
Under review as a conference paper at ICLR 2024

TOWARDS UNDERSTANDING THE EFFECT OF PRE-
TRAINING LABEL GRANULARITY

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we study how the granularity of pretraining labels affects the gen-
eralization of deep neural networks in image classification tasks. We focus on
the “fine-to-coarse” transfer learning setting, where the pretraining label space
is more fine-grained than that of the target problem. Empirically, we show that
pretraining on the leaf labels of ImageNet21k produces better transfer results on
ImageNet1k than pretraining on other coarser granularity levels, which supports
the common practice used in the community. Theoretically, we explain the benefit
of fine-grained pretraining by proving that, for a data distribution satisfying certain
hierarchy conditions, 1) coarse-grained pretraining only allows a neural network
to learn the “common” or “easy-to-learn” features well, while 2) fine-grained pre-
training helps the network learn the “rarer” or “fine-grained” features in addition
to the common ones, thus improving its accuracy on hard downstream test sam-
ples in which common features are missing or weak in strength. Furthermore,
we perform comprehensive experiments using the label hierarchies of iNaturalist
2021 and observe that the following conditions, in addition to proper choice of
label granularity, enable the transfer to work well in practice: 1) the pretraining
dataset needs to have a meaningful label hierarchy, and 2) the pretraining and
target label functions need to align well.

1 INTRODUCTION

Modern deep neural networks (DNNs) are highly effective at image classification. In addition to
architectures, regularization techniques, and training methods Pouyanfar et al. (2018); Khan et al.
(2020); LeCun & Bengio (1998); Krizhevsky et al. (2012); Sutskever et al. (2013); Kingma & Ba
(2015); He et al. (2016); Simonyan & Zisserman (2015); Szegedy et al. (2015); Xie et al. (2017);
Ioffe & Szegedy (2015); Srivastava et al. (2014); Zhang et al. (2019), the availability of large datasets
of labeled natural images significantly contributes to the training of powerful DNN-based feature
extractors, which can then be used for downstream image classification tasks Deng et al. (2009);
Krizhevsky (2009); Sun et al. (2017); Zhou et al. (2018); Van Horn et al. (2018). DNN mod-
els, especially the state-of-the-art vision transformers, are well-known to require pre-training on
large datasets for effective (downstream) generalization Dosovitskiy et al. (2021); He et al. (2016);
Krizhevsky et al. (2012). However, another important dataset property that is often overlooked is
the high granularity of the label space: there is limited understanding of why such large pretraining
label granularity is necessary, especially when it can be several orders of magnitude greater than the
granularity of the target dataset.

Studying the effect of pretraining label granularity in general is a challenging task, due to the wide
variety of applications in which transfer learning is used. To make the problem more tractable,
we focus on the following setting. First, we adopt the simplest possible transfer methodology:
pretraining a DNN on an image classification task and then finetuning the model for a target problem
using the pretrained backbone. Second, we focus on the “fine-to-coarse” transfer direction, where
the source task has more classes than the target task. This transfer setting is common in the empirical
transfer learning works, especially for large models Dosovitskiy et al. (2021); Radford et al. (2021);
Steiner et al. (2022); Zhang et al. (2021); Ridnik et al. (2021).

In this setting, we empirically observed an interesting relationship between the pretraining label
granularity and DNN generalization, which can be roughly summarized as follows:

1

Under review as a conference paper at ICLR 2024

Under certain basic conditions on the pretraining and target label functions, DNNs pretrained at
reasonably high label granularities tend to generalize better in downstream classification tasks than
those pretrained at low label granularities.

102 103 104
Number of classes (pretraining)

74

76

78

80

82

Im
ag

eN
et

1k
 v

al
id

at
io

n
ac

cu
ra

cy

Baseline, trained on ImageNet1k
WordNet hierarchy, ImageNet21k

Figure 1: ImageNet21k→ImageNet1k
transfer using a ViT-B/16 model. Black
line: pretrained on the WordNet hierar-
chy of IN21k, finetuned on IN1k. Red
dotted line: baseline, trained and eval-
uated on IN1k. When the pretraining
number of classes is ∼ 103, even though
IN21k has about 10 times the samples of
IN1k, the finetuned network’s accuracy
is hardly better than the baseline’s.

Figure 1 shows an example of this relationship in the
transfer setting of ImageNet21k→ImageNet1k. Further
details of this experiment are presented in Section 5.1
and the appendix. In this figure, we observe an increase
in the network’s validation accuracy on the target dataset
when the pretraining label granularity increases. This
indicates that the pretraining label granularity influences
the features learnt by the neural network, because after
pretraining on ImageNet21k, only the feature extractor
is used for finetuning on ImageNet1k.

Closer examination of Figure 1 suggests that the fea-
tures learned by a DNN pretrained at lower granularities
already allow it to classify a significant portion of the
dataset, and finer-grained pretraining brings incremen-
tal improvements to the network’s accuracy. This sug-
gests two things: first, finer-grained pretraining helps the
DNN learn more features or certain features better than
pretraining at lower granularities; second, these “fine-
grained features” potentially help the DNN classify a
small set of samples that are too hard for a DNN pre-
trained at lower granularities. These observations sug-
gest a correspondence between label hierarchy and fea-
ture learnability, similar in spirit to the multi-view data
property pioneered by Allen-Zhu & Li (2023).

Our major findings and contributions are as follows.

• (Theoretical Analysis) We provide a theoretical explanation for the empirical observation above.
Specifically, we prove mathematically that, for a data distribution satisfying certain hierarchy
conditions, coarse-grained pretraining only allows a neural network to learn the “common” or
“easy-to-learn” features well, while fine-grained pretraining helps the network learn the “rarer”
or “fine-grained” features in addition to the common ones, thus improving its accuracy on hard
samples where common features are missing or weak in strength.

• (Empirical Analysis) We show that pretraining on the leaf labels of ImageNet21k produced bet-
ter transfer results on ImageNet1k than pretraining on other coarser granularity levels, which
supports the common practice used in the community. Furthermore, we conducted comprehen-
sive experiments using the label hierarchies of iNaturalist 2021, and observed that the following
conditions, in addition to proper choice of label granularity, enable the transfer to work well in
practice: 1) the pretraining dataset needs to have a meaningful label hierarchy, 2) the pretraining
and target label functions need to align well.

2 RELATED WORK

2.1 THEORETICAL WORK

At the theory front, there has been a growing interest in explaining the success of DNNs through the
lens of implicit regularization and bias towards “simpler” solutions, which can prevent overfitting
even when DNNs are highly overparameterized Lyu et al. (2021); Kalimeris et al. (2019); Ji &
Telgarsky (2019); De Palma et al. (2019); Huh et al. (2017). However, there is also a competing view
that DNNs can learn overly simple solutions, known as “shortcut learning”, which can achieve high
training and testing accuracy on in-distribution data but generalize poorly to challenging downstream
tasks Geirhos et al. (2020); Shah et al. (2020); Pezeshki et al. (2021). To our knowledge, Shah et al.
(2020); Pezeshki et al. (2021) are the closest works to ours, as they both demonstrate that DNNs

2

Under review as a conference paper at ICLR 2024

tend to perform shortcut learning and respond weakly to features that have a weak “presence” in the
training data. Our work differs from Shah et al. (2020); Pezeshki et al. (2021) in several key ways.

On the practical side, we focus on how the pretraining label space affects classification generaliza-
tion, while Shah et al. (2020); Pezeshki et al. (2021) primarily focus on demonstrating that simplicity
bias can be harmful to generalization. Even though Pezeshki et al. (2021) proposed a regularization
technique to mitigate this, their experiments are too small-scale. On the theory side, Pezeshki et al.
(2021) use the neural tangent kernel (NTK) model, which is unsuitable for analyzing our transfer-
learning type problem because the feature extractor of an NTK model barely changes after pretrain-
ing. The theoretical setting in Shah et al. (2020) is more limited than ours because they use the hinge
loss while we use a more standard exponential-tailed cross-entropy loss. Additionally, our data dis-
tribution assumptions are more realistic, as they capture the hierarchy in natural images, which has
direct impact on the (downstream) generalization power of the pretrained model, according to our
results.

Our theoretical analysis is inspired by a recent line of work that analyzes the feature learning dy-
namics of neural networks. This line of work tracks how the hidden neurons of shallow nonlinear
neural networks evolve to solve dictionary-learning-like problems Allen-Zhu & Li (2022; 2023);
Shen et al. (2022b). In particular, our work adopts a multi-view approach to the data distribution,
which was first proposed in Allen-Zhu & Li (2023), while we initialize our network in a similar
way to Allen-Zhu & Li (2022). However, the learning problems we analyze and the results we aim
to show are significantly different from the existing literature. Therefore, we need to derive the
gradient descent dynamics of the neural network from scratch.

2.2 EXPERIMENTAL WORK

There is a growing body of empirical research on how to improve classification accuracy by manip-
ulating the (pre-)training label space. One line of research focuses on using fine-grained labels to
improve DNNs’ semantic understanding of natural images and their robustness in downstream tasks
Mahajan et al. (2018); Singh et al. (2022); Yan et al. (2020); Shnarch et al. (2022); Juan et al. (2020);
Yang et al. (2021); Chen et al. (2018); Ridnik et al. (2021); Son et al. (2023); Ngiam et al. (2018);
Cui et al. (2018). For example, Mahajan et al. (2018); Singh et al. (2022) use noisy hashtags from
Instagram as pretraining labels, Yan et al. (2020); Shnarch et al. (2022) apply clustering on the data
first and then treat the cluster IDs as pretraining labels, Juan et al. (2020) use the queries from image
search results, Yang et al. (2021) apply image transformations such as rotation to augment the label
space, and Chen et al. (2018); Ridnik et al. (2021) include fine-grained manual hierarchies in their
pretraining processes. Our experimental results corroborate the utility of pretraining on fine-grained
label space. However, we focus on analyzing the operating regime of this transfer method, specifi-
cally how pretraining label granularity, label function alignment, and training set size influence the
quality of the model. We show that this transfer method only works well within a specific operating
regime.

Another line of research focuses on exploiting the hierarchical structures present in (human-
generated) label space to improve classification accuracy at the most fine-grained level Yan et al.
(2015); Zhu & Bain (2017); Goyal & Ghosh (2020); Sun et al. (2017); Zelikman et al. (2022); Silla
& Freitas (2011); Shkodrani et al. (2021); Bilal et al. (2017); Goo et al. (2016). For example, Yan
et al. (2015) adapt the network architecture to learn super-classes at each hierarchical level, Zhu &
Bain (2017) add hierarchical losses in the hierarchical classification task, Goyal & Ghosh (2020)
propose a hierarchical curriculum loss for curriculum learning. In contrast, our work focuses on the
influence of label granularity on the model’s generalization to target tasks with a coarser label space
than the pretraining one.

3 PROBLEM FORMULATION AND INTUITION

In this section, we introduce the relevant notations and training methodologies, and discuss our
intuition on how label granularity influences DNN feature learning.

3

Under review as a conference paper at ICLR 2024

3.1 NOTATIONS AND METHODOLOGY

For a DNN-based classifier, given input image X , we can write its (pre-logit) output for class c as

Fc(X) = ⟨ac,h(Θ;X)⟩ (1)

where ac is the linear classifier for class c, h(Θ; ·) is the network backbone with parameter Θ.

In the transfer learning setting, we denote the sets of input samples for the target and source datasets
as X tgt and X src, and the corresponding sets of labels as Y tgt and Y src, respectively. A dataset can be
represented as D = (X ,Y). For instance, the source training dataset is Dsrc

train = (X src
train,Y src

train). The
relevant training and testing datasets are denoted as Dsrc

train,D
tgt
train,D

tgt
test. Finally, the granularity of a

label set is denoted as G(Y), which represents the total number of classes.

Our transfer learning methodology is as follows. We first pretrain a neural network Fc(·) =
⟨ac,h(Θ; ·)⟩ from random initialization using Dsrc

train (typically with early stopping). This gives
us the pretrained feature extractor h(Θsrc

train; ·). We then either linear probe or finetune it using Dtgt
train,

and evaluate it on Dtgt
test. In contrast, the baseline is simply trained on Dtgt

train and evaluated on Dtgt
test.

3.2 HOW DOES THE PRETRAINING LABEL GRANULARITY INFLUENCE FEATURE LEARNING?

To make our discussion in this subsection more concrete, let us consider an example. Suppose we
have a set of pretraining images that consist of cats and dogs, Dsrc

train = Dcat ∪ Ddog. The target
problem (Dtgt

train,D
tgt
test) requires the DNN to identify whether the animal in the image is a cat or a

dog.

Intuitively, we can say that a group of images belongs to a class because they share certain visual
“features” that are absent, or weak in all other classes. At the coarsest cat-versus-dog hierarchy
level, common cat features distinguish cat images from dog ones; these features are also the most
noticeable because they appear most frequently in the dataset. However, humans can also define
fine-grained classes of cats and dogs based on their breeds. This means that each subclass has its
own unique visual features that are only dominant within that subclass. This leads to an interesting
observation: fine-grained features may be rarer in the dataset, making them more difficult to notice.
We illustrate this observation in Figure 2.

Persian Poodle

Siamese Husky

CAT DOG

X4 X4

X2 Cat, fine-grained X2

Dog, common

Dog, fine-grained

Cat, common

Figure 2: A simplified symbolic representation of the cat versus dog problem. The common features
(green disk and blue triangle) appear more frequently, thus are more noticeable than the fine-grained
features in the dataset. Furthermore, the learner can approximate the solution to the “cat or dog”
problem by simply learning the common features.

Now suppose the pretraining label assignment is the binary “cat versus dog” task. An intelligent
learner can take the arduous route of learning both the common and hard-to-notice fine-grained
features in the two classes. However, the learner can also take “shortcuts” by learning only the
common features in each class to achieve low training loss. This latter form of learning can harm
the network’s generalization in downstream classification tasks because the network can be easily
misled by the distracting irrelevant patterns in the image when the common features are weak in
signal strength. One strategy to force the learner to learn the rarer features well is to explicitly label
the fine-grained classes. This means that within each fine-grained class, the fine-grained features

4

Under review as a conference paper at ICLR 2024

become as easy to notice as the common features. This forces the network to learn the fine-grained
features to solve the classification problem.

4 THEORY OF LABEL GRANULARITY

4.1 SOURCE TRAINING DATA DISTRIBUTION

Persian

Siamese

CAT (+𝟏)

Figure 3: A simplified illustration
of how our intuition in Section 3
translates to the definition of an
easy sample.

We assume that an input sample in Dsrc
train consists of P disjoint

patches of dimension d, in symbols, an input sample X =
(x1,x2, ...,xP) with xp ∈ Rd. We consider the setting where
d is sufficiently large, and all our asymptotic statements are
made with respect to d.

Building on the discussion in Section 3, we base our data dis-
tribution assumptions for the source dataset on our intuition
about the hierarchy of common-versus-fine-grained features in
natural images. For simplicity, we consider only two levels of
label hierarchy. The root of this hierarchy has two superclasses
+1 and −1. The superclass +1 has k+ subclasses, with nota-
tion (+, c) for c ∈ [k+]. The same definition holds for the “−”
classes. As for the input features, since the common and fine-
grained features need to be sufficiently “different”, we push
this intuition to an extreme and assume all the “features” (in
their purest form) have zero correlation and equal magnitude. This leads to the following definition.
Definition 4.1 (Features and hierarchy). We define features as elements of a fixed orthonormal
dictionary V = {vi}di=1 ⊂ Rd. Furthermore, we call v+ ∈ V the common feature unique to samples
in class +1, and v+,c ∈ V to be the fine-grained feature unique to samples of subclass (+, c).1

Definition 4.2 (Sample generation). For an easy sample X belonging to the (+, c) subclass (for
c ∈ [k+]), sample its patches as follows:

1. (Common-feature patches) Approximately s∗ patches are common-feature patches, defined as
xp = αpv+ + ζp, for some (random) αp ≈ 1, ζp ∼ N (0, σ2

ζId);
2. (Subclass-feature patches) Approximately s∗ patches are subclass-feature patch, defined as

xp = αpv+,c + ζp, for some (random) αp ≈ 1, ζp ∼ N (0, σ2
ζId);

3. (Noise patches) For the remaining non-feature patches, xp = ζp, where ζp ∼ N (0, σ2
ζId).

A hard sample is generated in the same way as easy samples, except the common-feature patches
are replaced by noise patches, and we replace approximately s† number of noise patches by “feature-
noise” patches, which are of the form xp = α†

pv− + ζp, where α†
p ∈ o(1), and set one of the noise

patches to ζ∗ ∼ N (0, σ2
ζ∗Id) with σζ∗ ≫ σζ ; these patches serve the role of “distracting patterns”

discussed in Section 3.

Samples belonging to the superclass +1 are the union of the samples of each subclass (+, c). See
Figure 3 for an intuitive illustration of the easy samples.

With the feature-based input sample generation process in place, we can define the source dataset’s
label function, and finally the source training set.
Definition 4.3 (Source dataset’s label mapping). A sample X belongs to the +1 superclass if any
one of its common- or subclass-feature patches contains v+ or v+,c for any c ∈ [k+]. It belongs to
the (+, c) subclass if any one of its subclass-feature patches contains v+,c.
Definition 4.4 (Source training set). We assume the input samples of the source training set as X src

train
are generated as in Definition 4.2; the corresponding labels are generated following Definition 4.3.
Overall, we denote the dataset Dsrc

train.

All of the above definitions also hold for the “−” classes. To see the full problem setup and parameter
choices, please refer to Appendix B.

1We only consider one feature for each (sub-)class for notational simplicity; our work extends to the multi-
feature case easily.

5

Under review as a conference paper at ICLR 2024

4.2 TARGET DATA DISTRIBUTION ASSUMPTIONS

For simplicity and to ensure that baseline and fine-grained training have no unfair advantage over
each other, we make the following assumptions in our theoretical setting: first, the input samples in
the source and target datasets are all generated according to Definition 4.2; second, the true label
function remains the same across the two datasets; third, since we are studying the “fine-to-coarse”
transfer direction, the target problem’s label space is the root of the hierarchy, meaning that any
element of Y tgt

train or Y tgt
test must belong to the label space {+1,−1}. Therefore, in our setting, only

Y src and Y tgt can differ (in distribution) due to different choices in the label hierarchy level. This
analysis-oriented setting mirrors the transfer settings in Section 5.2

4.3 LEARNER ASSUMPTIONS

We assume that the learner is a two-layer average-pooling convolutional ReLU network:

Fc(X) =

m∑
r=1

ac,r

P∑
p=1

σ(⟨wc,r,xp⟩+ bc,r), (2)

where m is a low-degree polynomial in d and denotes the width of the network, σ(·) = max(0, ·) is
the ReLU nonlinearity, and c denotes the class. We perform an initialization of w(0)

c,r ∼ N (0, σ2
0Id)

with σ2
0 = 1/poly(d); we set b(0)c,r = −Θ

(
σ0
√

ln(d)
)

and manually tune it, similar to Allen-Zhu
& Li (2022). Cross-entropy is the training loss for both baseline and transfer training. To simplify
analysis and to focus solely on the learning of the feature extractor, we freeze ac,r = 1 during all
baseline and transfer training phases, and we use the fine-grained model for binary classification as
follows: F̂+(X) = maxc∈[k+] F+,c(X), F̂−(X) = maxc∈[k−] F−,c(X).3

4.4 MAIN RESULT: STOCHASTIC GRADIENT DESCENT ON EASY TRAINING SAMPLES

In this subsection, we study how well the neural network generalizes if it is trained via stochastic
gradient descent on easy samples only. In particular, we allow training to run for poly(d) time.
Theorem 4.1 (Coarse-label training: baseline). (Summary). Suppose Dtgt

train consists only of easy
samples, and we perform stochastic gradient descent training: at every iteration t, there is a fresh
set of N iid samples

(
X

(t)
n , y

(t)
n

)
n

. Moreover, assume the number of fine-grained classes k+ =

k− ∈ [polyln(d), f(σζ)], for some function f of the noise standard deviation σζ .4

With high probability, with proper choice of step size η, there exists T ∗ ∈ poly(d) such that for
any T ∈ [T ∗, poly(d)], the training loss satisfies L(F (T)) ≤ o(1), and for an easy test sample

(Xeasy, y), P
[
F

(T)
y (Xeasy) ≤ F

(T)
y′ (Xeasy)

]
≤ o(1) for y′ ∈ {+1,−1} − {y}. However, for all

t ∈ [0, poly(d)], given a hard test sample (Xhard, y), P
[
F

(t)
y (Xhard) ≤ F

(t)
y′ (Xhard)

]
≥ Ω(1).

To see the full version of this theorem, please see Appendix E; its proofs spans Appendix C to E.
This theorem essentially says that, with a mild lower bound on the number of fine-grained classes,
if we only train on the easy samples with coarse labels, it is virtually impossible for the network to
learn the fine-grained features even if we give it as much practically reachable amount of time and
training samples as possible. Consequently, the network would perform poorly on any challenging
downstream test image: if the image is missing the common features, then the network can be easily
misled by irrelevant features or other potential flaws in the image.
Theorem 4.2 (Fine-grained-label training). (Summary). Assume the same setting in Theorem
4.1, except that we let the labels be fine-grained: train the network on a total of k+ + k− sub-
classes instead of 2. With high probability, within poly(d) time, the trained network satisfies

2In this idealized setting, we have essentially made baseline training and coarse-grained pretraining the
same procedure. Therefore, an equally valid way to view our theory’s setting is to consider Dtgt

train the same as
Dsrc

train except with coarse-grained labels. In other words, we pretrain the network on two versions of the source
dataset Dsrc,coarse

train and Dsrc,fine
train , and then compare the two models on Dtgt

test (which has coarse-grained labels).
3See Appendix B and the beginning of Appendix G for details of learner assumptions.
4f(σζ) = d0.4 is an example choice.

6

Under review as a conference paper at ICLR 2024

P
[
F̂

(T)
y (X) ≤ F̂

(T)
y′ (X)

]
≤ o(1) for y′ ∈ {+1,−1} − {y} on the target binary problem on easy

and hard test samples.5

The full version of this result is presented in Appendix G.4, and its proof in Appendix G. After
fine-grained pretraining, the network’s feature extractor gains a strong response to the fine-grained
features, therefore its accuracy on the downstream hard test samples increases significantly.

One concern about the above theorems is that the neural networks are trained only on easy sam-
ples. As noted in Section 1, samples that can be classified correctly by training only with coarse-
grained labels, or easy samples, should make up the majority of the training and testing samples,
and pretraining at higher label granularities only possibly improves network performance on rare
hard examples. Our theoretical result is intended to present the “feature-learning bias” of a neural
network in an exaggerated fashion. Therefore, it is natural to start with the case of “no hard training
examples at all”. In reality, even if a small portion of hard training samples is present, finite-sized
training datasets can have many flaws that can cause the network to overfit severely before learning
the fine-grained features, especially since rarer features are learnt more slowly and corrupted by
greater amount of noise. We leave these deeper considerations for future theoretical work.6

5 EMPIRICAL RESULTS

Building on our theoretical analysis in an idealized setting, this section discusses conditions on
the source and target label functions that we observed to be important for fine-grained pretraining to
work in practice. We present the core experimental results obtained on ImageNet21k and iNaturalist
2021 in the main text, and leave the experimental details and ablation studies to Appendix A.

5.1 IMAGENET21K→IMAGENET1K TRANSFER EXPERIMENT

Pretrain on Hier. lv G(Y src) Valid. acc.
IM1k - 1000 77.91
IM21k 0 (leaf) 21843 82.51

1 5995 81.28

2 2281 80.26

4 519 77.53

6 160 75.53

9 38 72.75

Table 1: Cross-dataset transfer. ViT-B/16
average finetuning validation accuracy on Ima-
geNet1k, pretrained on ImageNet21k. The base-
line (in red) is taken directly from Dosovitskiy
et al. (2021). See Appendix A for details.

This subsection provides more details about the
experiment shown in Figure 1. Specifically, we
show that the common practice of pretraining
on ImageNet21k using leaf labels is indeed bet-
ter than pretraining at lower granularities in the
manual hierarchy.

Hierarchy definition. The label hierarchy in Im-
ageNet21k is based on WordNet Miller (1995);
Deng et al. (2009). To define fine-grained la-
bels, we first define the leaf labels of the dataset
as Hierarchy level 0. For each image, we trace
the path from the leaf label to the root using the
WordNet hierarchy. We then set the k-th synset
(or the root synset, if it is higher in the hier-
archy) as the level-k label of this image. This
procedure also applies to the multi-label sam-
ples. This is how we generate the hierarchies
shown in Table 1.

Network choice and training. For this dataset, we use the more recent Vision Transformer ViT-B/16
Dosovitskiy et al. (2021). Our pretraining pipeline is almost identical to the one in Dosovitskiy et al.
(2021). For fine-tuning, we experimented with several strategies and report only the best results in
the main text. To ensure a fair comparison, we also used these strategies to find the best baseline
result by using Dtgt

train for pretraining.

Results. Table 1 shows a clear trend: the best accuracy occurs at the leaf level, and the network’s
accuracy on ImageNet1k decreases as the pretraining label granularity on ImageNet21k decreases.

5Finetuning F̂ can further boost the feature extractor’s response to the true features. See Appendix G.4.
6Allowing a small portion of hard training samples essentially yields a “perturbed” version of our results in

this paper, which we leave for future work.

7

Under review as a conference paper at ICLR 2024

101 102 103 104 105

Number of Classes (pretraining)

5.0

5.5

6.0

6.5

7.0

11
-s

up
er

cla
ss

 V
al

id
at

io
n

Er
ro

r

Retraining Baseline
One-pass Baseline
Unique Label per Sample
Random subclass ID
ViT-L/14 CLIP Clustering, Per-Class
ViT-L/14 CLIP Clustering, Whole Dataset
Manual Hierarchy

Figure 4: In-dataset transfer. ResNet34 validation error (with standard deviation) of finetuning on
11 superclasses of iNaturalist 2021, pretrained on various label hierarchies. The manual hierarchy
outperforms the baseline and every other hierarchy, and exhibits a U-shaped curve.

Interestingly, as the pretraining granularity approaches 1,000, the finetuned accuracies become rela-
tively close to the baselines. This suggests that, even if there is little source-target distribution shift
in the inputs, the label functions align well across the datasets and we pretrain with much more data
than the baseline, we cannot see as much improvement with a poorly chosen pretraining granularity.

5.2 TRANSFER EXPERIMENT ON INATURALIST 2021

We conduct a systematic study of the transfer method within the label hierarchies of iNaturalist 2021
Horn & macaodha (2021). This dataset is well-suited for our analysis because it has a manually de-
fined label hierarchy that is based on the biological traits of the creatures in the images. Additionally,
the large sample size of this dataset reduces the likelihood of sample-starved pretraining on reason-
ably fine-grained hierarchy levels.

Our experiments on this dataset demonstrate the importance of a meaningful label hierarchy, label
function alignment and appropriate choice of pretraining label granularity.

Relevant datasets. We perform transfer experiments within iNaturalist2021. More specifically, we
set X src

train and X tgt
train both equal to the training split of the input samples in iNaturalist2021, and set

X tgt
train to the testing split of the input samples in iNaturalist2021. To focus on the “fine-to-coarse”

transfer setting, the target problem is to classify the root level of the manual hierarchy, which con-
tains 11 superclasses. To generate a greater gap between the performance of different hierarchies
and to shorten training time, we use the mini version of the training set in all our experiments.

The motivation behind this experimental setting is similar to how we defined our theory’s data set-
ting: by using exactly the same input samples for the baseline and fine-grained training schemes, we
can be more confident that the choice of (pre-)training label hierarchy is the cause of any changes in
the network’s accuracy on the target problem.

Alternative hierarchies generation. To better understand the transfer method’s operating regime, we
experiment with different ways of generating the fine-grained labels for pretraining: we perform
kMeans clustering on the ViT-L/14-based CLIP embedding Radford et al. (2021); Dehghani et al.
(2022) of every sample in the training set and use the cluster IDs as pretraining class labels. We
carry out this experiment in two ways. The green curve in Figure 4 comes from performing kMeans
clustering on the embedding of each superclass separately, while the purple one’s cluster IDs are
from performing kMeans on the whole dataset. The former way preserves the implicit hierarchy of
the superclasses in the cluster IDs: samples from superclass k cannot possibly share a cluster ID
with samples belonging to superclass k′ ̸= k. Therefore, its label function is forced to align better
with that of the 11 superclasses than the purple curve’s. We also assign random class IDs to samples.

8

Under review as a conference paper at ICLR 2024

Network choice and training. We experiment with ResNet 34 and 50 on this dataset. For pretraining
on Dsrc

train with fine-grained labels, we adopt a standard 90-epoch large-batch-size training procedure
commonly used on ImageNet He et al. (2016); Goyal et al. (2017). Then we finetune the network
for 90 epochs and test it on the 11-superclass Dtgt

train and Dtgt
test, respectively, using the pretrained

backbone h(Θsrc; ·): we found that finetuning at a lower batch size and learning rate improved
training stability. To ensure a fair comparison, we trained the baseline model using exactly the same
training pipeline, except that the pretraining stage uses Dtgt

train. We observed that this “retraining”
baseline consistently outperformed the naive one-pass 90-epoch training baseline on this dataset.
Due to space limitations, we leave the results of ResNet50 to the appendix.

Interpretation of results. Figure 4 shows the validation errors of the resulting models on the 11-
superclass problem. We make the following observations.

• (Random class ID). Random class ID pretraining (orange curve) performs the worst of all the
alternatives. The label function of this type does not generate a meaningful hierarchy because
it has no consistency in the features it considers discriminative when decomposing the super-
classes. This is in stark contrast to the manual hierarchies, which decompose the superclasses
based on the finer biological traits of the creatures in the image.

• (Human labels). Even with high-quality (human) labels, the granularity of pretraining labels
should not be too large or too small. As shown by the blue curve in Figure 4, models trained on
the manual hierarchies outperform all other alternative as long as the pretraining label granular-
ity is beyond the order of 102. However, the error exhibits a U shape, meaning that as the label
granularity becomes too large, the error starts to rise. This is intuitive. If the pretraining gran-
ularity is too close to the target one, we should not expect improvement. On the other extreme,
if we assign a unique label to every sample in the training data, it is highly likely that the only
differences a model can find between each class would be frivolous details of the images, which
would not be considered discriminative by the label function of the target coarse-label problem.
In this case, the pretraining stage is almost meaningless and can be misleading, as evidenced by
the very high label-per-sample error (red star in Figure 4).

• (Cluster ID). For fine-grained pretraining to be effective, the features that the pretraining label
function considers discriminative must align well with those valued by the label function of
the 11-superclass hierarchy. To see this point, observe that for models trained on cluster IDs
obtained by performing kMeans on the CLIP embedding samples in each superclass separately
(green curve in Figure 4), their validation errors are much lower than those trained on cluster IDs
obtained by performing kMeans on the whole dataset (purple curve in Figure 4). As expected,
the manually defined fine-grained label functions align best with that of the 11 superclasses, and
the results corroborate this view.

6 CONCLUSION

In this paper, we studied the influence of pretraining label granularity on the generalization of DNNs
in downstream image classification tasks. Empirically, we confirmed that pretraining on the leaf la-
bels of ImageNet21k produces better transfer results on ImageNet1k than pretraining on coarser
granularity levels; we further showed the importance of meaningful label hierarchy and label func-
tion alignment between the source and target tasks for fine-grained training in practice. Theoreti-
cally, we explained why fine-grained pretraining can outperform the vanilla coarse-grained training
by establishing a correspondence between label granularity and solution complexity. In the future,
we plan to investigate the transfer scenario in which there is a nontrivial distribution shift between
the source and target datasets. We also plan to study more scalable ways of obtaining fine-grained
labels for training image classifiers. For example, we could first use large language models (LLMs)
Bahrini et al. (2023) to decompose the coarse-grained labels, then use visual question answering
(VQA) models Dai et al. (2023); Chen et al. (2023) to automatically classify the input samples in a
fine-grained manner.

9

Under review as a conference paper at ICLR 2024

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility and completeness of the experimental results of this paper, we discuss
in detail the experimental procedures, relevant hyperparameter choices and ablation studies in Ap-
pendix A. Appendix B to H are devoted to showing the complete theoretical results.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In FOCS, 2022.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=Uuf2q9TfXGA.

Aram Bahrini, Mohammadsadra Khamoshifar, Hossein Abbasimehr, Robert J. Riggs, Maryam Es-
maeili, Rastin Mastali Majdabadkohne, and Morteza Pasehvar. Chatgpt: Applications, opportuni-
ties, and threats. In 2023 Systems and Information Engineering Design Symposium (SIEDS), pp.
274–279, 2023. doi: 10.1109/SIEDS58326.2023.10137850.

Alsallakh Bilal, Amin Jourabloo, Mao Ye, Xiaoming Liu, and Liu Ren. Do convolutional neural
networks learn class hierarchy? IEEE transactions on visualization and computer graphics,
2017.

Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convo-
lutional neural networks. In NeurIPS, 2022.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Se-
bastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, Alexander Kolesnikov, Joan
Puigcerver, Nan Ding, Keran Rong, Hassan Akbari, Gaurav Mishra, Linting Xue, Ashish V
Thapliyal, James Bradbury, Weicheng Kuo, Mojtaba Seyedhosseini, Chao Jia, Burcu Karagol
Ayan, Carlos Riquelme Ruiz, Andreas Peter Steiner, Anelia Angelova, Xiaohua Zhai, Neil
Houlsby, and Radu Soricut. PaLI: A jointly-scaled multilingual language-image model. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=mWVoBz4W0u.

Zhuo Chen, Ruizhou Ding, Ting-Wu Chin, and Diana Marculescu. Understanding the impact of
label granularity on cnn-based image classification. In ICDMW, 2018.

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained
categorization and domain-specific transfer learning. In CVPR, 2018.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In CVPR, 2019.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning. arXiv preprint arXiv:2305.06500, 2023.

Giacomo De Palma, Bobak Kiani, and Seth Lloyd. Random deep neural networks are biased towards
simple functions. In NeurIPS, 2019.

Mostafa Dehghani, Alexey Gritsenko, Anurag Arnab, Matthias Minderer, and Yi Tay. Scenic: A jax
library for computer vision research and beyond. In CVPR, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

10

https://openreview.net/forum?id=Uuf2q9TfXGA
https://openreview.net/forum?id=mWVoBz4W0u
https://openreview.net/forum?id=mWVoBz4W0u

Under review as a conference paper at ICLR 2024

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. In Na-
ture Machine Intelligence, 2020.

Wonjoon Goo, Juyong Kim, Gunhee Kim, and Sung Ju Hwang. Taxonomy-regularized semantic
deep convolutional neural networks. In ECCV, 2016.

Palash Goyal and Shalini Ghosh. Hierarchical class-based curriculum loss. arXiv preprint
arXiv:2006.03629, 2020.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Grant Van Horn and macaodha. inat challenge 2021 - fgvc8, 2021. URL https://kaggle.
com/competitions/inaturalist-2021.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.
The low-rank simplicity bias in deep networks. arXiv:2103.10427, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In ICLR,
2019.

Ralph P. Boas Jr. and Jr. John W. Wrench. Partial sums of the harmonic series. The American
Mathematical Monthly, 1971.

Da-Cheng Juan, Chun-Ta Lu, Zhen Li, Futang Peng, Aleksei Timofeev, Yi-Ting Chen, Yaxi Gao,
Tom Duerig, Andrew Tomkins, and Sujith Ravi. Ultra fine-grained image semantic embedding.
In WSDM, 2020.

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz Barak,
and Haofeng Zhang. Sgd on neural networks learns functions of increasing complexity. In
NeurIPS, 2019.

Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Provable feature
learning in neural networks beyond kernels. In NeurIPS, 2021.

Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. A survey of the recent
architectures of deep convolutional neural networks. Artificial Intelligence Review, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), ICLR, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NeurIPS, 2012.

Béatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model se-
lection. The Annals of Statistics, 28(5):1302 – 1338, 2000. doi: 10.1214/aos/1015957395. URL
https://doi.org/10.1214/aos/1015957395.

Yann LeCun and Yoshua Bengio. Convolutional Networks for Images, Speech, and Time Series.
1998.

Kuang-Huei Lee, Anurag Arnab, Sergio Guadarrama, John Canny, and Ian Fischer. Compressive
visual representations. In NeurIPS, 2021.

11

https://kaggle.com/competitions/inaturalist-2021
https://kaggle.com/competitions/inaturalist-2021
https://doi.org/10.1214/aos/1015957395

Under review as a conference paper at ICLR 2024

Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets:
Margin maximization and simplicity bias. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan (eds.), NeurIPS. Curran Associates, Inc., 2021.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised
pretraining. In ECCV, 2018.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 1995.

Jiquan Ngiam, Daiyi Peng, Vijay Vasudevan, Simon Kornblith, Quoc V Le, and Ruoming Pang. Do-
main adaptive transfer learning with specialist models. arXiv preprint arXiv:1811.07056, 2018.

Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guil-
laume Lajoie. Gradient starvation: A learning proclivity in neural networks. In NeurIPS, 2021.

Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes, Mei-Ling
Shyu, Shu-Ching Chen, and S. S. Iyengar. A survey on deep learning: Algorithms, techniques,
and applications. ACM Computing Surveys, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
2021.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik. Imagenet-21k pretraining for the
masses. In NeurIPS Track on Datasets and Benchmarks, 2021.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
pitfalls of simplicity bias in neural networks. In NeurIPS, 2020.

Ruoqi Shen, Sebastien Bubeck, and Suriya Gunasekar. Data augmentation as feature manipulation.
In ICML, 2022a.

Ruoqi Shen, Sebastien Bubeck, and Suriya Gunasekar. Data augmentation as feature manipulation.
In ICML, 2022b.

Sindi Shkodrani, Yu Wang, Marco Manfredi, and Nóra Baka. United we learn better: Harvesting
learning improvements from class hierarchies across tasks. arXiv preprint arXiv:2107.13627,
2021.

Eyal Shnarch, Ariel Gera, Alon Halfon, Lena Dankin, Leshem Choshen, Ranit Aharonov, and Noam
Slonim. Cluster & tune: Boost cold start performance in text classification. arXiv preprint
arXiv:2203.10581, 2022.

Carlos N Silla and Alex A Freitas. A survey of hierarchical classification across different application
domains. Data Mining and Knowledge Discovery, 2011.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun (eds.), ICLR, 2015.

Mannat Singh, Laura Gustafson, Aaron Adcock, Vinicius de Freitas Reis, Bugra Gedik, Raj Prateek
Kosaraju, Dhruv Mahajan, Ross Girshick, Piotr Dollár, and Laurens Van Der Maaten. Revisiting
weakly supervised pre-training of visual perception models. In CVPR, 2022.

Donghyun Son, Byounggyu Lew, Kwanghee Choi, Yongsu Baek, Seungwoo Choi, Beomjun Shin,
Sungjoo Ha, and Buru Chang. Reliable decision from multiple subtasks through threshold opti-
mization: Content moderation in the wild. In WSDM, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. JMLR, 2014.

Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and
Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision transformers.
TMLR, 2022.

12

Under review as a conference paper at ICLR 2024

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable ef-
fectiveness of data in deep learning era. In ICCV, 2017.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initializa-
tion and momentum in deep learning. In ICML, 2013.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
CVPR, 2015.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
CVPR, 2018.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In CVPR, 2017.

Xueting Yan, Ishan Misra, Abhinav Gupta, Deepti Ghadiyaram, and Dhruv Mahajan. Clusterfit:
Improving generalization of visual representations. In CVPR, 2020.

Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei Di,
and Yizhou Yu. Hd-cnn: hierarchical deep convolutional neural networks for large scale visual
recognition. In ICCV, 2015.

Chuanguang Yang, Zhulin An, Linhang Cai, and Yongjun Xu. Hierarchical self-supervised aug-
mented knowledge distillation. arXiv preprint arXiv:2107.13715, 2021.

Eric Zelikman, Jesse Mu, Noah D Goodman, and Yuhuai Tony Wu. Star: Self-taught reasoner
bootstrapping reasoning with reasoning. In NeurIPS, 2022.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In
ICCV, 2019.

Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and Jianfeng Gao.
Multi-scale vision longformer: A new vision transformer for high-resolution image encoding. In
ICCV, 2021.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. TPAMI, 2018.

Xinqi Zhu and Michael Bain. B-cnn: branch convolutional neural network for hierarchical classifi-
cation. arXiv preprint arXiv:1709.09890, 2017.

13

Under review as a conference paper at ICLR 2024

Appendix

CONTENTS

A Additional Experimental Results 15

A.1 In-dataset transfer results . 15

A.1.1 iNaturalist 2021 . 15

A.1.2 ImageNet21k . 17

A.1.3 ImageNet1k . 18

A.2 Cross-dataset transfer, ImageNet21k→ImageNet1k 19

B Theory, Problem Setup 21

B.1 Data Properties . 21

B.2 Learner Assumptions . 21

B.3 Training Algorithm . 22

B.4 Parameter Choices . 23

B.5 Plan of presentation . 23

C Coarse-grained training, Initialization Geometry 24

D Coarse-grained SGD Phase I: (Almost) Constant Loss, Neurons Diversify 27

D.1 Main results . 27

D.2 Lemmas . 34

E Coarse-grained SGD Phase II: Loss Convergence, Large Neuron Movement 35

E.1 Main results . 35

E.2 Lemmas . 35

F Coarse-grained SGD, Poly-time properties 51

G Fine-grained Learning 61

G.1 Initialization geometry . 61

G.2 Poly-time properties . 62

G.3 Training . 68

G.4 Model error after training . 72

H Probability Lemmas 76

14

Under review as a conference paper at ICLR 2024

A ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present the full details of our experiments and relevant ablation studies. All of
our experiments were performed using tools in the Scenic library Dehghani et al. (2022).

A.1 IN-DATASET TRANSFER RESULTS

To clarify, in this transfer setting, we are essentially transferring within a dataset. More specifically,
we set X src = X tgt and only the label spaces Y src and Y tgt may differ (in distribution). The baseline
in this setting is clear: train on Dtgt

train and test on Dtgt
test. In contrast, after pretraining the backbone

network h(Θ; ·) on Y src, we finetune or linear probe it on Dtgt
train using the backbone and then test on

Dtgt
test.

A.1.1 INATURALIST 2021

On iNaturalist 2021, we use the mini training dataset with size 500,000 instead of the full training
dataset to show a greater gap between the results of different hierarchies and speed up training. We
use the architectures ResNet 34 and 50 He et al. (2016).

Training details. Our pretraining pipeline on iNaturalist is essentially the same as the standard large-
batch-size ImageNet-type training for ResNets He et al. (2016); Goyal et al. (2017). The following
pipeline applies to model pretraining on any hierarchy.

• Optimization: SGD with 0.9 momentum coefficient, 0.00005 weight decay, 4096 batch size, 90
epochs total training length. We perform 7 epochs of linear warmup in the beginning of training
until the learning rate reaches 0.1 × 4096/256 = 1.6, and then apply the cosine annealing
schedule.

• Data augmentation: subtracting mean and dividing by standard deviation, image (original or its
horizontal flip) resized such that its shorter side is 256 pixels, then a 224 × 224 random crop is
taken.

For finetuning, we keep everything in the pipeline the same except setting the batch size to 4096/4 =
1024 and base learning rate 1.6/4 = 0.4. We found that finetuning at higher batch size and learning
rate resulted in training instabilities and severely affected the final finetuned model’s validation
accuracy, while finetuning at lower batch size and learning rate than the chosen one resulted in
lower validation accuracy at the end even though their training dynamics was stabler.

For the baseline accuracy, as mentioned in the main text, to ensure fairness of comparison, in addi-
tion to only training the network on the target 11-superclass problem for 90 epochs (using the same
pretraining pipeline), we also perform “retraining”: follow the exact training process of the models
trained on the various hierarchies, but use Dtgt

train as the training dataset in both the pretrianing and
finetuning stage. We observed consistent increase in the final validation accuracy of the model, so
we report this as the baseline accuracy. Without retraining (so naive one-pass 90-epoch training on
11 superclasses), the average accuracy with standard deviation is 94.13, 0.025.

Clustering. To obtain the cluster-ID-based labels, we perform the following procedure.

1. For every sample Xn in the mini training dataset of iNaturalist 2021, obtain its ViT-L/14 CLIP
embedding En.

2. Per-superclass kMeans clustering. Let C be the predefined number of clusters per class.
(a) For every superclass k, for the set of embedding {(En, yn = k)} belonging to that super-

class, perform kMeans clustering with cluster size set to C.
(b) Given a sample with superclass ID k ∈ {1, 2, ..., 11} and cluster ID c ∈ {1, 2, ..., C}, define

its fine-grained ID as C × k + c.
3. Whole-dataset kMeans clustering. Let C be the predefined number of clusters on the whole

dataset.
(a) Perform kMeans on the embedding of all the samples in the dataset, with the number of

clusters set to C. Set the fine-grained class ID of a sample to its cluster ID.

15

Under review as a conference paper at ICLR 2024

Manual Hierarchy G(Y src) 11 13 51 273 1103 4884 6485
Validation error 5.25±0.051 5.40±0.075 5.10±0.038 4.83±0.041 4.79±0.045 4.82±0.056 4.84±0.033

Random class ID G(Y src) 22 88 352 1,408 5,632 11,264 500,000
Validation error 6.61±0.215 6.30±0.070 6.12±0.77 6.10±0.053 6.12±0.042 6.10±0.057 6.54±0.758

CLIP+kMeans G(Y src) 22 88 352 1408 2816 5632 22528
per superclass Validation error 5.14±0.049 5.16±0.033 5.17±0.027 5.24±0.029 5.30±0.029 5.31±0.077 5.37±0.032
C+k per supclass G(Y src) 88 218 320 608 1040 1984
Class rebalanced Validation error 5.18±0.054 5.17±0.038 5.23±0.052 5.28±0.045 5.26±0.035 5.21±0.040
CLIP+kMeans G(Y src) 22 44 88 352 1408 2816 5632
whole dataset Validation error 5.52±0.015 5.42±0.047 5.45±0.049 5.46±0.019 5.60±0.029 5.50±0.029 5.47±0.029

Table 2: In-dataset transfer, iNaturalist 2021. ResNet34 average finetuning validation error and
standard deviation on 11 superclasses in iNaturalist 2021, pretrained on various label hierarchies
with different label granularity. Baseline (11-superclass) and best performance are highlighted.

90-Epoch ckpt G(Y src) 13 51 273 1103 4884 6485
Validation error 5.40±0.075 5.10±0.038 4.83±0.041 4.79±0.045 4.82±0.056 4.84±0.033

70-Epoch ckpt G(Y src) 13 51 273 1103 4884 6485
Validation error 5.43±0.055 5.08±0.029 4.86±0.037 4.82±0.034 4.83±0.064 4.85±0.018

50-Epoch ckpt G(Y src) 13 51 273 1103 4884 6485
Validation error 5.53±0.036 5.2±0.031 4.90±0.038 4.9±0.042 4.91±0.020 4.95±0.026

Table 3: In-dataset transfer, iNaturalist 2021. ResNet34 average finetuned validation error and
standard deviation on 11 superclasses in iNaturalist 2021, pretrained on the manual hierarchies, with
different backbone checkpoints.

Manual Hierarchy G(Y src) 11 13 51 273 1103 4884 6485
Validation error 4.43±0.029 4.44±0.063 4.36±0.062 4.22±0.021 4.20±0.035 4.23±0.054 4.33±0.037

Random class ID G(Y src) 22 88 352 1,408 5,632 11,264 500,000
Validation error 5.36±0.111 5.31±0.079 5.24±0.093 5.38±0.052 5.37±0.033 5.40±0.033 5.13±0.072

Table 4: In-dataset transfer, iNaturalist 2021. ResNet50 finetuned average validation error and
standard deviation on 11 superclasses in iNaturalist 2021, pretrained on label hierarchies with dif-
ferent label granularity.

Some might have the concern that having the same number of kMeans clusters per superclass could
cause certain classes to have too few samples, which could be a reason for why the cluster ID hier-
archies perform worse than the manual hierarchies. Indeed, the number of samples per superclass
on iNaturalist is different, so in addition to the above “uniform-number-of-cluster-per-superclass”
hierarchy, we add an extra label hierarchy by performing the following procedure to balance the
sample size of each cluster:

1. Perform kMeans for each superclass with number of clusters set to 2, 8, 32, 64, 128, 256,
512, 1024 and save the corresponding image-ID-to-cluster-ID dictionaries (so we are basically
reusing the clustering results of the CLIP+kMeans per superclass experiment)

2. For each superclass, find the image-ID-to-cluster-ID dictionary with the highest granularity
while still keeping the minimum number of samples for each cluster > predefined threshold
(e.g. 1000 samples per subclass)

3. Now we have nonuniform granularity for each superclass while ensuring that the sample count
per cluster is above some predefined threshold.

This simple procedure somewhat improves the balance of sample count per cluster, for example,
Figure 5 shows the sample count per cluster for the cases of total number of clusters = 608 and
1984. Unfortunately, we do not observe any meaningful improvement on the model’s validation
accuracy trained on this more refined hierarchy.

Experimental procedures. All the validation accuracies we report on ResNet34 are the averaged re-
sults of experiments performed on at least 6 random seeds: 2 random seeds for backbone pretraining
and 3 random seeds for finetuning. We report the average accuracies with their standard deviation
on various hierarchies in Table 2.

An additional experiment we performed with ResNet34 is a small grid search over what checkpoint
of a pretrained backbone we should use for finetuning on the 11-superclass method; we tried the

16

Under review as a conference paper at ICLR 2024

0 250 500 750 1000 1250 1500 1750 2000
Subclass ID (sorted)

102

103

Sa
m

pl
e

Co
un

t

Sample count per cluster. Number of clusters = 1984

0 100 200 300 400 500 600
Subclass ID (sorted)

103

Sa
m

pl
e

Co
un

t

Sample count per cluster. Number of clusters = 608

Figure 5: In-dataset transfer, iNaturalist 2021. Number of samples per cluster in the case of 608
and 1984 total clusters, after applying the sample size rebalancing procedure described in subsection
A.1.1. Observe that the sample sizes are reasonably balanced across almost all the subclasses.

Hierarchy level G(Y src) Validation error
Baseline 2 7.90
0 (leaf) 21843 6.56

1 5995 6.76
2 2281 6.70
4 519 6.97
6 160 7.31
9 38 7.55

Table 5: In-dataset transfer. ViT-B/16 validation error on the binary problem “is this object a living
thing?” of ImageNet21k. Pretrained on various hierarchy levels of ImageNet21k, finetuned on the
binary problem. Observe that the maximal improvement appears at the leaf labels, and as G(Y src)
approaches 2, the percentage improvement approaches 0.

50-, 70- and 90-epoch checkpoints of the backbone on the manual hierarchies. We report these
results in Table 3. As we can see, 90-epoch checkpoints performs almost equally well as the 70-
epoch checkpoints and better than the 50-epoch ones by a nontrivial margin. With this observation,
we chose to use the end-of-pretraining 90-epoch checkpoints in all our other experiments without
further ablation studies on those hierarchies.

Our ResNet50 results are not as extensive as those on ResNet34. We present the average accuracies
and standard deviations in Table 4.

A.1.2 IMAGENET21K

The ImageNet21k dataset we experiment on contains a total of 12,743,321 training samples and
102,400 validation samples, with 21843 leaf labels. A small portion of samples have multiple labels.

Caution: due to the high demand on computational resources of training ViT models on Ima-
geNet21k, all of our experiments that require (pre-)training or finetuning/linear probing on this
dataset were performed with one random seed.

Hierarchy generation. To define fine-grained labels, we start by defining the leaf labels of the dataset
to be Hierarchy level 0. For every image, we trace from the leaf synset to the root synset relying
on the WordNet hierarchy, and set the k-th synset (or the root synset, whichever is higher in level)
as the level-k label of this image; this procedure also applies to the multi-label samples. This is the
way we generate the manual hierarchies shown in the main text.

Due to the lack of a predefined coarse-label problem, we manually define our target problem to be a
binary one: given an image, if the synset “Living Thing” is present on the path tracing from the leaf
label of the image to the root, assign label 1 to this image; otherwise, assign 0. This problem almost
evenly splits the training and validation sets of ImageNet21k: 5,448,549:7,294,772 for training,
43,745:58,655 for validation.

Network choice and pretraining pipeline. We experiment with the ViT-B/16 model Dosovitskiy et al.
(2021). The pretraining pipeline of this model follows the one in Dosovitskiy et al. (2021) exactly:

17

Under review as a conference paper at ICLR 2024

Eval strategy 90-epoch finetune Linear probe 10-epoch finetune

Leaf-pretrained (Batch size, base lr) (4096,1e-3) (1024,2.5e-4) (512,1.25e-4) (4096, 1e-3) (512, 1.25e-4) (4096,1e-3) (512,1.25e-4)
Validation error 92.782 93.177 93.295 87.497 87.493 92.294 93.439

Baseline (Batch size, base lr) (4096,1e-3) (1024,2.5e-4) (512,1.25e-4) (4096, 1e-3) (512, 1.25e-4) (4096,1e-3) (512,1.25e-4)
Validation error 92.102 91.971 91.939 91.703 91.719 92.002 91.856

Table 6: In-dataset transfer, ImageNet21k. ViT-B/16 validation accuracy on the binary problem
“Is the object a Living Thing” on ImageNet21k. Ablation study on the exact finetuning/linear prob-
ing strategy.

we train the model for 90 epochs using the Adam optimizer, with β1 = 0.9, β2 = 0.999, weight
decay coefficient equal to 0.03 and a batch size of 4096; we let the dropout rate be 0.1; the output
dense layer’s bias is initialized to −10.0 to prevent huge loss value coming from the off-diagonal
classes near the beginning of training Cui et al. (2019); for learning rate, we perform linear warmup
for 10,000 steps until the learning rate reaches 10−3, then it is linearly decayed to 10−5. The data
augmentations are the common ones in ImageNet-type training Dosovitskiy et al. (2021); He et al.
(2016): random cropping and horizontal flipping. Note that we use the sigmoid cross-entropy for
training since the dataset has multi-label samples.

Evaluation on the binary problem. After the 90-epoch pretraining on the manual hierarchies, we
evaluate the model on the binary problem. We report the best accuracies on each hierarchy level in
Table 5. To get a sense of how the relevant hyperparameters influence final accuracy of the model,
we try out the following finetuning/linear probing strategies on the backbone trained on the leaf
labels and the target binary problem of the dataset, and report the results in Table 6 (similar to our
experiments on iNaturalist, we include the backbone trained on the binary problem in these ablation
studies to ensure that our comparisons against the baseline are fair) :

1. 90-epochs finetuning in the same fashion as the pretraining stage, but with a small grid search
over

(batch size, base learning rate) ={(4096, 0.001), (4096/4 = 1024, 0.001/4 = 0.00025),

(4096/8 = 512, 0.001/8 = 0.000125)}.

2. Linear probing with 20 epochs training length, using exactly the same training pipeline
as in pretraining. We ran a small grid search over (batch size, base learning rate) =
{(4096, 0.001), (4096/8 = 512, 0.001/8 = 0.000125)}.

3. 10-epochs finetuning, no linear warmup, 3 epochs of constant learning rate in the
beginning followed by 7 epochs of linear decay, with a small grid search over
(batch size, base learning rate) = {(4096, 0.001), (4096/8 = 512, 0.001/8 = 0.000125)}.

Table 6 helps us decide the best accuracies to report. First, as expected the linear probing results
are much worse than the finetuning ones. Second, the “retraining” accuracy of 92.102 is the best
baseline we can report (the same thing happened in the iNaturalist case) — if we only train the model
for 90 epochs (the naive one-pass training) on the binary problem, then the model’s final validation
accuracy is 91.746%, which is lower than 92.102% by a nontrivial margin. In contrast, the short 10-
epoch finetuning strategy works best for the backbone trained on the leaf labels, therefore, we also
use this strategy to evaluate the backbones trained on all the other manual hierarchies. A peculiar
observation we made was that, finetuning the leaf-labels-pretrained backbone for extended period
of time on the binary problem caused it to overfit severely: for batch size and base learning rate in
the set {(4096, 0.001), (1024, 0.00025), (512, 0.000125)}, throughout the 90 epochs of finetuning,
although its training loss exhibits the normal behavior of staying mostly monotonically decreasing,
its validation accuracy actually reached its peak during the linear warmup period!

A.1.3 IMAGENET1K

Our ImageNet1k in-dataset transfer experiments are done in a very similar fashion to the iNaturalist
ones. In particular, the pretraining and finetuning pipeline for ResNet50 is exactly the same as the
one in the iNaturalist case, so we do not repeat it here.

Due to a lack of more fine-grained manual label on this dataset, we generate fine-grained labels by
performing kMeans on the ViT-L/14 CLIP embedding of the dataset separately for each class; the

18

Under review as a conference paper at ICLR 2024

ResNet50 CLIP+kMeans G(Y src) 2000 4000 8000
per-class Validation error 23.4±0.13 23.48±0.098 23.49±0.204
ViT-L/14 CLIP+kMeans G(Y src) 2000 4000 8000
per-class Validation error 23.4±0.127 23.47±0.074 23.78±0.048
Random ID G(Y src) 2000 4000 8000
per-class Validation error 23.4±0.068 23.4±0.070 23.65±0.071

Table 7: In-dataset transfer, ImageNet1k. ResNet50 finetuned average validation error and stan-
dard deviation on the vanilla 1000 classes, pretrained on label hierarchies with different label gran-
ularity.

exact procedure is also identical to the iNaturalist case. The CLIP backbones we use here are the
ResNet50 version and the ViT-L/14 version. We report the average accuracies and their standard
deviation in Table 7. All results are obtained from at least one random seed during pretraining and
3 random seeds during finetuning.

The best baseline we report is the one using retraining: if we adopt the pretrain-then-finetune proce-
dure but with Dtgt

train (i.e. the vanilla 1000-class labels) set as the pretraining dataset, then we obtain
an average validation error of 23.28% with standard deviation of 0.103, averaged over results of 3
random seeds. In comparison, if we only perform the naive one-pass 90-epoch training, we obtain
average valiation error 24.04%, with standard deviation 0.057.

From Table 7, we see that there is virtually no difference between the baseline and the best errors
obtained by the models trained on the custom hierarchies: they are almost equally bad. Noting that
the sample size of each class in ImageNet1k is only around 103, and the fact that ImageNet1k clas-
sification is a “hard problem” — it is a problem of high sample complexity — further decomposing
the classes causes each fine-grained class to have too few samples, leading to the above negative re-
sults. This reflects the intuition that higher label granularity does not necessarily mean better model
generalization, since the sample size per class might become too small.

A.2 CROSS-DATASET TRANSFER, IMAGENET21K→IMAGENET1K

In this subsection, we report the average validation accuracy and standard deviation of the cross-
dataset transfer experiment from ImageNet21k to ImageNet1k, as discussed in Figure 1 and Section
5.1 in the main text.

Network choice. We use the same architecture ViT-B/16 as the one in the in-dataset ImageNet21k
transfer experiment and follow the same training procedure, which we repeat here for the reader’s
convenience. The pretraining pipeline of this model follows the one in Dosovitskiy et al. (2021):
we train the model for 90 epochs using the Adam optimizer, with β1 = 0.9, β2 = 0.999, weight
decay coefficient equal to 0.03 and a batch size of 4096; we let the dropout rate be 0.1; the output
dense layer’s bias is initialized to −10.0 to prevent huge loss value coming from the off-diagonal
classes near the beginning of training Cui et al. (2019); for learning rate, we perform linear warmup
for 10,000 steps until the learning rate reaches 10−3, then it is linearly decayed to 10−5. The data
augmentations are the common ones in ImageNet-type training Dosovitskiy et al. (2021); He et al.
(2016): random cropping and horizontal flipping. Note that we use the sigmoid cross-entropy for
training since the dataset has multi-label samples.

Finetuning. For finetuning on ImageNet1k, our procedure is very similar to the one in the original
ViT paper Dosovitskiy et al. (2021), described in its Appendix B.1.1. We optimize the network
for 8 epochs using SGD with momentum factor set to 0.9, zero weight decay, and batch size of
512. The dropout rate, unlike in pretraining, is set to 0. Gradient clipping at 1.0 is applied. Unlike
Dosovitskiy et al. (2021), we still finetune at the resolution of 224×224. For learning rate, we apply
linear warmup for 500 epochs until it reaches the base learning rate, then cosine annealing is applied;
we perform a small grid search of base learning rate = {3× 10−3, 3× 10−2, 6× 10−2, 3× 10−1}.
Every one of these grid search is repeated over 3 random seeds. We report the ImageNet1k validation
accuracies and their standard deviations in Table 8. In the main text, we report the best accuracy for
each hierarchy level.

19

Under review as a conference paper at ICLR 2024

Pretrained on / Base lr 3× 10−3 3× 10−2 6× 10−2 3× 10−1

ImageNet21k, Hier. lv. 0 80.87±0.012 82.48±0.005 82.51±0.042 81.40±0.041
ImageNet21k, Hier. lv. 1 77.38±0.037 81.03±0.054 81.28±0.045 80.40±0.087
ImageNet21k, Hier. lv. 2 74.91±0.012 79.76±0.021 80.26±0.05 79.7±0.019
ImageNet21k, Hier. lv. 4 63.65±0.052 76.43±0.033 77.32±0.088 77.53±0.078
ImageNet21k, Hier. lv. 6 62.17±0.012 73.65±0.033 73.92±0.073 75.53±0.024
ImageNet21k, Hier. lv. 9 53.68±0.034 69.33±0.045 71.08±0.068 72.75±0.071

Table 8: Cross-dataset transfer. ViT-B/16 average finetuning validation accuracy on ImageNet1k
along with standard deviation, pretrained on various hierarchy levels of ImageNet21k, and a small
grid search over the base learning rate.

Pretrained on Hier. lv G(Y src) Validation acc.
IM21k 0 (leaf) 21843 81.45±0.021

1 5995 78.33±0.018

2 2281 75.66±0.005

4 519 68.95±0.051

6 160 63.65±0.035

9 38 57.35±0.016

Table 9: Cross-dataset transfer. ViT-B/16 average linear-probing validation accuracy on Ima-
geNet1k along with standard deviation, pretrained on various hierarchy levels of ImageNet21k.

Linear probing. For linear probing, we use the following procedure. We optimize the linear classifier
for 40 epochs (similar to Lee et al. (2021)) using SGD with Nesterov momentum factor set to 0.9, a
small weight decay coefficient 10−6, and batch size 512. We start with a base learning rate of 0.9,
and multiply it by 0.97 per 0.5 epoch. In terms of data augmentation, we adopt the standard ones
like before: horizontal flipping and random cropping of size 224×224. We repeat this linear probing
procedure over 3 random seeds given the pretrained backbone, and report the average validation
accuracy and standard deviation in Table 9.

Baseline. The baseline accuracy on ImageNet1k is directly taken from the ViT paper Dosovitskiy
et al. (2021) (see Table 5 in it), in which the ViT-B/16 model is trained for 300 epochs on Ima-
geNet1k.

20

Under review as a conference paper at ICLR 2024

B THEORY, PROBLEM SETUP

B.1 DATA PROPERTIES

1. Coarse classification: a binary task, +1 vs. −1.

2. An input sample X ∈ Rd×P consists of P patches, each with dimension d. In this work, always
assume d is sufficiently large7;

3. Assume there exists k+ subclasses of the superclass “+”, and k− subclasses of the superclass
“−”. Let k+ = k−.

4. Assume orthonormal dictionary V = {v1, ...,vd} ⊂ Rd, which forms an orthonormal basis of
Rd. Define v+ ∈ V to be the common feature of class “+”. For each subclass (+, c) (where
c ∈ [k+]), denote the subclass feature of it as v+,c ∈ V . Similar for the “−” class.

5. For an easy sample X belonging to the (+, c) class (for c ∈ [k+]), we sample its patches as
follows:
Definition: we define the function P : Rd×P × V → [P] (so (X;v) 7→ I ⊆ [P]) to extract,
from sample X , the indices of the patches on which the dictionary word v ∈ D dominates.

(a) (Common-feature patches) With probability s∗

P , a patch xp in X is a common-feature patch,
on which xp = αpv+ + ζp for some (random) αp ∈

[√
1− ι,

√
1 + ι

]
;

(b) (Subclass-feature patches) With probability s∗

P−|P(X;v+)| , a patch with index p ∈
([P]− P(X;v+)) is a subclass-feature patch, on which xp = αpv+,c + ζp, for random
αp ∈

[√
1− ι,

√
1 + ι

]
;

(c) (Noise patches) For the remaining P − |P(X;v+)| − |P(X;v+,c)| patches, xp = ζp.

6. A hard sample Xhard for class (+, c) is exactly the same as an easy one except:

(a) Its common-feature patches are replaced by noise patches;

(b) (Feature noise patches) With probability s†

P−|P(X;v+,c)| , a patch with index p ∈
([P]− P(X;v+,c)) is a feature-noise patch, on which xp = α†

pv− + ζp for some (ran-

dom) αp ∈
[
ι†lower, ι

†
upper

]
;

(c) Set one of the noise patches to ζ∗ ∼ N (0, σ2
ζ∗Id).

7. A sample X belongs to the “+” superclass if |P(X;v+)| > 0 or |P(X;v+,c)| > 0 for any c
(excluding feature-noise patches).

8. The above sample definitions also apply to the “−” classes by switching the class signs.

9. A training batch of samples contains exactlyN/2k+ samples for each (+, c) and (−, c) subclass.
This also means that each training batch contains exactly N/2 samples belonging to the +1
superclass, and N/2 samples for the −1 superclass.

10. As discussed in the main text, for both coarse-grained (baseline) and fine-grained training, we
only train on easy samples.

B.2 LEARNER ASSUMPTIONS

Assume the learner is a two-layer convolutional ReLU network:

Fc(X) =

m∑
r=1

ac,r

P∑
p=1

σ(⟨wc,r,xp⟩+ bc,r) (3)

To simplify analysis and only focus on the learning of the feature extractor, we freeze ac,r = 1
throughout training. The nonlinear activation σ(·) = max(0, ·) is ReLU. Note that the convolution
kernels have dimension d and stride d.

7Consider each d-dimensional patch of the input as an embedding of the input image generated by, for
instance, an intermediate layer of a DNN.

21

Under review as a conference paper at ICLR 2024

Remark. One difference between this architecture and a CNN used in practice is that we do not
allow feature sharing across classes: for each class c, we are assigning a disjoint group of neurons
wc,r to it. Separating neurons for each class is a somewhat common trick to lower the complexity
of analysis in DNN theory literature Allen-Zhu & Li (2023); Karp et al. (2021); Cao et al. (2022),
as it reduces complex coupling between neurons across classes which is not the central focus of our
study in this paper.

B.3 TRAINING ALGORITHM

Initialization.

Sample w
(0)
c,r ∼ N (0, σ2

0Id), and set b(0)c,r = −σ0cb
√
ln(d).

Training.

We adopt the standard cross-entropy training:

L(F) =
N∑

n=1

L(F ;Xn, yn) = −
N∑

n=1

ln

(
exp(Fyn

(Xn))∑C
c=1 exp(Fc(Xn))

)
(4)

This induces the stochastic gradient descent update for each hidden neuron (c ∈ [k], r ∈ [m]) per
minibatch of N iid samples:

w(t+1)
c,r = w(t)

c,r + η
1

NP

N∑
n=1

(
1{yn = c}[1− logit(t)c (X(t)

n)]
∑
p∈[P]

σ′(⟨w(t)
c,r,x

(t)
n,p⟩+ b(t)c,r)x

(t)
n,p+

1{yn ̸= c}[−logit(t)c (X(t)
n)]

∑
p∈[P]

σ′(⟨w(t)
c,r,x

(t)
n,p⟩+ b(t)c,r)x

(t)
n,p

)
(5)

where

logit(t)c (X) =
exp(Fc(X))∑C
y=1 exp(Fy(X))

(6)

As for the bias,

b(t+1)
c,r = b(t)c,r −

∥w(t+1)
c,r −w

(t)
c,r∥2

ln5(d)
(7)

Additionally, we train the models until the network’s output margins are sufficiently large (or the
network is sufficiently confident in its decision). More specifically, we train the models such that
before Fyn(Xn) − maxy ̸=yn Fy(Xn) ≥ Ω(1) for all n (replace Xn by X(t)

n if we are performing
stochastic gradient descent), we do not early stop the model. For analysis purposes, we allow the
models to train for longer in some of our theorems.
Remark. 1. The initialization strategy is similar to the one in Allen-Zhu & Li (2022).

2. Since the only difference between the training samples of coarse and fine-grained pretrain-
ing is the label space, the form of SGD update is identical. The only difference is the
number of output nodes of the network: for coarse training, the output nodes are just
F+ and F− (binary classification), while for fine-grained training, the output nodes are
F+,1, F+,2, ..., F+,k+ , F−,1, F−,2, ..., F−,k− , a total of k+ + k− nodes.

3. The bias is for thresholding out the neuron’s noisy activations that grow slower than 1/ ln5(d)
times the activations on the main features which the neuron detects. This way, the bias
does not really influence updates to the neuron’s response to the core features which it ac-
tivate strongly on, since 1 − 1

ln5(d)
≈ 1, while it removes useless low-magnitude noisy ac-

tivations. This in fact creates a (generalization) gap between the nonlinear model that we
are studying and linear models. Due to our parameter choices (as discussed below), if the
model has no nonlinearity (remove the ReLU activations), then even if the model can be
written as F+(X) =

∑
p∈[P] c+⟨v+,xp⟩ + c+,1⟨v+,1,xp⟩ + ... + c+,k+⟨v+,k+ ,xp⟩ and

22

Under review as a conference paper at ICLR 2024

F−(X) =
∑

p∈[P] c−⟨v−,xp⟩ + c−,1⟨v−,1,xp⟩ + ... + c−,k−⟨v−,k− ,xp⟩ for any sequence

of nonnegative real numbers c+, c−, {c+,j}k+

j=1, {c−,j}k−
j=1 (which is the ideal situation since

the true features are not corrupted by anything), it is impossible for the model to reach o(1)
error on the input samples, because the number of noise patches will accumulate to a variance of
(P −O(s∗))σζ ≫ O(s∗), which significantly overwhelms the signal from the true features. On
the other hand, each noise patch is sufficiently small in magnitude with high probability (their
strength is o(1/ ln5(d))), so a slightly negative bias, as described above, can threshold out these
noise-based signals and prevent them from accumulating across the patches.

B.4 PARAMETER CHOICES

The following are fixed choices of parameters for the sake of simplicity in our proofs.

1. Always assume d is sufficiently large. All of our asymptotic results are presented with respect
to d;

2. poly(d) denotes the asymptotic order “polynomial in d”;
3. polyln(d) aymptotic order “polylogarithmic in d”;

4. polyln(d) ≤ k+ = k− ≤ d0.4 and s∗ ln5(d) ≤ k+ (i.e. k+ lower bounded by polynomial of
ln(d) of sufficiently high degree);

5. Small positive constant c0 ∈ (0, 0.1);
6. For coarse-grained (baseline) training, set cb =

√
4 + 2c0, and for fine-grained training, set

cb =
√
2 + 2c0;

7. 0 ≤ ι ≤ 1
polyln(d) ;

8. ι†lower ≥ 1
ln4(d)

, and s†ι†upper ≤ O
(

1
ln(d)

)
;

9. s† ≥ 1;
10. s∗ ∈ polyln(d) with a degree > 15;
11. σζ = 1

ln10(d)
√
d

;

12. σζ∗ ∈
[
ω
(

polyln(d)√
d

)
, O
(

1
polyln(d)

)]
;

13. Pσζ ≥ ω(polyln(d)), and P ≤ poly(d);

14. σ0 ≤ O
(

1
d3s∗ ln(d)

)
, and set η = Θ(σ0) for simplicity;

15. Batch of samples B(t) at every iteration has a deterministic size of N ∈
(Ω(polyln(d)k+d), poly(d)).

16. Note: we sometimes abuse the notation x = a± b as an abbreviation for x ∈ [a− b, a+ b].
Remark. We believe the range of parameter choice can be (asymptotically) wider than what is con-
sidered here, but for the purpose of illustrating the main messages of the paper, we do not consider a
more general set of parameter choice necessary because having a wider range of it can significantly
complicate and obscure the already lengthy proofs without adding to the core messages.

Additionally, the function f(σζ) in the main text is set to
σ−1
ζ

ln10(d)d0.1 = d0.4 in this appendix for
derivation convenience.

B.5 PLAN OF PRESENTATION

We shall devote the majority of our effort to proving results for the coarse-label learning dynamics,
starting with appendix section C and ending on E, and only devote section G to the fine-grained-
label learning dynamics, since the analysis of fine-grained training overlaps significantly with the
coarse-grained one.

23

Under review as a conference paper at ICLR 2024

C COARSE-GRAINED TRAINING, INITIALIZATION GEOMETRY

For coarse-grained training, assume m = Θ(d2+2c0).
Definition C.1. Define the following sets of interest of the hidden neurons:

1. U (0)
+,r = {v ∈ V : ⟨w(0)

+,r,v⟩ ≥ σ0
√
4 + 2c0

√
ln(d)− 1

ln5(d)
}

2. Given v ∈ V , S∗(0)
+ (v) ⊆ +× [m] satisfies:

(a) ⟨w(0)
+,r,v⟩ ≥ σ0

√
4 + 2c0

√
ln(d) + 1

ln5(d)

(b) ∀v′ ∈ V s.t. v′ ⊥ v, ⟨w(0)
+,r,v

′⟩ < σ0
√
4 + 2c0

√
ln(d)− 1

ln5(d)

3. Given v ∈ D, S(0)
+ (v) ⊆ +× [m] satisfies:

(a) ⟨w(0)
+,r,v⟩ ≥ σ0

√
4 + 2c0

√
ln(d)− 1

ln5(d)

4. For any (+, r) ∈ S
∗(0)
+,reg ⊆ +× [m]:

(a) ⟨w(0)
+,r,v⟩ ≤ σ0

√
10
√

ln(d) ∀v ∈ V

(b)
∣∣∣U (0)

+,r

∣∣∣ ≤ O(1)

Proposition 1. Assume m = Θ(d2+2c0), i.e. the number of neurons assigned to the + and − class
are equal and set to Θ(d2+2c0).

At t = 0, for all v ∈ V , the following properties are true with probability at least 1− d−2 over the
randomness of the initialized kernels:

1. |S∗(0)
+ (v)|, |S(0)

+ (v)| = Θ

(
1√
ln(d)

)
dc0

2. In particular, for any v,v′ ∈ D,
∣∣∣∣ |S∗(0)

+ (v)|
|S∗(0)

+ (v′)|
− 1

∣∣∣∣ , ∣∣∣∣ |S∗(0)
+ (v)|

|S(0)
+ (v′)|

− 1

∣∣∣∣ ≤ O
(

1
ln5(d)

)
3. S(0)

+,reg = [m]

Proof. Recall the tail bound of g ∼ N (0, 1) for every ϵ > 0:
1

2

1√
2π

ϵ

ϵ2 + 1
e−ϵ2/2 ≤ P [g ≥ ϵ] ≤ 1

2

1√
2π

1

ϵ
e−ϵ2/2 (8)

First note that for any r ∈ [m], {⟨w(0)
+,r,v⟩}v∈V is a sequence of iid random variables with distribu-

tion N (0, σ2
0).

The proof of the first point proceeds in two steps.

1. The following properties hold at t = 0:

p1 :=P

[
⟨w(0)

+,r,v⟩ ≥ σ0
√
4 + 2c0

√
ln(d) +

1

ln5(d)

]

∈ 1√
8π
d−2−c0e(−2−c0)/ ln5(d)


√
(4 + 2c0)

(
ln(d) + 1

ln5(d)

)
(4 + 2c0)

(
ln(d) + 1

ln5(d)

)
+ 1

,
1√

(4 + 2c0)
(
ln(d) + 1

ln5(d)

)


=Θ

(
1√
ln(d)

)
d−2−c0

(9)

24

Under review as a conference paper at ICLR 2024

and

p2 :=P

[
⟨w(0)

+,r,v⟩ ≥ σ0
√
4 + 2c0

√
ln(d)− 1

ln5(d)

]

∈ 1√
8π
d−2−c0e−(−2−c0)/ ln5(d)


√
(4 + 2c0)

(
ln(d)− 1

ln5(d)

)
(4 + 2c0)

(
ln(d)− 1

ln5(d)

)
+ 1

,
1√

(4 + 2c0)
(
ln(d)− 1

ln5(d)

)


=Θ

(
1√
ln(d)

)
d−2−c0

(10)
Therefore, for any r ∈ [m], the random event described in S∗(0)

+ holds with probability

p1×(1−p2)d−1 = Θ

(
1√
ln(d)

)
d−2−c0×

(
1−Θ

(
1√
ln(d)

)
d−2−c0

)d−1

= Θ

(
1√
ln(d)

)
d−2−c0

(11)
The last equality holds because defining f(d) = d−2−c0 and d being sufficiently large,

g(d) := |(d− 1) ln(1− f(d))| ≤ (d− 1)× (f(d) +O(f(d)2)) ≤ O(d−1) (12)

which means

(1− f(d))d−1 = e−g(d) ∈ (1−O(d−1), 1) (13)

2. Given v ∈ V , |S∗(0)
+ (v)| is a binomial random variable, with each Bernoulli trial (ranging over

r ∈ [m]) having success probability p1(1 − p2)
d−1. Therefore, E

[
|S∗(0)

+ (v)|
]
= mp1(1 −

p2)
d−1 = Θ

(
1√
ln(d)

)
dc0 .

Now recall the Chernoff bound of binomial random variables. Let {Xn}mn=1 be an iid sequence
of Bernoulli random variable with success rate p, and Sn =

∑m
n=1Xn. Then for any δ ∈ (0, 1),

P[Sn ≥ (1 + δ)mp] ≤ exp

(
−δ

2mp

3

)
P[Sn ≤ (1− δ)mp] ≤ exp

(
−δ

2mp

2

) (14)

It follows that, for each v ∈ V , |S∗(0)
+ (v)| = Θ

(
1√
ln(d)

)
dc0 with probability at least 1 −

exp(−Ω(ln−1/2(d))dc0). Taking union bound over all possible v ∈ D, the random event still
holds with probability at least 1− exp(−Ω(ln−1/2(d))dc0 +O(ln(d))) ≥ 1− exp(−Ω(d0.5c0))
(in sufficiently high dimension).

The proof for S(0)
+ (v) proceeds in virtually the same way, so we omit the calculations here.

To show the second point, in particular
∣∣∣∣ |S∗(0)

+ (v)|
|S(0)

+ (v′)|
− 1

∣∣∣∣ ≤ O
(

1
ln5(d)

)
, we need to be a bit more

careful in our bounds of the relevant sets. In particular, we need to directly use the CDF of gaussian

25

Under review as a conference paper at ICLR 2024

random variables:∣∣∣∣∣P
[
⟨w(0)

+,r,v⟩ ≥ σ0
√
4 + 2c0

√
ln(d) +

1

ln5(d)

]
(1±O(d−1))

− P

[
⟨w(0)

+,r,v
′⟩ ≥ σ0

√
4 + c0

√
ln(d)− 1

ln5(d)

] ∣∣∣∣∣
≤ 1

2
√
2π

∫ √
4+2c0

√
ln(d)+ 1

ln5(d)

√
4+2c0

√
ln(d)− 1

ln5(d)

e−ϵ2/2dϵ+O

(
1

d3+c0
√
ln(d)

)

≤ 1

2
√
2π
d−2−c0e(2+c0)/ ln5(d)

√
4 + 2c0

(√
ln(d) +

1

ln5(d)
−
√

ln(d)− 1

ln5(d)

)
+O

(
1

d3+c0
√
ln(d)

)

=
1

2
√
2π
d−2−c0e(2+c0)/ ln5(d)

√
4 + 2c0

2
ln5(d)√

ln(d) + 1
ln5(d)

+
√
ln(d)− 1

ln5(d)

+O

(
1

d3+c0
√

ln(d)

)
(15)

The expected difference in number between the two sets is just the above expression multiplied by
m = Θ(d2+2c0), and with probability at least 1− exp(−Ω(d−c0/4)), the difference term satisfies

1

2
√
2π

(1± d−c0/2)Θ(dc0)e(2+c0)/ ln5(d)
√
4 + 2c0

2
ln5(d)√

ln(d) + 1
ln5(d)

+
√
ln(d)− 1

ln5(d)

±O

(
d2+2c0

d3+c0
√
ln(d)

)

∈Θ

(
1√
ln(d)

)
dc0 × 1

ln5(d)
(16)

By further noting from before that |S(0)
+ (v)| = Θ

(
1√
ln(d)

)
dc0 ,

∣∣∣∣ |S∗(0)
+ (v)|

|S(0)
+ (v′)|

− 1

∣∣∣∣ ≤ O
(

1
ln5(d)

)
follows. The proof of

∣∣∣∣ |S∗(0)
+ (v)|

|S∗(0)
+ (v′)|

− 1

∣∣∣∣ ≤ O
(

1
ln5(d)

)
follows a very similar argument, so we omit

the calculations here.

Now, as for the set S(0)
reg , we know for any r ∈ [m] and vi ∈ D,

P
[
⟨w(0)

+,r,vi⟩ ≥ σ0
√
10
√
ln(d)

]
≤ O

(
1√
ln(d)

)
d−5. (17)

Taking the union bound over r and i yields

P
[
∃r and i s.t.⟨w(0)

+,r,vi⟩ ≥ σ0
√
10
√
ln(d)

]
≤ mdO

(
1√
ln(d)

)
d−5 < d−2. (18)

Finally, to show
∣∣∣U (0)

+,r

∣∣∣ ≤ O(1) holds for every (+, r), we just need to note that for any arbitrary

(+, r) neuron, the probability of
∣∣∣U (0)

+,r

∣∣∣ > 4 is no greater than

p42

(
d

4

)
≤ O

(
1

ln2 d

)
d−8−4c0 × d4 ≤ O

(
1

ln2 d

)
d−4−4c0 (19)

Taking union bound over all m ≤ O
(
d2+2c0

)
neurons yields the desired result.

26

Under review as a conference paper at ICLR 2024

D COARSE-GRAINED SGD PHASE I: (ALMOST) CONSTANT LOSS, NEURONS
DIVERSIFY

Definition D.1. We define T0 to be the first time which there exists some sample n such that

F (T0)
c (X(T0)

n) ≥ d−1 (20)

Without loss of generality assume c = +. Define phase I to be the time t ∈ [0, T0).

D.1 MAIN RESULTS

Theorem D.1 (Phase 1 SGD update properties). The following properties hold with probability at
least 1−O

(
mNPk+t

poly(d)

)
−O(e−Ω(ln2(d))) for every t ∈ [0, T0).

1. (On-diagonal common-feature neuron growth) For every (+, r), (+, r′) ∈ S
∗(0)
+ (v+),

w
(t)
+,r −w

(0)
+,r = w

(t)
+,r′ −w

(0)
+,r′ (21)

Moreover,

∆w
(t)
+,r =η

((
1

2
± ψ1

)√
1± ι

(
1± s∗−1/3

)
±O

(
1

ln10(d)

))
s∗

2P
v+ +∆ζ

(t)
+,r (22)

where ∆ζ
(t)
+,r ∼ N (0, σ

(t)2
∆ζ+,r

I), σ(t)
∆ζ+,r

= ησζ

((
1
2 ± ψ1

)√
1± s∗−1/3

) √
s∗

P
√
2N

, and |ψ1| ≤
d−1.

Furthermore, every (+, r) ∈ S
∗(0)
+ (v+) activates on v+-dominated patches at time t.

2. (On-diagonal finegrained-feature neuron growth) For every possible choice of c and every
(+, r), (+, r′) ∈ S

∗(0)
+ (v+,c),

w
(t)
+,r −w

(0)
+,r = w

(t)
+,r′ −w

(0)
+,r′ (23)

Moreover,

∆w
(t)
+,r =η

((
1

2
± ψ1

)√
1± ι

(
1± s∗−1/3

)
±O

(
1

ln10(d)

))
s∗

2k+P
v+,c +∆ζ

(t)
+,r

(24)
where ζ

(t)
+,r ∼ N (0, σ

(t)2
∆ζ+,r

I), and σ(t)
∆ζ+,r

= ησζ

((
1
2 ± ψ1

)√
1± s∗−1/3

) √
s∗

P
√

2Nk+

.

Furthermore, every (+, r) ∈ S
∗(0)
+ (v+,c) activates on v+-dominated patches at time t.

3. The above results also hold with the “+” and “−” signs flipped.

Proof. The SGD update rule produces the following update:

w
(t+1)
+,r =w

(t)
+,r + η

1

NP
× (25)

N∑
n=1

(
1{yn = +}[1− logit(t)+ (X(t)

n)]
∑
p∈[P]

σ′(⟨w(t)
+,r,x

(t)
n,p⟩+ b

(t)
+,r)x

(t)
n,p (26)

+ 1{yn = −}[−logit(t)+ (X(t)
n)]

∑
p∈[P]

σ′(⟨w(t)
+,r,x

(t)
n,p⟩+ b

(t)
+,r)x

(t)
n,p

)
(27)

27

Under review as a conference paper at ICLR 2024

In particular,

26 =

N∑
n=1

1{yn = +}
(
1

2
± ψ1

)
×{

1{|P(X(t)
n ;v+)| > 0}

[∑
p∈P(X

(t)
n ;v+)

σ′(⟨w(t)
+,r, α

(t)
n,pv+ + ζ(t)

n,p⟩+ b
(t)
+,r)

(
α(t)
n,pv+ + ζ(t)

n,p

)

+
∑

p/∈P(X
(t)
n ;v+)

σ′(⟨w(t)
+,r,x

(t)
n,p⟩+ b

(t)
+,r)x

(t)
n,p

]

+ 1{|P(X(t)
n ;v+)| = 0}

∑
p∈[P]

σ′(⟨w(t)
+,r,x

(t)
n,p⟩+ b

(t)
+,r)x

(t)
n,p

}

=

N∑
n=1

1{yn = +}
(
1

2
± ψ1

)
×{

1{|P(X(t)
n ;v+)| > 0}

[∑
p∈P(X

(t)
n ;v+)

1

{
⟨w(t)

+,r, α
(t)
n,pv+ + ζ(t)

n,p⟩ ≥ b
(t)
+,r

}(
α(t)
n,pv+ + ζ(t)

n,p

)

+
∑

p/∈P(X
(t)
n ;v+)

1

{
⟨w(t)

+,r,x
(t)
n,p⟩ ≥ b

(t)
+,r

}
x(t)
n,p

]

+ 1{|P(X(t)
n ;v+)| = 0}

∑
p∈[P]

1

{
⟨w(t)

+,r,x
(t)
n,p⟩ ≥ b

(t)
+,r

}
x(t)
n,p

}
(28)

The rest of the proof proceeds by induction (in Phase 1).

First, recall that we set b(0)c,r = −
√
4 + 2c0

√
ln(d), and ∆b

(t)
c,r = −∥∆w(t)

c,r∥2

ln5(d)
for all t in phase 1, and

for any +-class sample Xn with p ∈ P(X
(t)
n ;v+), α

(t)
n,p ∈

√
1± ι by our data assumption.

Base case t = 0.

1. (On-diagonal common-feature neuron growth)

The base case for the neuron expression of point 1. is trivially true.

We show that the neurons (+, r) ∈ S
∗(0)
+ (v+) only activate on v+-dominated patches at time t = 0.

With probability at least 1−O
(

mNP
poly(d)

)
, by Lemma H.3, we have for all possible choices of r, n, p:

∣∣∣⟨w(0)
+,r, ζ

(0)
n,p⟩

∣∣∣ ≤ O(σ0σζ
√
d ln(d)) ≤ O

(
σ0

ln9(d)

)
(29)

It follows that

⟨w(0)
+,r, α

(0)
n,pv+ + ζ(0)

n,p⟩ =σ0
{√

1± ι×
(√

4 + 2c0

√
ln(d) + 1/ ln5(d),

√
10
√
ln(d)

)
± 1

ln9(d)

}
=σ0

{(√
1− ι

√
4 + 2c0

√
ln(d) + 1/ ln5(d),

√
1 + ι

√
10
√
ln(d)

)
± 1

ln9(d)

}
(30)

28

Under review as a conference paper at ICLR 2024

Employing the basic identity a− b = a2−b2

a+b , we have the lower bound

σ−1
0

(
⟨w(0)

+,r, α
(0)
n,pv+ + ζ(0)

n,p⟩+ b
(0)
+,r

)
≥
√
(1− ι)(4 + 2c0)(ln(d) + 1/ ln5(d))−

√
(4 + 2c0) ln(d)−O

(
1

ln9(d)

)
=

(1− ι)(4 + 2c0)(ln(d) + 1/ ln5(d))− (4 + 2c0) ln(d)√
(1− ι)(4 + 2c0)(ln(d) + 1/ ln5(d)) +

√
(4 + 2c0) ln(d)

−O

(
1

ln9(d)

)

=
(4 + 2c0)(−ι ln(d) + (1− ι)/ ln5(d))√

(1− ι)(4 + 2c0)(ln(d) + 1/ ln5(d)) +
√
(4 + 2c0) ln(d)

−O

(
1

ln9(d)

)
> 0

(31)

The last inequality holds since ι ≤ 1
polyln(d) and d is sufficiently large such that 1

ln9(d)
does not drive

the positive term down past 0.

Therefore, the neurons in S∗(0)
+ (v+) indeed activate on the v+-dominated patches at t = 0.

The rest of the patches x
(0)
n,p is either a feature patch (not dominated by v+) or a noise patch. By

definition, (+, r) ∈ S
∗(0)
+ (v+) =⇒ (+, r) ∈ S

(0)
+ (v+). Therefore, by Theorem F.1, with proba-

bility at least 1 − O
(

mk+NP
poly(d)

)
, at time t = 0, the (+, r) ∈ S

∗(0)
+ (v+) neurons we are considering

cannot activate on any feature patch dominated by v ⊥ v+, nor on any noise patches.

It follows that the expression 26 at time t = 0 is as follows:

26 =

N∑
n=1

1{yn = +}
(
1

2
± ψ1

)
×{

1{|P(X(0)
n ;v+)| > 0}

[∑
p∈P(X

(0)
n ;v+)

(√
1± ιv+ + ζ(0)

n,p

)
+

∑
p/∈P(X

(0)
n ;v+)

0

]

+ 1{|P(X(0)
n ;v+)| = 0}

∑
p∈[P]

0

}

=

(
1

2
± ψ1

) N∑
n=1

1{yn = +, |P(X(0)
n ;v+)| > 0}

∑
p∈P(X

(0)
n ;v+)

(√
1± ιv+ + ζ(0)

n,p

)

=

(
1

2
± ψ1

)
×∣∣∣{(n, p) ∈ [N]× [P] : yn = +, |P(X(0)

n ;v+)| > 0, p ∈ P(X(0)
n ;v+)

}∣∣∣ (√1± ιv+

)
+

N∑
n=1

∑
p∈P(X

(0)
n ;v+)

{yn = +}
(
1

2
± ψ1

)
ζ(0)
n,p

(32)

On average,

E
[∣∣∣{(n, p) ∈ [N]× [P] : yn = +, |P(X(0)

n ;v+)| > 0, p ∈ P(X(0)
n ;v+)

}∣∣∣]
=
s∗

P
× P × N

2
=
s∗N

2

(33)

Furthermore, with our parameter choices, and by concentration of binomial random variables, with
probability at least 1− e−Ω(polyln(d)),∣∣∣{(n, p) ∈ [N]× [P] : yn = +, |P(X(0)

n ;v+)| > 0, p ∈ P(X(0)
n ;v+)

}∣∣∣ = s∗N

2

(
1± s∗−1/3

)
(34)

29

Under review as a conference paper at ICLR 2024

must be true.

It follows that

26 =

(
1

2
± ψ1

)
× s∗N

2

(
1± s∗−1/2

)
×
(√

1± ιv+

)
+

N∑
n=1

∑
p∈P(X

(0)
n ;v+)

{yn = +}
(
1

2
± ψ1

)
ζ(0)
n,p

(35)

The other component expression 27 is zero with probability at least 1 − O
(

mk+NP
poly(d)

)
by Theorem

F.1.

By noting that

Var
(
∆ζ

(0)
+,r

)
=Var

 η

NP

N∑
n=1

∑
p∈P(X

(0)
n ;v+)

{yn = +}
(
1

2
± ψ1

)
ζ(0)
n,p


=η2

(
1

2
± ψ1

)2
s∗

2NP 2

(
1± s∗−1/3

)
σ2
ζ ,

(36)

and

E
[
∆ζ

(0)
+,r

]
= E

 η

NP

N∑
n=1

∑
p∈P(X

(0)
n ;v+)

{yn = +}
(
1

2
± ψ1

)
ζ(0)
n,p

 = 0, (37)

we finish the proof of the base case for point 1.

2. (On-diagonal finegrained-feature neuron growth)

The proof of the base case of point 2. is virtually identical to point 1, so we omit the computations
here.

Inductive step: We condition on the high probability events of the induction hypothesis for t ∈
[0, T] (with T < T0 of course), and prove the statements for t = T + 1.

1. (On-diagonal common-feature neuron growth)

By the induction hypothesis, up to time t = T , with probability at least 1 − O
(

mk+NPT
poly(d)

)
, for all

(+, r) ∈ S
∗(T)
+ (v+),

∆w
(t)
+,r =η

((
1

2
± ψ1

)√
1± ι

(
1± s∗−1/3

)) s∗

2P
v+ +∆ζ

(t)
+,r (38)

where ∆ζ
(t)
+,r ∼ N (0, σ

(t)2
∆ζ I), σ(t)

∆ζ = ησζ

((
1
2 ± ψ1

)√
1± s∗−1/3

) √
s∗

P
√
2N

.

Expression of w(T+1)
+,r .

Conditioning on the high-probability event of the induction hypothesis, at time t = T + 1,

w
(T+1)
+,r =w

(0)
+,r +

T∑
τ=0

∆w
(τ)
+,r

=ηT

((
1

2
± ψ1

)√
1± ι

(
1± s∗−1/3

)) s∗

2P
v+ + ζ

(t)
+,r

(39)

where ζ
(t)
+,r ∼ N (0, σ

(t)2
ζ I), σ(t)

ζ = ησζ
√
T
((

1
2 ± ψ1

)√
1± s∗−1/3

) √
s∗

P
√
2N

.

Let us compute ∆w
(T+1)
+,r .

30

Under review as a conference paper at ICLR 2024

We first want to show that w(T+1)
+,r activates on v+-dominated patches x

(T+1)
n,p =

√
1± ιv+ +

ζ
(T+1)
n,p . We need to show that the following expression is above 0:

⟨w(T+1)
+,r ,x(T+1)

n,p ⟩+ b
(T+1)
+,r

=⟨w(0)
+,r,

√
1± ιv+ + ζ(T+1)

n,p ⟩+ b
(0)
+,r

+

〈
ηT

((
1

2
± ψ1

)√
1± ι

(
1± s∗−1/3

)
±O

(
1

ln10(d)

))
s∗

2P
v+ + ζ

(T+1)
+,r ,

√
1± ιv+ + ζ(T+1)

n,p

〉

+

T∑
τ=0

∆b
(τ)
+,r

(40)

Let us treat the three terms (on three lines) separately.

First, following virtually the same argument as in the base case, the following lower bound holds
with probability at least 1−O

(
mNP
poly(d)

)
for all n, p and (+, r) ∈ S

∗(T)
+ (v+):

⟨w(0)
+,r,

√
1± ιv+ + ζ(T+1)

n,p ⟩+ b
(0)
+,r

≥σ0
{√

(1− ι)(4 + 2c0)(ln(d) + 1/ ln5(d))−
√
(4 + 2c0) ln(d)−O

(
1

ln9(d)

)}
>0

(41)

Now consider the second term.

We know, with probability at least 1− e−Ω(d), for all n and p,

∣∣∣⟨ζ(T+1)
n,p ,v+⟩

∣∣∣ ≤ O

(
1

ln10(d)

)
, (42)

therefore, ∣∣∣∣∣⟨ηT
((

1

2
± ψ1

)√
1± ι

(
1± s∗−1/3

)
±O

(
1

ln10(d)

))
s∗

2P
v+, ζ

(T+1)
n,p ⟩

∣∣∣∣∣
≤ηT s∗

2P
O

(
1

ln10(d)

)
.

(43)

Moreover, with probability at least 1− e−Ω(d),

∣∣∣⟨ζ(T+1)
+,r ,v+⟩

∣∣∣ ≤ η
√
T

√
s∗

P
√
2N

×O

(
1

ln10(d)

)
(44)

and with probability at least 1− e−Ω(d),

∣∣∣⟨ζ(T)
+,r , ζ

(T+1)
n,p ⟩

∣∣∣ ≤ O
(
σζσ

(T)
ζ d

)
≤ O

(
η
√
T

√
s∗

P
√
2N

1

ln20(d)d
d

)
≤ η

√
T

√
s∗

P
√
2N

1

ln19(d)
(45)

therefore

⟨ηTζ(T+1)
+,r ,

√
1± ιv+ + ζ(T+1)

n,p ⟩ ≤ η
√
T

√
s∗

P
√
2N

O

(
1

ln10(d)

)
. (46)

31

Under review as a conference paper at ICLR 2024

It follows that with probability at least 1−O(e−Ω(d)),

〈
ηT

((
1

2
± ψ1

)√
1± ι

(
1± s∗−1/3

)) s∗

2P
v+ + ζ

(T+1)
+,r ,

√
1± ιv+ + ζ(T+1)

n,p

〉

=⟨ηT

((
1

2
± ψ1

)√
1± ι

(
1± s∗−1/3

)) s∗

2P
v+,

√
1± ιv+⟩

+ ⟨ηT

((
1

2
± ψ1

)√
1± ι

(
1± s∗−1/3

)) s∗

2P
v+, ζ

(T+1)
n,p ⟩

+ ⟨ηζ(T+1)
+,r ,

√
1± ιv+ + ζ(T+1)

n,p ⟩

≥ηT
(
1

2
− ψ

(T+1)
1

)
(1− ι)

(
1− s∗−1/3

) s∗

2P
− η

√
T

√
s∗

P
√
2N

O

(
1

ln10(d)

)
.

(47)

Now we compute the third term. By the induction hypothesis,

T∑
t=0

∆b
(t)
+,r

=

T∑
t=0

∥∆w
(t)
+,r∥2

ln5(d)

=

T∑
t=0

1

ln5(d)

∥∥∥∥η(1

2
± ψ1

)√
1± ι

(
1± s∗−1/3

) s∗

2P
v+ +∆ζ

(t)
+,r

∥∥∥∥
2

≤
T∑

t=0

1

ln5(d)
η

(
1

2
+ ψ1

)√
1 + ι

(
1 + s∗−1/3

) s∗

2P
∥v+∥2 +

T∑
t=0

1

ln5(d)

∥∥∥∆ζ
(t)
+,r

∥∥∥
2

=
1

ln5(d)
ηT

(
1

2
+ ψ1

)√
1 + ι

(
1 + s∗−1/3

) s∗

2P
+

T∑
t=0

1

ln5(d)

∥∥∥∆ζ
(t)
+,r

∥∥∥
2

(48)

With probability at least 1−O
(

mT
poly(d)

)
, for all t ∈ [0, T] and r in consideration,

∥∥∥∆ζ
(t)
+,r

∥∥∥
2
≤ η

√
s∗

P
√
2N

O

(
1

ln10(d)

)
(49)

Therefore,

T∑
t=0

∆b
(t)
+,r

≤ 1

ln5(d)

(
ηT

(
1

2
+ ψ1

)√
1 + ι

(
1 + s∗−1/3

) s∗

2P
+ ηT

√
s∗

P
√
2N

O

(
1

ln10(d)

)) (50)

32

Under review as a conference paper at ICLR 2024

Combining our calculations of the three terms from above, we find the following estimate:

⟨w(T+1)
+,r ,x(T+1)

n,p ⟩+ b
(T+1)
+,r

> 0

+ ηT

(
1

2
− ψ1

)
(1− ι)

(
1− s∗−1/3

) s∗

2P
− η

√
T

√
s∗

P
√
2N

O

(
1

ln10(d)

)
− 1

ln5(d)

(
ηT

(
1

2
+ ψ1

)√
1 + ι

(
1 + s∗−1/3

) s∗

2P
+ ηT

√
s∗

P
√
2N

O

(
1

ln10(d)

))
>ηT

((
1

2
− ψ1

)
(1− ι)

(
1− s∗−1/3

)
−O

(
1

ln4(d)

))
s∗

2P

> 0

(51)

On the other hand, by Theorem F.1, with probability at least 1−O
(

mk+NPT
poly(d)

)
, none of the (+, r) ∈

S
∗(T)
+ (v+) can activate on x

(T+1)
n,p that are feature-patches dominated by v ⊥ v+ or noise patches.

Combining the above observations, with probability at least 1 − O
(

mk+NP (T+1)
poly(d)

)
, the update

expressions up to time t = T + 1 can be written as follows:

∆w
(t)
+,r =

(
1

2
± ψ1

)
×

{∣∣∣{(n, p) ∈ [N]× [P] : yn = +, |P(X(t)
n ;v+)| > 0, p ∈ P(X(t)

n ;v+)
}∣∣∣ (√1± ιv+

)
+

N∑
n=1

∑
p∈P(X

(0)
n ;v+)

{yn = +}
(
1

2
± ψ1

)
ζ(t)
n,p

} (52)

The rest of the derivations proceeds virtually the same as in the base case; we just need to rely on
the concentration of binomial random variables to calculate∣∣∣{(n, p) ∈ [N]× [P] : yn = +, |P(X(0)

n ;v+)| > 0, p ∈ P(X(0)
n ;v+)

}∣∣∣ = s∗N

2

(
1± s∗−1/3

)
(53)

which completes the proof of the expression of ∆w
(t)
+,r.

Additionally, to show
w

(T+1)
+,r −w

(0)
+,r = w

(T+1)
+,r′ −w

(0)
+,r′ (54)

we just need to note that, by the above sequence of derivations, for every (+, r) ∈ S
∗(0)
+ (v+), these

neurons receive exactly the same update at time t = T + 1

N∑
n=1

1{yn = +}1{|P(X(T+1)
n ;v+)| > 0}[1−logit(T+1)

+ (X(T+1)
n)]

∑
p∈P(X

(T+1)
n ;v+)

(
α(T+1)
n,p v+ + ζ(T+1)

n,p

)
.

(55)

2. (On-diagonal finegrained-feature neuron growth)

For point 2, the proof strategy is almost identical, the only difference is that at every iteration, the
expected number of patches in which subclass features appear in is∣∣∣{(n, p) ∈ [N]× ([P]− P(X(T)

n);v+,c) : yn = +, |P(X(T)
n ;v+,c)| > 0, p ∈ P(X(T)

n ;v+,c)
}∣∣∣

=
s∗N

2k+

(
1± s∗−1/3

)
(56)

which holds with probability at least 1− e−Ω(ln2(d)) for the relevant neurons.

33

Under review as a conference paper at ICLR 2024

Corollary D.1.1. T0 < O

((
η s∗

P

)−1
)

∈ poly(d).

Proof. Follows from Theorem D.1.

D.2 LEMMAS

Lemma D.2. During the time t ∈ [0, T0), for any X
(t)
n ,

1− logit(t)+ (X(t)
n) =

1

2
±O(d−1) (57)

The same holds for 1− logit(t)− (X
(t)
n).

Therefore, |ψ1| ≤ O(d−1) for t ∈ [0, T0).

Proof. By definition of T0, for any t ∈ [0, T0], we have F (t)
c (X

(t)
n) < d−1 + O (η) for all n,

therefore, using Taylor approximation,

1− logit(t)+ (X(t)
n) =

exp(F
(t)
− (X

(t)
n))

exp(F
(t)
+ (X

(t)
n)) + exp(F

(t)
− (X

(t)
n))

<
exp(d−1)

1 + 1
≤ 1

2
+O(d−1) (58)

The lower bound can be proven due to convexity of the exponential:

exp(F
(t)
− (X

(t)
n))

exp(F
(t)
+ (X

(t)
n)) + exp(F

(t)
− (X

(t)
n))

>
1

2
exp(−d−1) ≥ 1

2
− 1

2d
(59)

34

Under review as a conference paper at ICLR 2024

E COARSE-GRAINED SGD PHASE II: LOSS CONVERGENCE, LARGE
NEURON MOVEMENT

Recall that the desired probability events in Phase I happens with probability at least 1− o(1).

In phase II, common-feature neurons start gaining large movement and drive the training loss down
to o(1). We show that the desired probability events occur with probability at least 1− o(1).

We study the case of T1 ≤ poly(d), where T1 denotes the time step at the end of training.

E.1 MAIN RESULTS

Theorem E.1. With probability at least 1−O
(

mk+NPT1

poly(d)

)
, the following events take place:

1. There exists time T ∗ ∈ poly(d) such that for any t ∈ [T ∗, poly(d)], for any n ∈ [N], the training
loss L(F ;X(t)

n , yn) ∈ o(1).

2. (Easy sample test accuracy is nearly perfect) Given an easy test sample (Xeasy, y), for y′ ∈
{+1,−1} − {y}, for t ∈ [T ∗, poly(d)],

P
[
F (t)
y (Xeasy) ≤ F

(t)
y′ (Xeasy)

]
≤ o(1). (60)

3. (Hard sample test accuracy is bad) However, for all t ∈ [0, poly(d)], given a hard test sample
(Xhard, y),

P
[
F (t)
y (Xhard) ≤ F

(t)
y′ (Xhard)

]
≥ Ω(1). (61)

Proof. The training loss property follows from Lemma E.3 and Lemma E.4. We can set T ∗ = T1,1
or any time beyond it (and upper bounded by poly(d)).

The test accuracy properties follow from Lemma E.8 and Lemma E.9.

E.2 LEMMAS

Lemma E.2 (Phase II, Update Expressions). For any T1 ∈ poly(d), with probability at least 1 −
O
(

mNPk+t
poly(d)

)
, during t ∈ [T0, T1], for any (+, r) ∈ S

∗(0)
+ (v+),

∆w
(t)
+,r

=η

N∑
n=1

1{yn = +} exp
{
−F (t)

+ (X(t)
n)
}

×
exp(F

(t)
− (X

(t)
n))

exp
(
F

(t)
− (X

(t)
n)− F

(t)
+ (X

(t)
n)
)
+ 1

(1± s∗−1/3)
s∗

NP

(√
1± ιv+ + ζ(t)

n,p

)
,

(62)

(where ctn denotes the subclass index of sample X
(t)
n) and for any (+, r) ∈ S

∗(0)
+ (v+,c),

∆w
(t)
+,r

=η exp

{
− (1± s∗−1/3)

√
1± ι

(
1±O

(
1

ln5(d)

))
s∗
(
A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t)
+,c,r∗

∣∣∣S∗(0)
+ (v+,c)

∣∣∣)}

×
N∑

n=1

1{yn = (+, c)}
exp(F

(t)
− (X

(t)
n))

exp
(
F

(t)
− (X

(t)
n)− F

(t)
+ (X

(t)
n)
)
+ 1

(1± s∗−1/3)
s∗

NP

(√
1± ιv+,c + ζ(t)

n,p

)
,

(63)

35

Under review as a conference paper at ICLR 2024

In fact, for any v ∈ {v+}∪{v+,c}k+

c=1, every neuron in S∗(0)
+ (v) remain activated (on v-dominated

patches) and receive exactly the same updates at every iteration as shown above.

For simpler exposition, for any (+, r∗) ∈ S
∗(0)
+ (v+), we write A∗(t)

+,r∗ := ⟨w(t)
+,r∗ ,v+⟩; similarly for

A
∗(t)
+,c,r∗ := ⟨w+,r∗ ,v+,c⟩ for neurons (+, r∗) ∈ S

∗(0)
+ (v+,c).

Moreover, on “+”-class samples, the neural network response satisfies the estimate for every
(+, r∗) ∈ S

∗(0)
+ (v+):

F
(t)
+ (X(t)

n) =(1± s∗−1/3)
√
1± ι

(
1±O

(
1

ln5(d)

))
× s∗

(
A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣) , (64)

The same claims hold for the “−” class neurons (with the class signs flipped).

Proof. In this proof we focus on the neurons in S∗(0)
+ (v+); the proof for the update expressions for

those in S∗(0)
+ (v+,c) are proven in virtually the same way.

Base case, t = T0.

First define A∗(t)
+,r∗ := ⟨w+,r∗ ,v+⟩, (+, r∗) ∈ S

∗(0)
+ (v+); similarly for A∗(t)

+,c,r∗ := ⟨w+,r∗ ,v+,c⟩.
Note that the choice of r∗ does not really matter, since we know from phase I that every neu-
ron in S∗(0)

+ (v+) evolve at exactly the same rate, so by the end of phase I, ∥w(T0)
+,r − w

(T0)
+,r′∥2 ≤

O(σ0 ln(d)) ≪ ∥w(T0)
+,r ∥2 for any (+, r), (+, r′) ∈ S

∗(0)
+ (v+).

Let (+, r) ∈ S
∗(0)
+ (v+). Similar to phase I, consider the update equation

w
(t+1)
+,r =w

(t)
+,r + η

1

NP
× (65)

N∑
n=1

(
1{yn = +}[1− logit(t)+ (X(t)

n)]
∑
p∈[P]

σ′(⟨w(t)
+,r,x

(t)
n,p⟩+ b

(t)
+,r)x

(t)
n,p (66)

+ 1{yn = −}[−logit(t)+ (X(t)
n)]

∑
p∈[P]

σ′(⟨w(t)
+,r,x

(t)
n,p⟩+ b

(t)
+,r)x

(t)
n,p

)
(67)

For the on-diagonal update expression, we have
N∑

n=1

1{yn = +}[1− logit(t)+ (X(t)
n)]

∑
p∈[P]

σ′(⟨w(t)
+,r,x

(t)
n,p⟩+ b

(t)
+,r)x

(t)
n,p

=

N∑
n=1

1{yn = +}[1− logit(t)+ (X(t)
n)]{

1{|P(X(t)
n ;v+)| > 0}

[∑
p∈P(X

(t)
n ;v+)

1

{
⟨w(t)

+,r, α
(t)
n,pv+ + ζ(t)

n,p⟩ ≥ b
(t)
+,r

}(
α(t)
n,pv+ + ζ(t)

n,p

)

+
∑

p/∈P(X
(t)
n ;v+)

1

{
⟨w(t)

+,r,x
(t)
n,p⟩ ≥ b

(t)
+,r

}
x(t)
n,p

]

+ 1{|P(X(t)
n ;v+)| = 0}

∑
p∈[P]

1

{
⟨w(t)

+,r,x
(t)
n,p⟩ ≥ b

(t)
+,r

}
x(t)
n,p

}
(68)

Invoking Theorem F.1 and Corollary ??, the neurons’ non-activation on the patches that do not con-
tain v+, and activation on the v+-dominated patches hold with probability at least 1−O

(
mNPk+

poly(d)

)
36

Under review as a conference paper at ICLR 2024

at time T0. Therefore, the above update expression reduces to

N∑
n=1

1{yn = +, |P(X(t)
n ;v+)| > 0}[1− logit(t)+ (X(t)

n)]
∑

p∈P(X
(t)
n ;v+)

(
α(t)
n,pv+ + ζ(t)

n,p

)
(69)

Note that for samples X(t)
n with yn = +,

[1− logit(t)+ (X(t)
n)] =

exp(F
(t)
− (X

(t)
n))

exp(F
(t)
− (X

(t)
n)) + exp(F

(t)
+ (X

(t)
n))

(70)

Now we need to estimate the network response F
(t)
+ (X

(t)
n). With probability at least 1 −

exp(−Ω(s∗1/3)), we have the upper bound (let (+, ctn) denote the subclass which sample X
(t)
n

belongs to):

F
(t)
+ (X(t)

n)

≤
∑

p∈P(X(t);v+)

∑
(+,r)∈S

(0)
+ (v+)

⟨w(t)
+,r,v+ + ζ(t)

n,p⟩+ b
(t)
+,r

+
∑

p∈P(X(t);v+,ctn
)

∑
(+,r)∈S

(0)
+ (v+,ctn

)

⟨w(t)
+,r,v+,ctn

+ ζ(t)
n,p⟩+ b

(t)
+,r

≤(1 + s∗−1/3)
√
1 + ιs∗

(
1 +O

(
1

ln9(d)

))(
A

∗(t)
+,r∗

∣∣∣S(0)
+ (v+)

∣∣∣+A
∗(t)
+,ctn,r

∗

∣∣∣S(0)
+ (v+,ctn

)
∣∣∣)
(71)

The second inequality is true since maxr⟨w(t)
+,r,v+⟩ ≤ A

∗(t)
+,r∗ +O(σ0 ln(d)), and for any (+, r) ∈

S
(0)
+ (v+), |⟨w(t)

+,r, ζ
(t)
n,p⟩| ≤ O(1/ ln9(d))A

∗(t)
+,r∗ . The bias value is negative (and so less than 0).

To further refine the bound, we recall
∣∣∣S∗(0)

+ (v)
∣∣∣ / ∣∣∣S∗(0)

+ (v′)
∣∣∣ , ∣∣∣S∗(0)

+ (v)
∣∣∣ / ∣∣∣S(0)

+ (v′)
∣∣∣ = 1 ±

O(1/ ln5(d)).

Therefore, we obtain the bound

F
(t)
+ (X(t)

n) ≤(1 + s∗−1/3)
√
1 + ιs∗

(
1 +O

(
1

ln5(d)

))(
1 +O

(
1

ln5(d)

))
×
(
A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣) (72)

Following a similar argument, we also have the lower bound

F
(t)
+ (X(t)

n)

≥
∑

p∈P(X(t);v+)

∑
(+,r)∈S

∗(0)
+ (v+)

σ
(
⟨w(t)

+,r,v+ + ζ(t)
n,p⟩+ b

(t)
+,r

)
+

∑
p∈P(X(t);v+,ctn

)

∑
(+,r)∈S

∗(0)
+ (v+,ctn

)

σ
(
⟨w(t)

+,r,v+,ctn
+ ζ(t)

n,p⟩+ b
(t)
+,r

)

≥(1− s∗−1/3)
√
1− ιs∗

(
1−O

(
1

ln5(d)

))(
1−O

(
1

ln5(d)

))
×
(
A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣)

(73)

The neurons in S∗(0)
+ (v+) have to activate, therefore they serve a key role in the lower bound, the

bias bound for them is simply −A∗(t)
+,r∗Θ(1/ ln5(d)); the neurons in S(0)

+ (v+,c) contribute at least 0

37

Under review as a conference paper at ICLR 2024

due to the ReLU activation; the rest of the neurons do not activate. The same reasoning holds for
the S∗(0)

+ (v+,c).

Knowing that neurons in S∗(0)
+ (v+) cannot activate on the patches in samples belonging to the “−”

class, now we may write the update expression for every (+, r) ∈ S
∗(t)
+ (v+) as (their updates are

identical, same as in phase I):

∆w
(t)
+,r

=
η

NP

N∑
n=1

1{yn = +}[1− logit(t)+ (X(t)
n)]

∑
p∈[P]

σ′(⟨w(t)
+,r,x

(t)
n,p⟩+ b

(t)
+,r)x

(t)
n,p

=
η

NP

N∑
n=1

1{yn = +, |P(X(t)
n ;v+)| > 0} exp(−F (t)

+ (X(t)
n))

×
exp(F

(t)
− (X

(t)
n))

exp
(
F

(t)
− (X

(t)
n)− exp(F

(t)
+ (X

(t)
n))

)
+ 1

∑
p∈P(X

(t)
n ;v+)

(
α(t)
n,pv+ + ζ(t)

n,p

)

=η

N∑
n=1

1{yn = +} exp

{
− (1 + s∗−1/3)

√
1 + ιs∗

(
1 +O

(
1

ln5(d)

))

×
(
A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣)}

×
exp(F

(t)
− (X

(t)
n))

exp
(
F

(t)
− (X

(t)
n)− F

(t)
+ (X

(t)
n)
)
+ 1

(1± s∗−1/3)
s∗

NP

(√
1± ιv+ + ζ(t)

n,p

)

(74)

This concludes the proof of the base case.

Induction step. Assume the statements hold for time period [T0, t], prove for time t+ 1.

At step t + 1, based on the induction hypothesis, we know that with probability at least 1 −
O
(

mNPk+t
poly(d)

)
, during time τ ∈ [T0, t], for any (+, r) ∈ S

∗(0)
+ (v+),

∆w
(τ)
+,r

=η

N∑
n=1

1{yn = +} exp

{
− (1 + s∗−1/3)

√
1 + ιs∗

(
1 +O

(
1

ln5(d)

))

×
(
A

∗(τ)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(τ)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣)}

×
exp(F

(τ)
− (X

(τ)
n))

exp
(
F

(τ)
− (X

(τ)
n)− exp(F

(τ)
+ (X

(τ)
n))

)
+ 1

(1± s∗−1/3)
s∗

NP

(√
1± ιv+ + ζ(τ)

n,p

)
(75)

and for the bias,

∆b
(τ)
+,r

≤− η
1

ln5(d)

N∑
n=1

1{yn = +} exp

{
− (1 + s∗−1/3)

√
1 + ιs∗

(
1 +O

(
1

ln5(d)

))

×
(
A

∗(τ)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(τ)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣)}

× (1− s∗−1/3)
s∗

NP

(√
1− ι− 1

ln10(d)

)
exp(F

(τ)
− (X

(τ)
n))

exp
(
F

(τ)
− (X

(τ)
n)− exp(F

(τ)
+ (X

(τ)
n))

)
+ 1

(76)

38

Under review as a conference paper at ICLR 2024

Conditioning on the high-probability events of the induction hypothesis,

w
(t+1)
+,r

=w
(T0)
+,r

+ η

t∑
τ=T0

N∑
n=1

1{yn = +} exp

{
− (1 + s∗−1/3)

√
1 + ιs∗

(
1 +O

(
1

ln5(d)

))

×
(
A

∗(τ)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(τ)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣)}

×
exp(F

(τ)
− (X

(τ)
n))

exp
(
F

(τ)
− (X

(τ)
n)− exp(F

(τ)
+ (X

(τ)
n))

)
+ 1

(1± s∗−1/3)
s∗

NP

(√
1± ιv+ + ζ(τ)

n,p

)
(77)

It follows that, with probability at least 1−O
(

mNP
poly(d)

)
, for all v+-dominated patch x

(t+1)
n,p ,

⟨w(t+1)
+,r ,x(t+1)

n,p ⟩+ b
(t+1)
+,r

=⟨w(T0)
+,r ,

√
1± ιv+ + ζ(t+1)

n,p ⟩+ b
(T0)
+,r

+ η

t∑
τ=T0

N∑
n=1

1{yn = +} exp

{
− (1 + s∗−1/3)

√
1 + ιs∗

(
1 +O

(
1

ln5(d)

))

×
(
A

∗(τ)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(τ)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣)}

×
exp(F

(τ)
− (X

(τ)
n))

exp
(
F

(τ)
− (X

(τ)
n)− F

(τ)
+ (X

(τ)
n)

)
+ 1

(1± s∗−1/3)
s∗

NP

× ⟨
√
1± ιv+ + ζ(τ)

n,p,
√
1± ιv+ + ζ(t+1)

n,p ⟩+∆b
(τ)
+,r

≥ 0

+ η

t∑
τ=T0

N∑
n=1

1{yn = +} exp

{
− (1 + s∗−1/3)

√
1 + ιs∗

(
1 +O

(
1

ln5(d)

))

×
(
A

∗(τ)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(τ)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣)}

×
exp(F

(τ)
− (X

(τ)
n))

exp
(
F

(τ)
− (X

(τ)
n)− F

(τ)
+ (X

(τ)
n)

)
+ 1

(1± s∗−1/3)
s∗

NP

×
(
1− ι−O

(
1

ln5(d)

))
> 0

(78)

Therefore the neurons (+, r) ∈ S
∗(0)
+ (v+) activate on the v+-dominated patches x

(t+1)
n,p . We also

know that they cannot activate on patches that are not dominated by v+ by Theorem F.1. Following
a similar derivation to the base case, we arrive at the result that, conditioning on the events of the

39

Under review as a conference paper at ICLR 2024

induction hypothesis, with probability at least 1−O
(

mNPk+

poly(d)

)
, for all (+, r) ∈ S

∗(0)
+ (v+),

∆w
(t+1)
+,r

=η

N∑
n=1

1{yn = +} exp

{
− (1 + s∗−1/3)

√
1 + ιs∗

(
1 +O

(
1

ln5(d)

))

×
(
A

∗(t+1)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t+1)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣)}

× (1± s∗−1/3)
s∗

NP

exp(F
(t+1)
− (X

(t+1)
n))

exp
(
F

(t+1)
− (X

(t+1)
n)− F

(t+1)
+ (X

(t+1)
n)

)
+ 1

(√
1± ιv+ + ζ(t+1)

n,p

)
(79)

Consequently, with probability at least 1−O
(

mNP
poly(d)

)
,

∆b
(t+1)
+,r

≤− 1

ln5(d)

N∑
n=1

1{yn = +}η exp

{
− (1 + s∗−1/3)

√
1 + ιs∗

(
1 +O

(
1

ln5(d)

))

×
(
A

∗(t+1)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t+1)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣)}

×
exp(F

(t+1)
− (X

(t+1)
n))

exp
(
F

(t+1)
− (X

(t+1)
n)− F

(t+1)
+ (X

(t+1)
n)

)
+ 1

(1− s∗−1/3)
s∗

NP

×
(
1− ι−O

(
1

ln9(d)

))

(80)

Utilizing the definition of conditional probability, we conclude that the expressions for ∆w
(τ)
+,r and

∆b
(t+1)
+,r are indeed as described in the theorem during time τ ∈ [T0, t+ 1] with probability at least(

1−O
(

mNPk+t
poly(d)

))
×
(
1−O

(
mNPk+

poly(d)

))
≥ 1−O

(
mNPk+(t+1)

poly(d)

)
.

Moreover, based on the expression of ∆w
(τ)
+,r and ∆b

(t+1)
+,r , following virtually the same argument

as in the base case, we can estimate the network output for any (X
(t+1)
n , yn = +):

F
(t+1)
+ (X(t+1)

n) =(1± s∗−1/3)
√
1± ι

(
1±O

(
1

ln5(d)

))
s∗

×
(
A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t)
+,ctn,r

∗

∣∣∣S∗(0)
+ (v+,ctn

)
∣∣∣) (81)

Lemma E.3. Define time T1,1 to be the first point in time which the following identity holds on all
X

(t)
n belonging to the “+” class:

exp(F
(t)
− (X

(t)
n))

exp(F
(t)
− (X

(t)
n)− F

(t)
+ (X

(t)
n)) + 1

≥ 1−O

(
1

ln5(d)

)
(82)

Then T1,1 ≤ poly(d), and for all t ∈ [T1,1, T1], the above holds. The following also holds for this
time period:

[1− logit(t)+ (X(t)
n)] ≤ O

(
1

ln5(d)

)
(83)

The same results also hold with the class signs flipped.

40

Under review as a conference paper at ICLR 2024

Proof. We first note that, the training loss [1 − logit(t)+ (X
(t)
n)] on samples belonging to

the “+” class at any time during t ∈ [T0, T1] is, asymptotically speaking, monotoni-
cally decreasing from 1

2 − O(d−1). This can be easily proven by observing the way

s∗
(
A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t)
+,c,r∗

∣∣∣S∗(0)
+ (v+,c)

∣∣∣)monotonically increases from the proof of Lemma

E.2: before F (t)
+ (X

(t)
n) ≥ ln ln5(d) on all X(t)

n belonging to the “+” class, there must be some sam-
ples X(t)

n on which

[1− logit(t)+ (X(t)
n)] =

exp(F
(t)
− (X

(t)
n))

exp(F
(t)
− (X

(t)
n)) + exp(F

(t)
+ (X

(t)
n))

≥ 1−O(σ0 ln(d)s
∗dc0)

1 +O(σ0 ln(d)s∗dc0) + ln5(d)

≥Ω

(
1

ln5(d)

)
.

(84)

Therefore, by the update expressions in the proof of Lemma E.2, F (t)
+ (X

(t)
n) can reach ln ln5(d) in

time at most O
(

NP ln5(d)
ηs∗

)
∈ poly(d) (in the worst case scenario). At time T1,1 and beyond,

1−
exp(F

(t)
− (X

(t)
n))

exp(F
(t)
− (X

(t)
n)− F

(t)
+ (X

(t)
n)) + 1

≤1− exp(1−O(σ0d
c0s∗))

exp(1 +O(σ0dc0s∗))
1

ln5(d)
+ 1

≤O
(

1

ln5(d)

)
.

(85)

Lemma E.4. Denote C = η s∗

2k+P , and write (for any c ∈ [k+])

Ac(t) = s∗
(
A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t)
+,c,r∗

∣∣∣S∗(0)
+ (v+,c)

∣∣∣) (86)

(see Lemma E.2 for definition of A∗(t)
·). Define tc,0 = exp(Ac(T1,1)). We write A(t) and t0 below

for cleaner notations.

Then with probability at least 1− o(1), during t ∈ [T1,1, T1],

A(t) = ln(C(t− T1,1) + t0) + E(t) (87)

where |E(t)| ≤ O
(

1
ln4(d)

)∑t−T1,1+C−1t0
τ=C−1t0

1
τ ≤ O

(
ln(t)−ln(C−1t0)

ln4(d)

)
.

The same results also hold with the class signs flipped.

Proof. Sidenote: To make the writing a bit cleaner, we assume in the proof below that C−1t0 is an
integer. The general case is easy to extend to by observing that

∣∣∣ 1
t−T1,1+⌈C−1t0⌉ −

1
t−T1,1+C−1t0

∣∣∣ ≤
1

(t−T1,1+⌈C−1t0⌉)(t−T1,1+C−1t0)
, which can be absorbed into the error term at every iteration since

1
t−T1,1+⌈C−1t0⌉ ≪ 1

ln4(d)
due to C−1t0 ≥ Ω(σ−1

0 /(polyln(d)dc0)) ≫ d≫ ln4(d).

Based on result from Lemmas E.2 and E.3, as long as A(t) ≤ O (ln(d)), we know during time
t ∈ [T1,1, T1] the update rule for A(t) is as follows:

A(t+ 1)−A(t) =C exp

{
−(1± s∗−1/3)

√
1± ι

(
1±O

(
1

ln5(d)

))
A(t)

}
×
(
1±O

(
1

ln5(d)

))
(1± s∗−1/3)

(√
1± ι± 1

ln10(d)

)
=C exp {−A(t)} exp

{
±O

(
1

ln4(d)

)}(
1±O

(
1

ln5(d)

))
=C exp {−A(t)}

(
1± C1

ln4(d)

)
(88)

41

Under review as a conference paper at ICLR 2024

where we write C1 in place of O(·) for a more concrete update expression.

The base case t = T1,1 is trivially true.

We proceed with the induction step. Assume the hypothesis true for t ∈ [T1,1, T], prove for t+ 1 =
T + 1.

Note that by Lemma E.10,

A(t+ 1) = ln(C(t− T1,1) + t0) + E(t)

+ C exp {− ln(C(t− T1,1) + t0)− E(t))}
(
1± C1

ln4(d)

)
= ln(C) + ln(t− T1,1 + C−1t0) + E(t)

+ C
1

C(t− T1,1) + t0

(
1− E(t)±O(E(t)2)

)(
1± C1

ln4(d)

)

= ln(C) +

t−T1,1+C−1t0−1∑
τ=1

1

τ
+

1

2

1

t− T1,1 + C−1t0
+

[
0,

1

8

1

(t− T1,1 + C−1t0)2

]
+

1

t− T1,1 + C−1t0
± C1

ln4(d)

1

t− T1,1 + C−1t0

+ E(t) +
1

t− T1,1 + C−1t0

(
−E(t)±O(E(t)2)

)(
1± C1

ln4(d)

)

= ln(C) +

t−T1,1+C−1t0∑
τ=1

1

τ
+

1

2

1

t− T1,1 + C−1t0
+

[
0,

1

8

1

(t− T1,1 + C−1t0)2

]
± C1

ln4(d)

1

t− T1,1 + C−1t0

+ E(t) +
1

t− T1,1 + C−1t0

(
−E(t)±O(E(t)2)

)(
1± C1

ln4(d)

)
(89)

Invoking Lemma E.10 again,

A(t+ 1) = ln(C) + ln(t+ 1− T1,1 + C−1t0)

− 1

2

1

t+ 1− T1,1 + C−1t0
+

1

2

1

t− T1,1 + C−1t0

+

[
−1

8

1

(t+ 1− T1,1 + C−1t0)2
, 0

]
+

[
0,

1

8

1

(t− T1,1 + C−1t0)2

]
± C1

ln4(d)

1

t− T1,1 + C−1t0

+ E(t) +
1

t− T1,1 + C−1t0

(
−E(t)±O(E(t)2)

)(
1± C1

ln4(d)

)
= ln(C(t+ 1− T1,1) + t0)

+
1

2

1

(t+ 1− T1,1 + C−1t0)(t− T1,1 + C−1t0)
±O

(
1

(t+ 1− T1,1 + C−1t0)2

)
± C1

ln4(d)

1

t− T1,1 + C−1t0

+ E(t) +
1

t− T1,1 + C−1t0

(
−E(t)±O(E(t)2)

)(
1± C1

ln4(d)

)
(90)

42

Under review as a conference paper at ICLR 2024

To further refine the expression, first note that the error passed down from the previous step t does
not grow in this step (in fact it slightly decreases):∣∣∣∣E(t) +

1

t− T1,1 + C−1t0

(
−E(t)±O(E(t)2)

)(
1± C1

ln4(d)

)∣∣∣∣
<|E(t)|

≤O
(

1

ln4(d)

) t−T1,1+C−1t0∑
τ=C−1t0

1

τ
.

(91)

Moreover, notice that at step t + 1, since 1
t+1−T1,1+C−1t0

≪ 1
ln4(d)

, the error term |E(t + 1)| =

|A(t+1)−ln(C(t+1−T1,1)+t0)| ≤ O
(

1
ln4(d)

)∑t+1−T1,1+C−1t0
τ=C−1t0

1
τ , which finishes the inductive

step.

Lemma E.5. With probability at least 1−O
(

mNPk+T1

poly(d)

)
, for all t ∈ [0, T1], all c ∈ [k+],

∆A
∗(t)
+,c,r∗

∆A
∗(t)
+,r∗

= Θ

(
1

k+

)
,

A
∗(t)
+,c,r∗

A
∗(t)
+,r∗

= Θ

(
1

k+

)
.

(92)

The same identity holds for the “−”-classes.

Proof. The statements in the lemma follow trivially from Theorem D.1 for time period [0, T0]. Let
us focus on the phase [T0, T1].

In this proof, we condition on the high-probability events of Lemma E.4 and Lemma E.2.

First of all, based on Lemma E.4, we know that s∗A∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣ ≤ O(ln(d)). We will make
use of this fact later.

Base case, t = T0.

The base case directly follows from our Theorem D.1.

Induction step, assume statement holds for τ ∈ [T0, t], prove statement for t+ 1.

By Lemma E.2, we know that

∆A
∗(t)
+,r∗

=η

k+∑
c=1

exp

{
− (1± s∗−1/3)

√
1± ιs∗

(
1±O

(
1

ln5(d)

))

×
(
A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t)
+,c,r∗

∣∣∣S∗(0)
+ (v+,c)

∣∣∣)}

× [1/3, 1](1± s∗−1/3)
s∗

2k+P

(√
1± ι±O

(
1

ln9(d)

))
,

(93)

43

Under review as a conference paper at ICLR 2024

and for any c ∈ [k+],

∆A
∗(t)
+,c,r∗

=η exp

{
− (1± s∗−1/3)

√
1± ιs∗

(
1±O

(
1

ln5(d)

))

×
(
A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣+A
∗(t)
+,c,r∗

∣∣∣S∗(0)
+ (v+,c)

∣∣∣)}

× [1/3, 1](1± s∗−1/3)
s∗

2k+P

(√
1± ι±O

(
1

ln9(d)

))
,

(94)

Relying on the induction hypothesis, we can reduce the above expressions to

∆A
∗(t)
+,r∗

=η

k+∑
c=1

exp

{
− (1± s∗−1/3)

√
1± ι

(
1±O

(
1

ln5(d)

))(
1±O

(
1

k+

))
s∗A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣}

× [1/3, 1](1± s∗−1/3)
s∗

2k+P

(√
1± ι±O

(
1

ln9(d)

))
=η exp

{
− (1± s∗−1/3)

√
1± ι

(
1±O

(
1

ln5(d)

))(
1±O

(
1

k+

))
s∗A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣}

×Θ(1)× s∗

2P
,

(95)
and for any c ∈ [k+],

∆A
∗(t)
+,c,r∗

=η exp

{
− (1± s∗−1/3)

√
1± ι

(
1±O

(
1

ln5(d)

))(
1±O

(
1

k+

))
s∗A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣}

×Θ(1)× s∗

2k+P
.

(96)

By invoking the property that s∗A∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣ ≤ O(ln(d)), we find that for all c ∈ [k+],

∆A
∗(t)
+,c,r∗

∆A
∗(t)
+,r∗

=exp

{
±O

(
1

ln5(d)

)
s∗A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣}×Θ

(
1

k+

)
=

(
1±O

(
1

ln4(d)

))
×Θ

(
1

k+

)
=Θ

(
1

k+

)
.

(97)

Therefore, we can finish our induction step:

A
∗(t+1)
+,c,r∗

A
∗(t+1)
+,r∗

=
A

∗(t)
+,c,r∗ +∆A

∗(t)
+,c,r∗

A
∗(t)
+,r∗ +∆A

∗(t)
+,r∗

=
A

∗(t)
+,c,r∗ +∆A

∗(t)
+,c,r∗

Θ(k+)×
(
A

∗(t)
+,c,r∗ +∆A

∗(t)
+,c,r∗

) = Θ

(
1

k+

)
. (98)

Lemma E.6. Let TΩ(1) be the first point in time such that either s∗A∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣ ≥ Ω(1) or

s∗A
∗(t)
−,r∗

∣∣∣S∗(0)
− (v−)

∣∣∣ ≥ Ω(1). Then for any t < TΩ(1),

A
∗(t)
−,r∗

A
∗(t)
+,r∗

= Θ(1) (99)

44

Under review as a conference paper at ICLR 2024

and for any t ∈ [TΩ(1), T1],

A
∗(t)
−,r∗

A
∗(t)
+,r∗

,
A

∗(t)
+,r∗

A
∗(t)
−,r∗

≥ Ω

(
1

ln(d)

)
. (100)

Proof. This lemma is a consequence of Theorem D.1, LemmaE.2 and Lemma E.4.

Due to Theorem D.1, we already know that
A

∗(t)
−,r∗

A
∗(t)
+,r∗

= Θ(1) up to time T0. In addition, with Lemma

E.2 we know that before s∗A∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣ ≥ Ω(1), the loss term (on a +-class sample) 1 −

logit(t)+ (X
(t)
n) = Θ(1) (the same holds with the class signs flipped), in which case it is also easy to

derive
A

∗(t)
−,r∗

A
∗(t)
+,r∗

= Θ(1) by noting that the update expressions ∆A∗(t)
−,r∗/∆A

∗(t)
+,r∗ = Θ(1).

Beyond time TΩ(1), by Lemma E.4, we know that s∗A∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣ , s∗A∗(t)
−,r∗

∣∣∣S∗(0)
− (v−)

∣∣∣ ≤
O(ln(d)). With the understanding that s∗A∗(t)

+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣ , s∗A∗(t)
−,r∗

∣∣∣S∗(0)
− (v−)

∣∣∣ ≥ Ω(1) beyond

TΩ(1) due to the monotonicity of these functions, and the property
∣∣∣∣ |S∗(0)

− (v−)|
|S∗(0)

+ (v+)|
− 1

∣∣∣∣ ≤ O
(

1
ln5(d)

)
from Proposition 1, the rest of the lemma follows.

Lemma E.7. With probability at least 1 − O
(

mNPk+t
poly(d)

)
, for all t ∈ [0, T1] and all (+, r) ∈

S
∗(0)
+ (v+),

∆b
(t)
+,r

∆A
(t)
+,r

= −Θ

(
1

ln5(d)

)
. (101)

The same holds with the +-class sign replaced by the −-class sign.

Proof. Choose any (+, r) ∈ S
∗(0)
+ (v+).

The statement in this lemma for time period t ∈ [0, T0] follows easily from Theorem D.1 and its
proof. Let us examine the period t ∈ [T0, T1].

Based on Lemma E.2 and its proof and Lemma E.5, we know that for t ∈ [T0, T1], with probability
at least 1−O

(
mNPk+t

poly(d)

)
,

∆A
(t)
+,r

=η exp

{
− (1± s∗−1/3)

√
1± ι

(
1±O

(
1

ln5(d)

))(
1±O

(
1

k+

))
s∗A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣}

× (1± s∗−1/3)
s∗

NP

(√
1± ι±O

(
1

ln9(d)

)) N∑
n=1

1{yn = +}
exp(F

(t)
− (X

(t)
n))

exp
(
F

(t)
− (X

(t)
n)− F

(t)
+ (X

(t)
n)
)
+ 1

(102)

45

Under review as a conference paper at ICLR 2024

Furthermore,

∆b
(t)
+,r

=−
∥∆w

(t)
+,r∥2

ln5(d)

=− η
1

ln5(d)
exp

{
− (1± s∗−1/3)

√
1± ι

(
1±O

(
1

ln5(d)

))(
1±O

(
1

k+

))
s∗A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣}

× (1± s∗−1/3)
s∗

NP

(
1± ι± 1

ln9(d)

) N∑
n=1

1{yn = +}
exp(F

(t)
− (X

(t)
n))

exp
(
F

(t)
− (X

(t)
n)− F

(t)
+ (X

(t)
n)
)
+ 1

(103)

With the understanding that s∗A∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣ ≤ O(ln(d)) from Lemma E.4 and the fact that
exp(F

(t)
− (X(t)

n))

exp
(
F

(t)
− (X

(t)
n)−F

(t)
+ (X

(t)
n)

)
+1

= Θ(1), we have

∆b
(t)
+,r

∆A
(t)
+,r

=−Θ

(
1

ln5(d)

)
exp

{
−
(
1±O

(
1

ln5(d)

))
s∗A

∗(t)
+,r∗

∣∣∣S∗(0)
+ (v+)

∣∣∣}

=−Θ

(
1

ln5(d)

)(
1±O

(
1

ln4(d)

))
=−Θ

(
1

ln5(d)

)
.

(104)

Lemma E.8 (Probability of mistake on hard samples is high). For all t ∈ [0, T1], given a hard test
sample (Xhard, y),

P
[
F (T)
y (Xhard) ≤ F

(T)
y′ (Xhard)

]
≥ Ω(1). (105)

Proof. We first show that at time t = 0, the probability of the network making a mistake on hard
test samples is Ω(1), then prove that for the rest of the time, i.e. t ∈ (0, T1], the model still makes
mistake on hard test samples with probability Ω(1).

At time t = 0, by Lemma H.3, we know that for any r ∈ [m], with probability Ω(1),

⟨w(0)
+,r, ζ

∗⟩ ≥ Ω(σ0σζ∗
√
d) ≥ Ω(σ0polyln(d)) ≫ Ω

(
σ0
√

ln(d)
)
. (106)

Relying on concentration of the binomial random variable, with probability at least 1−e−Ω(polyln(d)),
m∑
r=1

σ
(
⟨w(0)

+,r, ζ
∗⟩+ b

(0)
+,r

)
≥ Ω(mσ0σζ∗

√
d), (107)

which is asymptotically larger than the activation from the features, which, following from Proposi-
tion 1, is upper bounded by O

(
σ0
√
ln(d)s∗dc0

)
. The same can be said for the “−” class. In other

words,
F

(0)
− (Xhard)− F

(0)
+ (Xhard) > 0

⇐⇒

{
m∑
r=1

1{⟨w(0)
−,r, ζ

∗⟩+ b
(0)
−,r > 0}⟨w(0)

−,r, ζ
∗⟩

−
m∑
r=1

1{⟨w(0)
+,r, ζ

∗⟩+ b
(0)
+,r > 0}⟨w(0)

+,r, ζ
∗⟩

}
(1± o(1)) > 0

(108)

46

Under review as a conference paper at ICLR 2024

which clearly holds with probability Ω(1).

Now consider t ∈ (0, T1].

During this period of time, by Theorem D.1 and Lemma E.2, we note that for any c ∈ [k+]

and (+, r) ∈ S
∗(0)
+ (v+,c), ∆ζ

(t)
+,r ∼ N (0, σ

(t)2
∆ζ+,r

Id), with σ
(t)
∆ζ+,r

= Θ

(
∆A

(t)
+,c,r

√
2k+

s∗N σζ

)
.

The same can be said for (+, r) ∈ S
∗(0)
+ (v+), although with the ∆A

(t)
+,c,r

√
2k+

s∗N factor re-

placed by ∆A
(t)
+,r

√
2

s∗N . Also from the proofs of Theorem D.1 and Lemma E.2, and using

the property |U (0)
+,r| ≤ O(1) from Proposition 1, we know that for all neurons, the updates

to the neurons also take the feature-plus-Gaussian-noise form of
∑

v′∈U(0)
+,r

c(t)(v′)v′ + ∆ζ
(t)
+,r,

with c(t)(v′) ≤
(
1 +O

(
1

ln5(d)

))
∆A

(t)
+,c,r if v′ = v+,c for some c ∈ [k+], or c(t)(v′) ≤(

1 +O
(

1
ln5(d)

))
∆A

(t)
+,r if v′ = v+ (because the v′ component of a v′-singleton neuron’s update

is already the maximum possible). Moreover, if v+ ∈ U (0)
+,r, then σ(t)

∆ζ+,r
≤ O

(
∆A

(t)
+,r

√
2

s∗N σζ

)
+

O

(
∆A

(t)
+,c,r

√
2k+

s∗N σζ

)
≤ O

(
∆A

(t)
+,r

√
2

s∗N σζ

)
, otherwise, if U (0)

+,r only contains the fine-grained

features, then σ(t)
∆ζ+,r

≤ O

(
∆A

(t)
+,c,r

√
2k+

s∗N σζ

)
.

With the understanding that only neurons in S(0)
y (vy) and S(0)

y (vy,c) can possibly activate on the
feature patches of a sample when t ≤ T1 (coming from Theorem F.1), we have

F
(t)
+ (Xhard) ≤

∑
(+,r)∈S

(0)
+ (v+,c)

∑
p∈P(Xhard;v+,c)

σ

(
⟨w(0)

+,r +

t−1∑
τ=0

∆w
(τ)
+,r,

√
1± ιv+,c + ζp⟩+ b

(t)
+,r

)

+
∑
r∈[m]

σ

(
⟨w(0)

+,r +

t−1∑
τ=0

∆w
(τ)
+,r, ζ

∗⟩+ b
(t)
+,r

)

+
∑

(+,r)∈S
(0)
+ (v−)

∑
p∈P(Xhard;v−)

σ

(
⟨w(0)

+,r +

t−1∑
τ=0

∆w
(τ)
+,r, α

†
pv− + ζp⟩+ b

(t)
+,r

)
(109)

To further refine this upper bound, we first note that with probability at least 1−O
(

mNPk+t
poly(d)

)
, the

following holds with arbitrary choice of (+, r∗) ∈ S
(0)
+ (v+,c):

∑
(+,r)∈S

(0)
+ (v+,c)

∑
p∈P(Xhard;v+,c)

⟨
t−1∑
τ=0

∆w
(τ)
+,r,

√
1± ιv+,c + ζp⟩ ≤ O

(
s∗
∣∣∣S(0)

+ (v+,c)
∣∣∣ t−1∑
τ=0

∆A
(τ)
+,c,r∗

)
(110)

Invoking Lemma E.5, we obtain (for arbitrary (+, r∗) ∈ S
(0)
+ (v+)):

∑
(+,r)∈S

(0)
+ (v+,c)

∑
p∈P(Xhard;v+,c)

⟨
t−1∑
τ=0

∆w
(τ)
+,r,

√
1± ιv+,c + ζp⟩ ≤ O

(
1

k+
s∗
∣∣∣S(0)

+ (v+,c)
∣∣∣ t−1∑
τ=0

∆A
(τ)
+,r∗

)
(111)

Let us examine the term
∑

r∈[m] σ
(
⟨w(0)

+,r +
∑t−1

τ=0 ∆w
(τ)
+,r, ζ

∗⟩+ b
(t)
+,r

)
more carefully. First of

all, denoting S(0)
+ = ∪k+

c=1S
(0)
+ (v+,c) ∪ ∪k−

c=1S
(0)
+ (v−,c) ∪ S(0)

+ (v+) ∪ S(0)
+ (v−), neurons (+, r) /∈

S
(0)
+ cannot receive any update at all during training due to Theorem F.1. Therefore we can rewrite

47

Under review as a conference paper at ICLR 2024

the term∑
r∈[m]

σ

(
⟨w(0)

+,r +

t−1∑
τ=0

∆w
(τ)
+,r, ζ

∗⟩+ b
(t)
+,r

)

=
∑

(+,r)∈S
(0)
+

σ

(
⟨w(0)

+,r +

t−1∑
τ=0

∆w
(τ)
+,r, ζ

∗⟩+ b
(t)
+,r

)
+

∑
(+,r)/∈S

(0)
+

σ
(
⟨w(0)

+,r, ζ
∗⟩+ b

(0)
+,r

) (112)

Relying on Corollary F.1.1, we know
t−1∑
τ=0

∆b
(τ)
+,r <

t−1∑
τ=0

−Ω

(
polyln(d)
ln5(d)

) ∣∣∣⟨∆w
(τ)
+,r, ζ

∗⟩
∣∣∣ . (113)

Therefore, we know that for r ∈ [m],
t−1∑
τ=0

⟨∆w
(τ)
+,r, ζ

∗⟩+∆b
(τ)
+,r ≤ 0 (114)

As a consequence, we can write the naive upper bound∑
r∈[m]

σ

(
⟨w(0)

+,r +

t−1∑
τ=0

∆w
(τ)
+,r, ζ

∗⟩+ b
(t)
+,r

)

≤
∑

(+,r)∈S
(0)
+

σ
(
⟨w(0)

+,r, ζ
∗⟩+ b

(0)
+,r

)
+

∑
(+,r)/∈S

(0)
+

σ
(
⟨w(0)

+,r, ζ
∗⟩+ b

(0)
+,r

)
=
∑
r∈[m]

σ
(
⟨w(0)

+,r, ζ
∗⟩+ b

(0)
+,r

)
(115)

Additionally, due to Theorem F.1 (and its proof), we know that∑
(+,r)∈S

(0)
+ (v−)

∑
p∈P(Xhard;v−)

σ

(
⟨w(0)

+,r +

t−1∑
τ=0

∆w
(τ)
+,r, α

†
pv− + ζp⟩+ b

(t)
+,r

)

≤
∑

(+,r)∈S
(0)
+ (v−)

∑
p∈P(Xhard;v−)

σ
(
⟨w(0)

+,r, α
†
pv− + ζp⟩+ b

(0)
+,r

) (116)

It follows that

F
(t)
+ (Xhard)

≤O

(
1

k+
s∗
∣∣∣S(0)

+ (v+,c)
∣∣∣ t−1∑
τ=0

∆A
(τ)
+,r∗

)
+

∑
(+,r)∈S

(0)
+ (v+,c)

∑
p∈P(Xhard;v+,c)

∣∣∣⟨w(0)
+,r,

√
1± ιv+,c + ζp⟩

∣∣∣
+
∑
r∈[m]

σ
(
⟨w(0)

+,r, ζ
∗⟩+ b

(0)
+,r

)
+

∑
(+,r)∈S

(0)
+ (v−)

∑
p∈P(Xhard;v−)

σ
(
⟨w(0)

+,r, α
†
pv− + ζp⟩+ b

(0)
+,r

)
(117)

On the other hand, for the “−” neurons, denoting S(0)
− = ∪k+

c=1S
(0)
− (v+,c) ∪ ∪k−

c=1S
(0)
− (v−,c) ∪

S
(0)
− (v+) ∪ S(0)

− (v−),

F
(t)
− (Xhard) ≥

∑
(+,r)∈S

∗(0)
− (v−)

∑
p∈P(Xhard;v−)

σ

(
⟨w(0)

−,r +

t−1∑
τ=0

∆w
(τ)
−,r, α

†
pv− + ζp⟩+ b

(t)
+,r

)

+
∑

(+,r)/∈S
(0)
−

σ
(
⟨w(0)

−,r, ζ
∗⟩+ b

(0)
+,r

)
,

(118)

48

Under review as a conference paper at ICLR 2024

note that the last line is true because neurons outside the set S(0)
− cannot receive any update during

training with probability at least 1 − O
(

mNPk+t
poly(d)

)
due to Theorem F.1. Estimating the activation

value of the neurons from S
∗(0)
− (v−) on the feature noise patches requires some care. We define

time t− to be the first point in time such that any (−, r∗) ∈ S
∗(0)
− (v−) satisfies

∑t−
τ=0 ∆A

(τ)
−,r∗ ≥

σ0 ln
5(d), and beyond this point in time, i.e. for t ∈ [t−, T1], the neurons in S∗(0)

− (v−) have to
activate with high probability, since

⟨w(0)
−,r +

t−1∑
τ=0

∆w
(τ)
−,r, α

†
pv− + ζp⟩+ b

(t)
+,r ≥

(
1−O

(
1

ln5(d)

))
σ0 ln

5(d)/ ln4(d)−O(σ0
√

ln(d))

>0.
(119)

Now we can proceed to prove the lemma for t ∈ (0, T1] by combining the above estimates for
F

(t)
+ (Xhard) and F (t)

− (Xhard).

For t ∈ (0, t−], relying argument similar to the situation of t = 0 and the fact that m − |S(0)
− | =

(1− o(1))m, { ∑
(+,r)/∈S

(0)
−

1{⟨w(0)
−,r, ζ

∗⟩+ b
(0)
−,r > 0}⟨w(0)

−,r, ζ
∗⟩

−
m∑
r=1

1{⟨w(0)
+,r, ζ

∗⟩+ b
(0)
+,r > 0}⟨w(0)

+,r, ζ
∗⟩

}
(1± o(1)) > 0

=⇒ F
(t)
− (Xhard)− F

(t)
+ (Xhard) > 0

(120)

which has to be true with probability Ω(1).

On the other hand, with t ∈ (t−, T1], we have

F
(t)
− (Xhard)− F

(t)
+ (Xhard)

≥

{
t−1∑
τ=0

(
1−O

(
1

ln5(d)

))
s†|S∗(0)

− (v−)|∆A(τ)
−,r∗ −O(σ0

√
ln(d))

−O

(
1

k+
s∗
∣∣∣S(0)

+ (v+,c)
∣∣∣ t−1∑
τ=0

∆A
(τ)
+,r∗

)}

+

{ ∑
(+,r)/∈S

(0)
−

σ
(
⟨w(0)

−,r, ζ
∗⟩+ b

(0)
+,r

)
−

∑
(+,r)∈S

(0)
+ (v+,c)

∑
p∈P(Xhard;v+,c)

∣∣∣⟨w(0)
+,r,

√
1± ιv+,c + ζp⟩

∣∣∣
−
∑
r∈[m]

σ
(
⟨w(0)

+,r, ζ
∗⟩+ b

(0)
+,r

)
−

∑
(+,r)∈S

(0)
+ (v−)

∑
p∈P(Xhard;v−)

σ
(
⟨w(0)

+,r, α
†
pv− + ζp⟩+ b

(0)
+,r

)}
(121)

Let us begin analyzing the first {·} bracket.

By Proposition 1 we know that
∣∣∣S∗(0)

− (v−)
∣∣∣ = (1±O(1/ ln5(d)))

∣∣∣S(0)
+ (v+,c)

∣∣∣, and by Lemma E.5,

we know that ∆A(τ)
+,r∗ ≤ O(ln(d)∆A

(τ)
−,r∗), therefore,

O

(
1

k+
s∗
∣∣∣S(0)

+ (v+,c)
∣∣∣ t−1∑
τ=0

∆A
(τ)
+,r∗

)
≤O

(
ln(d)

k+
s∗
∣∣∣S∗(0)

− (v−)
∣∣∣ t−1∑
τ=0

∆A
(τ)
−,r∗

)

≪
t−1∑
τ=0

(
1−O

(
1

ln5(d)

))
s†|S∗(0)

− (v−)|∆A(τ)
−,r∗ −O(σ0

√
ln(d))

(122)

49

Under review as a conference paper at ICLR 2024

Therefore, we obtained the simpler lower bound

F
(t)
− (Xhard)− F

(t)
+ (Xhard)

≥

{ ∑
(+,r)/∈S

(0)
−

σ
(
⟨w(0)

−,r, ζ
∗⟩+ b

(0)
+,r

)
−

∑
(+,r)∈S

(0)
+ (v+,c)

∑
p∈P(Xhard;v+,c)

∣∣∣⟨w(0)
+,r,

√
1± ιv+,c + ζp⟩

∣∣∣
−
∑
r∈[m]

σ
(
⟨w(0)

+,r, ζ
∗⟩+ b

(0)
+,r

)
−

∑
(+,r)∈S

(0)
+ (v−)

∑
p∈P(Xhard;v−)

σ
(
⟨w(0)

+,r, α
†
pv− + ζp⟩+ b

(0)
+,r

)}
(123)

which is greater than 0 with probability Ω(1) (by relying on an argument almost identical to the
t = 0 case again, and noting that m− |S(0)

− | = (1− o(1))m). This concludes the proof.

Lemma E.9 (Probability of mistake on easy samples is low after training). For t ∈ [T1,1, T1], given
an easy test sample (Xeasy, y),

P
[
F (T)
y (Xeasy) ≤ F

(T)
y′ (Xeasy)

]
≤ o(1). (124)

Proof. Without loss of generality, assume the true label of Xeasy is +1. Assume t ≥ T1,1.

Firstly, conditioning on the events of Theorem F.1, the following upper bound on F (t)
− (Xeasy) holds

with probability at least 1−O
(

m
poly(d)

)
:

F
(t)
− (Xeasy) =

∑
(−,r)∈S

(0)
− (v+)

∑
p∈P(Xeasy;v+)

σ
(
⟨w(t)

−,r,
√
1± ιv+ + ζp⟩+ b

(t)
−,r

)
+

∑
(−,r)∈S

(0)
− (v+,c)

∑
p∈P(Xeasy;v+,c)

σ
(
⟨w(t)

−,r,
√
1± ιv+,c + ζp⟩+ b

(t)
−,r

)
≤

∑
(−,r)∈S

(0)
− (v+)

∑
p∈P(Xeasy;v+)

σ
(
⟨w(0)

−,r,
√
1± ιv+ + ζp⟩+ b

(0)
−,r

)
+

∑
(−,r)∈S

(0)
− (v+,c)

∑
p∈P(Xeasy;v+,c)

σ
(
⟨w(0)

−,r,
√
1± ιv+,c + ζp⟩+ b

(0)
−,r

)
<O (s∗dc0σ0)

≤o(1),

(125)

and on the other hand,

F
(t)
+ (Xeasy) ≥

∑
(+,r)∈S

∗(0)
+ (v+)

∑
p∈P(Xeasy;v+)

σ
(
⟨w(t)

+,r,
√
1± ιv+ + ζp⟩+ b

(t)
+,r

)
+

∑
(+,r)∈S

∗(0)
+ (v+,c)

∑
p∈P(Xeasy;v+,c)

σ
(
⟨w(t)

+,r,
√
1± ιv+,c + ζp⟩+ b

(t)
+,r

)
>Ω(1).

(126)

Therefore, F (t)
+ (Xeasy) ≫ F

(t)
− (Xeasy), which completes the proof.

Lemma E.10 (Jr. & John W. Wrench (1971)). The partial sum of harmonic series satisfies the
following identity:

n−1∑
k=1

1

k
= ln(n) + E − 1

2n
− ϵn (127)

where E is the Euler–Mascheroni constant (approximately 0.58), and ϵn ∈ [0, 1/8n2].

50

Under review as a conference paper at ICLR 2024

F COARSE-GRAINED SGD, POLY-TIME PROPERTIES

In this section, set Te ∈ poly(d).

Please note that we are performing stochastic gradient descent on easy samples only.
Theorem F.1. Fix any t ∈ [0, Te].

1. (Non-activation invariance) For any τ ≥ t, with probability at least 1 − O
(

mk+NPt
poly(d)

)
, any

feature v ∈ {v+,c}k+

c=1 ∪{v−,c}k−
c=1 ∪{v+,v−}, any t′ ≤ t, (+, r) /∈ S

(0)
+ (v) and v-dominated

patch sample x
(τ)
n,p = α

(τ)
n,pv + ζ

(τ)
n,p, the following holds:

σ
(
⟨w(t′)

+,r,x
(τ)
n,p⟩+ b

(t′)
+,r

)
= 0 (128)

2. (Non-activation on noise patches) For any τ ≥ t, with probability at least 1 − O
(

mNPt
poly(d)

)
, for

every t′ ≤ t, r ∈ [m] and noise patch x
(τ)
n,p = ζ

(τ)
n,p, the following holds:

σ
(
⟨w(t′)

+,r,x
(τ)
n,p⟩+ b

(t′)
+,r

)
= 0 (129)

3. (Off-diagonal nonpositive growth) For any τ ≥ t, with probability at least 1 − O
(

mk+NPt
poly(d)

)
,

for any t′ ≤ t, any feature v ∈ {v−,c}k−
c=1∪{v−}, any (+, r) ∈ S

(0)
+ (v) and v-dominated patch

x
(τ)
n,p = α

(τ)
n,pv + ζ

(τ)
n,p, σ

(
⟨w(t′)

+,r,x
(τ)
n,p⟩+ b

(t′)
+,r

)
≤ σ

(
⟨w(0)

+,r,x
(τ)
n,p⟩+ b

(0)
+,r

)
.

Proof. Base case t = 0.

1. (Nonactivation invariance)

Choose any τ ≥ 0, v∗ from the set {v+,c}k+

c=1 ∪ {v−,c}k−
c=1 ∪ {v+,v−}. We will work with neuron

sets in the “+” class in this proof; the “−”-class case can be handled in the same way.

First, we need to show that, for every n such that |P(X
(τ)
n ;v∗)| > 0 and p ∈ P(X

(τ)
n ;v∗), for

every (+, r) neuron index,

⟨w(0)
+,r,v

∗⟩ < σ0
√
4 + 2c0

√
ln(d)− 1

ln5(d)
=⇒ σ

(
⟨w(0)

+,r,x
(τ)
n,p⟩+ b

(0)
+,r

)
= 0 (130)

This is indeed true. The following holds with probability at least 1 − O
(

mNP
poly(d)

)
for all (+, r) /∈

S
(0)
+ (v) and all such x

(τ)
n,p:

⟨w(0)
+,r,x

(τ)
n,p⟩+ b

(0)
+,r ≤σ0

√
1 + ι

√
(4 + 2c0)(ln(d)− 1/ ln5(d)) +O

(
σ0

ln9(d)

)
−
√
4 + 2c0

√
ln(d)σ0

=σ0

 (4 + 2c0)(1 + ι)(ln(d)− 1/ ln5(d))− (4 + 2c0) ln(d)√
(4 + 2c0)(ln(d)− 1/ ln5(d)) +

√
4 + 2c0

√
ln(d)

+O

(
1

ln9(d)

)
=σ0

 (4 + 2c0)ι ln(d)− (1 + ι)/ ln5(d)√
(4 + 2c0)(ln(d)− 1/ ln5(d)) +

√
4 + 2c0

√
ln(d)

+O

(
1

ln9(d)

)
<0,

(131)

The first equality holds by utilizing the identity a−b = a2−b2

a+b . As a consequence, σ(⟨w(0)
+,r,x

(τ)
n,p⟩+

b
(0)
+,r) = 0.

51

Under review as a conference paper at ICLR 2024

2. (Non-activation on noise patches) Invoking Lemma H.3, for any τ ≥ 0, with probability at least
1−O

(
mNP
poly(d)

)
, we have for all possible choices of r ∈ [m] and the noise patches x(τ)

n,p = ζ
(τ)
n,p:∣∣∣⟨w(0)

+,r, ζ
(τ)
n,p⟩

∣∣∣ ≤ O(σ0σζ
√
d ln(d)) ≤ O

(
σ0

ln9(d)

)
≪ b

(0)
+,r. (132)

Therefore, no neuron can activate on the noise patches at time t = 0.

3. (Off-diagonal nonpositive growth) This point is trivially true at t = 0.

Inductive step: we assume the induction hypothesis for t ∈ [0, T] (with T < Te of course), and
prove the statements for t = T + 1.

1. (Nonactivation invariance)

Choose any v∗ from the set {v+,c}k+

c=1 ∪ {v−,c}k−
c=1 ∪ {v+,v−}. We will work with neuron sets in

the “+” class in this proof; the “−”-class case can be handled in the same way.

We need to prove that given τ ≥ T + 1, with probability at least 1 − O
(

mNP (T+1)
poly(d)

)
, for every

t′ ≤ T + 1, (+, r) neuron index and v∗-dominated patch x
(τ)
n,p,

(+, r) /∈ S
(0)
+ (v∗) =⇒ σ

(
⟨w(t′)

+,r,x
(τ)
n,p⟩+ b

(t′)
+,r

)
= 0. (133)

Conditioning on the (high-probability) event of the induction hypothesis of point 1., the following
is already true on all the v∗-dominated patches at time t′ ≤ T :

(+, r) /∈ S
(0)
+ (v∗) =⇒ σ

(
⟨w(t′)

+,r,x
(T)
n,p⟩+ b

(t′)
+,r

)
= 0. (134)

In particular, σ
(
⟨w(T)

+,r,x
(T)
n,p⟩+ b

(T)
+,r

)
= 0.

In other words, no (+, r) /∈ S
(0)
+ (v∗) can be updated on the v∗-dominated patches at time t = T .

Furthermore, the induction hypothesis of point 2. also states that the network cannot activate on any
noise patch x

(T)
n,p = ζ

(T)
n,p with probability at least 1−O

(
mNPT
poly(d)

)
. Therefore, the neuron update for

those (+, r) /∈ S
(0)
+ (v∗) takes the form

∆w
(T)
+,r =

η

NP

∑
v∈C(v∗)

N∑
n=1

1{|P(X(T)
n ;v)| > 0}[1{yn = +} − logit(T)

+ (X(T)
n)]

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b(T)
c,r > 0}

(
α(T)
n,pv + ζ(T)

n,p

) (135)

Now we can invoke Lemma F.2 and obtain that, with probability at least 1 − O
(

mNP
poly(d)

)
, the fol-

lowing holds for all relevant neurons and v∗-dominated patches:

⟨∆w
(T)
+,r,x

(τ)
n,p⟩+∆b

(T)
+,r < 0. (136)

In conclusion, with τ ≥ T +1, with probability at least 1−O
(

mNP
poly(d)

)
, for every (+, r) /∈ S

(0)
+ (v∗)

and relevant (n, p)’s,

⟨w(T)
+,r +∆w

(T)
+,r,x

(τ)
n,p⟩+ b

(T)
+,r +∆b

(T)
+,r = ⟨w(T+1)

+,r ,x(τ)
n,p⟩+ b

(T+1)
+,r < 0, (137)

which leads to ⟨w(t′)
+,r,x

(τ)
n,p⟩ + b

(t′)
+,r < 0 for all t′ ≤ T + 1 with probability at least 1 −

O
(

mk+NP (T+1)
poly(d)

)
(also taking union bound over all the possible choices of v∗). This finishes

the inductive step for point 1.

52

Under review as a conference paper at ICLR 2024

2. (Non-activation on noise patches)

Relying on the event of the induction hypothesis, for any τ ≥ T , the following holds for every
r ∈ [m] and noise patch x

(τ)
n,p = ζ

(τ)
n,p,

⟨w(T)
+,r,x

(τ)
n,p⟩+ b

(T)
+,r < 0. (138)

Conditioning on this high-probability event, this means no neuron w
(T)
+,r can be updated on the noise

patches. Denoting the set of features M = {v+,c}k+

c=1 ∪ {v−,c}k−
c=1 ∪ {v+,v−}, for every r ∈ [m],

its update is reduced to

∆w
(T)
+,r =

η

NP

∑
v∈M

N∑
n=1

1{|P(X(T)
n ;v)| > 0}[1{yn = +} − logit(T)

+ (X(T)
n)]

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b(T)
c,r > 0}

(
α(T)
n,pv + ζ(T)

n,p

)
,

(139)

Invoking Lemma F.3, we have that, for any τ ≥ T+1, the following inequality holds with probability
at least 1−O

(
mNP
poly(d)

)
for every r ∈ [m] and noise patches,

⟨∆w
(T)
+,r,x

(τ)
n,p⟩+∆b

(T)
+,r < 0. (140)

Consequently, for any τ ≥ T + 1, the following inequality holds with probability at least 1 −
O
(

mNP
poly(d)

)
for every r ∈ [m] and noise patches x(τ)

n,p = ζ
(τ)
n,p:

⟨w(T)
+,r +∆w

(T)
+,r,x

(τ)
n,p⟩+ b

(T)
+,r +∆b

(T)
+,r = ⟨w(T+1)

+,r ,x(τ)
n,p⟩+ b

(T+1)
+,r < 0. (141)

This finishes the inductive step for point 2.

3. (Off-diagonal nonpositive growth) Choose any v∗ ∈ {v−} ∪ {v−,c}k−
c=1.

Choose any neuron with index (+, r). Similar to our proof for point 2., we know that its update,
when taken inner product with a v∗-dominated patch x

(τ)
n,p =

√
1± ιv∗ + ζ

(τ)
n,p, has to take the form

⟨∆w
(T)
+,r,

√
1± ιv∗ + ζ(τ)

n,p⟩

=
η

NP

∑
v∈M

N∑
n=1

1{|P(X(T)
n ;v)| > 0}[1{yn = +} − logit(T)

+ (X(T)
n)]

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b
(T)
+,r > 0}⟨α(T)

n,pv + ζ(T)
n,p ,

√
1± ιv∗ + ζ(τ)

n,p⟩

=
η

NP

∑
v∈M−{v∗}

N∑
n=1

1{|P(X(T)
n ;v)| > 0}[1{yn = +} − logit(T)

+ (X(T)
n)]

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b
(T)
+,r > 0}

(
⟨ζ(T)

n,p ,
√
1± ιv∗⟩+ ⟨α(T)

n,pv + ζ(T)
n,p , ζ

(τ)
n,p⟩

)

− η

NP

N∑
n=1

1{|P(X(T)
n ;v∗)| > 0}[logit(T)

+ (X(T)
n)]

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b
(T)
+,r > 0}⟨α(T)

n,pv
∗ + ζ(T)

n,p ,
√
1± ιv∗ + ζ(τ)

n,p⟩

(142)

53

Under review as a conference paper at ICLR 2024

With probability at least 1 − O
(

NP
poly(d)

)
, ⟨α(T)

n,pv∗ + ζ
(T)
n,p ,

√
1± ιv∗ + ζ

(τ)
n,p⟩ > 0, and

⟨ζ(T)
n,p ,

√
1± ιv∗⟩+ ⟨α(T)

n,pv + ζ
(T)
n,p , ζ

(τ)
n,p⟩ < O(1/ ln9(d)). Therefore,

⟨∆w
(T)
+,r,v

∗⟩ < η

NP

∑
v∈M−{v∗}

N∑
n=1

1{|P(X(T)
n ;v)| > 0}[1{yn = +} − logit(T)

+ (X(T)
n)]

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b
(T)
+,r > 0}O

(
1

ln9(d)

) (143)

Invoking Lemma F.3, we know that

∆b
(T)
+,r

≤− 1

ln5(d)

η

NP

(√
1− ι− 1

ln9(d)

)

×

(∑
v∈M

N∑
n=1

1{|P(X(T)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(T)
+ (X(T)

n)
∣∣∣

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b
(T)
+,r > 0}

)
.

(144)

It follows that

⟨∆w
(T)
+,r,

√
1± ιv∗ + ζ(τ)

n,p⟩+∆b
(T)
+,r

<O

(
1

ln9(d)

)
η

NP

(∑
v∈M−{v∗}

N∑
n=1

1{|P(X(T)
n ;v)| > 0}[1{yn = +} − logit(T)

+ (X(T)
n)]

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b(T)
c,r > 0}

)

− Ω

(
1

ln5(d)

)
η

NP

(∑
v∈M

N∑
n=1

1{|P(X(T)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(T)
+ (X(T)

n)
∣∣∣

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b(T)
c,r > 0}

)
<0.

(145)

Consequently,

σ
(
⟨w(T+1)

+,r ,
√
1± ιv∗ + ζ(τ)

n,p⟩+ b
(T+1)
+,r

)
=σ
(
⟨w(T)

+,r,
√
1± ιv∗ + ζ(τ)

n,p⟩+ b
(T)
+,r + ⟨∆w

(T)
+,r,

√
1± ιv∗ + ζ(τ)

n,p⟩+∆b
(T)
+,r

)
≤σ
(
⟨w(T)

+,r,
√
1± ιv∗ + ζ(τ)

n,p⟩+ b
(T)
+,r

)
≤σ
(
⟨w(0)

+,r,
√
1± ιv∗ + ζ(τ)

n,p⟩+ b
(0)
+,r

)
.

(146)

Corollary F.1.1 (Bias update upper bound). Choose any Te ≤ poly(d). With probability at least

1−O
(

mk+NPTe

poly(d)

)
, for all t ∈ [0, Te], any neuron w+,r, and any v ∈ U (0)

+,r,

∆b
(t)
+,r < −Ω

(
polyln(d)
ln5(d)

) ∣∣∣⟨∆w
(t)
+,r, ζ

∗⟩
∣∣∣ . (147)

54

Under review as a conference paper at ICLR 2024

Proof. Conditioning on the high-probability events of Theorem F.1 above, we know that for any
neuron indexed (+, r), at any time t ≤ Te, its update takes the form

∆w
(t)
+,r =

η

NP

∑
v∈U(0)

+,r

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}
(
α(t)
n,pv + ζ(t)

n,p

)
,

(148)

It follows that, with probability at least 1−O
(

1
poly(d)

)
,

∣∣∣⟨∆w
(t)
+,r, ζ

∗⟩
∣∣∣ =∣∣∣∣∣ η

NP

∑
v∈U(0)

+,r

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}⟨α(t)
n,pv + ζ(t)

n,p, ζ
∗⟩

∣∣∣∣∣
≤ η

NP

∑
v∈U(0)

+,r

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}O
(

1

polyln(d)

)
(149)

On the other hand,∥∥∥∆w
(t)
+,r

∥∥∥
2
≥

∥∥∥∥∥ η

NP

∑
v∈U(0)

+,r

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}α(t)
n,pv

∥∥∥∥∥
2

−

∥∥∥∥∥ η

NP

∑
v∈U(0)

+,r

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}ζ(t)
n,p

∥∥∥∥∥
2

≥ η

NP

∑
v∈U(0)

+,r

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}
(√

1− ι−O

(
1

ln9(d)

))
(150)

Clearly, ∥∥∥∆w
(t)
+,r

∥∥∥
2
≥ Ω

(
polyln(d)

∣∣∣⟨∆w
(t)
+,r, ζ

∗⟩
∣∣∣) . (151)

The conclusion follows.

Lemma F.2 (Nonactivation invariance). Let the assumptions in Theorem D.1 hold.

55

Under review as a conference paper at ICLR 2024

Denote the set of features C(v∗) = {v+,c}k+

c=1 ∪ {v−,c}k−
c=1 ∪ {v+,v−} − {v∗}. If the update term

for neuron w
(t)
+,r can be written as follows

∆w
(t)
+,r =

η

NP

∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}
(
α(t)
n,pv + ζ(t)

n,p

)
,

(152)

then given any τ > t, the following inequality holds with probability at least 1−O
(

NP
poly(d)

)
for all

v∗-dominated patch x
(τ)
n,p:

⟨∆w
(t)
+,r,x

(τ)
n,p⟩+∆b

(t)
+,r < 0 (153)

Proof. Let us fix a neuron w+,r satisfying the update expression in the Lemma statement, and fix
some τ > t.

Firstly, the bias update for this neuron can be upper bounded via the reverse triangle inequality:

∆b
(t)
+,r =−

∥∥∥∆w
(t)
+,r

∥∥∥
2

ln5(d)

≤− 1

ln5(d)

η

NP

∥∥∥∥∥ ∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}α(t)
n,pv

∥∥∥∥∥
2

+
1

ln5(d)

η

NP

∥∥∥∥∥ ∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}ζ(t)
n,p

∥∥∥∥∥
2

(154)

56

Under review as a conference paper at ICLR 2024

Let us further upper bound the two ∥ · ∥2 terms separately. Firstly,

∥∥∥∥∥ ∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}α(t)
n,pv

∥∥∥∥∥
2

=
∑

v∈C(v∗)

∥∥∥∥∥
N∑

n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}α(t)
n,pv

∥∥∥∥∥
2

=
∑

v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}α(t)
n,p ∥v∥2

≥
∑

v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}
√
1− ι

(155)

Secondly, with probability at least 1−O
(

NP
poly(d)

)
,

∥∥∥∥∥ ∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}ζ(t)
n,p

∥∥∥∥∥
2

≤
∑

v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}
∥∥∥ζ(t)

n,p

∥∥∥
2

≤
∑

v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(0)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0} 1

ln9(d)

(156)

57

Under review as a conference paper at ICLR 2024

Therefore, with probability at least 1−O
(

NP
poly(d)

)
, we can bound the update to the bias as follows:

∆b
(t)
+,r

≤− 1

ln5(d)

η

NP

(√
1− ι− 1

ln9(d)

)

×

(∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}

)
(157)

Furthermore, with probability at least 1 − e−Ω(d)+O(ln(d)) > 1 − O
(

NP
poly(d)

)
, the following holds

for all n, p:

⟨α(t)
n,pv, ζ

(τ)
n,p⟩, ⟨ζ(t)

n,p, α
(τ)
n,pv

∗⟩, ⟨ζ(t)
n,p, ζ

(τ)
n,p⟩ < O

(
1

ln9(d)

)
. (158)

Combining the above derivations, they imply that with probability at least 1 − O
(

NP
poly(d)

)
, for any

x
(τ)
n,p dominated by v∗,

⟨∆w
(t)
+,r,x

(τ)
n,p⟩+∆b

(t)
+,r

=⟨∆w
(t)
+,r, α

(τ)
n,pv

∗ + ζ(τ)
n,p⟩+∆b

(t)
+,r

=
η

NP

∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}⟨α(t)
n,pv + ζ(t)

n,p, α
(τ)
n,pv

∗ + ζ(τ)
n,p⟩+∆b

(t)
+,r

=
η

NP

∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}
(
⟨α(t)

n,pv, ζ
(τ)
n,p⟩+ ⟨ζ(t)

n,p, α
(τ)
n,pv

∗⟩+ ⟨ζ(t)
n,p, ζ

(τ)
n,p⟩

)
+∆b

(t)
+,r

≤ η

NP

∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0} ×O

(
1

ln9(d)

)
+∆b

(t)
+,r

≤ η

NP

(
O

(
1

ln9(d)

)
− 1

ln5(d)

(√
1− ι− 1

ln9(d)

))

×

(∑
v∈C(v+)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}

)
<0.

(159)

58

Under review as a conference paper at ICLR 2024

This completes the proof.

Lemma F.3 (Nonactivation on noise patches). Let the assumptions in Theorem D.1 hold.

Denote the set of features M = {v+,c}k+

c=1 ∪ {v−,c}k−
c=1 ∪ {v+,v−}. If the update term for neuron

w
(t)
+,r can be written as follows

∆w
(t)
+,r =

η

NP

∑
v∈M

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}
(
α(t)
n,pv + ζ(t)

n,p

)
,

(160)

then

∆b
(t)
+,r

≤− 1

ln5(d)

η

NP

(√
1− ι− 1

ln9(d)

)

×

(∑
v∈M

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}

)
.

(161)

Moreover, for any τ > t, the following inequality holds with probability at least 1−O
(

NP
poly(d)

)
for

all noise patches x(τ)
n,p = ζ

(τ)
n,p:

⟨∆w
(t)
+,r,x

(τ)
n,p⟩+∆b

(t)
+,r < 0 (162)

Proof. Similar to the proof of Lemma F.2, we can estimate the update to the bias term

∆b
(t)
+,r

≤− 1

ln5(d)

η

NP

(√
1− ι− 1

ln9(d)

)

×

(∑
v∈M

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}

)
(163)

59

Under review as a conference paper at ICLR 2024

Then for any x
(τ)
n,p = ζ

(τ)
n,p with τ > t, with probability at least 1−O

(
mNP
poly(d)

)
,

⟨∆w
(t)
+,r,x

(τ)
n,p⟩+∆b

(t)
+,r

=⟨∆w
(t)
+,r, ζ

(τ)
n,p⟩+∆b

(t)
+,r

=
η

NP

∑
v∈M

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}⟨α(t)
n,pv + ζ(t)

n,p, ζ
(τ)
n,p⟩+∆b

(t)
+,r

=
η

NP

∑
v∈M

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = +} − logit(t)+ (X(t)

n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}
(
⟨α(t)

n,pv, ζ
(τ)
n,p⟩+ ⟨ζ(t)

n,p, ζ
(τ)
n,p⟩

)
+∆b

(t)
+,r

≤ η

NP

∑
v∈M

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0} ×O

(
1

ln9(d)

)
+∆b

(t)
+,r

≤ η

NP

(
O

(
1

ln9(d)

)
− 1

ln5(d)

(√
1− ι− 1

ln9(d)

))

×

(∑
v∈M

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = +} − logit(t)+ (X(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b(t)c,r > 0}

)
<0.

(164)

60

Under review as a conference paper at ICLR 2024

G FINE-GRAINED LEARNING

This section treats the learning dynamics of using fine-grained labels to train the NN; the analysis
will be much simpler since the technical analysis overlaps significantly with that in the previous
sections.

The training procedure is exactly the same as in the coarse-grained training setting. We explicitly
write them out here to avoid any possible confusion.

The learner for fine-grained classification is written as follows for c ∈ [k+]:

F+,c(X) =

m+,c∑
r=1

a+,c,r

P∑
p=1

σ(⟨w+,c,r,xp⟩+ b+,c,r), c ∈ [k+] (165)

with frozen linear classifier weights a+,c,r = 1. Same definition applies to the − classes.

The SGD dynamics induced by the training loss is now

w
(t+1)
+,c,r = w

(t)
+,c,r + η

1

NP

N∑
n=1

(
1{yn = (+, c)}[1− logit(t)+,c(X

(t)
n)]

∑
p∈[P]

σ′(⟨w(t)
+,c,r,x

(t)
n,p⟩+ b(t)c,r)x

(t)
n,p+

1{yn ̸= (+, c)}[−logit(t)+,c(X
(t)
n)]

∑
p∈[P]

σ′(⟨w(t)
+,c,r,x

(t)
n,p⟩+ b(t)c,r)x

(t)
n,p

)
(166)

The bias is manually tuned according to the update rule

b
(t+1)
+,c,r = b

(t)
+,c,r −

∥∆w
(t)
+,c,r∥2

ln5(d)
(167)

We assign m+,c = Θ(d1+2c0) neurons to each subclass (+, c). For convenience, we write m =
dm+,c.

The initialization scheme is identical to the coarse-training case, except we choose a slightly less
negative b(0)c,r = −σ0

√
2 + 2c0

√
ln(d).

The parameter choices remain the same as before.

G.1 INITIALIZATION GEOMETRY

Definition G.1. Define the following sets of interest of the hidden neurons:

1. U (0)
+,c,r = {v ∈ V : ⟨w(0)

+,c,r,v⟩ ≥ σ0
√
2 + 2c0

√
ln(d)− 1

ln5(d)
}

2. Given v ∈ V , S∗(0)
+,c (v) ⊆ (+, c)× [m+,c] satisfies:

(a) ⟨w(0)
+,c,r,v⟩ ≥ σ0

√
2 + 2c0

√
ln(d) + 1

ln5(d)

(b) ∀v′ ∈ V s.t. v′ ⊥ v, ⟨w(0)
+,c,r,v

′⟩ < σ0
√
2 + 2c0

√
ln(d)− 1

ln5(d)

3. Given v ∈ V , S(0)
+,c(v) ⊆ (+, c)× [m+,c] satisfies:

(a) ⟨w(0)
+,c,r,v⟩ ≥ σ0

√
2 + 2c0

√
ln(d)− 1

ln5(d)

4. For any (+, c, r) ∈ S
∗(0)
+,c,reg ⊆ (+, c)× [m+,c]:

(a) ⟨w(0)
+,c,r,v⟩ ≤ σ0

√
10
√
ln(d) ∀v ∈ V

61

Under review as a conference paper at ICLR 2024

(b)
∣∣∣U (0)

+,c,r

∣∣∣ ≤ O(1)

The same definitions apply to the −-class neurons.
Proposition 2. At t = 0, for all v ∈ D, the following properties are true with probability at least
1− d−2 over the randomness of the initialized kernels:

1. |S∗(0)
+,c (v)|, |S

(0)
+,c(v)| = Θ

(
1√
ln(d)

)
dc0

2. In particular,
∣∣∣∣ |S∗(0)

y (v)|
|S(0)

y′ (v′)|
− 1

∣∣∣∣ = O
(

1
ln5(d)

)
and

∣∣∣∣ |S∗(0)
y (v)|

|S∗(0)
y′ (v′)|

− 1

∣∣∣∣ = O
(

1
ln5(d)

)
for any y, y′ ∈

{(+, c)}k+

c=1 ∪ {(−, c)}k−
c=1 and common or fine-grained features v,v′.

3. S(0)
+,c,reg = [m+,c]

The same properties apply to the −-class neurons.

Proof. This proof proceeds in virtually the same way as in the proof of Proposition 1, so we omit it
here.

G.2 POLY-TIME PROPERTIES

Theorem G.1. Fix any t ∈ [0, Te], assuming Te ∈ poly(d).

1. (Non-activation invariance) For any τ ≥ t, with probability at least 1−O
(

mk+NPt
poly(d)

)
, for any

feature v ∈ {v+,c}k+

c=1 ∪ {v−,c}k−
c=1 ∪ {v+,v−}, for every t′ ≤ t, (+, c, r) /∈ S

(0)
+,c(v) and

v-dominated patch sample x
(τ)
n,p = α

(τ)
n,pv + ζ

(τ)
n,p, the following holds:

σ
(
⟨w(t′)

+,c,r,x
(τ)
n,p⟩+ b

(t′)
+,c,r

)
= 0 (168)

2. (Non-activation on noise patches) For any τ ≥ t, with probability at least 1 − O
(

mNPt
poly(d)

)
, for

every c ∈ [k+], r ∈ [m] and noise patch x
(τ)
n,p = ζ

(τ)
n,p, the following holds:

σ
(
⟨w(t)

+,c,r,x
(τ)
n,p⟩+ b

(t)
+,c,r

)
= 0 (169)

3. (Off-diagonal nonpositive growth) Given fine-grained class (+, c) and any τ ≥ t, with prob-

ability at least 1 − O
(

mk+NPt
poly(d)

)
, for any t′ ≤ t, any feature v ∈ {v−,c}k−

c=1 ∪ {v−} ∪

{v+,c′}c′ ̸=c, any neuron w+,c,r ∈ S
(0)
+,c(v) and any v-dominated patch x

(τ)
n,p = α

(τ)
n,pv + ζ

(τ)
n,p,

σ
(
⟨w(t′)

+,c,r,x
(τ)
n,p⟩+ b

(t′)
+,c,r

)
≤ σ

(
⟨w(0)

+,c,r,x
(τ)
n,p⟩+ b

(0)
+,c,r

)
.

Proof. The proof of this theorem is similar to that of Theorem F.1, but with some subtle differences.

Base case t = 0.

1. (Nonactivation invariance)

Choose any v∗ from the set {v+,c}k+

c=1 ∪ {v−,c}k−
c=1 ∪ {v+,v−}. We will work with neuron sets in

the “+” class in this proof; the “−”-class case can be handled in the same way.

First, given τ ≥ 0, we need to show that, for every n such that |P(X
(τ)
n ;v∗)| > 0 and p ∈

P(X
(τ)
n ;v∗), for every (+, c, r) neuron index,

⟨w(0)
+,c,r,v

∗⟩ < σ0
√
2 + 2c0

√
ln(d)− 1

ln5(d)
=⇒ σ

(
⟨w(0)

+,c,r,x
(τ)
n,p⟩+ b

(0)
+,c,r

)
= 0 (170)

62

Under review as a conference paper at ICLR 2024

This is indeed true. The following holds with probability at least 1 − O
(

mNP
poly(d)

)
for all (+, r) /∈

S
(0)
+ (v) and all such x

(τ)
n,p:

⟨w(0)
+,c,r,x

(τ)
n,p⟩+ b

(0)
+,c,r ≤σ0

√
1 + ι

√
(2 + 2c0)(ln(d)− 1/ ln5(d)) +O

(
σ0

ln9(d)

)
−
√
2 + 2c0

√
ln(d)σ0

=σ0

 (2 + 2c0)(1 + ι)(ln(d)− 1/ ln5(d))− (2 + 2c0) ln(d)√
(2 + 2c0)(ln(d)− 1/ ln5(d)) +

√
4 + 2c0

√
ln(d)

+O

(
1

ln9(d)

)
=σ0

 (2 + 2c0)(ι ln(d)− (1 + ι)/ ln5(d))√
(2 + 2c0)(ln(d)− 1/ ln5(d)) +

√
2 + 2c0

√
ln(d)

+O

(
1

ln9(d)

)
<0,

(171)

The first equality holds by utilizing the identity a−b = a2−b2

a+b . As a consequence, σ(⟨w(0)
+,c,r,x

(τ)
n,p⟩+

b
(0)
+,r) = 0.

2. (Non-activation on noise patches) Invoking Lemma H.3, for any τ ≥ 0, with probability at least
1−O

(
mNP
poly(d)

)
, we have for all possible choices of r ∈ [m] and the noise patches x(τ)

n,p = ζ
(τ)
n,p:

∣∣∣⟨w(0)
+,c,r, ζ

(τ)
n,p⟩

∣∣∣ ≤ O(σ0σζ
√
d ln(d)) ≤ O

(
σ0

ln9(d)

)
≪ b

(0)
+,r. (172)

Therefore, no neuron can activate on the noise patches at time t = 0.

3. (Off-diagonal nonpositive growth) This point is trivially true at t = 0.

Inductive step: we assume the induction hypothesis for t ∈ [0, T] (with T < Te of course), and
prove the statements for t = T + 1.

1. (Nonactivation invariance)

Again, choose any v∗ from the set {v+,c}k+

c=1 ∪ {v−,c}k−
c=1 ∪ {v+,v−}.

We need to prove that given τ ≥ T + 1, with probability at least 1 − O
(

mk+NP (T+1)
poly(d)

)
, for every

t′ ≤ T + 1, (+, c, r) neuron index and v∗-dominated patch x
(τ)
n,p,

(+, c, r) /∈ S
(0)
+,c(v

∗) =⇒ σ
(
⟨w(t′)

+,c,r,x
(τ)
n,p⟩+ b

(t′)
+,c,r

)
= 0. (173)

By the induction hypothesis of point 1., with probability at least 1 − O
(

mk+NPT
poly(d)

)
, the following

is already true on all the v∗-dominated patches at time t′ ≤ T :

(+, c, r) /∈ S
(0)
+,c(v

∗) =⇒ σ
(
⟨w(t′)

+,c,r,x
(T)
n,p⟩+ b

(t′)
+,c,r

)
= 0. (174)

In particular, σ
(
⟨w(T)

+,c,r,x
(T)
n,p⟩+ b

(T)
+,c,r

)
= 0.

In other words, no (+, c, r) /∈ S
(0)
+,c(v

∗) can be updated on the v∗-dominated patches at time t = T .
Furthermore, the induction hypothesis of point 2. also states that the network cannot activate on any
noise patch x

(T)
n,p = ζ

(T)
n,p with probability at least 1−O

(
mNPT
poly(d)

)
. Therefore, the neuron update for

63

Under review as a conference paper at ICLR 2024

those (+, c, r) /∈ S
(0)
+,c(v

∗) takes the form

∆w
(T)
+,c,r =

η

NP

∑
v∈C(v∗)

N∑
n=1

1{|P(X(T)
n ;v)| > 0}[1{yn = (+, c)} − logit(T)

+,c(X
(T)
n)]

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,c,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b
(T)
+,c,r > 0}

(
α(T)
n,pv + ζ(T)

n,p

) (175)

Conditioning on this high-probability event, we have

∆b
(t)
+,c,r =−

∥∥∥∆w
(t)
+,c,r

∥∥∥
2

ln5(d)

≤− 1

ln5(d)

η

NP

∥∥∥∥∥ ∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = (+, c)} − logit(t)+,c(X

(t)
n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}α(t)

n,pv

∥∥∥∥∥
2

+
1

ln5(d)

η

NP

∥∥∥∥∥ ∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = (+, c)} − logit(t)+,c(X

(t)
n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}ζ(t)

n,p

∥∥∥∥∥
2

(176)

Let us further upper bound the two ∥ · ∥2 terms separately. Firstly,∥∥∥∥∥ ∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = (+, c)} − logit(t)+,c(X

(t)
n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}α(t)

n,pv

∥∥∥∥∥
2

=
∑

v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = (+, c)} − logit(t)+,c(X
(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}α(t)

n,p ∥v∥2

≥
∑

v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = (+, c)} − logit(t)+,c(X
(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}

√
1− ι

(177)

For the second ∥ · ∥2 term consisting purely of noise, note that since all the ζ
(t)
n,p’s are independent

Gaussian random vectors, the standard deviation of the sum is in fact{ ∑
v∈C(v∗)

N∑
n=1

∑
p∈P(X

(t)
n ;v)

1{|P(X(t)
n ;v)| > 0}1{⟨w(t)

+,c,r, α
(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}

× [1{yn = (+, c)} − logit(t)+,c(X
(t)
n)]2

}1/2

σζ .

(178)

64

Under review as a conference paper at ICLR 2024

With the basic property that
√∑

j c
2
j ≤

∑
j |cj | for any sequence of real numbers c1, c2, ..., we

know this standard deviation can be upper bounded by

∑
v∈C(v∗)

N∑
n=1

∑
p∈P(X

(t)
n ;v)

1{|P(X(t)
n ;v)| > 0}1{⟨w(t)

+,c,r, α
(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}

×
∣∣∣1{yn = (+, c)} − logit(t)+,c(X

(t)
n)
∣∣∣σζ

(179)

It follows that with probability at least 1−O
(

1
poly(d)

)
,

∥∥∥∥∥ ∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = (+, c)} − logit(t)+,c(X

(t)
n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}ζ(t)

n,p

∥∥∥∥∥
2

≤
∑

v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = (+, c)} − logit(t)+,c(X
(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0} 1

ln9(d)

(180)

Therefore, we can upper bound the bias update as follows:

∆b
(t)
+,c,r

≤− 1

ln5(d)

η

NP

(√
1− ι− 1

ln9(d)

)

×

(∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = (+, c)} − logit(t)+,c(X
(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}

)
(181)

Furthermore, with probability at least 1−O
(

NP
poly(d)

)
, the following holds for all n, p:

⟨α(t)
n,pv, ζ

(τ)
n,p⟩, ⟨ζ(t)

n,p, α
(τ)
n,pv

∗⟩, ⟨ζ(t)
n,p, ζ

(τ)
n,p⟩ < O

(
1

ln9(d)

)
. (182)

65

Under review as a conference paper at ICLR 2024

Combining the above derivations, they imply that with probability at least 1 − O
(

NP
poly(d)

)
, for any

x
(τ)
n,p dominated by v∗,

⟨∆w
(t)
+,c,r,x

(τ)
n,p⟩+∆b

(t)
+,c,r

=⟨∆w
(t)
+,c,r, α

(τ)
n,pv

∗ + ζ(τ)
n,p⟩+∆b

(t)
+,c,r

=
η

NP

∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = (+, c)} − logit(t)+,c(X

(t)
n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}⟨α(t)

n,pv + ζ(t)
n,p, α

(τ)
n,pv

∗ + ζ(τ)
n,p⟩+∆b

(t)
+,c,r

=
η

NP

∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}[1{yn = (+, c)} − logit(t)+,c(X

(t)
n)]

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}

(
⟨α(t)

n,pv, ζ
(τ)
n,p⟩+ ⟨ζ(t)

n,p, α
(τ)
n,pv

∗⟩+ ⟨ζ(t)
n,p, ζ

(τ)
n,p⟩

)
+∆b

(t)
+,c,r

≤ η

NP

∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = (+, c)} − logit(t)+,c(X
(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0} ×O

(
1

ln9(d)

)
+∆b

(t)
+,c,r

≤ η

NP

(
O

(
1

ln9(d)

)
− 1

ln5(d)

(√
1− ι− 1

ln9(d)

))

×

(∑
v∈C(v∗)

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = (+, c)} − logit(t)+,c(X
(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}

)
<0.

(183)

Therefore, with probability at least 1−O
(

mNP
poly(d)

)
, the following holds for the relevant neurons and

v∗-dominated patches:
⟨∆w

(T)
+,c,r,x

(τ)
n,p⟩+∆b

(T)
+,c,r < 0. (184)

In conclusion, with τ ≥ T + 1, with probability at least 1 − O
(

mNP
poly(d)

)
, for every (+, c, r) /∈

S
(0)
+,c(v

∗) and relevant (n, p)’s,

⟨w(T)
+,c,r +∆w

(T)
+,c,r,x

(τ)
n,p⟩+ b

(T)
+,c,r +∆b

(T)
+,c,r = ⟨w(T+1)

+,c,r ,x
(τ)
n,p⟩+ b

(T+1)
+,c,r < 0, (185)

which leads to ⟨w(t′)
+,c,r,x

(τ)
n,p⟩ + b

(t′)
+,c,r < 0 for all t′ ≤ T + 1 with probability at least

1 − O
(

mk+NP (T+1)
poly(d)

)
(also by taking union bound over all the possible choices of v∗ at time

T + 1). This finishes the inductive step for point 1.

2. (Non-activation on noise patches)

The inductive step for this part is very similar to (and even simpler than) the inductive step of point
1, so we omit the calculations here.

66

Under review as a conference paper at ICLR 2024

3. (Off-diagonal nonpositive growth) By the induction hypothesis’s high-probability event,
we already have that, given any fine-grained class (+, c), τ ≥ T + 1, for any feature
v∗ ∈ {v−,c}k−

c=1 ∪ {v−} ∪ {v+,c′}c′ ̸=c and any neuron w+,c,r, σ
(
⟨w(T)

+,c,r,x
(τ)
n,p⟩+ b

(T)
+,c,r

)
≤

σ
(
⟨w(0)

+,c,r,x
(τ)
n,p⟩+ b

(0)
+,c,r

)
. We just need to show that ⟨∆w

(t)
+,c,r,x

(τ)
n,p⟩+∆b

(T)
+,r ≤ 0 to finish the

proof; the rest proceeds in a similar fashion to the induction step of point 3 in the proof of Theorem
F.1.

Similar to the induction step of point 1, denoting M to be the set of all common and fine-grained
features, the update expression of any neuron (+, c, r) has to be

∆w
(T)
+,c,r =

η

NP

∑
v∈M

N∑
n=1

1{|P(X(T)
n ;v)| > 0}[1{yn = (+, c)} − logit(T)

+,c(X
(T)
n)]

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,c,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b
(T)
+,c,r > 0}

(
α(T)
n,pv + ζ(T)

n,p

) (186)

Written more explicitly,

∆w
(T)
+,c,r =

η

NP

∑
v∈M−{v∗}

N∑
n=1

1{|P(X(T)
n ;v)| > 0}1{yn = (+, c)}[1− logit(T)

+,c(X
(T)
n)]

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,c,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b
(T)
+,c,r > 0}

(
α(T)
n,pv + ζ(T)

n,p

)

− η

NP

N∑
n=1

1{yn ̸= (+, c)}1{|P(X(T)
n ;v∗)| > 0}[logit(T)

+,c(X
(T)
n)]

×
∑

p∈P(X
(T)
n ;v∗)

1{⟨w(T)
+,c,r, α

(T)
n,pv

∗ + ζ(T)
n,p ⟩+ b

(T)
+,c,r > 0}

(
α(T)
n,pv

∗ + ζ(T)
n,p

)
(187)

It follows that with probability at least 1−O
(

mNP
poly(d)

)
, for relevant n, p, r, we have

⟨∆w
(T)
+,c,r, α

(τ)
n,pv

∗ + ζ(τ)
n,p⟩

<
η

NP

∑
v∈M−{v∗}

N∑
n=1

1{|P(X(T)
n ;v)| > 0}1{yn = (+, c)}[1− logit(T)

+,c(X
(T)
n)]

×
∑

p∈P(X
(T)
n ;v)

1{⟨w(T)
+,c,r, α

(T)
n,pv + ζ(T)

n,p ⟩+ b
(T)
+,c,r > 0}O

(
1

ln9(d)

) (188)

Furthermore, similar to the induction step of point 1, we can estimate the bias update as follows:

∆b
(t)
+,c,r

≤− Ω

(
1

ln5(d)

)
η

NP

(∑
v∈M

N∑
n=1

1{|P(X(t)
n ;v)| > 0}

∣∣∣1{yn = (+, c)} − logit(t)+,c(X
(t)
n)
∣∣∣

×
∑

p∈P(X
(t)
n ;v)

1{⟨w(t)
+,c,r, α

(t)
n,pv + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}

)
(189)

It follows that, indeed, ⟨∆w
(T)
+,c,r,x

(τ)
n,p⟩+∆b

(T)
+,c,r ≤ 0, which completes the induction step of point

3.

67

Under review as a conference paper at ICLR 2024

G.3 TRAINING

Choose an arbitrary constant B ∈ [Ω(1), ln(3/2)].

Definition G.2. Let T0(B) > 0 be the first time that there exists some X
(t)
n and c such that

F
(T0(B))
y (X

(T0(B))
n) ≥ B for any n ∈ [N] and y ∈ {(+, c)}k+

c=1 ∪ {(−, c)}k−
c=1.

We write T0(B) as T0 for simplicity of notation when the context is clear.

Lemma G.2. With probability at least 1−O
(

mk+NPT0

poly(d)

)
, the following holds for all t ∈ [0, T0):

1. (On-diagonal common-feature neuron growth) For every c ∈ [k+], every (+, c, r), (+, c, r′) ∈
S
∗(0)
+,c (v+),

w
(t)
+,c,r −w

(0)
+,c,r = w

(t)
+,c,r′ −w

(0)
+,c,r′ (190)

Moreover,

∆w
(t)
+,r =[1/4, 2/3]

√
1± ι

(
1± s∗−1/3

)
η

s∗

2k+P
v+ +∆ζ

(t)
+,r (191)

where ∆ζ
(t)
+,c,r ∼ N (0, σ

(t)2
∆ζ+,c,r

I), σ(t)
∆ζ+,c,r

= Θ(1)× ησζ
√
s∗

P
√
2N

.

The bias updates satisfy

∆b
(t)
+,c,r = −Θ

(
ηs∗

k+P ln5(d)

)
. (192)

Furthermore, every (+, r) ∈ S
∗(0)
+ (v+) activates on all the v+-dominated patches at time t.

2. (On-diagonal finegrained-feature neuron growth) For every c ∈ [k+] and every
(+, c, r), (+, c, r′) ∈ S

∗(0)
+,c (v+,c),

w
(t)
+,c,r −w

(0)
+,c,r = w

(t)
+,c,r′ −w

(0)
+,c,r′ (193)

Moreover,

∆w
(t)
+,c,r =

(
1±O

(
1

k+

))√
1± ι

(
1± s∗−1/3

)
η

s∗

2k+P
v+,c +∆ζ

(t)
+,r (194)

where ζ
(t)
+,c,r ∼ N (0, σ

(t)2
∆ζ+,cr

I), and σ(t)
∆ζ+,r

=
(
1±O

(
1
k+

)) (
1± s∗−1/3

)
ησζ

√
s∗

P
√

2Nk+

.

The bias updates satisfy

∆b
(t)
+,c,r = −Θ

(
ηs∗

k+P ln5(d)

)
. (195)

Furthermore, every (+, c, r) ∈ S
∗(0)
+,c (v+,c) activates on all the v+-dominated patches at time t.

3. The above results also hold with the “+” and “−” class signs flipped.

Proof. The proof of this theorem proceeds in a similar fashion to Theorem D.1, with some variations
for the common-feature neurons.

We shall prove the statements in this theorem via induction. We focus on the +-class neurons;
−-class neurons’ proofs are done in the same fashion.

First of all, relying on the (high-probability) event of Theorem G.1, we know that we can simplify
the update expressions for the neurons in S∗(0)

+,c (v+,c) to the form

∆w
(t)
+,c,r =

η

NP

N∑
n=1

1{yn = (+, c)}[1− logit(t)+,c(X
(t)
n)]

×
∑

p∈P(X
(t)
n ;v+,c)

1{⟨w(t)
+,c,r, α

(t)
n,pv+,c + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}

(
α(t)
n,pv+,c + ζ(t)

n,p

)
,

(196)

68

Under review as a conference paper at ICLR 2024

and for the neurons in S∗(0)
+,c (v+), the updates take the form

∆w
(t)
+,c,r

=
η

NP

N∑
n=1

1{yn = (+, c)}[1− logit(t)+,c(X
(t)
n)] +

∑
c′∈[k+]−{c}

1{yn = (+, c′)}[−logit(t)+,c(X
(t)
n)]


×

∑
p∈P(X

(t)
n ;v+)

1{⟨w(t)
+,c,r, α

(t)
n,pv+ + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}

(
α(t)
n,pv+ + ζ(t)

n,p

)
.

(197)

By definition of T0 and the fact that B ≤ ln(3/2), for any n ∈ [N] and t < T0, we can write down
a simple upper bound of logit(t)+,c(X

(t)
n):

logit(t)+,c(X
(t)
n) =

exp(F+,c(X
(t)
n))∑k+

c′=1 exp(F+,c′(X
(t)
n)) +

∑k−
c′=1 exp(F−,c′(X

(t)
n))

≤
3
2

2k+
=

3

4k+
,

(198)

and we can lower bound it as follows

logit(t)+,c(X
(t)
n) ≥ 1

2k+ × 3
2

=
1

3k+
, (199)

The inductive proof for the fine-grained neurons S∗(0)
+,c (v+,c) is almost identical to that in the proof

of Theorem D.1. The only notable difference here is that [1 − logit(t)+,c(X
(t)
n)] has the estimate(

1±O
(

1
k+

))
.

The inductive proof of the common-feature neurons S∗(0)
+,c (v+) requires more care as its update

expression 201 is qualitatively different from the coarse-grained training case in Theorem D.1, so
we present the full proof here.

Base case, t = 0.

With probability at least 1−O
(

mNP
poly(d)

)
, for every c ∈ [k+] and every (+, c, r) ∈ S

∗(0)
+,c (v+),

⟨w(0)
+,c,r, α

(0)
n,pv+ + ζ(0)

n,p⟩+ b
(0)
+,c,r

≥ σ0

(√
(1− ι)(2 + 2c0)(ln(d) + 1/ ln5(d))−

√
(2 + 2c0) ln(d)−O

(
1

ln9(d)

))

= σ0

 (1− ι)(2 + 2c0)(ln(d) + 1/ ln5(d))− (2 + 2c0) ln(d)√
(1− ι)(2 + 2c0)(ln(d) + 1/ ln5(d)) +

√
(2 + 2c0) ln(d)

−O

(
1

ln9(d)

)
= σ0

 (2 + 2c0)(−ι ln(d) + (1− ι)/ ln5(d))√
(1− ι)(2 + 2c0)(ln(d) + 1/ ln5(d)) +

√
(2 + 2c0) ln(d)

−O

(
1

ln9(d)

)
> 0.

(200)

69

Under review as a conference paper at ICLR 2024

This means all the v+-singleton neurons will be updated on all the v+-dominated patches at time
t = 0. Therefore, we can write update expression 201 as follows

∆w
(0)
+,c,r

=
η

NP

N∑
n=1

1{yn = (+, c)}[1− logit(0)+,c(X
(0)
n)] +

∑
c′∈[k+]−{c}

1{yn = (+, c′)}[−logit(0)+,c(X
(0)
n)]


×

∑
p∈P(X

(0)
n ;v+)

(
α(0)
n,pv+ + ζ(0)

n,p

)
.

(201)

By concentration of the binomial random variable, we know that with probability at least 1 −
e−Ω(ln2(d)), for all n, ∣∣∣P(X(0)

n ;v+)
∣∣∣ = (1± s∗−1/3

)
s∗. (202)

Now, with the estimates we derived for logit(t)+,c(X
(t)
n) at the beginning of the proof and the inde-

pendence of all the noise vectors ζ(0)
n,p’s, we arrive at

∆w
(0)
+,r =[1/4, 2/3]

√
1± ι

(
1± s∗−1/3

)
η

s∗

2k+P
v+ +∆ζ

(0)
+,r (203)

where σ(0)
∆ζ+,c,r

= Θ(1)× ησζ
√
s∗

P
√
2N

.

Additionally, a byproduct of the above proof steps is that all the S∗(0)
+,c (v+) neurons indeed activate

on all the v+-dominated patches at t = 0 with high probability.

Now we examine the bias update. We first estimate
∥∥∥∆w

(0)
+,c,r

∥∥∥
2
. With probability at least 1 −

O
(

m
poly(d)

)
the following upper bound holds for all neurons in S∗(0)

+,c (v+):∥∥∥∆w
(0)
+,c,r

∥∥∥
2
≤O

(
η
s∗

k+P

)
∥v+∥2 +

∥∥∥∆ζ
(0)
+,r

∥∥∥
2

≤O
(
η
s∗

k+P

)
+O

(
ησζ

√
s∗

P
√
N

√
d

)
≤O

(
η
s∗

k+P

)
,

(204)

and the following lower bound holds (via the reverse triangle inequality):∥∥∥∆w
(0)
+,c,r

∥∥∥
2
≥Ω

(
η
s∗

k+P

)
∥v+∥2 −

∥∥∥∆ζ
(0)
+,r

∥∥∥
2

≥Ω

(
η
s∗

k+P

)
−O

(
ησζ

√
s∗

P
√
N

√
d

)
≥Ω

(
η
s∗

k+P

)
,

(205)

It follows that
∥∥∥∆w

(0)
+,c,r

∥∥∥
2
= Θ

(
η s∗

k+P

)
, which means

∆b
(0)
+,c,r =−

∥∥∥∆w
(0)
+,c,r

∥∥∥
2

ln5(d)
= −Θ

(
ηs∗

k+P ln5(d)

)
. (206)

This completes the proof of the base case.

Induction step. Assume statements for time [0, t], prove for t+ 1.

70

Under review as a conference paper at ICLR 2024

First, by the induction hypothesis, we know that neurons in S∗(0)
+,c (v+) must activate on all the v+-

dominated patches at time t. Therefore, we can write the update expression 201 as follows:

∆w
(t)
+,c,r

=
η

NP

N∑
n=1

1{yn = (+, c)}[1− logit(t)+,c(X
(t)
n)] +

∑
c′∈[k+]−{c}

1{yn = (+, c′)}[−logit(t)+,c(X
(t)
n)]


×

∑
p∈P(X

(t)
n ;v+)

(
α(t)
n,pv+ + ζ(t)

n,p

)
.

(207)

Following the same argument as in the base case, we have that with probability at least 1 −
O
(

mNP
poly(d)

)
,

∆w
(t)
+,c,r =[1/4, 2/3]

√
1± ι

(
1± s∗−1/3

)
η

s∗

2k+P
v+ +∆ζ

(t)
+,c,r, (208)

and σ(t)
∆ζ+,c,r

= Θ(1)× ησζ
√
s∗

P
√
2N

.

Now we need to show that w(t+1)
+,c,r indeed activate on all the v+-dominated patches at time t + 1

with high probability.

So far, we know that for τ ∈ [0, t+ 1],

∆w
(τ)
+,c,r =[1/4, 2/3]

√
1± ι

(
1± s∗−1/3

)
η

s∗

2k+P
v+ +∆ζ

(τ)
+,c,r, (209)

and σ(τ)
∆ζ+,c,r

= Θ(1)× ησζ
√
s∗

P
√
2N

. It follows that

w
(t+1)
+,r =w

(0)
+,c,r + (t+ 1)[1/4, 2/3]

√
1± ι

(
1± s∗−1/3

)
η

s∗

2k+P
v+ + ζ

(t+1)
+,c,r , (210)

where σ(t+1)
ζ+,c,r

= Θ(1)×
√
t+ 1ησζ

√
s∗

P
√
2N

.

The following holds with probability at least 1 − O
(

mNP
poly(d)

)
over all the v+-dominated patches

x
(t+1)
n,p = α

(t+1)
n,p v+ + ζ

(t+1)
n,p (which are independent of w(t+1)

+,r) and the v+-singleton neurons:

⟨w(t+1)
+,c,r , α

(t+1)
n,p v+ + ζ(t+1)

n,p ⟩

=⟨w(0)
+,c,rα

(t+1)
n,p v+ + ζ(t+1)

n,p ⟩+ (t+ 1)[1/4, 2/3](1± ι)
(
1± s∗−1/3

)(
1±O

(
1

ln9(d)

))
η

s∗

2k+P

+ ⟨ζ(t+1)
+,c,r , α

(t+1)
n,p v+ + ζ(t+1)

n,p ⟩
(211)

Note that with probability at least 1−O
(

1
poly(d)

)
,

⟨ζ(t+1)
+,c,r , α

(t+1)
n,p v+⟩ ≤ O(1)×

√
Tησζ

√
s∗

P
√
2N

√
d ln(d), (212)

and since
√
t+ 1 ≤ t+ 1,

√
s∗ < s∗, σζ

√
d ln(d) < 1

ln9(d)
, and N > dk+, we know that

⟨ζ(t+1)
+,c,r , α

(t+1)
n,p v+⟩ ≤ O

(
1

d

)
× (t+ 1)η

s∗

2k+P
. (213)

Similarly, with probability at least 1−O
(

1
poly(d)

)
,

⟨ζ(t+1)
+,c,r , α

(t+1)
n,p v+ + ζ(t+1)

n,p ⟩ ≤ O(1)×
√
Tησ2

ζ

√
s∗

P
√
2N

√
d ln(d) ≤ O

(
1

d

)
× (t+ 1)η

s∗

2k+P
.

(214)

71

Under review as a conference paper at ICLR 2024

It follows that with probability at least 1−O
(

mNP
poly(d)

)
,

⟨w(t+1)
+,c,r , α

(t+1)
n,p v+ + ζ(t+1)

n,p ⟩

≥⟨w(0)
+,c,r, α

(t+1)
n,p v+ + ζ(t+1)

n,p ⟩+ 1

4
(t+ 1)(1− ι)

(
1− s∗−1/3

)(
1−O

(
1

ln9(d)

))
η

s∗

2k+P
.

(215)

Next, let us estimate the bias updates for τ ∈ [0, t+ 1].

Estimating ∆b
(t)
+,c,r follows an almost identical argument as in the base case (with the only main

difference being relying on Theorem G.1 for non-activation on non-v+-dominated patches), so we
skip its calculations.

Therefore, b(t+1)
+,c,r = b

(0)
+,c,r +−Θ

(
ηs∗(t+1)
k+P ln5(d)

)
. This means

⟨w(t+1)
+,c,r , α

(t+1)
n,p v+ + ζ(t+1)

n,p ⟩+ b
(t+1)
+,c,r

≥⟨w(0)
+,c,r, α

(t+1)
n,p v+ + ζ(t+1)

n,p ⟩+ b
(0)
+,c,r

+
1

4
(t+ 1)(1− ι)

(
1− s∗−1/3

)(
1−O

(
1

ln9(d)

))
η

s∗

2k+P
−O

(
ηs∗(t+ 1)

k+P ln5(d)

)
>0.

(216)

This completes the inductive step.

Corollary G.2.1. At time t = T0, ηs∗

k+P × s∗
∣∣∣S∗(0)

+,c (v+)
∣∣∣ , ηs∗

k+P × s∗
∣∣∣S∗(0)

+,c (v+,c)
∣∣∣ = Θ(1).

Proof. Directly follows from Lemma G.2 and Theorem G.1.

G.4 MODEL ERROR AFTER TRAINING

In this subsection, we show the model’s error after fine-grained training. We also discuss that fine-
tuning the model further increases its feature extractor’s response to the true features, so it is even
more robust/generalizing in downstream classification tasks.

Theorem G.3. Define F̂+(X) = maxc∈[k+] F+,c(X), F̂−(X) = maxc∈[k−] F−,c(X).

With probability at least 1−O
(

mk2
+NPT0

poly(d)

)
, the following events take place:

1. (Fine-grained easy & hard sample test accuracies are nearly perfect) Given an easy
or hard fine-grained test sample (X, y) where y ∈ {(+, c)}k+

c=1 ∪ {(−, c)}k−
c=1,

P
[
F

(T0)
y (X) ≤ maxy′ ̸=y F

(T0)
y′ (X)

]
≤ o(1).

2. (Coarse-grained easy & hard sample test accuracy are nearly perfect) Given an easy or hard
coarse-grained test sample (X, y) where y ∈ {+1,−1}, P

[
F̂

(T0)
y (X) ≤ F̂

(T0)
y′ (X)

]
≤ o(1).

Proof. Probability of mistake on easy samples.

Without loss of generality, assume X is a (+, c)-class easy sample.

Conditioning on the events of Theorem G.1 and Lemma G.2, we know that for all c′ ∈ [k−],

F
(T0)
−,c′ ≤ O(m+,c′σ0

√
ln(d)) ≤ o(1), (217)

72

Under review as a conference paper at ICLR 2024

and for all c′ ∈ [k+]− {c},

F
(T0)
+,c′ ≤

∑
p∈P(X;v+)

∑
(+,r)∈S

(0)

+,c′ (v+)

σ
(
⟨w(T0)

+,r , αn,pv+ + ζn,p⟩+ b
(T0)
+,c′,r

)
+O(m+,c′σ0

√
ln(d))

≤s∗
∣∣∣S(0)

+,c′(v+)
∣∣∣ 2
3
(1 + ι)

(
1 + s∗−1/3

)(
1 +

(
1

ln9(d)

))
ηT0

s∗

2k+P
(218)

moreover,

F
(T0)
+,c ≥

∑
p∈P(X;v+)

∑
(+,r)∈S

∗(0)
+,c (v+)

σ
(
⟨w(T0)

+,c,r, αn,pv+ + ζn,p⟩+ b
(T0)
+,c,r

)
+

∑
p∈P(X;v+,c)

∑
(+,r)∈S

∗(0)
+,c (v+,c)

σ
(
⟨w(T0)

+,c,r, αn,pv+,c + ζn,p⟩+ b
(T0)
+,c,r

)

≥s∗
∣∣∣S∗(0)

+,c (v+)
∣∣∣ 1
4
(1− ι)

(
1− s∗−1/3

)(
1−

(
1

ln5(d)

))
ηT0

s∗

2k+P

+ s∗
∣∣∣S∗(0)

+,c (v+,c)
∣∣∣ (1−O

(
1

k+

))
(1− ι)

(
1− s∗−1/3

)(
1−

(
1

ln5(d)

))
ηT0

s∗

2k+P
(219)

Relying on Proposition 2, we know
∣∣∣S(0)

+,c′(v+)
∣∣∣ =

(
1±

(
1

ln5(d)

)) ∣∣∣S∗(0)
+,c (v+)

∣∣∣ and∣∣∣S∗(0)
+,c (v+,c)

∣∣∣ = (
1±

(
1

ln5(d)

)) ∣∣∣S∗(0)
+,c (v+)

∣∣∣, therefore F (T0)
+,c (X) > maxc′ ̸=c F

(T0)
+,c′ (X) has to

be true. With Corollary G.2.1, we also have F (T0)
+,c (X) ≥ Ω(1) > o(1) ≥ maxc′∈[k−] F

(T0)
−,c′ (X). It

follows that the probability of mistake on an easy test sample is indeed at most o(1).

Probability of mistake on hard samples. Without loss of generality, assume X is a (+, c)-class
hard sample.

By Theorem G.1 (and its proof) and Lemma G.2, we know that for any c′ ∈ [k+], the neurons w+,c′,r

can only possibly receive update on v-dominated patches for v ∈ U (0)
+,c′,r, and the updates to the

neurons take the feature-plus-Gaussian-noise form of
∑

v′∈U(0)

+,c′,r
c(v′)v′ +∆ζ

(t)
+,c′,r, with c(v′) ≤

√
1 + ι

(
1 + s∗−1/3

)
η s∗

2k+P if v′ is a fine-grained feature, or c(v′) ≤ 2
3

√
1 + ι

(
1 + s∗−1/3

)
η s∗

2k+P

if v′ = v+ (because the v′ component of a v′-singleton neuron’s update is already the maximum
possible). Moreover, σ(t)

∆ζ+,c′,r
≤ O

(
ησζ

√
s∗

P
√
2N

)
.

Relying on Theorem G.1, Lemma G.2, Corollary G.2.1 and previous observations, we have

F
(T0)
+,c (X) ≥

∑
p∈P(X;v+,c)

∑
(+,c,r)∈S

∗(0)
+,c (v+,c)

σ
(
⟨w(T0)

+,c,r, αn,pv+,c + ζn,p⟩+ b
(T0)
+,c,r

)

≥s∗
∣∣∣S∗(0)

+,c (v+,c)
∣∣∣ (1−O

(
1

k+

))
(1− ι)

(
1− s∗−1/3

)(
1−O

(
1

ln5(d)

))
ηT0

s∗

2k+P

≥Ω(1),
(220)

73

Under review as a conference paper at ICLR 2024

and for c′ ̸= c,

F
(T0)
+,c′ (X) ≤

m+,c′∑
r=1

σ
(
⟨w(T0)

+,c′,r, ζ
∗⟩+ b

(T0)
+,c′,r

)
+

∑
p∈P(X;v+,c)

∑
(+,c′,r)∈S

(0)

+,c′ (v+,c)

σ
(
⟨w(T0)

+,c′,r, αn,pv+,c + ζn,p⟩+ b
(T0)
+,c′,r

)
+

∑
p∈P(X;v−)

∑
(+,c′,r)∈S

(0)

+,c′ (v−)

σ
(
⟨w(T0)

+,c′,r, α
†
n,pv− + ζn,p⟩+ b

(T0)
+,c′,r

)

≤O(1)×

 ∑
(+,c′,r)∈U(0)

+,c′,r

⟨
T0−1∑
τ=0

∆w
(τ)
+,c,′r, ζ

∗⟩+
∑

r∈[m+,c′]

⟨w(0)
+,c,′r, ζ

∗⟩


+

∑
p∈P(X;v+,c)

∑
(+,c′,r)∈S

(0)

+,c′ (v+,c)

σ
(
⟨w(0)

+,c′,r, αn,pv+,c + ζn,p⟩+ b
(0)
+,c′,r

)
+

∑
p∈P(X;v−)

∑
(+,c′,r)∈S

(0)

+,c′ (v−)

σ
(
⟨w(0)

+,c′,r, α
†
n,pv− + ζn,p⟩+ b

(0)
+,c′,r

)

≤O
(

1

polyln(d)

)
.

(221)

Moreover, for any c′ ∈ [k−], similar to before,

F
(T0)
−,c′ (X) ≤

m−,c′∑
r=1

σ
(
⟨w(T0)

−,c′,r, ζ
∗⟩+ b

(T0)
−,c′,r

)
+

∑
p∈P(X;v+,c)

∑
(−,c′,r)∈S

(0)

−,c′ (v+,c)

σ
(
⟨w(T0)

−,c′,r, αn,pv+,c + ζn,p⟩+ b
(T0)
−,c′,r

)
+

∑
p∈P(X;v−)

∑
(−,c′,r)∈S

(0)

−,c′ (v−)

σ
(
⟨w(T0)

−,c′,r, α
†
n,pv− + ζn,p⟩+ b

(T0)
−,c′,r

)

≤O(1)×

 ∑
(−,c′,r)∈U(0)

−,c′,r

⟨w(T0)
−,c,′r, ζ

∗⟩+
∑

r∈[m−,c′]

⟨w(0)
−,c,′r, ζ

∗⟩


+

∑
p∈P(X;v+,c)

∑
(−,c′,r)∈S

(0)

−,c′ (v+,c)

σ
(
⟨w(0)

−,c′,r, αn,pv+,c + ζn,p⟩+ b
(0)
−,c′,r

)
+O(1)× s†

∣∣∣S(0)
−,c′(v−)

∣∣∣× (ι†upper +O(σ0 ln(d))
)

≤O
(

1

polyln(d)

)
+O

(
σ0
√
ln(d)

)
+O

(
1

ln(d)

)
≤o(1).

(222)

Therefore, F (T0)
+,c (X) > maxy ̸=(+,c) F

(T0)
y (X), which means F̂ (T0)

+ (X) > F̂
(T0)
− (X) indeed.

Remark. First of all, note that the feature extractor, after fine-grained training, is already well-
performing, as it responds strongly (Ω(1) strength) to the true features, and very weakly to any
off-diagonal features and noise. This can already help us explain the linear-probing result we saw
on ImageNet21k in Appendix A.2, since linear probing does not alter the the feature extractor after
fine-grained pretraining (on ImageNet21k), it only retrains a new linear classifier on top of the
feature extractor for classifying on the target ImageNet1k dataset.

74

Under review as a conference paper at ICLR 2024

At a high level, finetuning F̂ can only further enhance the feature extractor’s response to the features,
therefore making the model even more robust for challenging downstream classification problems;
it will not degrade the feature extractor’s response to any true feature. A rigorous proof of this
statement is almost a repetition of the proofs for fine-grained training, so we do not repeat them here.
Intuitively speaking, we just need to note that the properties stated in Theorem G.1 will continue to
hold during finetuning (as long as we stay in polynomial time), and with similar argument to those
in the proof of Lemma G.2, we note that the neurons responsible for detecting fine-grained features,
i.e. the S∗(0)

+,c (v+,c), will continue to only receive (positive) updates on the v+,c-dominated patches
of the following form:

∆w
(t)
+,c,r =

η

NP

N∑
n=1

1{yn = (+, c)}[1− logit(t)+ (X(t)
n)]

×
∑

p∈P(X
(t)
n ;v+,c)

1{⟨w(t)
+,c,r, α

(t)
n,pv+,c + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}

(
α(t)
n,pv+,c + ζ(t)

n,p

)
,

(223)
and similar update expression can be stated for the S∗(0)

+,c (v+) neurons:

∆w
(t)
+,c,r

=
η

NP

N∑
n=1

1{yn = (+, c)}[1− logit(t)+ (X(t)
n)]

×
∑

p∈P(X
(t)
n ;v+)

1{⟨w(t)
+,c,r, α

(t)
n,pv+ + ζ(t)

n,p⟩+ b
(t)
+,c,r > 0}

(
α(t)
n,pv+ + ζ(t)

n,p

)
.

(224)

Indeed, these feature-detector neurons will continue growing in the direction of the features they are
responsible for detecting instead of degrade in strength.

75

Under review as a conference paper at ICLR 2024

H PROBABILITY LEMMAS

Lemma H.1 (Laurent-Massart χ2 Concentration (Laurent & Massart (2000) Lemma 1)). Let g ∼
N (0, Id). For any vector a ∈ Rd

≥0, any t > 0, the following concentration inequality holds:

P

[
d∑

i=1

aig
2
i ≥ ∥a∥1 + 2∥a∥2

√
t+ 2∥a∥∞t

]
≤ e−t (225)

Lemma H.2. Let g ∼ N (0, σ2Id). Then,

P
[
∥g∥22 ≥ 5σ2d

]
≤ e−d (226)

Proof. By Lemma H.1, setting ai = 1 for all i and t = d yields

P
[
∥g∥22 ≥ σ2d+ 2σ2d+ 2σ2d

]
≤ e−d (227)

Lemma H.3 (Shen et al. (2022a)). Let g1 ∼ N (0, σ2
1Id) and g2 ∼ N (0, σ2

2Id) be independent.
Then, for any δ ∈ (0, 1) and sufficiently large d, there exist constants c1, c2 such that

P
[
|⟨g1, g2⟩| ≤ c1σ1σ2

√
d ln(1/δ)

]
≥ 1− δ (228)

P
[
⟨g1, g2⟩ ≥ c2σ1σ2

√
d
]
≥ 1

4
(229)

76

	Introduction
	Related Work
	Theoretical work
	Experimental work

	Problem Formulation and Intuition
	Notations and methodology
	How does the pretraining label granularity influence feature learning?

	Theory of Label Granularity
	Source training data distribution
	Target data distribution assumptions
	Learner assumptions
	Main result: stochastic gradient descent on easy training samples

	Empirical Results
	ImageNet21kImageNet1k transfer experiment
	Transfer experiment on iNaturalist 2021

	Conclusion
	Reproducibility Statement
	Additional Experimental Results
	In-dataset transfer results
	iNaturalist 2021
	ImageNet21k
	ImageNet1k

	Cross-dataset transfer, ImageNet21kImageNet1k

	Theory, Problem Setup
	Data Properties
	Learner Assumptions
	Training Algorithm
	Parameter Choices
	Plan of presentation

	Coarse-grained training, Initialization Geometry
	Coarse-grained SGD Phase I: (Almost) Constant Loss, Neurons Diversify
	Main results
	Lemmas

	Coarse-grained SGD Phase II: Loss Convergence, Large Neuron Movement
	Main results
	Lemmas

	Coarse-grained SGD, Poly-time properties
	Fine-grained Learning
	Initialization geometry
	Poly-time properties
	Training
	Model error after training

	Probability Lemmas

