
Inductive Domain Transfer In Misspecified
Simulation-Based Inference

Ortal Senouf ∗

EPFL
Lausanne, Switzerland

Antoine Wehenkel
Apple

Zürich, Switzerland

Cédric Vincent-Cuaz
EPFL

Lausanne, Switzerland

Emmanuel Abbé
EPFL, Apple

Lausanne, Switzerland

Pascal Frossard
EPFL

Lausanne, Switzerland

Abstract

Simulation-based inference (SBI) of latent parameters in physical systems is of-
ten hindered by model misspecification–the mismatch between simulated and
real-world observations caused by inherent modeling simplifications. RoPE, a
recent SBI approach, addresses this challenge through a two-stage domain transfer
process that combines semi-supervised calibration with optimal transport (OT)-
based distribution alignment. However, RoPE operates in a fully transductive
setting, requiring access to a batch of test samples at inference time, which limits
scalability and generalization. We propose a fully inductive and amortized SBI
framework that integrates calibration and distributional alignment into a single,
end-to-end trainable model called FRISBI. Our method leverages mini-batch OT
with a closed-form coupling to align real and simulated observations that corre-
spond to the same latent parameters, using both paired calibration data and unpaired
samples. A conditional normalizing flow is then trained to approximate the OT-
induced posterior, enabling efficient inference without simulation access at test
time. Across a range of synthetic and real-world benchmarks–including complex
medical biomarker estimation–our approach matches or exceeds the performance
of RoPE, while offering improved scalability and applicability in challenging,
misspecified environments.

1 Introduction

Inference of latent variables that describe important properties of physical systems is a fundamental
problem in many domains, including environmental [1, 2], mechanical [3, 4, 5], and physiological [6,
7, 8] systems. Traditionally, this problem has been approached by formulating a mathematical model
that relates the observations x to the latent parameters of interest θ, and solving the corresponding
inverse problem to infer θ from x [9, 10].

Modern machine learning (ML) has achieved remarkable success in complex tasks, sparking interest
in its application to inferring latent parameters from observations. However, standard supervised
learning is often impractical in this context, as ground truth parameter data is typically expensive
or infeasible to obtain, such as in medical applications where direct measurement may require
invasive procedures. To address this, two prominent approaches have emerged: simulation-based
inference (SBI) [11] and hybrid learning [12, 13, 14]. SBI trains ML models on simulated data to
directly estimate parameters while capturing uncertainty through posterior estimation, becoming a
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Figure 1: FRISBI Overview. Similar to RoPE [22], we assume a trained neural statistics encoder
(NSE), hω⋆ , that maps simulation data xs to embeddings hω⋆(xs), and a neural posterior estimator
(NPE), qψ⋆ , which estimates simulated posterior distributions. FRISBI performs: (1) Joint optimal
transport (OT) and supervised learning. Both paired and unpaired samples contribute to the OT plan
(dashed lines), weighted by αj . Supervised samples fromDcalib (solid lines) anchor the OT matching.
The real-observations encoder gϕ is fine-tuned to optimize representations for both supervised learning
and OT-based domain transfer. (2) A conditional density estimator, qξ, approximates the posterior
arising from the OT-based mixture of posteriors.

cornerstone in scientific domains [15, 16, 17, 18, 19], though it can suffer from sensitivity to model
misspecification [20, 21]. In hybrid learning, the simulator is integrated with ML components to
obtain a more accurate model of the system. While this approach provides a useful inductive bias, it
often requires simulators that are differentiable and computationally feasible, limiting its applicability
to realistic and complex systems.

A recent work introduces RoPE [22], an SBI approach designed to address model misspecifications
through a two-stage, semi-supervised domain transfer strategy. The first stage focuses on pointwise
calibration using a small set of labeled real observations—i.e., observations for which the correspond-
ing parameters θ are known, whereas the second stage aligns distributions using optimal transport
(OT). While effective, this approach is inherently transductive, it requires a batch of test samples for
inference, limiting its applicability in scenarios that require inductive inference. In many real-world
settings, access to a batch of test-time observation is unrealistic, and the inferred posterior for a
given single test input can vary depending on the batch it is embedded in—undermining stability and
reproducibility. Additionally, the strict separation between pointwise and distribution-wise alignment
may prevent full exploitation of their complementary strengths.

In this work, we propose a new framework, illustrated in Fig. 1, that builds upon elements of RoPE
by amortizing the optimal transport (OT) step through a mini-batch unbalanced OT approach [23, 24].
Similarly to RoPE, our method assumes access to a limited set of ground-truth pairs of observations
x and parameters θ. It features a closed-form solution for the transport plan and offers two key
advantages:

• Inductive Joint Training of Alignment Steps: Enables end-to-end training of both point-
wise and distribution-wise alignment, better leveraging their complementary strengths.

• Amortised Posterior Estimation: Provides a scalable, inductive solution for OT-based
posterior estimation, eliminating the need to repeatedly access simualtions during inference.

We show that our method, while fully inductive and applicable to individual test samples, achieves
competitive—and often superior—performance compared to the transductive RoPE baseline across
a range of benchmarks. This includes both synthetic and real-world datasets, with strong results in
terms of accuracy and calibration, even in challenging settings such as complex biomarker estimation.

2 Background

2.1 Simulation-Based Inference and Neural Posterior Estimation

We consider a simulator S : θ −→ X that, given parameters θ ∼ p(θ), produces simulated data
xs = S(θ), whose likelihood p(xs | θ) is intractable. Simulation-based inference (SBI) methods
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sidestep likelihood evaluation by training a neural conditional density estimator qψ(θ | xs) (e.g. a
conditional normalizing flow [25]) to approximate the posterior p(θ | xs). Very often, when xs is
high-dimensional, a neural statistics encoder (NSE [22]) hω is used to obtain a lower-dimensional
representation with sufficient information for the inference task. Eventually, in neural posterior
estimation (NPE), one minimizes the expected negative log-likelihood over simulator draws w.r.t
parameters θ :

LNPE(ψ, ω) = Eθ∼p(θ),xs∼p(·|θ)
[
− log qψ(θ | hω(xs))

]
.

Under sufficient expressiveness of the density estimation model qψ and the encoder hω, while
considering access to arbitrarily large simulated data DSBI = {(θj ,xjs)}

NSBI
j=1 , the density p(θ | xs)

can be approximated by sampling from qψ⋆(θ | hω⋆(xs)) [26][27].

2.2 Transductive Semi-Supervised Posterior Estimation (RoPE)

In the presence of model misspecification, the simulator-induced posterior p(θ | xs) may be biased
relative to the true real-world posterior p(θ | xr). Consequently, both NSE hω⋆ and the NPE qψ⋆ ,
when trained solely on simulated data, may fail to perform reliably on real observations. RoPE [22],
on which this work builds, addresses this in two stages.

NSE Fine-tuning. Once the NSE, hω⋆ , and NPE, qψ⋆ from Section 2.1 are trained and fixed, a
small set (calibration set) of real observations xir and their corresponding known parameters θi, is
used to adapt the encoder to the domain shift. Each θi is passed through the simulator to obtain
the corresponding xis = S(θi) and the calibration set becomes Dcalib = {xir,xis}

Ncalib
i=1 . Then, gϕ,

the NSE for the real observations, initialized as hω⋆ , is fine-tuned on Dcalib to minimize the mean
squared error between gϕ(xir) and hω⋆(xis) for every pair of xir,x

i
s ∈ Dcalib. The outcome is a

limited (depending on the size of Dcalib) domain adaptation of the NSE gϕ, enabling it to encode
representations of real observations in the same latent space as hω⋆(xs).

Entropic OT coupling. Since NSE fine-tuning relies on a limited calibration set, its ability to
generalize to unseen real observations is constrained, leaving residual uncertainty in the domain
transfer. RoPE takes this uncertainty into account by coupling real and simulated observations
through entropic OT, which computes a soft assignment matrix between embeddings {gϕ⋆(xir)} of
test observations Dtest = {xir}

Ntest
i=1 and embeddings {hω⋆(xjs)} of a fresh simulation set DOT =

{xjs}
NOT
j=1 . The latter then acts as prototypes to which the matched embeddings {gϕ⋆(xir)} must be

close in an Euclidean sense, similarly to the soft Kmeans algorithm [28]. Specifically, they propose
to solve for the following semi-balanced entropic OT problem [29, 30]:

P ⋆ = arg min
P∈B(Ntest,NOT )

⟨P , C⟩+ ρKL
(
P⊤1Ntest ∥ 1

NOT
1NOT

)
+ γ ⟨P , logP ⟩. (1)

where P is constrained row-wise to B(Ntest, NOT ) = {P ∈ RNtest×NOT+ |P1NOT = 1
Ntest

1Ntest}
and C is the pairwise euclidean distance matrix between both sets of embeddings. The weight ρ
encourages prototypes to be matched to a uniform number of test samples, enabling unbalanced
OT to accommodate prior misspecification, while γ controls the entropy regularization strength,
thereby tuning the method’s sensitivity to model misspecification and to uncertainty introduced during
encoder fine-tuning on the calibration set. Problem 1 is commonly solved using an iterative bregman
projection solver [31, 32, 33]. As detailed in Appendix, it comes down to actualize along iterations t
the transport plan following:

P (t+1) ← diag(
1Ntest

NtestK(t)1
)K(t) with K(t) = exp

(
−C − ρ1 log(NOTP (t)⊤1)⊤

γ

)
(2)

Finally, [22] shows that the calibrated posterior for each xir can be approximated by marginalizing
over xs, resulting in the following posterior:

p̃(θ | xir) :=
NOT∑
j=1

αij qψ⋆(θ | hω⋆(xjs)) with αij = Ntest P
⋆
ij . (3)
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3 Methods

RoPE, while offering robust posterior estimation, requires computing the OT coupling over the entire
test batch Dtest at once, rendering the approach inherently transductive. This limits its ability to
generalize to unseen observations without re-computing the transport plan.

We propose a new Framework for Robust Inductive domain transfer in misspecified Simulation-Based
Inference named FRISBI. It relies on a unified workflow that achieves a joint distribution-level
and point-wise alignment while enabling inductive inference, thereby extending the solution to
misspecified SBI beyond the limitations described above. The encoder gϕ is first trained using a joint
objective that combines a variant of entropic OT admitting closed-form solutions, with a supervised
calibration loss, as detailed in Section 3.1. Then to avoid the need for accessing simulations at
test time, we further amortize this solution using the inductive strategy presented in Section 3.2. A
complete description of the full pipeline and training procedure is provided in Algorithm 3.2. For
clarity, Appendix A includes a summary table describing the different datasets.

3.1 Balancing Unpaired Alignment and Point-wise Domain Transfer

In addition to the data assumed to be available in RoPE [22], we also assume access to a large,
unpaired dataset of real observations, denoted as Du = {xir}

Nu
i=1. Furthermore, we can generate a

large set of simulations, separated from the one used to train the NPE, forming the dataset DOT =
{xjs}

NOT
j=1 . We propose to learn an encoder gϕ that optimizes a joint objective, denoted Ljoint,

composed of two terms. The first component coincides with the entropic OT objective used in RoPE
(see Eq. (1)), with the column-marginal constraint parameter fixed at ρ = 0. It defines a coupling
between the encoded real samples gϕ(xir) and the fixed simulated representations hω⋆(xjs). The
second component operates on the calibration set Dcalib and aims to control the deviation of the
embeddings of real samples from those of their paired simulated samples. Formally, gϕ is trained by
solving the following problem:

argmin
ϕ

∑
xr∼Dr
xs∈Ds

[
Pij∥gϕ(xir)− hω⋆(xjs)∥2 + γ Pij logPij

]
︸ ︷︷ ︸

Entropic OT

+λ
∑
xr,xs

∈Dcalib

∥gϕ(xir)− hω⋆(xis)∥2

︸ ︷︷ ︸
Supervised Loss

, (4)

where P ∈ B(Nu, NOT) is an optimal coupling between both distributions and (γ, λ) are regular-
ization hyperparameters. We stress that for the supervised loss, all paired samples (xr,xs) in the
calibration set Dcalib are taken. Whereas for the OT loss, the set Dr is a combination of a batch Bt
sampled from the unpaired dataset Du and samples from the calibration set Dcalib, while the set Ds
consists of the entire simulation dataset DOT as well as simulated samples (xs) from the calibration
set Dcalib. Intuitively, when calibration pairs are accurate (i.e., they share the exact same latent
parameters θ), minimizing the supervised loss on the calibration set tends to sharpen the transport
plan, resulting in alignment between the OT and supervised objectives. In contrast, when calibration
pairs are noisy or mismatched, the two objectives may conflict, allowing the OT term to compensate
for uncertainties in the calibration set.

We specifically enforce ρ = 0 in the entropic OT objective as the resulting optimization problem
w.r.t P is naturally well-suited for inductive learning. Indeed, one can see that setting ρ = 0 in
Eq. (1), implies that this problem admits a closed-form solution P ⋆ = diag( 1Nu

NuK1 )K where
K = e−C/γ and C is the pairwise euclidean distance matrix between embeddings (see also [31,
Proposition 1]). This leads to the efficient stochastic gradient descent (SGD) algorithm described
in Stage 1 of Algorithm 3.2, which alternates between computing embeddings for real observations
and independently computing the corresponding closed-form couplings for each embedding. Setting
ρ = 0 enables this closed-form computation, requiring NOT operations per sample in Du, each
involving a Euclidean distance in Rd, for an overall complexity of O(d). In the mini-batch setting,
this yields a per-step complexity of BtNOTd, where Bt is the batch size. Remark that an analogous
strategy could be applied when ρ > 0, replacing the closed-form computation with iterative updates
of Eq. 2 until convergence, as typically done in mini-batch OT [23, 24]. However, this approach is
more computationally demanding and prone to bias, with high sensitivity to batch size. In addition,
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RoPE, which uses ρ > 0 and cannot operate on mini-batches, scales as O(log(NuNOT)NuNOTd),
where Nu is the total number of real observations. These considerations further motivate our choice
of ρ = 0 for improved efficiency and scalability.

Finally, once the model is trained, the posterior mixture coefficients αij = NuP
⋆
ij for a new test

sample xtestr can be directly computed by evaluating Ctest,j using the trained encoder gϕ⋆ and the
transport plan P ⋆, obtained in closed form. This yields the posterior mixture as defined in RoPE
(Eq. 3).

3.2 Amortization of OT-based Posterior Estimation

Although the pipeline described in Section 3.1 enables inductive posterior estimation, it still relies
on access to the same simulations used to train the loss in Eq. 4, at test time. To mitigate that, we
propose to fit a conditional normalizing flow (cNF) qξ that approximates the OT-based posterior
mixture, conditioned directly on the real observation embeddings gϕ⋆(xr).

To fit qξ, we maximize its expected log density under the target mixture,

argmax
ξ

Eθ∼ptarget(θ|z)
[
log qξ(θ | z)

]
.

where ptarget(θ|z) is computed as in Eq. 3. By the linearity of expectation, this is equivalent to

N∑
j=1

αij Eθ∼qψ⋆ (θ|hω⋆ (xjs))
[
log qξ(θ | z)

]
.

In practice, we approximate each inner expectation by drawing K samples {θ(j,k)}Kk=1 from qψ⋆(θ |
hω⋆(x

j
s)), and train qξ with the set of unpaired real observations Du, and simulations DOT on Lflow:

argmin
ξ
− 1

|Bt|
∑
i∈Bt

[ 1

K

NOT∑
j=1

αij

K∑
k=1

log qξ
(
θ(j,k) | z

)]
. (5)

During inference, for a given test embedding z = gϕ⋆(x
test
r ), p(θ | xr) can be approximated by

sampling directly from qξ⋆(θ | z) without requiring any access to simulations.

Training Procedure

Datasets: Du = {xir}
Nu
i=1, DOT = {xjs}

NOT
j=1 , Dcalib = {(xir,xis)}

Ncalib
i=1

Trained Models: NSE hω⋆ , NPE qψ⋆

Stage 1: Joint supervised & OT Training

1: wj ← hω⋆(x
j
s) ∀xjs ∈ DOT

2: wic ← hω⋆(x
i
s) ∀xis ∈ Dcalib

3: for e = 1 to epochs do
4: for batch Bt : {xir}i∈Bt from Du do
5: zi ← gϕ(x

i
r) ∀i ∈ Bt

6: zic ← gϕ(x
i
r), ∀i ∈ Dcalib

7: Pij =
1

|Bt|
exp(−∥zi−wj∥2/γ)∑
j exp(−∥zi−wj∥2/γ)

8: Compute Ljoint 4 ∀i ∈ Bt, ic, j
9: Update ϕ by gradient step

Stage 2: Conditional NF Amortization

1: Z : zi ← gϕ⋆(x
i
r) ∀xir ∈ Du

2: αij =
exp(−∥zi−wj∥2/γ)∑
j exp(−∥zi−wj∥2/γ) ∀zi,wj

3: for e = 1 to epochs do
4: for batch Bt : {zi}i∈Bt from Z do
5: Sample θj,k ∼ qψ⋆(θ | wj)
6: Compute Lflow 5, ∀i ∈ Bt, j, k
7: Update ξ by gradient step

Inference: z = gϕ⋆(xr), p(θ | xr) ≈ qξ⋆(θ | z) by sampling θ ∼ qξ⋆(θ | z)

5



4 Experiments

4.1 Benchmarks

We evaluated our proposed approach on four benchmarks: a synthetic one, two real but controlled
ones, and one complex real-world benchmark. In the synthetic setting, real observations are emulated
using a more complex simulator. The two controlled benchmarks involve data sampled from real
systems with experimental control. The final benchmark contains real-world observations collected
"in the wild," with no control over sample distributions or nuisance variable variations. The first three
benchmarks were also used to evaluate RoPE [22], the main baseline method.

Pendulum. A widely-used synthetic test case in hybrid modeling and simulation-based inference
literature [13, 12, 14]. The simulator models the displacement of an ideal, frictionless pendulum,
determined by its natural frequency ω0 and initial angle ϕ0. To emulate real observations, we use a
damped pendulum model that introduces friction into the system. The damping is controlled by a
friction coefficient α ∈ R+. The parameters we aim to infer are θ = {ω0 ∈ [ π10 , π], ϕ0 ∈ [−π, π]}.

Causal Chambers [34]. Two real, controlled datasets collected from experimental rigs—a wind
tunnel and a light tunnel—with adjustable parameters. In the wind tunnel, the target parameter is the
hatch opening angle θ = {H ∈ [0, 45◦]}. We adopt model A2C3 from [34] as the simulator, which
captures pressure dynamics and hatch mechanics, while simplifying aerodynamics and omitting
sensor noise, actuator delays, and environmental effects. In the light tunnel, the parameters are the
RGB light intensities and a polarizer attenuation factor: θ = {R,G,B ∈ [0, 255], α ∈ [0, 1]}. We
use model F3, which simulates photodiode and camera responses under varying exposure and gain,
but ignores optical aberrations and sensor noise.

Real Hemodynamics Data. This benchmark uses a subset [6, 35] of the MIMIC-II dataset [36],
comprising 350 patients who underwent thermodilution—a procedure estimating cardiac output
(CO) via cold fluid injection and downstream temperature measurement. Each patient has arterial
blood pressure (ABP) signals aligned with CO readings, yielding ∼ 2200 valid ABP segments with
corresponding CO values. For simulation, we use OpenBF [37], a validated 1D cardiovascular
flow simulator supporting fast, multiscale finite-volume simulations. The estimated parameters
are θ = {HR,CO}, where HR is heart rate, obtained from ECG measurements. The empirical
means and standard deviations of HR and CO in the dataset are (87, 12) beats/min and (5.1, 1.6)
L/min respectively. In contrast, the CO from the simulations is derived by the known connection
CO = HR× SV, where SV is the stroke volume. HR and SV are sampled from uniform distributions
U(50, 150) beats/min and U(40, 140) L/beat respectively. This yields CO in the range of [2, 20]
L/min. This use case is inherently affected by label noise, since the pairing of HR and CO values with
observed pulse waves depends on temporal alignment through patients’ electronic records, which is
prone to misalignments.

4.2 Experimental design

Baselines. The primary method we compare against is RoPE [22]. However, a direct comparison
on the same test set is unfair, as RoPE is purely transductive. Nevertheless, we include this setting as
a baseline, denoted RoPE full test. For a fairer inductive comparison, we introduce a single-sample
variant of RoPE: for each test point xtest

r , we add it to the unpaired training set Du, compute the OT
coupling with simulations DOT , and estimate the posterior using the resulting plan. This is repeated
per test point, and we denote this baseline as RoPE single sample. We also compare against baselines
from [22], including NPE (see Section 2.1), applied directly to real observations without domain
transfer. To assess the role of the calibration set, we also include an unsupervised domain adaptation
(UDA) NPE baseline following [38]. In addition, we include OT-only baselines that do not adapt the
embedding space. Here, the fixed encoder hω⋆ is applied to both real and simulated samples, and OT
is computed in this space. The full-test variant is denoted OT-only (full test), and the single-sample
variant as OT-only (single sample). For all experiments involving OT, we use solvers from the POT
Python library [39, 40].

Another baseline is finetune-only, where the finetuned encoder gϕ⋆ is applied to test samples, and
NPE is used to estimate the posterior directly from gϕ⋆(xr), without OT-based mixing.
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Finally, we include two additional baselines: the upper bound SBI, where NPE is trained and tested
on simulations, and the prior estimator.

Metrics. We evaluate our method using the same metrics as in [22], which assess two critical
aspects of posterior estimation: accuracy and calibration.

The first metric is the log-posterior probability (LPP), defined as the average log-likelihood of the
true parameter values under the estimated posterior distribution. It measures how much density the
true parameters receive in their estimated posteriors, effectively capturing the sharpness and accuracy
of the model’s predictions. Higher LPP indicates a better match between the estimated posterior and
true value.

The second metric is the average coverage area under the curve (ACAUC), which reflects how
well the model’s credible intervals align with the true parameter coverage. It provides a measure of
calibration by comparing the fraction of true parameters falling within the estimated credible intervals
at different confidence levels. In all experiments, credible intervals are obtained by drawing 1000
samples from the corresponding approximate posterior distribution. A perfectly calibrated model
has an ACAUC of zero, while positive values indicate overconfident estimates and negative values
indicate underconfident estimates. For a detailed mathematical definition, we refer the reader to [22].

4.3 Results

In this section, we present the key findings of our experiments. A detailed description of the
implementation can be found in the supplementary material.

4.3.1 Performance Across Different Calibration Set Sizes

We evaluate methods that rely on calibration data using 5-fold cross-validation. In each fold, a
different, randomly sampled subset of the calibration data is used for training and validation, with
independent random initialization of model weights. This approach captures both data variability and
the effects of random initialization, providing a robust assessment of performance.

We evaluate calibration set sizes of 10, 50, 200, and 1000 samples, while keeping the test set size
fixed at 1000 samples across all benchmarks. The simulation set, DSBI , used to train both the NSE
and NPE, as well as the unpaired real observations set, Du, each contain 1000 samples. Similarly, the
set of simulations used for the OT in RoPE and our proposed joint training, DOT , also consists of
1000 samples. For training the amortised posterior estimator (Section 3.2), we exclusively use Du.
Following the guidelines in [22], the entropy regularization weight γ is set to 0.5 for all baselines
involving OT, including our joint training approach. Finally, since this section focuses on the setting
where both simulations and real observations are drawn from the same prior distribution p(θ), we
use balanced Sinkhorn OT for RoPE, effectively setting ρ in eq. 1 to a very high value.

The results, including mean scores and standard deviations computed across folds, are presented in
Fig. 2. Our method (solid red line) consistently outperforms the transductive single-sample RoPE
baseline (solid orange line) in terms of LPP, while maintaining ACAUC close to zero across most
calibration set sizes. This indicates that it achieves a robust inductive parameter estimation compared
to RoPE. With larger calibration sets, our method matches or even exceeds the performance of the
full-test RoPE (solid green line), which has access to the entire test set—highlighting the effectiveness
of combining OT-based domain transfer with supervised calibration. It also highlights the importance
of incorporating a calibration set, even a small one, as the UDA baseline completely fails under
significant misspecification, consistent with the observations in [41]. However, as the calibration set
size increases, our method—like the fine-tuning baselines—shows a decline in confidence (lower
ACAUC). In contrast, the RoPE variants are less affected by this trend, suggesting that our joint
training approach increasingly relies on the supervised loss over the OT loss as more calibration data
becomes available. We also evaluate performance on two additional benchmarks exhibiting more
moderate misspecification (Appendix C.1), also considered in [22]. Similar to RoPE, FRISBI shows
no significant advantage over baseline methods in simpler and minimally misspecified setting.
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Figure 2: Results across different calibration set sizes.. The top row displays performance in terms
of LPP (↑) while the bottom one is the calibration metric ACAUC (→ 0 ←). The horizontal axis
indicates the sample size while the vertical one is the metric value. Baselines that do not rely on a
calibration set are represented by fixed horizontal dashed lines for easier comparison.

4.3.2 Ablation

The importance of joint training. As described in Section 3, our full pipeline consists of two main
components: joint distribution and point-to-point alignment, which we refer to as joint training
only, and the posterior-mixture amortization step, which we refer to as amortized solution only. To
assess the individual contributions and necessity of these components, we evaluate their performance
separately and in combination. For the amortized solution only baseline, we train the amortization
step described in Section 3.2 directly to approximate the posteriors estimated by RoPE, using the
unpaired real set Du and the OT simulations set DOT . For the joint training only baseline, we
evaluate the posteriors obtained through our joint training approach described in Section 3.1, without
the additional amortization step. Finally, we compare these to the full pipeline, which combines both
components as described in Section 3.

The mean scores and standard deviations for each variant are reported in Fig. 3. Overall, the joint
training approach and the full pipeline achieve comparable performance in terms of LPP and ACAUC,
both consistently outperforming the amortized version of the transductive RoPE solution (blue).
This suggests that the performance gains in our pipeline are largely attributable to the joint training
strategy. The full pipeline offers the added benefit of not requiring access to the simulations DOT
at test time. Notable differences arise in specific cases: the full pipeline (green) performs better in
the low-calibration regime of the light tunnel benchmark (middle of Fig. 3), suggesting it may act
as a regularizer for the posterior mixture when calibration data is limited, while joint training alone
(orange) outperforms the full pipeline in the pendulum benchmark. In the latter, we observed that
in one fold, the cNF model used to amortize the posterior mixture failed to reduce its training loss
(Eq. 5), indicating difficulties in learning the posterior. This could potentially be mitigated by using a
more expressive cNF model.

Hyperparameter sensitivity analysis. In Appendix C.2, we present a sensitivity analysis of the
hyperparameters γ and λ on the Light Tunnel benchmark. As in RoPE, a larger γ is beneficial when
the calibration set is small, producing a more diffuse OT coupling. With larger calibration sets (e.g.,
1,000 samples), γ can be reduced to obtain a sharper coupling. The effect of λ is evaluated under 10%
label noise, since noise influences the weighting of the supervised objective. Higher λ values decrease
confidence as the calibration set grows, while smaller values yield better LPP scores, suggesting that
an adaptive tuning of λ based on noise level and data size may be advantageous.

8



Figure 3: Ablation Analysis. Comparison of joint training only (3.1), solution amortization only
(3.2), and the full pipeline. The horizontal axis shows the number of calibration samples, while the
vertical axis represents the LPP(↑, top) and ACAUC(→ 0←, bottom) scores.

4.3.3 Label Noise Robustness

In a more realistic scenario, the calibration set known parameters θ are themselves measurements and
thus inherently noisy. For example, in the case of CO (cardiac output) labels, both the measurement
procedure and the temporal alignment with the corresponding ABP (arterial blood pressure) signal
can introduce noise. This means that the resulting simulated observations xs may also be inaccurately
paired with the real observations, potentially affecting the quality of the calibration set.

To evaluate the robustness of our proposed method to label noise, we add Gaussian noise to the
calibration labels, corresponding to 1% and 10% of the parameter range of the assumed prior in the
light tunnel benchmark. The models are trained using these noisy labels, while the test set remains
clean for evaluation, as in the previous subsections. In this experiments we still consider the balanced
OT settings (no prior mismatch) and keep γ at 0.5. In Fig. 4, our method (solid red line) almost
consistently achieves higher LPP scores than the single-sample RoPE baseline (solid orange line),
indicating greater robustness to label noise due to its inductive nature. While it is somewhat more
sensitive to high noise levels compared to the full-test RoPE baseline (solid green line), this sensitivity
diminishes with larger calibration sets. For example, with 200 calibration samples, the performance
gap noticeably narrows.

In the CO estimation experiment, we explicitly account for the increased uncertainty in the calibration
set by setting the entropic regularization parameter γ to a higher value of 1.5 for the RoPE and OT
baselines and in our proposed method. Additionally, in the RoPE baselines we use unbalanced OT
settings to handle known prior mismatches, as suggested in [22]. The calibration set size in these
experiments is 200, and we report results across 5 random splits to assess robustness. It is important
to note that clean test-set θ labels are not available in this setting. As shown in Fig. 5, Our method
(in red) significantly outperforms all baselines, including RoPE, in terms of LPP, while showing
slight overconfidence (ACAUC < 0.2), highlighting the inference benefits of our amortized inductive
framework in real complex settings.

5 Discussion and Conclusion

In this work, we introduce an amortized and inductive posterior estimator for misspecified
simulation-based inference. Our method leverages mini-batch optimal transport to enable joint
training over both unpaired and small paired calibration sets. The final posterior, approximated
by an OT-based mixture, is amortised by a conditional normalizing flow, eliminating the need
for additional transport computations or access to simulations at test time – a key limitation of
transductive approaches like RoPE. Our approach demonstrates competitive performance across a
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Figure 4: Label Noise Robustness. Impact of increasing label noise on performance, measured by
LPP (↑, top) and ACAUC (→ 0 ←, bottom), across three calibration set sizes (noted above each
panel) on the light tunnel benchmark. The horizontal axis represents the noise rate, while the vertical
axis shows the metric score.

Figure 5: Cardiac Biomarker Estimation. Performance comparison across all baselines for heart
rate (HR) and cardiac output (CO) estimation, using a calibration set of 200 samples. On the right, an
example of real and simulated arterial pulse waveforms is shown.

range of benchmarks, including both synthetic and complex real-world datasets.

Dimensionality and scalability. While our experiments focus on relatively low-dimensional cases
representative of many real-world scenarios, our framework naturally extends to higher-dimensional
settings. Two main challenges arise: (i) the mismatch between simulated and real embeddings tends
to increase with dimensionality, requiring larger calibration sets, and (ii) the embedding dimension
needed to capture sufficient statistics typically grows with the parameter dimension, complicating
the coupling. Following Chen et al. [42], we use an overparameterized embedding dimension of
16 to mitigate this issue. The joint optimization of supervised and OT objectives further alleviates
the limitations of small calibration sets by exploiting unlabeled data. As discussed in Section 3.1,
FRISBI is expected to scale more efficiently than RoPE in high-dimensional settings.

Limitations and future directions. Sensitivity to label noise, as observed in our experiments,
suggests that training data quality significantly impacts posterior accuracy. While this could be
partially mitigated with a higher entropy regularization weight, more adaptive joint loss formulations
should be explored and specifically adaptive updates of the supervised loss weight λ. Additionally,
active learning or uncertainty-aware sampling strategies could be investigated to guide calibration set
selection under a fixed budget. Finally, the training process of our proposed method still involves
two separate stages: the joint OT-supervised training and the subsequent amortization of the induced
posterior mixture. A more holistic alternative could involve learning the transport mapping directly
through a neural OT framework, potentially integrating the matching and inference stages into a
single unified process.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the intro are informative about the proposed approach and the
validating experiments
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in all experiments and in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: This is not a theoretical work, but the simplifications that allow our closed-form
transport plan solution are reasoned and cited in the methods part and in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our work proposes a new framework and a detailed pipeline of the framework
is provided in section 3. In addition, implementation details are provided in the supplemental
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is available for all experiments. Data and data processing is available for
the pendulum and causal chambers experiments. For the biomarker experiment it is partially
available, as the access to MIMIC-II data set requires credentialing and agreement to terms
of use .

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: High level description in the paper, implementation details in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported in all experiments across 5-splits of the training data.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Not in the body of the paper, but in the supplementary material

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The only medical dateset we use is an open one. No expected negative impact.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: It is a technical work that tries to solve a specific technical problem. It does
not have a broader societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We mostly used standard open-source Python libraries (e.g., PyTorch, NumPy,
scikit-learn, pot) under permissive licenses. We did not redistribute or modify any third-party
code or pre-trained models, and all licenses were respected. We used the openBF (Apache
2.0) library for arterial pressure waves simulations and cited it. We used the MIMIC-II
dataset, which is distributed under a specific data use agreement (PhysioNet Credentialed
Health Data License). Access to the dataset requires credentialing and agreement to terms
of use, including proper citation. We obtained access in compliance with these terms and
cite the dataset as per the official guidelines
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assests.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects (only existing datasets)

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects (only existing datasets)

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not an LLM-related work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Datasets clarification

Table 1: Summary of datasets used in the pipeline.

Dataset Observations θ Labels Usage
DSBI simulated (xs) yes train NPE, NSE
DOT simulated (xs) no train over the OT objective in 3.1, amortization of posterior mixture in 3.2
Dcalib real (xr) yes train 3.1, MSE objective (and OT)
Du real (xr) no train 3.1, OT objective, amortization of posterior mixture in 3.2

B Semi-balanced Optimal transport solvers.

We develop next how to solve for semi-balanced entropic optimal transport problems discussed in
Sections 2.2 and 3. The overall problem reads as

P ⋆ = arg min
P∈B(Ntest,NOT )

L(P ) := ⟨P , C⟩+ρKL
(
P⊤1Ntest ∥ 1

NOT
1NOT

)
+γ ⟨P , logP ⟩. (6)

This type of problem can be generally solved using an iterative bregman projection solver
[31, 32, 29, 33], or equivalently mirror-descent algorithms following the KL geometry. It comes
down to the following steps:

Step 1. Compute the gradient of the objective function

∇L(P (t)) = C + ρ1 log(NOTP
(t)⊤1)⊤ + γ logP (t) (7)

step 2. Then for a given learning rate τ , one has to solve the problem

P (t+1) ← argmin
P∈B(Ntest,NOT )

⟨∇L(P (t)),P ⟩+ τKL(P |P (t)) (8)

we have

⟨∇L(P (t)),P ⟩+ τKL(P |P (t))

=⟨C + ρ1 log(NOTP
(t)⊤1)⊤ + γ logP (t),P ⟩+ τ⟨P , logP − logP (t)⟩

(setting γ = τ) =⟨C + ρ1 log(NOTP
(t)⊤1)⊤,P ⟩+ γ⟨P , logP ⟩

=⟨− log e
−C−ρ1 log(NOTP (t)⊤1)⊤

γ ,P ⟩+ γ⟨P , logP ⟩
=γKL(P |K(t)

ρ )

(9)

with K
(t)
ρ = e

−C−ρ1 log(NOTP (t)⊤1)⊤
γ . Hence this problem comes down to a KL projection on the set

B(Ntest, NOT ) of the Gibbs kernel K(t)
ρ . As detailed in Proposition 1 in [31]) this problem admits a

close-form solution detailed in Equation 2.

C Additional experiments

C.1 CS and SIR benchmarks

We follow the evaluation protocol of [22], originally introduced by [43].

CS. The cancer-stromal cell simulator models 2D cell growth with three Poisson rate parameters
(λc, λp, λd). Each sample includes cell counts and the mean and maximum distance between stromal
and nearest cancer cells. Misspecification is induced by removing cancer cells located too close to
their parent.
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Figure 6: Minimally misspecified benchmarks (CS and SIR). The horizontal axis shows the number
of calibration samples, while the vertical axis represents the LPP(↑, top) and ACAUC(→ 0←, bottom)
scores.

SIR. The stochastic epidemic model simulates infection and recovery dynamics with rates (β, γ).
Observations comprise summary statistics of infection counts, timing, and autocorrelation. Mis-
specification is introduced by delaying weekend infections, adding 5% of them to the following
Monday.

We observe that both FRISBI (red) and RoPE underperform relative to the vanilla NPE baseline
(dashed green) in the SIR benchmark and achieve performance comparable to the finetuning-only
baseline (blue) in the CS case. This suggests that, under minimal misspecification, a standard NPE is
sufficient, and in simpler systems, even a small calibration set can adequately capture the mapping
between observations and parameters.

C.2 Sensitivity analysis w.r.t hyperparameters γ and λ
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Figure 7: Sensitivity analysis of hyperparameters γ and λ. Both experiments are conducted on the
Light Tunnel benchmark. The λ sensitivity analysis (right) is performed under a 10% label noise
setting. The horizontal axis shows the number of calibration samples, while the vertical axis reports
the LPP (↑, top) and ACAUC (→ 0←, bottom) scores. The legend indicates the different γ and λ
values considered and their corresponding shades.
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