeling errors under different experimental settings for the labeling algo-
rithm.

For the sake of clarity, we will keep the experimental settings description as presented in Section 4.3.
In Figure 3(a), we depict the average labeling errors using ten different random seeds under two
sets of experimental conditions: {S1,S4,S6}, and {S1,S4,S6,S9}. It’s noteworthy that fewer
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labeling errors occur when S9 is not utilized. Specifically, during the early stages of the training
process, a significant number of labeling errors are generated when we do not consider exemplar
similarity in the labeling algorithm. This problem is nearly eliminated when we take exemplar
similarity into account.

We observed similar trends in the CIFAR-10 dataset, as depicted in Figure 3(b). In this context,
we also present the results using experimental settings {S1,S10,S6}. The primary distinction
between S10 and S4 lies in the relaxed constraint on exemplar similarity. Notably, owing to the
initially looser constraint on exemplar similarity within {S1,S10,S6}, they exhibit errors similar to
those seen in {S1,S4,S6,S9} during the early stages of training. However, as training progresses,
{S1,S10,S6} consistently achieve the lowest labeling errors among these three settings.

F DISCUSSION

EXCOST refrains from employing specific forms of data augmentation, such as the concurrent uti-
lization of strong and weak augmentations required by FixMatch, or the requirement of MixUp
for MixMatch. These methodologies, while influential, introduce certain constraints and intuitively
unnatural conditions. Notably, when considering the MNIST dataset, elucidating the distinction be-
tween weak and strong augmentations becomes challenging within the FixMatch framework. Simi-
larly, the utilization of MixUp introduces the possibility of altering the inherent meaning of original
images, as evident in instances where two zeros could amalgamate into the representation of an
eight.

In contrast, EXCOST operates by tailoring data augmentation strategies according to the specifics
of the dataset, an approach that imbues models with informative priors. A prime example is the
consideration of MNIST and SVHN, which are less suited for horizontal flips, in contrast to the ap-
propriateness of such augmentations for CIFAR-10/100. The justification for these augmentations
stems from the rationality inherent in the real-world context. Crucially, effective data augmentation
preserves the intrinsic meaning of samples, exemplifying invariance. Remarkably, humans have
consistently been learning these invariant features from birth. Human perception processes contin-
uously present a sequence of coherent visual frames, and the variations in each frame related to a
particular instance can be viewed as a form of natural data augmentation. This process of augmen-
tation bestows models with richer information, encapsulating the operational regularities of the real
world—an essential element in fostering the model’s reasoning abilities.

Currently, the model utilizes static image datasets for semi-supervised image classification. How-
ever, real-world information is often not confined to static images but consists of continuous video
frames. Consequently, manually designed data augmentation strategies may not fully capture the
dynamic variations between images. To address this issue, we can consider training the model using
video data instead of solely relying on static images. By using adjacent or closely spaced video
frames, the model can learn the patterns of change inherent in continuous animations. For instance,
in a video of a person walking, not only does the position change but there are also variations in
the movement of the legs. By training the model to comprehend these continuous changes, we can
enable the model to better capture the invariances present in the real world without the need for
manually crafting specific data augmentation strategies.
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