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Abstract

Simulating the time evolution of physical systems is pivotal in many scientific and
engineering problems. An open challenge in simulating such systems is their multi-
scale dynamics: a small fraction of the system is extremely dynamic, and requires
very fine-grained resolution, while a majority of the system is changing slowly and
can be modeled by coarser spatial scales. Typical learning-based surrogate models
use a uniform spatial scale, which needs to resolve to the finest required scale and
can waste a huge compute to achieve required accuracy. In this work, we introduce
Learning controllable Adaptive simulation for Multi-scale Physics (LAMP) as
the first full deep learning-based surrogate model that jointly learns the evolution
model and optimizes appropriate spatial resolutions that devote more compute to
the highly dynamic regions. LAMP consists of a Graph Neural Network (GNN)
for learning the forward evolution, and a GNN-based actor-critic for learning the
policy of spatial refinement and coarsening. We introduce learning techniques
that optimizes LAMP with weighted sum of error and computational cost as
objective, which allows LAMP to adapt to varying relative importance of error vs.
computation tradeoff at inference time. We test our method in a 1D benchmark of
nonlinear PDEs and a challenging 2D mesh-based simulation. We demonstrate that
our LAMP outperforms state-of-the-art deep learning surrogate models with up to
39.3% error reduction, and is able to adaptively trade-off computation to improve
long-term prediction error.

1 Introduction

Simulating the time evolution of a physical system is of vital importance in science and engineering
(Lynch, 2008; Carpanese, 2021; Sircombe et al., 2006; Courant et al., 1967; Lelievre & Stoltz, 2016).
Usually, the physical system has a multi-scale nature: a small fraction of the system is highly dynamic,

∗Equal contribution

NeurIPS 2022 AI for Science Workshop.



୰ୣ

{𝑒௞
௥௘}

Forward Iteration

Full Rollout …

…

ୡ୭

{𝑒௞
௖௢}

𝑀௧ 𝑀෡௧ାଵ𝑀෡ᇱ௧

𝑓ఏ
ୣ୴୭

Forward

௧Reward

𝑓ఏ
ୣ୴୭

Forward

Rollout without
Remeshing

𝑓ఝ
୮୭୪୧ୡ୷

𝑓ఏ
ୣ୴୭

…

remesh

𝑀௧ 𝑀෡ᇱᇱ௧ାଵ 𝑀෡ᇱᇱ௧ାଶ

𝑀෡௧ାଶ
𝑀෡௧ାଵ𝑀௧

Figure 1: LAMP schematic. The forward iteration (upper box) first uses the policy f policy
φ to decide the

number K re and Kco of edges as well as which edges among the full mesh to be refined or coarsened,
and then executes remeshing. The evolution model f evo

θ is applied to the updated mesh M̂ ′t to predict
the state M̂ t+1 at the next time step. We use the reduction of both Error and Computation (mesh
size), compared to a multi-step rollout without remeshing, as reward to learn the policy.

and requires very fine-grained resolution to simulate accurately, while a majority of the system is
changing slowly. Examples include hazard prediction in weather forecasting (Majumdar et al., 2021),
disruptive instabilities in the plasma fluid in nuclear fusion (Kates-Harbeck et al., 2019), air dynamics
near the boundary for jet engine design (Athanasopoulos et al., 2009), and more familiar examples
such as wrinkles in a cloth (Pfaff et al., 2021) and fluid near the boundary for flow through the
cylinder (Vlachas et al., 2022). Due to the typical huge size of such systems, it is pivotal that those
systems are simulated not only accurately, but also with as small of a computational cost as possible.
A uniform spatial resolution that pays similar attention to regions with vastly different dynamics, will
waste significant compute on slow-changing regions while insufficient for highly dynamic regions.

To accelerate physical simulations, deep learning (DL)-based surrogate models have recently emerged
as a promising alternative to complement (Um et al., 2020) or replace (Li et al., 2021) classical solvers.
They reduce computation and accelerate the simulation with larger spatial (Um et al., 2020; Kochkov
et al., 2021) or temporal resolution (Li et al., 2021), or via latent representations (Sanchez-Gonzalez
et al., 2020; Wu et al., 2022). However, current deep learning-based surrogate models typically
assume a uniform or fixed spatial resolution, without learning how to best assign computation to the
most needed spatial region. Thus, they may be insufficient to address the aforementioned multi-scale
challenge. Although adaptive methods, such as Adaptive Mesh Refinement (AMR) (Soner et al.,
2003; Cerveny et al., 2019) exist for classical solvers, they share similar challenge (e.g. slow) as
classical solvers. A deep learning-based surrogate models, that is able to learn both the evolution and
learn to assign computation to the needed region, is needed.

In this work, we introduce Learning controllable Adaptive simulation for Multi-scale Physics (LAMP)
as the first fully DL-based surrogate model that jointly learns the evolution model and optimizes
appropriate spatial resolutions that devote more compute to the highly dynamic regions. Our key
insight is that by explicitly setting the error and computation as the combined objective to optimize,
the model can learn to adaptively decide the best local spatial resolution to evolve the system. To
achieve this goal, LAMP consists of a Graph Neural Network (GNN)-based evolution model for
learning the forward evolution, and a GNN-based actor-critic for learning the policy of discrete
actions of local refinement and coarsening of the spatial mesh, conditioned on the local state and a
coefficient β that weights the relative importance of error vs. computation. The policy (actor) outputs
both the number of refinement and coarsening actions, and which edges to refine or coarsen, while
the critic evaluates the expected reward of the current policy. The full system is trained with an
alternating fashion, iterating between training the evolution model with supervised loss, and training
the actor-critic via reinforcement learning (RL). Taken together, a single instance of evolution model
and actor-critic jointly optimizes reduction of error and computation for the physical simulation, and
can operate across the relative importance of the two metrics at inference time.
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We evaluate our model on a 1D benchmark of nonlinear PDEs (which tests generalization across
PDEs of the same family), and a challenging 2D mesh-based simulation of paper folding. In 1D,
we show that our model outperforms state-of-the-art deep learning-based surrogate models in terms
of long-term evolution error by up to 39.3%, and can adaptively tradeoff computation to improve
long-term prediction error. On a 2D mesh-based simulation, our model can strategically choose
appropriate edges to refine or coarsen, and outperforms a baseline without remeshing.

2 Problem Setting and Related Work
We consider the numerical simulation of a physical system, following the notation introduced in (Pfaff
et al., 2021). The system’s state at time t is discretized into the mesh-based state M t = (V t, Et), t =
0, 1, 2, ..., where Et is the mesh edges and V t is the states at the nodes at time t. Each node i ∈ V
contains the mesh-space coordinate ui and dynamic features qi. Note that this representation of the
physical system is very general. It includes Eulerian systems (Wu et al., 2022) where the mesh is
fixed and the field qi on the nodes are changing, and Lagrangian systems (Sanchez-Gonzalez et al.,
2020; Pfaff et al., 2021) where the mesh coordinate in physical space is also dynamically moving
(for this case, an additional world coordinate xi is accompanying the mesh coordinate ui). During
prediction, a simulator f (classical or learned) autoregressively predicts system’s state M̂ t+1 at the
next time step based on its previous prediction M̂ t at previous time step:

M̂ t+1 = f(M̂ t), t = 0, 1, 2, ... (1)

where M̂0 = M0 is the initial state. During the prediction, both the dynamic features V t at the mesh
nodes, and the mesh topology Et can be changing. The error is typically computed by comparing the
prediction and ground-truth after long-term prediction: error := ℓ(M̂ t,M t) for a metric ℓ (e.g. MSE,
RMSE), and the computation cost (in terms of floating point operations, or FLOPs) typically scales
with the size of the mesh (e.g. the number of nodes). The task is to evolve the system long-term into
the future, with a low error and a constraint on the computational cost. We review related work in
Appendix A.

3 Method

In this section, we detail our LAMP method. We first introduce its architecture in Sec. 3.1. Then we
introduce its learning method (Sec. 3.2), including learning objective and training, and technique to
let it learn to adapt to varying importance of error and computation.

3.1 Model architecture

The model architecture of LAMP consists of two components: an actor-critic which updates the mesh
topology, and an evolution model which evolves the states defined on the mesh. We will detail them
one by one.

Actor-critic. The actor-critic consists of a policy network f policy
φ (with parameter φ) which predicts

the probability of performing the spatial coarsening or refining actions, and a value network f value
φ

which evaluates the long-term expected reward of the policy network:

P (A = at|M = M t, β) = pφ(a
t|M t, β) = f policy

φ (M t, β) (2)

v̂t = f value
φ (M t, β) (3)

where at is the (refining and coarsening) action performed on the edges Et so that it will become
Êt+1. The policy network f policy

φ outputs the probability of performing such action and can sample
from this probability. vt estimates the “value” of the current policy starting from current state M t

(for more information, see Sec. 3.2 below). The explicit dependence on β (as the β in Eq. 7) allows
the policy and value network to condition on the varying importance of error and computation. Given
the predicted mesh Êt+1 and the current node features V t on the current mesh Et, an interpolation is
performed which obtains the node features on the new mesh:

V̂ ′t = ginterp(V t, Êt+1, Et) (4)
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Now the new intermediate state M̂ ′t = (V̂ ′t, Êt+1) is defined on the new mesh Êt+1.

Evolution model. The second component is an evolution model f evo
θ which takes as input the

intermediate state M ′t defined on Êt+1, and outputs the prediction of node features V̂ t+1 for time
t+ 1:

V̂ t+1 = f evo
θ (M ′t) (5)

Note that in this stage, the mesh topology Êt+1 is kept constant, and the evolution model f evo
θ (with

parameter θ) learns to predict the state based on the current mesh.

Taken together, Eqs. (2)(4)(5) evolve the system state from M t at time t to state M̂ t+1 =

(V̂ t+1, Êt+1) at t + 1. During inference, they are executed autoregressively following Eq. (1),
to predict the system’s future states M̂ t, t = 1, 2, 3, ..., given an initial state M0.

GNN architecture. One requirement for the evolution model f evo
θ , policy network f policy

φ and value
network f value

φ is that they can operate on changing mesh topology Et. Graph Neural Networks
(GNNs) are an ideal choice that meets this requirement. Since we represent the system’s state as mesh,
we adopt MeshGraphNets (Pfaff et al., 2021) as the base architecture for the above three models.
Specifically, we encode V t as node features for the graph, and encode the mesh topology edges Et

and world edges as two types of edges, and the edge features depend on the relative positions in the
mesh coordinates and world coordinates. Based on the graph, a processor network that consists of N
layers of message passing is performed to locally exchange and aggregate the information:

Z
(e)n+1
ij = MLP(v)

θ (En
ij , Z

(v)n
i , Z

(v)n
j ), Z

(v)n+1
i = MLP(v)

θ (Z
(v)n
i ,

∑
j

Z
(e)n+1
ij ). (6)

where Z
(v)n
i is the latent node vector on node i at layer n, and Z

(e)n
ij is the latent edge vectors on the

nth layer on the edge from node i to node j. We have Z
(v)0
i = V̂ ′t

i and Z
(v)N
i = V̂ t+1

i are input and
predicted node features at time t and t+ 1, respectively, in Eq. (5). Figure 1 provides an illustration
of the architecture. We use an independent processor for the evolution model, and share the processor
for the policy and value networks. After the processor, the latent vectors are concatenated with β
to feed into downstream decoders. For the evolution model f evo

θ , a decoder is operated on the latent
state and outputs the prediction V̂ ′t+1 on the nodes. For the value network, an value MLP is operated
on all nodes, and a global pooling is performed to compute the overall estimated value. For the policy
network, we design the action decoder as follows.

Action representation. To predict the action for policy network and its probability, we first need to
design the action space. Note that compared to typical reinforcement learning problems, here the
action space is extremely high-dimensional and complicated: (1) each edge of the mesh may have the
option of choosing refinement or coarsening. If there are thousands of edges Nedge, then the possible
actions will be on the order of 2Nedge . (2) Not all actions are valid, and many combinations of actions
are invalid. For example, two edges on the same face of the mesh cannot be refined at the same time,
nor can they be both coarsened. To address this high-dimensionality action problem, we introduce
the following design of action space, where for both refinement and coarsening, the policy network
first samples integers K re,Kco ∈ {0, 1, 2, ...Kmax}, and then independently samples K re edges to
perform refinement and Kco edges to perform coarsening, with proper filtering. The combined
action is at = (K re, ere

1 , e
re
2 , ...e

re
Krefine ,K

co, eco
1 , e

co
2 , ...e

co
Kco), where K re,Kco ∈ {0, 1, ...Kmax}, and

ere
k , e

co
k ∈ Et, k = 1, 2, ... The combined log-probability of choosing the action at is given by:

log pφ(at|M t) = log pφ(K re|M t) +

Kre∑
k=1

log pφ(ere
k |M t) + log pφ(Kco|M t) +

Kco∑
k=1

log pφ(eco
k |M t)

This action representation offers several benefits compared to independent sampling of action on
each edge, detailed in Appendix B.

3.2 Learning

The ultimate goal of the learning for LAMP is to optimize the objective Eq. (7) as follows:

L = (1− β) · Error + β · Computation (7)
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for a wide range of β. To achieve this, we break down the above objective into an alternative learning
of two phases: learning the evolution model with objective Levo that minimizes long-term evolution
error, and learning the policy with objective Lpolicy that optimizes both the long-term evolution error
and computational cost.

Learning evolution. In this phase, the evolution model f evo
θ is optimized to reduce the multi-step

evolution error for the evolution model. As before, we denote M t+s, t = 0, 1, 2, ..., s = 0, 1, ...S as
the state of the system at time t+ s simulated by the ground-truth solver with very fine-grained mesh,
and denote M̂ t+s, t = 0, 1, 2, ..., s = 0, 1, 2, ..S as the prediction by the current LAMP following the
current policy, up to a horizon of S steps into the future. We further denote M̂ ′′t+s, t = 0, 1, 2, ..., s =
0, 1, 2, ..S as the prediction by the current evolution model on the fine-grained mesh, where its mesh
is provided as ground-truth mesh Et+s at each time step. Then the loss is given by:

Levo = Levo
S [f policy

φ , f evo
θ ; M̂ t] + Levo

S [I, f evo
θ ; M̂ ′′t] (8)

=

S∑
s=1

αpolicy
s ℓ(M̂ l+s,M l+s) +

S∑
s=1

αI
sℓ(M̂

′′l+s,M l+s) (9)

Essentially, we optimize two parts of the evolution loss: (1) Levo
s [f policy

φ , f evo
θ ; M̂ t] (first term) which is

the evolution loss by following policy network f policy
φ and evolution model f evo

θ , starting at initial state
of M̂ t for S steps. (here αpolicy

s is the coefficient for the s-step loss with loss function ℓ). This makes
sure that evolution model f evo

θ adapts to the current policy f policy
φ that designates proper computation.

(2) The second part of the loss, Levo
s [I, f evo

θ ; M̂ ′′t], is the evolution loss by using the ground-truth
fine-grained mesh and evolved by the evolution model f evo

θ , starting at initial state of fine-grained
mesh M̂ ′′t and evolve for s steps. This encourages the evolution model to learn to utilize more
computation to achieve a better prediction error.

Learning the policy. In this phase, the policy network f policy
φ learns to update the spatial resolution

(refinement or coarsening of mesh) at each location, to improve both the computation and the
prediction error. Since the spatial refinement and coarsening are both discrete actions, and the metric
of computation is typically non-differentiable, we use Reinforcement Learning (RL) to learn the
policy. Specifically, we model it as a Markov Decision Process (MDP), where the environment state
is the system’s state M t, the actions are the local refinement or coarsening at each edge of Et, and
we design the reward as the improvement on both the error and computation, between following the
current policy’s action, and an counterfactual scenario where the agent follows an identity policy I
that does not update the mesh topology, starting on the initial state M̂ t. Concretely, the reward is:

rt = (1− β) ·∆Error + β ·∆Computation (10)

∆Error = Levo
S [I, f evo

θ ; M̂ t]− Levo
S [f policy

φ , f evo
θ ; M̂ t] (11)

∆Computation = CS [I, f evo
θ ; M̂ t]− CS [f policy

φ , f evo
θ ; M̂ t] (12)

Here CS [·] is a surrogate metric that quantifies the computation based on the predicted mesh topology
Êt+1, Êt+2, ...Êt+S up to S steps into the future. In this paper we use the number of nodes as the
surrogate metric for measuring the computation, since typically for the GNNs, the computation (in
terms of FLOPs) scales linearly with the number of nodes (since each node has a bounded number
of edges on the mesh, the number of edges thus also scales linearly with number of nodes, so will
message passing and node updates).

To optimize the reward rt, we employ the standard REINFORCE algorithm as used in (Sutton et al.,
1999; Hafner et al., 2021) to update the policy network f policy

φ , with the following objective:

Lactor
β = Et

[
−log pφ(at|M t, β)sg(rt − f value

φ (M t, β))− η · H[pφ(a
t|M t, β)]

]
(13)

Here H[·] is the entropy, which encourages the action to have higher entropy to increase exploration,
where η here is a hyperparameter. The sg(·) is stop-gradient. Essentially, the first term in loss Lpolicy

encourages to increase the log-probability of actions that have a higher “advantage”, where the
advantage is defined as the difference between the current reward rt that follows the current action at

taken, and the expected reward (value) f value
φ (M t, β) that follows the current policy starting from the

current state M t. We can also think of it as an actor-critic where the critic tries to evaluate accurately
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the expected reward of the current policy, and an actor (policy) is trying to exceed that expectation.
To train the value network, we use MSE loss:

Lvalue
β = Et

[
(f value

φ (M t, β)− rt)2
]

(14)

Learning to adapt to varying β. In the overall objective (Eq. 7), the β stipulates the relative
importance between Error and Computation. β = 0 means we only focus on minimizing Error,
without constraint on Computation. β = 1 means we only focus on minimizing computation, without
considering the evolution error. In practice, we typically wish to improve both, with a β ∈ (0, 1) that
puts more emphasis on one metric but still considers the other metric. To allow LAMP to be able to
operate at varying β at inference time, during the learning of policy, we sample β uniformly within a
range B ⊆ [0, 1] (e.g. B can be [0, 1] or [0, 0.5]), for different examples within a minibatch, and also
train the policy and value network jointly, where the total loss Lpolicy is the weighted sum of the two
policy and value losses:

Lpolicy = Eβ∼B[L
actor
β + αvalue · Lvalue

β ] (15)

where αvalue is a hyperparameter, which we set as 0.5. In this way, the policy can learn a generic way
of spatial coarsening and refinement, conditioned on β. For example, for smaller β that focuses more
on improving error, the policy network may learn to refine more on dynamic regions and coarsen less,
sacrificing computation to improve prediction error.

4 Experiments

In the experiments, we set out to answer the following questions on our proposed LAMP: (1) Can
LAMP learn to coarsen and refine the mesh, focusing more computation on the more dynamic regions
to improve prediction accuracy? (2) Can LAMP improve the Pareto frontier of Error vs. Computation,
compared to state-of-the-art deep learning surrogate models? (3) Can LAMP learn to condition on the
β to change is behavior, and perform varying amount of refinement and coarsening depending on the
β? We evaluate our LAMP on two challenging datasets: (1) a 1D benchmark nonlinear PDEs , which
tests generalization of PDEs in the same family (Brandstetter et al., 2022); (2) a mesh-based paper
simulation generated by the ArcSim solver (Narain et al., 2012). Both datasets possess multi-scale
characteristics where some parts of the system is highly dynamic, while other parts are changing
more slowly.

4.1 1D nonlinear family of PDEs

Figure 2: Example rollout result of our LAMP on 1D nonlinear PDEs with initial state on 50 vertices
which is uniformly downsampled from the 100 vertices. The rollout is performed over 200 time
steps, where different color denotes the system’s state at different time. On each state, we also
plot the corresponding mesh as black dots. The upper green and lower blue band shows the added
and removed nodes of the mesh, comparing the end mesh and initial mesh. We see that with a
smaller β (e.g. β = 0.1) that emphasizes more on “Error”, it refines more on highly-dynamic regions
(near shock front) and coarsens less. With a larger β (e.g. β = 0.7) that focuses more on reducing
computation, it almost doesn’t refine, and choose to coarsen on more static regions.

Data and Experiments. In this section, we test LAMP’s ability to balance error vs. computation
tested on unseen equations with different parameters in a given family. We use the 1D benchmark in
Brandstetter et al. (2022), whose PDEs are given by
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[
∂tu+ ∂x(αu

2 − β∂xu+ γ∂xxu)
]
(t, x) = δ(t, x) (16)

u(0, x) = δ(0, x), δ(t, x) =

J∑
j=1

Ajsin(ωjt+ 2πℓjx/L+ ϕj) (17)

The parameter for the PDE is given by p = (α, β, γ). The term δ is a forcing term (Bar-Sinai et al.,
2019) with J = 5, L = 16 and coefficients Aj and ωj sampled uniformly from Aj ∼ U [−0.5, 0.5],
ωj ∼ U [−0.4, 0.4], ℓj ∈ {1, 2, 3}, ϕj ∼ U [0, 2π). We uniformly discretize the space to nx = 200
in [0, 16) and uniformly discretize time to nt = 250 points in [0, 4]. Space and time are further
downsampled to resolutions of (nt, nx) ∈ {(250, 100), (250, 50), (250, 33)} as initial resolution. We
use the E2 scenario in the benchmark, which tests the model’s ability to generalize to novel parameters
of PDE with the same family. Specifically, we have that the parameter p = (1, η, 0), η ∼ U [0, 0.2].

As our LAMP autoregressively simulate the system, it can refine or coarsen the mesh at appropriate
locations by the policy network f policy

φ , before evolving to the next state with the evolution model
f evo
θ . We evaluate the models with the metric of Computation and long-term evolution Error. For

the computation, we use the average number of vertices throughout the full trajectory as a surrogate
metric, since the number of floating point operations typically scales linearly with the number of
vertices in the mesh. For long-term evolution error, we use the cumulative MSE over rollout time
steps, starting with initial state with a bundle of S = 25 time steps t = [25, 26, ...49] and predict the
rest 175 steps. We compare LAMP with strong baselines of deep learning-based surrogate models,
including CNNs, Fourier Neural Operators (FNO) (Li et al., 2021), and MP-PDE (Brandstetter et al.,
2022) which is a state-of-the-art deep learning-based surrogate models for this task. Our base neural
architecture is based on MeshGraphNets (Pfaff et al., 2021) which is a state-of-the-art GNN-based
model for mesh-based simulations. We compare an ablation of our model that does not perform
remeshing (LAMP no remeshing), and a full version of our model (LAMP). We perform three groups
of experiments, starting at initial number vertices of 33, 50 and 100 that is downsampled from the
100-vertex mesh, respectively. All the baselines do not perform remeshing, and our full model has
the ability to perform remeshing that coarsen or refine the edges at each time step. Note that for all
models, our metric of cumulative MSE is computed on the full ground-truth mesh with 100 vertices,
where the values of prediction are linearly interpolated onto the location of the ground-truth. This
prevents the model to “cheat” by reducing the number of vertices and only predict well on those
vertices. Additional details are given in Appendix C.1.

Table 1: Result (error and computational cost) for 1D family of nonlinear PDEs, for a total rollout
trajectory of 200 time steps, providing the first 25 steps as input.

Model Initial # vertices Average # vertices Error (MSE)
CNN 33 33.0 2.66
FNO 33 33.0 2.83
MP-PDE 33 33.0 1.73
LAMP (no remeshing) 33 33.0 1.12
LAMP (ours) 33 37.6 1.05
CNN 50 50.0 1.10
FNO 50 50.0 1.79
MP-PDE 50 50.0 0.98
LAMP (no remeshing) 50 50.0 1.08
LAMP (ours) 50 53.2 0.75
CNN 100 100.0 0.81
FNO 100 100.0 1.39
MP-PDE 100 100.0 0.88
LAMP (no remeshing) 100 100.0 0.75
LAMP (ours) 100 100.0 0.76

Results. Table 1 shows the results. We see that our LAMP outperforms all baselines by a large
margin, achieving an error reduction of 39.3%, 23.5% and 6.2% compared with the best performing
baseline of CNN, FNO and MP-PDE. Importantly, we see that compared with an ablation with no
remeshing, our full LAMP is able to significantly reduce error (by 6.3% error reduction for 33 initial
vertices scenario, and 30.6% for 50 vertices scenario), with only slight increase of average number of
vertices (by 13.9% and 6.4% increase, respectively). This shows the ability of LAMP to adaptively
trade computation to improve long-term prediction error.
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Figure 3: Error vs. average number of
vertices with varying β, for two LAMP
models trained with initial number of
vertices of 33 (stars) and 50 (circles).

To investigate whether LAMP is able to focus computation
on the most dynamic region, we visualize example trajec-
tories of LAMP, as shown in Fig. 2 and more examples in
Fig. 7 in Appendix D.1. Starting with 50 vertices, we test
our model on different β, where smaller β focuses more on
improving error. We see that with smaller β (e.g. β = 0.1
in Fig. 2), LAMP is able to add more nodes (33 nodes) on
the most dynamic region, and only coarsen few (removing 3
nodes in total). With a larger β that focuses more on reduc-
ing computation, we see that LAMP refines less and coarsen
more, and only coarsen on the more slowly changing region.
Additionally, we visualize the error vs. number of vertices
for varying β for two different models over all test trajec-
tories in Fig. 3. We see that with increasing β, LAMP is
able to reduce the vertices more, with only slight increase
of error. In summary, the above results show that LAMP is
able to focus computation on dynamic regions, and able to
adapt to different β at inference.

4.2 2D mesh-based simulation

Model Initial # vertices Average # vertices Error (MSE)

LAMP (no remeshing) 81.0 81.0 1.9e-4
LAMP (ours) 81.0 87.9 1.6e-4

Table 2: Computation vs. Error for 2D mesh-based paper simulation between LAMP (with remeshing)
and LAMP (without remeshing). With the proposed learned remeshing framework, LAMP are able
to achieve better roll-out error with slight increase of average number of vertices. Reported number is
the MSE over 10 learned-simulator-steps roll-out averaged over 50 test trajectories.

Here we evaluate our LAMP’s ability on a more challenging setting with paper folding simulation.
The paper in this simulation is square-shaped and its boundary edge length is 1. During the simulation,
4 corners of the paper receive different magnitude of force. When generating ground-truth trajectories
by the ArcSim solver (Narain et al., 2012), we set the minimum and maximal length of edges to be
0.01 and 0.2. We evaluate the models with the metric of computation and long-term evolution error.
Similar to the Section 4.1, we use the average number of nodes throughout the full trajectory as a
surrogate metric for complexity. As shown in Table 2, our model is able to add more resolution to
the high curvature region, and achieve better roll-out accuracy than the ablation without remeshing.
Additional details (including visualization) of the experiments and 2D triangular mesh remeshing
actions are given in Appendix C.2. In Fig. 6 in Appendix C.2 and Fig. 8 in Appendix D.2, we see
that our LAMP learns to add more mesh onto the more dynamic regions near to the folding part (with
high curvature), showing LAMP’s ability to assign computation to the most needed region.

5 Conclusion

In this work, we have introduced LAMP, the first fully deep learning-based surrogate model that
jointly learns the evolution of physical system and optimizes assigning the computation to the most
dynamic regions. In 1D and 2D datasets, we show that our method is able to adaptively perform
refinement or coarsening actions, which improves long-term prediction error than strong baselines of
deep learning-based surrogate models. We hope our method provides a useful tool for more efficient
and accurate simulation of physical systems.
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Appendix
A Related Works

Most classical solvers use a fixed mesh Et whose topology does not vary with time. For example,
the mesh Et ≡ E0 can be a 2D or 3D regular grid, or an irregular mesh that is pre-generated at the
beginning of the simulation (Geuzaine & Remacle, 2009). Classical Adaptive Mesh Refinement
(AMR) (Narain et al., 2012) addresses the multi-scale challenge by adaptively refine or coarsen the
mesh resolution, with heuristics based on local state variation. Since they are based on classical
solvers, they may not benefit from the many advantages that deep learning brings (GPU acceleration,
less stringent spatial and temporal resolution requirement, explicit forward, etc.). In contrast, our
LAMP is a deep-learning based surrogate model, and can benefit from the many advantages (e.g.
speedup) offered by the deep learning framework. Furthermore, since it directly optimize for a linear
combination of error and computation, it has the potential to directly optimize to a better error vs.
computation tradeoff, nearer to the true Pareto frontier.

Deep-learning based surrogate models, although having achieved speedup compared to classical
solvers, still typically operate on a fixed grid or mesh (Li et al., 2021; Sanchez et al., 2020; Wu et al.,
2022; Zhao et al., 2022; Han et al., 2022), and have yet to exploit the multi-scale nature typical in
physical simulations. One important exception is MeshGraphNets (Pfaff et al., 2021), which both
learns how to evolve the state V t, and uses supervised learning to learn the spatial adaptation that
changes Et. However, since it uses supervised learning where the ground-truth mesh is provided
from the classical solver with AMR, it cannot exceed the performance of AMR in terms of error vs.
computation tradeoff, and has to interact with the classical solver in inference time to perform the
adaptive mesh refinement. In contrast, our LAMP directly optimizes for the objective, which uses
reinforcement learning for learning the policy of refinement and coarsening, and has the potential to
surpass classical AMR and achieve a better error vs. computation tradeoff. Moreover, a single trained
LAMP has the ability to adapt to the full range of relative importance β of error vs. computation at
inference time, thus can be more versatile than MeshGraphNets with a fixed strategy.

B Model Architecture

Here we detail the architecture of LAMP, complementary to Sec. 3.1. This architecture is used
throughout all experiment, with just a few hyperparameter (e.g. latent dimension, message passing
steps) depending on the dimension (1D, 2D) of the problem.

B.1 Architecture

In this subsection, we first detail the base architecture that is common among the evolution model
f evo
θ , the policy network f policy

φ , and value network f value
φ . Then describe their respective aspects, and

explain the benefits of our action representation.

Base architecture. We use MeshGraphNets Pfaff et al. (2021) as our base architecture, for the
evolution model f evo

θ , the policy network f policy
φ , and value network f value

φ . All three models have an
encoder and a processor. For the encoder, we encode both node features and edge features, uplift to
latent dimension using MLPs, to Ze

ij , Zv
i . For the processor, it consists of N message passing layers.

For each message-passing layer, we first update the edge features using current edge features, and
connected node features, Z(e)n+1

ij = MLP(v)
θ (En

ij , Z
(v)n
i , Z

(v)n
j ), then we update the node features

using current node feature and connected edge features, Z(v)n+1
i = MLP(v)

θ (Z
(v)n
i ,

∑
j Z

(e)n+1
ij ).

Depending on the models and their intended functions, different models have different modules for
predicting the output, described as follows.

Evolution model. For the evolution model, the output is at each node, and uses the last latent vector
on the node, feeds into a decoder, to predict the output V̂ t+1

i = Z
(v)N
i (See Eq. 6) at the next time

step t+ 1.

Policy network and value network. Both f policy
φ and f value

φ shares the same processor f processor
φ ,

which has N message-passing layers. The final node feature is appended with β for the controllability.
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The f policy
φ takes the encoded graph as input and consist of two parts - a global mean pooling is used to

obtain the global latent representation of the whole graph, which is then fed into a MLP(k) followed
by a action specific linear layer to predict the probability distribution for different number of actions
should be performed; an action specific MLP(a) is applied on each edge to predict the probability of
a certain action (i.e. split, coarse) to be applied on this edge. The f value

φ takes the same encoded graph
as input, and perform a global mean pooling to obtain the global latent features for the graph, which
is then feed through a linear layer to predict the accuracy reward, and another linear layer to predict
the computation reward, the final predicted value is, v = loss + β · compute.

Benefits of our action representation. Here we first elaborate the benefits of our action representa-
tion, compared to an independent sampling on each edge. If offers the following benefits:

• The action space reduces from 2Nedge to Nedge
Kmax

, where Nedge is the number of edges.
In the case of Nedge ∼ 1000 and Kmax ∼ 10 ≪ Nedge, the difference in action space
dimensionality is significant, e.g. 21000 = 10300 vs. 100010 = 1030. Therefore, it is easier
to credit assign the reward to appropriate action, with a smaller space of action.

• Compared with each edge performing action independently, now only K ≤ Kmax actions of
refinement or coarsening can be performed. Therefore, it will need to focus on a few actions
that can best improve the objective.

• The sampling of K will also make the policy more “controllable”, since now the K is
explicitly dependent on the β, and learning how many refinement or coarsening action to
take depending on β is much easier than figuring out which concrete independent actions to
take.

B.2 Architectural hyperparameters used in 1D and 2D experiments

Here we detail the architectures used in the 1D and 2D experiment. A summary of the hyperparameters
is also provided in Table 3.

B.2.1 1D nonlinear PDEs

For 1D experiment, our evolution model f evo
θ has N = 3 message-passing layers in the processor and

latent dimension of 64. It uses the SiLU activation (Elfwing et al., 2018). The shared processor for
f policy
φ and f value

φ has N = 3 message-passing layers and latent dimension of 64.

B.2.2 2D mesh-based simulation

For f evo
θ , we set message passing layers for MeshGraphNets (Pfaff et al., 2021) to be 8. We also

model our message passing function with MLP having 56 units followed by SiLU activation (Elfwing
et al., 2018). Here, we share the same message passing function across all the 8 layers because we
found in our experiments that sharing the same message passing function achieved better performance
than having independent MLP for each of the layers. The shared processor for f policy

φ and f value
φ has

N = 3 message-passing layers and latent dimension of 56.

C Experiment Details

In this section, we provide experiment details for 1D and 2D datasets. Firstly, we explain the use of
reward rt (in Eq. 13) as the value target instead of the typical recursive definition. Then we detail the
training details for 1D and 2D in the following subsections.

Use of rt as value target. Different from typical RL learning scenario (computer games or robotics)
where the episode always has an end, and the reward is bounded, here in physical simulations, there
are two distinct characteristics: (1) the rollout can be performed infinite time steps into the future,
(2) as the rollout continues, at some point the error between predicted state and ground-truth state
will diverge, so the error is not bounded. Based on these two characteristics, a value target based
on the error for infinite horizon (e.g. the one used in Dreamer v2 (Hafner et al., 2021)) does not
make sense, since it will not be bounded. In our experiment, we also observe similar phenomena, in
which both the value target and value prediction continue to increase indefinitely. Thus, we use the
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average reward in the S step rollout as the value target, which measures the error and computation
improvement within the rollout window we care about and proves to be much more stable.

C.1 1D nonlinear PDEs

The action space for 1D problem is composed with split and coarsen actions. The coarse action is
initially defined on all edges, which is then sampled base on the predicted number of coarse actions,
and probability of each edge to be coarsen. Among those sampled edges, if two edges share a
common vertex, the right most one will be removed.

During training, to let the evolution model adapt to the varying size of the mesh, we perform
random node dropout, where we randomly sample 10% of the minibatch to perform dropout, and if a
minibatch is selected for node dropout, for each example, randomly drop 0-30% of the nodes in the
mesh.

C.2 2D mesh-based simulation

In this subsection, we give details on remeshing actions and how to generate 2d mesh data based on
Narain et al. (2012). We also details pre-training of our evolution function.

Action Space. There are 3 kinds of actions defined in the 2D mesh simulation: split, flip, and coarsen.
Split action in 2D case can be performed on any edges that are shared with two triangular faces in a
mesh and also on the boundary edges of the mesh. The split action results in 4 triangles (Fig. 4a).
Flip action is also performed on edges shared with two faces, but it also requires some additional
condition, that is when sum of angles at vertices located at opposite side of edges is greater than π:
see also Fig 4b. In our remeshing function, all edges satisfying the condition are flipped. Finally,
coarsen action has relatively strong conditions. One condition is that one of the source or target nodes
of a coarsened edge needs to be of degree 4 and another condition is that all the faces connected to
the node of degree 4 needs to have acute angles except angles around the node. See also Fig. 4c. We
filter the sampled actions from f policy

φ base on aforementioned conditions to get sets of valid edges to
split and coarse.

(a) Split action.
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(b) Flip action.
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(c) Coarsen action.

Figure 4: Illustration of split, flip and coarsen actions. The actions are performed on edges.

Generating data. To generate ground-truth data, we use a 2D triangular mesh-based AMR simulator
Narain et al. (2012). This simulator adopts adaptive anisotropic kernel method to automatically
conform to the geometric and dynamic detail of the simulated cloth: see also Fig. 5. In our experiment,
each trajectory consists of 325 meshes (excluding initial mesh.) Each mesh consists of vertices and
faces and every vertex is equipped with its 2D coordinates as well as 3D world coordinates. Time
frame between two consecutive meshes are set to be 0.04. The edge length was set to range between
0.01 and 0.2. Note that decision on respective remeshing actions is made based on the 2D coordinates.

For training and test dataset, we generate 1050 configurations specifying direction and magnitude
of forces applied to 4 corners of meshes, and generate 1000 trajectories for training data and use 50
trajectories as test data based on the generated configurations. When training our evolution model,
we downsample data by half of the original data; we use every other meshes starting from an initial
mesh in each trajectory. The reason of downsampling is that we observed that cumulative RMSE
over rollout with model trained with full trajectories blew up after iteration exceeded 160 steps.

Pre-training of Evolution function. We model our evolution function f evo
θ with MeshGraphNets

(Pfaff et al., 2021). The input of the model adopts a graph representation where a vertex is equipped
with 3D velocity computed from mesh information at both current and past time steps, and feature
for an edge consists of relative distance and its magnitude of boundary vertices of the edge. Since
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T=0 T=10 T=20 T=30 T=40

Figure 5: Part of trajectories generated with different configurations. As the time goes, finer triangular
faces are added to high-curvature regions in meshes.

Figure 6: Example result of 2D mesh-based paper simulation. We observed that LAMP is adding
more resolution to the high-curvature region to resolve the details. Figure a) is at t = 0, and figure b),
c) and d) are LAMP (no remeshing), LAMP (ours) and ground truth results at t = 30.

mesh topology varies during the forward iteration, we perform barycentric interpolation on the mesh
at past time step to get interpolated vertex coordinates corresponding to vertices at current time step.

When evaluating our model, we use rollout RMSE, taking the mean for all spatial coordinates, all
mesh nodes, all steps in each trajectory, and all 50 trajectories in the test dataset. The rollout RMSE
achieved 4.45× 10−2 with our best parameter setting. We found that adding noise helped to improve
its performance; we added the noise with scale 0.01 to vertex coordinates.

D Additional visualization

D.1 1D nonlinear PDE experiment

In this section, we provide additional randomly sampled results for the 1D nonlinear PDE experiment,
as shown in Fig. 7. We see that similar to Fig. 2, our LAMP is able to add more vertices to the
locations with more dynamicity, while remove more vertices at more static regions. Moreover, with
increasing β that emphasizes more on reducing computational cost, LAMP splits less and coarsens
more.

D.2 Additional visualization for 2D mesh-based simulation

In this section, we provide additional randomly sampled results for the 2D mesh-based simulation.
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Figure 7: Additional example rollout results with different β of our LAMP on 1D nonlinear PDEs
with initial state on 50 vertices which is uniformly downsampled from the 100 vertices. The rollout is
performed over 200 time steps, where different color denotes the system’s state at different time. The
upper red dots and lower blue dots shows the added and removed nodes of the mesh, comparing the
end and the initial mesh.
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Table 3: Hyperparameters used for training the evolution model and actor-critic.
Hyperparameter name 1D dataset 2D dataset
Hyperparameters for model architecture:
Temporal bundling steps 25 1
f evo
θ : Latent size 64 56
f evo
θ : Activation function SiLU SiLU
f evo
θ : Encoder MLP number of layers 3 4
f evo
θ : Processor number of message-passing layers 3 8
f policy
φ : Latent size 64 56
f policy
φ : Activation function ELU ELU
f policy
φ : Encoder MLP number of layers 2 2
f policy
φ : Processor number of message-passing layers 3 3
f policy
φ : MLP(k): MLP number of layers 2 2
f policy
φ : MLP(k): Activation function ELU ELU
f policy
φ : MLP(a): MLP number of layers 3 3
f policy
φ : MLP(a): Activation function ELU ELU

Hyperparameters for training:
β sampling range B [0, 0.5] [0, 0.5]
Loss function MSE L2
Number of epochs for pre-training evolution model 50 100
Number of epochs for training actor-critic 30 30
Batch size 128 16
Evolution model learning rate for pre-training 10−3 10−3

Evolution model learning rate during policy learning 10−4 10−4

Value network learning rate 10−4 10−4

Policy network learning rate 5× 10−4 5× 10−4

Optimizer Adam Adam
Coefficient for value loss 0.5 0.5
Maximum number of actions Kmax 20 20
Maximum gradient norm 2 2
Optimizer scheduler cos cos
Input noise amplitude 0 10−2

Horizon S 4 4
Weight decay 0 0
Entropy coefficient η 10−2 2× 10−3
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Figure 8: Additional example rollout results for 2D paper folding, at t = 15. We see that our LAMP
(third column) learns to add more edges to locations with higher curvature, resulting in better rollout
performance than with no remeshing.
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