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Abstract

Pseudo-labeling is a commonly used paradigm in semi-supervised learning, yet its
application to semi-supervised regression (SSR) remains relatively under-explored.
Unlike classification, where pseudo-labels are discrete and confidence-based fil-
tering is effective, SSR involves continuous outputs with heteroscedastic noise,
making it challenging to assess pseudo-label reliability. As a result, naive pseudo-
labeling can lead to error accumulation and overfitting to incorrect labels. To
address this, we propose an uncertainty-aware pseudo-labeling framework that dy-
namically adjusts pseudo-label influence from a bi-level optimization perspective.
By jointly minimizing empirical risk over all data and optimizing uncertainty esti-
mates to enhance generalization on labeled data, our method effectively mitigates
the impact of unreliable pseudo-labels. We provide theoretical insights and exten-
sive experiments to validate our approach across various benchmark SSR datasets,
and the results demonstrate superior robustness and performance compared to
existing methods. Our code is available at https://github.com/sxq/Heteroscedastic-
Pseudo-Labels.

1 Introduction

Deep learning has achieved superior performance on various scenarios, particularly when large
amounts of labeled data are available [28]. However, acquiring large-scale datasets with accurate
labels is often costly or impractical in many real-world scenarios, such as medical imaging where
labeled data is typically scarce and expensive or video analysis that requires labor-intensive frame-by-
frame annotations [10, 51]. To address this challenge, Semi-Supervised Learning (SSL) has emerged
as a potent paradigm that leverages vast amounts of unlabeled data to enhance learning performance,
thereby reducing the dependency on expensive labeled annotations [44, 52].

In classification tasks, SSL techniques such as pseudo-labeling [29, 41, 50, 57] and consistency
regularization [40, 43, 2, 1, 49] have been widely adopted, achieving impressive results across various
domains. However, semi-supervised regression (SSR) presents unique challenges distinct from
its classification counterpart. Unlike classification, where pseudo-labels are discrete and can be
sharpened to encourage high-confidence predictions, regression inherently deals with continuous
outputs, making it difficult to establish a reliable pseudo-labeling mechanism [18]. Furthermore,
the lack of well-defined decision boundaries in regression complicates uncertainty quantification,
increasing the risk of propagating incorrect pseudo-labels.

Due to these challenges, the pseudo-labeling methods commonly employed in semi-supervised
classification are difficult to directly extend to semi-supervised regression due to the continuous
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Figure 1: Experiment of UCVME [10] on UTKFace [58] with 10% labeled data. Left: Histogram of
true labels for the unlabeled data. Right: Box-plot of pseudo-labels generated by UCVME.

nature of regression outputs. Consequently, existing SSR approaches focus primarily on leveraging
consistency regularization to improve the utilization of unlabeled data. For example, TNNR [47]
introduces a loop consistency that enforces consistency on the prediction differences between pairs of
inputs. UCVME [10] proposes a novel uncertainty consistency loss for co-trained models to better
account for model uncertainty. RankUp [18] reformulates the regression task as a ranking problem
and imposes consistency of the rank between sample pairs.

These methods aim to enforce smoothness between predictions for labeled and unlabeled data,
ensuring that the model learns a coherent mapping from input features to continuous outputs. However,
the reliance on consistency regularization alone does not fully address the difficulties in handling
uncertainty and the risk of overfitting to potentially incorrect pseudo-labels. To investigate this, we
visualize the distribution of estimated pseudo-labels predicted by UCVME on the UTKFace dataset
[58] with 10% labeled data. As shown in Fig. 1, despite the application of uncertainty consistency
constraints, UCVME shows significant variance in pseudo-labels (right subfigure), even for age
groups with large sample sizes (left subfigure). To address the aforementioned challenge, this paper
introduces an uncertainty-aware pseudo-labeling method that dynamically adjusts the influence of
pseudo-labeled samples based on calibrated uncertainty.

Our core motivation is that the uncertainty or noise in pseudo-labels varies with input features, leading
to heteroscedasticity. Therefore, it is crucial to develop an effective strategy for assigning appropriate
uncertainty values to pseudo-labels, reflecting their varying degrees of error during training. To
achieve this, we propose a bi-level learning framework that not only minimizes empirical risk
over both labeled and unlabeled data but also explicitly optimizes uncertainty estimates to improve
generalization on labeled data during training. We theoretically and experimentally demonstrate
that our method significantly enhances pseudo-label robustness and overall performance across
various benchmark SSR tasks. In summary, our main contributions are: (1) We propose a bi-level
SSR framework that explicitly optimizes the uncertainty of pseudo-labeled samples to improve the
regression model’s generalization when learning from potentially incorrect pseudo-labels. (2) We
offer a theoretical analysis of the proposed method through gradient alignment, providing insights
into why it enables the regression model to effectively mitigate the risk of overfitting to incorrect
pseudo-labels. (3) We empirically validate our approach on various benchmark datasets and SSR
settings, demonstrating its ability to improve both performance and robustness in SSR tasks.

2 Related work

2.1 Semi-Supervised Learning

Semi-Supervised Learning (SSL) [44, 52] trains models with both labeled and unlabeled data, which
significantly reduces the cost of data annotation in real-world applications. SSL methods have been
applied on wild scenarios, such as image classification [25, 41, 2], segmentation [59, 6, 16], and
other tasks [54, 51, 33]. Current works on SSL can be categorized as follows: 1) Pseudo-labeling
methods: These works [29, 41, 50, 57, 46, 17] train the model on both labeled data and unlabeled data
with pseudo-labels, which are generated by the model itself. 2) Consistency-based methods: These
models [40, 43, 2, 1, 49] apply prediction invariance loss on unlabeled data across perturbations. 3)
Generative methods: These methods [42, 11, 4, 30] aim to model the real data distribution from the
labeled and unlabeled data and generate new samples.
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2.2 Semi-Supervised Regression

Semi-Supervised Regression (SSR), has attracted significant research interest in recent years, which
includes 1) Consistency-based methods: Similar to the aforementioned methods in SSL, these
methods designed different constraints to ensure prediction consistency in SSR. On the one hand,
methods developed for semi-supervised classification can be readily extended to SSR, such as Mean
Teacher [43] and Temporal Ensembling [26]. On the other hand, methods specifically designed for
SSR have emerged. For example, TNNR [47] enforces loop consistency on prediction differences,
UCVME [10] introduces an uncertainty consistency loss for co-trained models, and RankUp [18]
enforces rank consistency between sample pairs. Additionally, CLSS [9] employs contrastive learning
to encourage sample features with the same labels to be closer. 2) Uncertainty-based methods:
In SSR, uncertainty estimation provides a potential way to improve the quality of pseudo-labels
for unlabeled data. Specifically, SSDKL [20] proposes to minimize the prediction variance of the
posterior regularization, and SimRegMatch [21] employs dropout to compute multiple predictions
and use their variance to quantify the uncertainty of pseudo-labels. In a related manner, PIM [7]
performs weakly supervised regression by weighting candidate labels according to their incurred
losses, giving higher weights to labels with smaller losses. Unlike these methods, we propose an
uncertainty-aware pseudo-labeling method from a bi-level optimization perspective in this work.

2.3 Uncertainty Estimation

Uncertainty estimation has been explored extensively in fully-supervised learning [27, 22, 19]. From
a Bayesian viewpoint, Gal and Ghahramani [13] reinterpret Monte Carlo Dropout as variational
inference for epistemic uncertainty estimation, which has been extended to semi-supervised classifica-
tion methods [36] and semi-supervised segmentation tasks [56, 48] to filter unreliable pseudo-labels.
Additionally, some works [55, 31] quantified uncertainty through prediction discrepancies between
co-trained models. In the SSR task, UCVME [10], SSDKL [20], and SimRegMatch [21] have em-
ployed the uncertainty estimation methodology to improve the accuracy of pseudo-labels. Concretely,
UCVME models pseudo-label noise under the heteroscedastic assumption, using a shared encoder
with dual heads to predict both the mean and variance of the noise distribution. SSDKL combines
a neural network encoder with a Gaussian Process in the latent space, enabling posterior inference
to obtain predictive variance for unlabeled samples. SimRegMatch estimates the uncertainty of
pseudo-labels by performing multiple forward passes with dropout, and selects lower uncertainty
pseudo-labels through a thresholding strategy. Different from these methods, we propose a bi-level
optimization framework and estimate pseudo-label uncertainty guided by labeled samples.

3 Method

3.1 Notations and Problem Setups

Semi-supervised regression (SSR) involves a labeled dataset Dl = {(xl
i, y

l
i)}Ni=1 and an unlabeled

dataset Du = {xu
j }Mj=1, where xl

i ∈ X and xu
j ∈ X represent training examples from the input space

X , and yi ∈ R denotes the label associated with the labeled example xl
i. The objective of SSR is to

train a model fθ that generalizes well on the test dataset.

In SSR, a widely used strategy involves employing pseudo-labeling techniques to augment the training
dataset by assigning pseudo-labels to unlabeled data. In this strategy, each unlabeled example is
assigned a pseudo-label based on the predictions of the model itself or its variants. The model is then
trained on both labeled and unlabeled examples by optimizing an objective function L = Ll + λLu.
The loss function consists of two terms: the supervised loss Ll calculated on the labeled data, and the
unsupervised loss Lu calculated on the pseudo-labeled data. The hyper-parameter λ balances the
contributions between the supervised and unsupervised losses.

One of the key challenges in pseudo-labeling-based SSR is to effectively leverage pseudo-labeled data
while mitigating the negative impact of incorrect pseudo-labels on model training. In this work, we
propose a bi-level learning framework, which explicitly learns pseudo-label uncertainty to enhance
the reliability and utility of pseudo-labeled data. By modeling the uncertainty associated with pseudo-
labels, the method enables more robust training in SSR settings. In the following section, we first
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Figure 2: Method Overview. The proposed bi-level optimization framework consists of two main
steps: (1) Inner-loop update, which updates the regression model using Linner as defined in eq. (5),
where zj = log σ2

j ; (2) Outer-loop update, which updates the uncertainty-learner using Louter as
defined in eq. (6). Note that we assume a batch size of 1 for better visualization.

introduce a probabilistic formulation to model the uncertainty in pseudo-labeling. We then describe
how to effectively learn and incorporate pseudo-label uncertainty within our bi-level framework.

3.2 Heteroscedastic Pseudo-Labels

The objective of SSR is to learn the true label function fθ∗(x) using both labeled and unlabeled data.
However, when applying pseudo-labeling to SSR, the pseudo-labels assigned to the unlabeled data
are usually imperfect. Moreover, the level of uncertainty or noise in these pseudo-labels varies across
samples, particularly when the label estimation process involves an external source, such as weak
supervision, self-training, or a noisy teacher model.

To model this relationship, we treat the pseudo-labels for each sample as heteroscedastic. Especially,
for each unlabeled sample xu

j and its corresponding pseudo-label ŷj , we assume that the variance of
each pseudo-label depends on the input sample itself [3]. This can be formulated as:

ŷj = fθ(x
u
j ) + ϵj , ϵj ∼ N (0, σ2

j ) (1)

where fθ(xu
j ) is the true label prediction for input xu

j , and ϵj is a noise term whose variance σ2
j varies

with the input xu
j . In maximum likelihood inference, we can write the negative log-likelihood (NLL)

of the observation variable ŷj as:

− log p(ŷj
∣∣xu

j ) ∝
(ŷj − fθ(x

u
j ))

2

σ2
j

+ log(σ2
j ). (2)

As such, for a batch of unlabeled data Bu, we can define the unsupervised loss as the sum of the
negative log-likelihood over all these samples:

Lu =
∑

xu
j ∈Bu

1

σ2
j

(ŷj − fθ(x
u
j ))

2 +
∑

xu
j ∈Bu

log(σ2
j ). (3)

Notably, if all pseudo-labels are assumed to be homoscedastic and σ is fixed at 1, the above loss
degrades to the standard mean squared error (MSE) loss, which is commonly employed in various
SSR methods.

In eq. (3), when an incorrect pseudo-label ŷj is assigned to xu
j during training, the model can mitigate

the issue of error accumulation in fθ by increasing the uncertainty of the pseudo-label, i.e., adjusting
σj to downweight its contribution to the overall loss. In contrast, the standard MSE loss enforces rigid
fitting of incorrect pseudo-labels, thereby exacerbating confirmation bias as training progresses. Thus,
a key challenge is to devise an effective strategy for dynamically assigning appropriate uncertainty
values to pseudo-labels with varying degrees of error during training.

3.3 Learning Uncertainty via Bi-level Optimization

To dynamically assign uncertainty values to pseudo-labels, a natural strategy is to introduce an
auxiliary network gϕ parameterized by ϕ to produce σj for each unlabeled sample xu

j , and then
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jointly optimize the parameters {θ, ϕ} of fθ and gϕ in an end-to-end manner. However, this strategy
suffers from a fundamental limitation, as it fails to distinguish between two distinct scenarios:

• Hard but correct samples: The pseudo-label ŷj is correct, but the model prediction fθ(x
u
j ) is

inaccurate, leading to a large squared error (ŷj − fθ(x
u
j ))

2.
• Easy but incorrect samples: The pseudo-label ŷj is incorrect, but the model prediction fθ(x

u
j ) is

already close to the true label, also resulting in a large squared error.

The two scenarios result in a large squared error in the numerator of the first term in eq. (3), leading
to a large σ2

j during minimization. However, the increased σ2
j would suppress the learning for hard

but correct samples, which is crucial to improve the performance of SSR models.

Ideally, we seek a formulation where σj selectively suppresses unreliable pseudo-labels while still
enforcing learning on difficult but valid samples. To this end, we propose a novel bi-level optimization
framework that introduces a supportive model, referred to as the uncertainty-learner, to learn the
uncertainty associated with pseudo-labels. Specifically, we parameterize the uncertainty-learner as a
lightweight network gϕ that maps each pseudo-labeled sample xu

j (or certain conditional information
derived from the regression model, as elaborated in the next subsection) to its corresponding log-
variance. This mapping can be formally expressed as:

zj := log σ2
j = gϕ(x

u
j ), (4)

where ϕ denotes the parameters of gϕ. Note that we predict the log-variance rather than the variance
directly, as this approach enhances numerical stability. Directly predicting σ2

j can lead to instability
due to potential division by zero in the loss function [23, 22].

Our proposed bi-level optimization framework, which jointly optimizes the regression network fθ
and uncertainty-learner gϕ, is illustrated in Fig. 2 and can be described in the following two steps:

• Inner-loop for optimizing fθ: The regression network fθ is trained on both labeled and pseudo-
labeled data by considering the uncertainty of pseudo-labels as follows:

θ∗(ϕ) = argmin
θ

Linner := Ll(θ) + λLu(θ, ϕ), (5)

where Ll(θ) =
∑

xl
i∈Bl

(yi − fθ(x
l
i))

2 represents the supervised loss computed over a batch of
labeled data, and Lu(θ, ϕ)=

∑
xu
j ∈Bu

1
exp(zj)

(ŷj−fθ(xu
j ))

2+
∑

xu
j ∈Bu

zj denotes the unsupervised
loss computed over a batch of pseudo-labeled data, with zj obtained from eq. (4). The hyper-
parameter λ controls the trade-off between Ll and Lu. In eq. (5), ϕ essentially acts as hyper-
parameters for θ, and in this step, we just express θ∗ as a function of ϕ.

• Outer-loop for optimizing gϕ: Our ultimate objective is to generate well-calibrated uncertainty
estimates that protect the regression model from incorrect pseudo-labels while ensuring good
generalization on labeled data. To achieve this, we optimize ϕ by continuously tracking the
performance of the updated model fθ∗(ϕ) on labeled data, which can be formulated as:

ϕ∗ = argmin
ϕ

Louter :=
∑

xl
k∈B̂l

(yk − fθ∗(ϕ)(x
l
k))

2, (6)

where B̂l is another batch of labeled data from Dl that differs from Bl used in eq. (5), i.e., B̂l ̸= Bl.
This formulation aims to find the optimal hyper-parameter ϕ∗ such that the regression model,
obtained by optimizing eq. (5), should also have good performance over any unbiased and reliable
training batch.

In fact, eq. (5) and (6) formulate a bi-level learning framework. In the inner loop eq. (5), the regression
model fθ is updated using both labeled data and pseudo-labeled data, with the latter calibrated based
on the uncertainty estimates generated by gϕ. In the outer loop eq. (6), the parameters of gϕ are
optimized to ensure that the refined model fθ∗(ϕ) achieves more reliable and robust performance.

3.4 Practical Implementations

Uncertainty-learner’s architecture. In practice, the uncertainty-learner gϕ does not directly map
each unlabeled sample to its log-variance zj , as presented in eq. (4). Instead, to improve computational
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Algorithm 1 Mini-batch Training Algorithm of the
Method
1: Input: labeled / unlabeled data Dl / Du, labeled /

unlabeled batch size n/m, max iterations T
2: Output: regression network parameter θ∗

3: Initialize the parameters θ0 of the regression net-
work and those of the uncertainty-learner ϕ0

4: for t = 0 to T do
5: Bl = {(xl

i, y
l
i)}ni=1 ← GetBatch(Dl, n).

6: Bu = {xu
j }mj=1 ← GetBatch(Du,m).

7: B̂l = {(xl
k, y

l
k)}nk=1 ← GetBatch(Dl, n).

8: Compute inner loss Linner by eq. (5).
9: Update regression network θt+1 by eq. (7).

10: Compute outer loss Louter by eq. (6).
11: Update uncertainty-learner by ϕt+1 by eq. (8).
12: end for

efficiency, it takes the prediction of the regres-
sion model rj = fθ(x

u
j ) and the correspond-

ing pseudo-label ŷj as its input. This mapping
can be formally formulated as: zj = gϕ(rj , ŷj).
The architecture of gϕ is implemented as a multi-
layer perceptron (MLP) with one single hidden
layer. Despite its simplicity, according to the uni-
versal approximation theorem, such a network
is theoretically capable of approximating any
continuous function defined on a compact set
with arbitrary precision [14]. Note that although
both rj and ŷj are derived from the regression
model, they are not strictly identical in this work.
This discrepancy arises from the use of different
random augmentations during the training pro-
cess. Inspired by FixMatch [41], we generate
the pseudo-label ŷj from a weakly augmented
version of xu

j , while rj is obtained from a strongly augmented version of the same input.

Training Algorithm. The objective function of the regression network fθ in eq. (5) and that of the
uncertainty-learner gϕ in eq. (6) formulate a bi-level optimization problem, where the solution of
θ∗(ϕ) and ϕ∗ are nested with each other. Approximately, we update θ and ϕ in a gradient-based
method following [32, 12, 35].

(1) Update θ. At iteration t, we fix the uncertainty-learner parameter ϕt and conduct one-step gradient
descent w.r.t regression network parameter θt in the inner optimization problem eq. (5) as follows:

θt+1(ϕt) = θt − α · ∇θLinner(θt, ϕt), (7)

where α > 0 is the learning rate of the regression network.

(2) Update ϕ. Based on the updated regression network parameter θt+1(ϕ), we optimize ϕt in the
outer optimization problem eq. (6) by gradient descent:

ϕt+1 = ϕt − β · ∇ϕLouter(θt+1(ϕt)), (8)

where β > 0 is the learning rate of the uncertainty-learner.

Since ∇ϕLouter in eq. (8) introduces a second-order derivative, it requires unrolling the second-
order differentiation of the entire regression network. This process is computationally expensive
and inefficient for deep models. To alleviate this computational burden, we introduce an efficient
approximation algorithm. Specifically, we assume that ϕ is only correlated with the parameters of
the regression head (i.e., a single fully connected layer) of fθ. This allows us to only unroll the
second-order derivation of the regression head in eq. (8). Since the regression head contains far fewer
parameters than the entire regression network, our proposed algorithm is considerably more efficient
than conventional bi-level optimization algorithms [32, 12, 35].

3.5 Theoretical Analysis

We herein theoretically analyze the proposed bi-level optimization framework and reveal how our
method helps the regression model mitigate the risk of overfitting to incorrect pseudo-labels.
Theorem 1. Let ∇θLinner(θ, ϕ) and ∇θLouter(θ) be the gradients of the inner and outer loss
w.r.t. θ, respectively. The bi-level optimization in eq. (5) and eq. (6) is equivalent to the following
optimization problem:

min
ϕ

−
〈
∇θLinner(θ, ϕ),∇θLouter(θ)

〉
. (9)

The proof is presented in Appendix A.1. This theorem demonstrates that optimizing the parameter ϕ
in our bi-level framework fundamentally aligns the gradients of the inner and outer losses w.r.t. θ.
Based on eq. (5) and eq. (6), the gradient-matching formulation in eq. (9) suggests that our method
implicitly regularizes the gradients from labeled and unlabeled data under the guidance of the outer
data, and the discrepancy between these gradients is modulated by ϕ through its influence on the
inner loss. Specifically, inaccurate uncertainty estimated by gϕ would interfere with the inner loss
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Table 1: Main results on UTKFace. The performance is reported in the form of ‘mean ± std’ across
six random runs. Bold means the best results and our method are shown in gray cells .

Method γ = 5% γ = 10% γ = 20%

MAE ↓ R2 ↑ MAE ↓ R2 ↑ MAE ↓ R2 ↑
Fully-Supervised 4.713 ± 0.039 0.652 ± 0.006 4.713 ± 0.039 0.652 ± 0.006 4.713 ± 0.039 0.652 ± 0.006
Supervised 6.135 ± 0.046 0.454 ± 0.008 5.618 ± 0.026 0.533 ± 0.005 5.278 ± 0.048 0.581 ± 0.005

Mean Teacher [43] 5.912 ± 0.071 0.476 ± 0.011 5.474 ± 0.052 0.537 ± 0.009 5.126 ± 0.040 0.584 ± 0.007
Temporal Ensembling [26] 5.963 ± 0.060 0.478 ± 0.008 5.437 ± 0.022 0.557 ± 0.001 5.123 ± 0.032 0.604 ± 0.002
SSDKL [20] 5.855 ± 0.080 0.469 ± 0.010 5.391 ± 0.040 0.551 ± 0.007 5.173 ± 0.039 0.589 ± 0.007
TNNR [47] 5.817 ± 0.057 0.505 ± 0.008 5.372 ± 0.052 0.563 ± 0.007 5.104 ± 0.025 0.602 ± 0.005
SimRegMatch [21] 5.794 ± 0.073 0.512 ± 0.020 5.338 ± 0.065 0.584 ± 0.009 5.164 ± 0.108 0.612 ± 0.011
UCVME [10] 5.862 ± 0.036 0.495 ± 0.006 5.227 ± 0.045 0.585 ± 0.006 4.870 ± 0.038 0.634 ± 0.005
CLSS [9] 6.063 ± 0.145 0.451 ± 0.018 5.621 ± 0.077 0.514 ± 0.013 5.429 ± 0.078 0.546 ± 0.011
RankUp [18] 5.719 ± 0.112 0.495 ± 0.012 5.252 ± 0.040 0.576 ± 0.004 4.914 ± 0.015 0.621 ± 0.002
Ours 5.639 ± 0.035 0.523 ± 0.009 5.143 ± 0.075 0.597 ± 0.009 4.929 ± 0.038 0.624 ± 0.004

gradient w.r.t. θ, thus increasing the empirical risk in eq. (9). In contrast, when gϕ estimates accurate
uncertainty in the inner loss, it helps the regression model perform gradient decent in an appropriate
direction consistent with the outer data, ensuring stable and effective semi-supervised learning.

4 Experiments

In this section, we experiment with three benchmarks to evaluate our method. The experimental
setups are described in Section 4.1, and the main results under varying label ratios are presented in
Section 4.2. Section 4.3 provides an ablation study to assess the contribution of each key component,
along with further discussion to gain a deeper understanding of the proposed method.

4.1 Experimental Setups

Datasets. We evaluate the effectiveness of our algorithm on three benchmark datasets: UTKFace [58],
an image-based age estimation dataset; IMDB-WIKI [39], a large-scale dataset for age estimation;
and STS-B [5, 45], a benchmark for assessing semantic similarity between sentence pairs. Please refer
to Appendix B.1 for more detailed information about these datasets. These datasets are commonly
used in supervised and semi-supervised regression tasks [10, 18, 53, 34]. In this work, we conduct
experiments with varying label ratios γ, where 5%, 10%, and 20% of the training data are labeled,
and the remaining data are used as unlabeled samples.

Evaluation Metrics. For the image datasets UTKFace and IMDB-WIKI, we follow UCVME [10] in
using Mean Absolute Error (MAE, ↓) and the coefficient of determination (R2, ↑) for evaluation. For
the text dataset STS-B, we adopt Mean Squared Error (MSE, ↓) and R2, following DIR [53]. Note
that ↓ and ↑ indicate that lower and higher values are better, respectively. Detailed definitions of these
metrics are provided in Appendix B.2. All experiments are conducted six times using fixed random
seeds (0 to 5), and we report the mean and standard deviation for each metric.

Training Details. We conduct all experiments within a unified codebase to ensure fair comparisons.
Specifically, following [10], we use ResNet-50 [15] pretrained on ImageNet as the backbone for the
UTKFace and IMDB-WIKI datasets. For the STS-B dataset, we adopt a BiLSTM-based regression
model with GloVe word embeddings, in line with [45, 53]. For more details on the implementation
details, please refer to Appendix B.3.

Comparison Methods. We compare our method with various state-of-the-art SSR methods, which
can be roughly divided into two categories. 1) Consistency-based methods: These methods leverage
consistency constraints in model predictions, including some adapted from classification methods
such as Mean Teacher [43] and Temporal Ensembling [26], as well as methods specifically designed
for SSR, including TNNR [47], UCVME [10], CLSS [10] and RankUp [18]. 2) Uncertainty-based
methods: These approaches explicitly model uncertainty in data or predictions, including SSDKL
[20] and SimRegMatch [21]. Please refer to Appendix B.4 for more details about these methods.
Moreover, we construct two benchmarks to validate the effectiveness of SSR methods: 1) Supervised:
A lower bound for SSR methods that is trained on the labeled data without incorporating any unlabeled
data. 2) Fully-Supervised: An upper bound trained on all labeled and unlabeled data while assuming
ground truth labels of unlabeled data are known.
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Table 2: Main results on IMDB-WIKI. The performance is reported in the form of ‘mean ± std’
across six random runs. Bold means the best results and our method are shown in gray cells .

Method γ = 5% γ = 10% γ = 20%

MAE ↓ R2 ↑ MAE ↓ R2 ↑ MAE ↓ R2 ↑
Fully-Supervised 7.974 ± 0.043 0.724 ± 0.002 7.974 ± 0.043 0.724 ± 0.002 7.974 ± 0.043 0.724 ± 0.002
Supervised 10.172 ± 0.077 0.610 ± 0.004 9.248 ± 0.052 0.657 ± 0.002 8.647 ± 0.099 0.690 ± 0.005

Mean Teacher [43] 9.492 ± 0.051 0.647 ± 0.002 8.633 ± 0.093 0.689 ± 0.002 8.191 ± 0.066 0.711 ± 0.002
Temporal Ensembling [26] 11.335 ± 0.114 0.532 ± 0.007 9.517 ± 0.064 0.639 ± 0.004 9.577 ± 0.126 0.639 ± 0.007
SSDKL [20] 10.116 ± 0.073 0.611 ± 0.004 9.488 ± 0.031 0.641 ± 0.002 9.056 ± 0.043 0.656 ± 0.003
TNNR [47] 10.069 ± 0.088 0.612 ± 0.005 9.309 ± 0.052 0.654 ± 0.003 8.640 ± 0.033 0.688 ± 0.001
SimRegMatch [21] 9.908 ± 0.097 0.628 ± 0.004 9.110 ± 0.166 0.665 ± 0.007 8.587 ± 0.094 0.693 ± 0.006
UCVME [10] 9.730 ± 0.156 0.633 ± 0.007 8.920 ± 0.039 0.673 ± 0.004 8.309 ± 0.117 0.698 ± 0.003
CLSS [9] 9.906 ± 0.058 0.621 ± 0.007 9.251 ± 0.107 0.656 ± 0.006 8.781 ± 0.070 0.681 ± 0.003
RankUp [18] 10.251 ± 0.072 0.599 ± 0.005 8.836 ± 0.047 0.676 ± 0.003 8.216 ± 0.022 0.703 ± 0.001
Ours 9.177 ± 0.061 0.664 ± 0.003 8.539 ± 0.065 0.695 ± 0.003 8.166 ± 0.071 0.712 ± 0.002

Table 3: Main results on STS-B. The performance is reported in the form of ‘mean ± std’ across six
random runs. Bold means the best results and our method are shown in gray cells .

Method γ = 5% γ = 10% γ = 20%

MSE ↓ R2 ↑ MSE ↓ R2 ↑ MSE ↓ R2 ↑
Fully-Supervised 0.986 ± 0.024 0.533 ± 0.012 0.986 ± 0.024 0.533 ± 0.012 0.986 ± 0.024 0.533 ± 0.012
Supervised 1.746 ± 0.016 0.173 ± 0.007 1.524 ± 0.010 0.278 ± 0.005 1.332 ± 0.012 0.369 ± 0.005

Mean Teacher [43] 1.751 ± 0.010 0.170 ± 0.005 1.607 ± 0.017 0.240 ± 0.007 1.409 ± 0.009 0.332 ± 0.004
Temporal Ensembling [26] 1.683 ± 0.007 0.203 ± 0.004 1.554 ± 0.009 0.264 ± 0.004 1.374 ± 0.015 0.349 ± 0.007
SSDKL [20] 1.606 ± 0.057 0.239 ± 0.027 1.407 ± 0.029 0.333 ± 0.014 1.211 ± 0.031 0.426 ± 0.015
TNNR [47] 1.746 ± 0.007 0.166 ± 0.004 1.534 ± 0.003 0.266 ± 0.001 1.333 ± 0.020 0.362 ± 0.010
SimRegMatch [21] 1.714 ± 0.032 0.188 ± 0.015 1.559 ± 0.024 0.261 ± 0.011 1.437 ± 0.015 0.319 ± 0.015
UCVME [10] 1.713 ± 0.009 0.188 ± 0.004 1.577 ± 0.016 0.253 ± 0.008 1.373 ± 0.020 0.349 ± 0.009
CLSS [9] 1.622 ± 0.046 0.231 ± 0.022 1.421 ± 0.030 0.327 ± 0.014 1.286 ± 0.032 0.390 ± 0.015
RankUp [18] 1.844 ± 0.063 0.126 ± 0.030 1.454 ± 0.016 0.311 ± 0.008 1.279 ± 0.018 0.394 ± 0.008
Ours 1.540 ± 0.006 0.270 ± 0.003 1.403 ± 0.013 0.335 ± 0.006 1.246 ± 0.015 0.409 ± 0.008

4.2 Main Results

Results on UTKFace. Table 1 summarizes the results of our method and other comparison methods
on UTKFace dataset with various ratios. It can be observed that: 1) All SSR methods perform better
than the benchmark Supervised, which is the lower bound trained by labeled samples, demonstrating
that incorporating unlabeled data is beneficial for the SSR problem and effectively reduces regression
error. For example, under the ratio of 5%, our method reduces the MAE by up to 8.1% and increases
R2 by up to 15.2% compared to Supervised. 2) Compared to other SSR methods, our method
consistently achieves the best or second best results across all ratios. In particular, when the labeled
data is scarce (γ = 5%), our method outperforms the second best RankUp [18] by 1.4% for MAE
and 5.7% for R2. 3) As the proportion of labeled data increases, the performance gains of our method
are slightly lower than those of UCVME and RankUp. We attribute this to stronger supervision from
labeled data, which likely improves the quality and stability of pseudo-labels. Such results further
demonstrate that the well-calibrated uncertainty generated by our method plays an essential role in
improving SSR performance, especially in scenarios where the labeled data is scarce.

Results on IMDB-WIKI. As shown in Table 2, our method consistently outperforms all comparison
SSR methods significantly. For instance, under γ = 5%, compared to the second best method Mean
Teacher, our method reduces MAE by about 3.3% and increases R2 by 2.6%, which achieves new
state-of-the-art results. Note that the performance of our method with 20% labeled data is closer
to Fully-Supervised, served as an upper bound in the SSR problem. These results further validate
the strength of our method. Furthermore, compared with other uncertainty estimation SSR methods
like UCVME, our method exhibits significant improvement, demonstrating the effectiveness of our
predicted uncertainty by gϕ in our bi-level optimization framework.

Results on STS-B. The results are listed in Table 3. It can be observed that our method achieves the
best or second-best performance across all ratios. On the one hand, if the labeled data is limited, such
as γ = 5% or 10%, our method improves all these SSR methods on both MSE and R2 with a large
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Figure 3: Subgroup performance comparison between ours and
the second-best (UCVME) on UTKFace with γ = 5%.
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Table 4: Ablation study results on the IMDB-WIKI
dataset with label ratios of 5% and 10%. BL, UL, and
BLO refer to Baseline, Uncertainty-learner and Bi-level
Optimization, respectively.

Components γ = 5% γ = 10%

BL UL BLO MAE ↓ R2 ↑ MAE ↓ R2 ↑
✓ × × 9.512 0.651 8.864 0.683
✓ ✓ × 9.914 0.630 9.562 0.651
✓ ✓ ✓ 9.177 0.664 8.539 0.695

Table 5: Computational cost (average
training time per iteration) and memory
complexity on UTKFace dataset with
γ = 10%.

Method Time (ms) GPU (MB)

Baseline 83.0 5099
SimRegMatch[21] 548.1 7419
UCVME [10] 257.2 10057
RankUp[18] 108.6 7433
Ours 91.6 5116

margin. For example, when we have only 5% labeled data, MSE of our method is lower than the
second-best method SSDKL by 4.1% and R2 is higher by 13.0%. These results demonstrate that our
method does not rely on too much labeled data and performs better under such extreme scenarios
with scarce labeled samples. On the other hand, our method achieves comparable results with SSDKL
when we have more labeled data, i.e., γ = 20%. This suggests that our method is not only effective
in data-scarce scenarios but also highly adaptable to different levels of labeled data availability.

4.3 Discussion and Ablation Study

Performance analysis across subgroups. As aforementioned, our method consistently achieves
sound performance across three different datasets with various ratios. To further validate the effective-
ness of our method, in Fig. 3, we compare the MSE between the ground truth labels and pseudo-labels
estimated by UCVME and our method across all ages on UTKFace. We can see that our method can
globally produce more accurate pseudo-labels than UCVME across different subgroups, especially on
the elder age ranges whose samples are significantly fewer than those of other age ranges, as shown
in Fig. 1. These results further demonstrate that our method can consistently improve the accuracy
across different subgroups.

How our algorithm adjusts uncertainty. To answer this question, we visualize the correlation
between the uncertainty estimated by the proposed uncertainty-learner gϕ and the prediction error of
the backbone regression model fθ. Specifically, for all unlabeled training samples of IMDB-WIKI at
age 40, we visualize their corresponding estimated uncertainties σ2 and absolute prediction errors in
Fig. 4. It can be observed that the estimated uncertainties increase as the prediction errors increase,
indicating that the uncertainty-learner tends to assign larger uncertainty for the samples with larger
prediction errors and actively reduces the contribution of these samples to the regression model
training. Furthermore, the correlation between estimated uncertainties and absolute prediction errors
is not a simple linearity, suggesting it is essential to use the uncertainty-learner to estimate the unstable
uncertainties of different samples. Additional visualization results are provided in Appendix C.1.

Ablation study. We conduct an ablation study to analyze the contribution of each component of
our method, with the results presented in Table 4. We begin with the Baseline (BL) method, which
omits the uncertainty-learner (UL) and applies the loss Ll + λLu with a fixed uncertainty σ2

j = 1
for all unlabeled samples. Compared to our method, the absence of uncertainty estimation leads
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to poor performance, confirming its effectiveness in SSR. Next, we assess the roles of the UL and
bi-level optimization (BLO) in our method. Interestingly, the model with UL alone (Baseline +
UL) performs worse than the Baseline, likely due to joint training of the UL and the regression
model, which leads to inaccurate uncertainty estimation and suppress learning from hard but correct
samples, as discussed in Section 3.3. In contrast, incorporating the proposed bi-level optimization
framework substantially improves performance, suggesting that it enables more accurate uncertainty
estimation and, consequently, more effective training of the regression model. This complies with
the conclusion of Theorem 1, which theoretically supports the benefit of bi-level optimization in
improving uncertainty estimation.

Computational cost analysis. We evaluate the computational cost on a single NVIDIA GeForce
RTX 4090 for fair comparison. As shown in Table 5, our method incurs only ~17MB additional
GPU memory and less than 9ms extra training time per iteration compared to the Baseline, as it
unrolls gradients only through the linear regression head to update a small number of parameters
ϕ in the outer-loop optimization. Compared to recent SSR methods, our method achieves superior
performance on all datasets with less time and resource consumption. Further analysis of the
computational cost of other recent SSR methods is provided in Appendix C.2.

5 Conclusion

We propose an uncertainty-aware pseudo-labeling framework for SSR tasks, which addresses the
challenge of heteroscedastic noise in pseudo-labels. Different from the existing methods, our
approach dynamically calibrates pseudo-label uncertainty from a bi-level optimization perspective.
Such learning paradigm ensures reliable uncertainty estimation that improves generalization of the
regression model. Theoretical analysis via gradient alignment and empirical results on benchmark
SSR tasks demonstrate the effectiveness of our method, significantly enhancing robustness and
accuracy over existing approaches.

Limitations and Broader Impact. Despite the promising results achieved by our method in
semi-supervised regression, particularly in enhancing the robustness of pseudo-labels through het-
eroscedastic uncertainty modeling, several limitations remain to be addressed. Notably, our approach
does not explicitly consider potential systematic biases present in the labeled or unlabeled data, such
as demographic imbalances or domain-specific disparities. If left unmitigated, these biases may be
implicitly propagated or even amplified through the pseudo-labeling process. Addressing these issues
will be one of the key focuses of our future work. Moreover, our current framework is built under the
assumption that both labeled and unlabeled samples can be accessed simultaneously during training.
Such a requirement may raise privacy concerns in real-world scenarios involving sensitive user data.
Incorporating fairness-aware objectives and privacy-preserving mechanisms into future versions of
our framework could further enhance its practical applicability and ethical reliability.
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Supplementary Material

A Theoretical Analysis

A.1 Proof of Theorem 1

In this section, we first review the proposed bi-level learning framework to optimize the parameters
of the regression model fθ and the uncertainty-learner gϕ. The bi-level optimization framework can
be formulated as follows:

ϕ∗ = argmin
ϕ

Louter (θ∗(ϕ))

s.t. θ∗(ϕ) = argmin
θ

Linner (θ, ϕ∗) ,
(10)

where the specific inner and outer losses can be represented as

Louter (θ(ϕ)) =
∑

xl
k∈B̂l

(yk − fθ∗(ϕ)(x
l
k))

2

Linner (θ, ϕ) = Ll(θ) + λLu(θ, ϕ)

=
∑
xl
i∈Bl

(
yi − fθ(x

l
i)
)2

+ λ
∑

xu
j ∈Bu

[
1

exp(zj)

(
ŷj − fθ(x

u
j )
)2

+ zj

]
,

(11)

where zj = gϕ(x
u
j ) denotes the uncertainty estimated by the uncertainty-learner gϕ. To optimize this

bi-level optimization framework, we use a nested gradient-optimization-based method to approxi-
mately update the regression model parameter θ and the uncertainty-learner parameter ϕ. Specifically,
in the inner loop, the updating formulation of θ at iteration k can be expressed as:

θt+1(ϕt) = θt − α · ∇θLinner(θt, ϕt), (12)

where α is the learning rate of the inner loss.

ϕt+1 = ϕt − β · ∇ϕLouter(θt+1(ϕt)), (13)

where β is the learning rate of the outer loss.

For simplicity of notation, we denote ∇θLinner(θ, ϕ) and ∇θLouter(θ) be the gradients of the inner
and outer loss w.r.t. θ, respectively. Then we provide the proof of Theorem 1 in the following.

min
ϕ

−
〈
∇θLinner(θ, ϕ),∇θLouter(θ)

〉
. (14)

Proof. For the outer optimization problem, we expand this loss function by the first-order Taylor
expansion around θt as follows:

Louter(θt+1(ϕt)) ≈ Louter(θt) +
(
θt+1(ϕt)− θt

)
∇θLouter(θt). (15)

Substitute eq. (12) into eq. (15), we obtain

Louter(θt+1(ϕt)) = Louter(θt) +
(
−α · ∇θLinner(θt, ϕt)

)
∇θLouter(θt). (16)

Note that the first term on the right side of eq. (16) is irrelevant to the optimization of ϕt, which can
be omitted. Thus, minimizing the outer loop of eq. (6) is equivalent to minimizing the second term in
eq. (16). That is,

min
ϕt

Louter
(
θt+1(ϕt)

)
⇔ min

ϕt
−
〈
∇θLinner(θt, ϕt),∇θLouter(θt)

〉
. (17)

We thus finish the proof.
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A.2 Connection to Bayesian Decision Theory

We make an effort to connect our method to Bayesian decision theory [37, 38] to further interpret our
bi-level framework. To make the theoretical analysis more tractable, we restate our bi-level learning
formulation with a slight simplification. Specifically, we let the predictive variance σ2

j = gϕ(xj),
rather than using its logarithm as in the main text. This modification only involves a log-transform
and does not alter the essential behavior of our model. The inner-loop optimization becomes:

θ∗(ϕ) = argmin
θ

n∑
i=1

(yi − fθ(xi))
2 + λ

m∑
j=1

[
1

gϕ(xj)
(ŷj − fθ(xj))

2 + log gϕ(xj)], (18)

and the outer-loop optimization is:

ϕ∗ = argmin
ϕ

∑
(xk,yk)∈B̂l

(yk − fθ∗(ϕ)(xk))
2, (19)

which seeks optimal uncertainty weights gϕ(xj) to guide the model fθ∗(ϕ) toward better generaliza-
tion.

To link our bi-level learning framework to a Bayesian decision problem, we formulate the following
decision problem. Concretely, the uncertainty estimator gϕ : X → R+ defines a randomized (mixed)
decision rule by assigning weights to unlabeled samples xj ∈ Du. The model parameter θ is treated
as the latent state, and we define the utility function as:

u(gϕ, θ) = logP (Dl ∪ Du|θ) = log
∏

xi∈Dl

N (yi|fθ(xi), σ
2)

∏
xj∈Du

N (ŷj |fθ(xj), gϕ(xj)). (20)

where ŷj denotes the pseudo-label for xj . Under this formulation, the Bayes-optimal uncertainty
function g∗ϕ is the one that maximizes the expected utility w.r.t the posterior distribution over θ, i.e.,
ϕ∗ = argmaxϕ Eθ|Dl

[u(gϕ, θ)].

We now show an intuition connection between our bi-level optimization and this Bayesian formulation.
Specifically, the inner-loop optimization is equivalent to minimizing the negative log-likelihood of
the data under the generative model defined earlier. Therefore, θ∗(ϕ) can be interpreted as a MAP
estimate of model parameters θ, conditioned on the fixed uncertainty function gϕ. The outer-loop
optimization aims to find the optimal uncertainty weights that lead to a model fθ∗(ϕ) with best
generalization performance. While this is not a direct maximization of expected utility Eθ[u(gϕ, θ)],
we argue the following: (i) If the posterior p(θ|Dl) is sharply peaked (posterior concentration), and (ii)
if the outer-loop loss over B̂l is a reliable proxy for risk under p(x, y), then minimizing the outer-loop
loss approximately maximizes the expected utility, and thus ϕ∗ approximates the Bayes-optimal
mixed-action policy.

A.3 Pseudo-Label Smoothness Property

Our framework implicitly enforces a smoothness property on the generated pseudo-labels, as sup-
ported by both theoretical analysis and empirical evidence:

• Theoretical smoothness guarantee. The Lipschitz continuity of both the regression model
fθ and the uncertainty estimator gϕ ensures that nearby unlabeled inputs yield similar pseudo-
labels and uncertainty estimates. Specifically, for any two unlabeled samples xu

1 and xu
2 , we

have: |ŷ1 − ŷ2| ≤ Lf |xu
1 − xu

2 | and |σ2
1 − σ2

2 | ≤ LgLf |xu
1 − xu

2 |, where Lf and Lg are the
Lipschitz constants of fθ and gϕ, respectively. These constants can be effectively controlled
by architectural design. For example, we can apply spectral normalization to fθ to limit its
Lipschitz constant, and we design gϕ as a shallow MLP with ReLU activations and small-
initialized weights to promote smoothness.

• Empirical evidence. To further validate the smoothness of pseudo-labels in practice, we
conducted a variance analysis across age groups on the IMDB-WIKI dataset. Specifically, we
computed the standard deviation of predicted pseudo-labels among samples that share the same
ground-truth age and compared the results with UCVME[10], which explicitly enforces local
consistency via consistency loss. As reported in the table 6, our method consistently yields lower
or comparable standard deviations than UCVME in most age groups. This suggests that our
pseudo-labels are more stable and consistent across similar inputs, thereby indirectly capturing
the desired smoothness prior.
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Table 6: Performance comparison across age groups.
Method Age=10 20 30 40 50 60 70 80 90
UCVME [10] 10.623 6.522 5.009 5.878 7.772 10.666 12.936 13.085 5.017
Ours 3.290 6.389 6.157 6.971 8.558 10.231 10.301 6.364 4.011

B Detailed Experimental Setup

B.1 Dataset Details

In this work, we experiment with three benchmark datasets: UTKFace [58], IMDB-WIKI [39], and
STS-B [5, 45], which are detailed as follows:

UTKFace[58]. The dataset is an image age estimation dataset, where the objective is to predict an
individual’s age based on a facial image. The dataset consists of 23,705 face images with the labels
ranging from 1 to 116 years old. Following the protocols used in UCVME [10], this paper considers
only samples aged 21 to 60. The resulting modified dataset includes 10,518 training samples, 3,287
testing samples, and 2,629 validation samples.

IMDB-WIKI [39]. The dataset is a larger-scale age estimation dataset which collected over 523K
facial images and their corresponding age. Following [53], we utilize curated datasets consisting of
191.5K images for training and 11.0K images for validation and testing. The ages range from 0 to
186 years old and the number of images per age varies from 1 to 7149.

STS-B [5, 45]. Semantic Textual Similarity Benchmark (STS-B) dataset, which consists of 7.2K
sentence pairs collected from real worlds, such as news, image and video captions, and natural
language inference data. The target of each pair is a continuous similarity score ranged from 0 to
5. Following DIR [53], we construct the training set containing 5.2K pairs, and both the balanced
validation set and the test set containing 1K pairs each.

B.2 Evaluation Metrics

To assess the performance of comparison algorithms, we adopt Mean Absolute Error (MAE ↓) and
the coefficient of determination (R2 ↑) for image datasets following UCVME [10], while employing
Mean Squared Error (MSE ↓) and R2 metrics for text datasets following DIR [53].

Mean Absolute Error (MAE ↓). MAE measures the average absolute difference between predictions
and ground truths, offering a simple and robust metric for evaluating prediction accuracy. i.e.,

MAE =
1

n

n∑
i=1

|fθ∗(xi)− yi| , (21)

where fθ∗(xi) denotes the prediction for the sample xi, and yi is the corresponding ground truth.

Coefficient of Determination (R2 ↑). R2 reflects the goodness of fit of the model to the data. i.e.,

R2 = 1−
∑n

i=1(fθ∗(xi)− yi)
2∑n

i=1(yi − y)2
, (22)

where y is the mean of yi.

Mean Squared Error (MSE ↓). MSE measures the average squared difference between predictions
and ground truths, emphasizing larger errors due to the squaring operation. i.e.,

MSE =
1

n

n∑
i

(fθ∗(xi)− yi)
2. (23)

B.3 Training Details

UTKFace and IMDB-WIKI. Following the training protocol in UCVME [10], we utilize ResNet-
50 [15] pretrained on the ImageNet dataset as the backbone regression model. The model is trained
by Adam optimizer [24] for 30 epochs, with a learning rate of 10−4 for the feature extractor and
10−3 for the regression head. Additionally, we conduct random cropping and horizontal flipping as
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weak augmentation, and RandAugment [8] as strong augmentation in the data augmentation process
of SSL. As for gϕ, it is optimized by Adam optimizer with a learning rate of 10−4.

STS-B. Following [45, 53], we adopt a BiLSTM architecture with GloVe word embeddings as the
backbone regression model, which is trained by Adam optimizer for 200 epochs, with a learning
rate of 10−4 for the feature extractor and 10−3 for the regression head. For data augmentation, no
augmentation is applied to the labeled dataset, while synonym replacement and insertion operations
are used as strong augmentation for the unlabeled dataset.

B.4 Comparison Methods

To comprehensively evaluate the proposed method, we compare it with some state-of-the-art semi-
supervised regression methods, including: Consistency-based methods: Mean Teacher [43], Temporal
Ensembling [26], TNNR [47], UCVME [10], CLSS [10], RankUp [18]; Uncertainty-based methods:
SSDKL [20], SimRegMatch [21].

In this section, we provide a brief introduction to comparison algorithms.

• Mean Teacher [43] averages model weights to form a target-generating teacher model via
exponential moving average (EMA), and computes the consistency loss between the teacher’s
predictions and the student’s outputs.

• Temporal Ensembling [26] maintains an exponential moving average of label predictions on
each training example, and penalizes predictions that are inconsistent with this target.

• TNNR [47] is trained to predict differences between the labels of the input pair and follow the
principle that the loop of predicted differences should sum to zero.

• UCVME [10] improves training by generating high-quality pseudo-labels and uncertainty
estimates for heteroscedastic regression.

• CLSS [9] uses the recovered ordinal relationship for contrastive learning on unlabeled samples
to allow more data to be used for feature representation learning.

• RankUp [18] converts the original regression task into a ranking problem and training it
concurrently with the original regression objective. It introduces two components: the Auxiliary
Ranking Classifier (ARC) and Regression Distribution Alignment (RDA).

• SSDKL [20] is a non-parametric kernel learning methods based on minimizing predictive
variance in the posterior regularization framework. It combines the hierarchical representation
learning of neural networks with the probabilistic modeling capabilities of Gaussian processes.

• SimRegMatch [21] is a semi-supervised regression framework with two primary modules:
uncertainty-based filtering and similarity-based pseudo-label calibration. It filters reliable
pseudo-labels using uncertainty and refines them by incorporating labeled data through similarity-
based weighting.

C Additional Experiment Results

C.1 More Visualization Results

To further analyze the correlation between estimated uncertainty σ2 and absolute prediction error, we
present additional age-wise visualizations on the IMDB-WIKI dataset. Consistent with observations
in Fig. 5, the uncertainty σ2 increases alongside the absolute prediction error across age groups,
highlighting the role and effectiveness of the uncertainty-learner.

C.2 Computational Resources

Compared to other SSR methods, our proposed algorithm achieves superior performance while
maintaining significantly lower computational and memory costs. Among the algorithms compared
in table 5: SimRegMatch [21] estimates pseudo-label uncertainty through Monte Carlo sampling,
which requires multiple forward passes, and stores feature vectors of samples to compute the
similarity matrix. UCVME [10] relies on a multi-model architecture and aggregates predictions
from repeated forward passes to compute uncertainty-based consistency loss. RankUp [18] not only
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Figure 5: Correlation analysis between estimated uncertainty σ2 and absolute prediction error on
IMDB-WIKI with γ = 10% under different age.

outputs regression predictions, but also generates ranking scores for each sample, necessitating the
computation of all pairwise ranking losses. Furthermore, its RDA module involves frequent lookups
from a pseudo-label table during training, which adds additional time overhead. Our method does not
require multiple forward passes or the storage of additional intermediate variables during computation.
Meanwhile, the proposed uncertainty-learner is a lightweight network; in the optimization process,
we assume that the parameters of the uncertainty-learner are only related to the regression head,
which significantly reduces computational time and resource consumption.

C.3 Additional Experimental Comparisons

To further assess the generality and robustness of our method, we additionally include methods from
weakly supervised learning (PIM [7]), semi-supervised classification (UPS [36] and CADR [17]).

We provide a brief introduction to these methods below.

• PIM [7] computes its loss as a weighted sum of the predictive losses over candidate labels,
where labels with smaller losses are assigned higher weights through a softmax-based weighting
function.

• UPS [36] uses Monte Carlo Dropout to estimate uncertainty via the variance of multiple forward
passes, and applies a threshold to identify low-confidence predictions as negative labels, thereby
enabling negative learning.

• CADR [17] leverages the prior distribution of labeled samples to perform inverse probability
weighting (CAP module) and adjusting per-class selection thresholds for unlabeled samples
(CAI module).

Adapting existing methods for SSR. Several of the compared methods cannot be directly applied
to regression tasks, so we propose reasonable adaptations to enable a fair comparison under the
SSR setting. Specifically, (1) PIM is originally designed for partial-label regression, where each
unlabeled instance is associated with a candidate label set. Since such candidate sets are absent
in semi-supervised regression, we construct pseudo-label candidates via Monte Carlo Dropout and
compute the PIM loss using a softmax-based weighting over these candidates. (2) UPS relies on
defining negative targets in a discrete label space, which is not directly applicable to continuous
regression outputs. To adapt UPS fairly, we retain only the uncertainty-based pseudo-label estimation
via Monte Carlo Dropout and remove the negative labeling mechanism, yielding the adapted variant
UPS_Reg. (3) CADR builds on class-specific confidence modeling, which presupposes discrete label
categories. To make it applicable to regression, we discretize the continuous target into age bins and
treat each bin as a surrogate class for confidence estimation.

Results Analysis. As shown in table 7, our proposed method significantly outperforms all comparison
methods across multiple settings. Under the ratio of 20%, our method outperforms the second best
method PIM by 3.3% for MAE and 1.1% for R2.

Comparison with weighting-based methods. Our uncertainty-aware method and PIM both share the
common idea of assigning different loss contributions to samples. However, there is a fundamental
difference in how the weights are generated. PIM assigns weights solely based on the prediction
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Table 7: Experimental comparison with more methods on the IMDB-WIKI dataset. Bold means the
best results and our method are shown in gray cells .

Method γ = 5% γ = 10% γ = 20%

MAE ↓ R2 ↑ MAE ↓ R2 ↑ MAE ↓ R2 ↑
PIM [7] 9.345 ± 0.100 0.659 ± 0.005 8.691 ± 0.021 0.691 ± 0.001 8.441 ± 0.014 0.704 ± 0.001
UPS_Reg [36] 9.430 ± 0.087 0.647 ± 0.006 8.845 ± 0.055 0.676 ± 0.003 8.415 ± 0.002 0.699 ± 0.001
CADR [17] 10.592 ± 0.091 0.562 ± 0.009 9.531 ± 0.064 0.622 ± 0.007 8.536 ± 0.056 0.668 ± 0.008
Ours 9.177 ± 0.061 0.664 ± 0.003 8.539 ± 0.065 0.695 ± 0.003 8.166 ± 0.071 0.712 ± 0.002

error of pseudo-labels within each batch, making it prone to reinforcing inaccurate pseudo-labels and
amplifying noise. In contrast, our method infers per-sample uncertainty and adaptively adjusts each
sample’s contribution in a continuous manner, resulting in more reliable weighting.

Comparison with classification-derived SSL methods. The inferior performance of UPS and
CADR highlights the challenge of directly adapting classification-based methods to regression
tasks. Morevoer, compared with UPS_Reg, while both methods incorporate uncertainty, our method
uses uncertainty-aware soft weighting within a bi-level optimization framework, yielding more stable
and accurate uncertainty estimation.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims reflect the paper’s contributions, which is proposing an
uncertainty-aware pseudo-labeling framework that dynamically adjusts pseudo-label influ-
ence from a bi-level optimization perspective. Our empirical results and theoretical insights
demonstrate superior robustness and performance compared to existing methods.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our proposed method in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We have provide full set of assumptions and a complete (and correct) proof in
Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided a detailed implementation of our proposed framework in
Section 3 and provided some experiments details in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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material?

Answer: [Yes]

Justification:All the datasets are public as illustrated in Appendix B.1. We will release the
full code and commands once the paper gets accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
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• The authors should provide scripts to reproduce all experimental results for the new
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versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We claim the experiments setting and detainls in Appendix B.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All of our experimental results were conducted six runs using fixed random
seeds (0, 1, 2, 3, 4, and 5), and we report both the mean and standard deviation of each
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For more detailed information about the computer resources used for conduct-
ing our experiments, please refer to Section 4.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have verified that all requirements of the ethical guidelines have been met.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broader impacts of our proposed method in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release any high-risk data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly cited all code, data, and models used in this work to ensure
transparency and proper acknowledgment.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code used in this paper, which is well documented. The documentation
includes detailed descriptions of the code’s purpose, functionality, usage examples, and
license details. The documentation will be publicly available.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Justification: This paper does not involve human subjects or crowdsourcing experiments.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper did not describe the usage of LLMs, as they were only used for
writing, editing, or formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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