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Abstract—Cardiovascular disease (CVD) poses a significant
global health challenge, and accurate inference methods are
vital for early detection and intervention. However, the quality
of prediction relies heavily on the availability of labeled data,
which are often limited in medical applications. To cope with the
challenge of limited labeled data, we are the first to propose
an active learning (AL) approach that leverages a weighted
ensemble of Gaussian processes to effectively infer CVD by
strategically selecting the few most informative data points to
label. Through experiments conducted on the SMARTool dataset,
we demonstrate the effectiveness of the advocated approach,
achieving superior performance in CVD inference compared to
baseline methods. Our findings highlight the potential impact of
the proposed AL framework in CVD diagnosis and treatment
clinical cases, particularly in scenarios where labeled data are
scarce, due to data confidentiality concerns or high sampling
costs.

Index Terms—CVD inference, Gaussian Processes (GPs), En-
semble of Gaussian Processes (EGPs), FFR index
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(Project code: 82863, MIS: 5047133), and has also received funding from
the European Union’s Horizon 2020 research and innovation program
TO_AITION under grant agreement No 848146. The data used in the analysis
were acquired by the SMARTool project (GA: 689068).

I. INTRODUCTION

Cardiovascular diseases (CVDs) encompass a range of heart
and vascular dysfunctions, including coronary heart disease,
heart failure, and arrhythmia. These conditions can become
a leading cause of death, accounting for approximately one-
third of all fatalities and significantly impacting individuals’
quality of life. The severity of coronary artery disease is
primarily evaluated through imaging techniques like X-ray
coronary angiography. Fractional Flow Reserve (FFR) is a
measurement taken through invasive means, indicating the
severity of coronary stenosis. It serves as a valuable diagnostic
tool for clinicians to determine if revascularization is necessary
when the FFR is below 0.8. Although FFR is an invasive
method, there have been recent advancements in non-invasive
approaches using computational fluid dynamics [1], [2].

Significant attention has been given to the diagnosis and
prevention of CVDs, with most of the studies focusing on
classification models [3]–[5]. However, obtaining a sufficient
number of labeled data regarding CVD-related patients may
be challenging [6], [7] due to medical confidentiality and
high annotation costs, since the latter entails the involvement
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of specialized experts and (possibly) costly examinations.
Therefore, building reliable machine learning (ML) and deep
learning (DL) models for accurate CVD prediction with only
few available labeled training data is a challenging task since
many models require a sufficiently large number of training
data. The objective of this work is to identify the few most
informative unlabeled data that can be incrementally labeled
to enhance ML regression tasks related to CVD diagnosis and
prevention.

Active learning (AL) provides a principled approach within
the realm of human-in-the-loop computing [8], allowing the
chosen ML model and the training (labeled) set to evolve over
time through the prudent labeling of the most informative sam-
ples from a pool of unlabeled instances. Given the objective
of minimizing the expenses associated with acquiring labeled
data by strategically selecting new data points, AL methods
have found application in diverse domains such as natural
language processing [9], and biological systems [10] to list a
few; also within the context of multi-label classification [11].
Additionally, AL has also been utilized in prediction of risk of
heart disease [12] and in the field of coronary artery disease
using an ensemble of classifiers [13]. Various strategies, such
as uncertainty sampling, query-by-committee, and variance
reduction [14], [15] have been established to select the most
informative and diverse samples for labeling.

In an effort to reduce data labeling costs and enhance
model efficiency with well-quantifiable uncertainty, AL with
Gaussian processes (GPs) has been applied. Particularly, the
work in [16] utilizes a fully Bayesian GP model to improve
model efficiency and in [17] proposed an AL approach with
weak labels for GPs. Recently, AL has also been applied in
a framework that uses an ensemble (E) of GP experts with
weights adapted to the labeled data collected incrementally
[18]. This EGP model has also been employed in several learn-
ing domains including graph-guided learning [19]–[22], rein-
forcement learning [23], transfer learning [24], and Bayesian
optimization [25]–[27]. Building on the EGP model, the work
in [18] presents a number of acquisition functions based on the
uncertainty and disagreement rules, and adaptively learns the
proper acquisition functions as new data are processed online.
While the EGP-based AL framework has also been employed
for learning over graphs [28], it has not been utilized for
several healthcare domains including cardiovascular disease
(CVD)-related tasks.
Contributions. In this paper, we advocate a well-motivated
AL framework to assess the severity of coronary stenosis
in patients undergoing computed tomography angiography
(CTCA) by predicting the gold standard FFR with only a
few yet informative training data. This work capitalizes on an
ensemble of GPs learning models to build uncertainty-based
acquisition criteria used to judiciously select the few most
informative unlabeled data to label. Although the notion of
EGPs has been employed for FFR index online inference in
[29] using a passively selected labeled set, in the present work
we are the first to introduce an EGP-based AL framework to
effectively and efficiently guide CVD related regression tasks.

The present work can markedly assist clinicians who can have
access to only a few medical records, offering easy, accurate,
and cost-effective diagnoses. Numerical tests on the CVD-
related SMARTool dataset showcase the impressive merits of
adopting the advocated EGP-based AL method for the FFR
prediction with uncertainty measures and few data at hand.

II. MATERIALS AND METHODS

A. Data Description and Prepossessing

The present study utilized data from the SMARTool (Sim-
ulation Modeling of coronary ARTery disease: a tool for
clinical decision support) project [30]. The resulting dataset
consists of 187 patients, with input data representing the
medical features of each patient including clinical risk factors,
lipidomic data, bio-humoral variables, and CTCA imaging
data. The SmartFFR index, computed for the most affected
coronary artery, was used as the target variable in this study.
Data cleaning and data transformation of the raw data were
utilized, including the imputation of missing values taking into
account the diverse variable types (categorical and continuous
features), as well as outliers identification. Nevertheless, the
outliers were retained in the analysis due to their potential
clinical significance.

B. Problem Formulation

Conventional supervised learning methods aim to estimate
a learning function f(·) that maps the input feature vector xn

to the corresponding output yn; i.e xn → f(xn) → yn. In
a regression task, the value of yn belongs to the set of real
numbers, while in the classification task, it belongs to a finite
set of options. To accurately identify f , a sufficient number of
labeled training samples (xn, yn)

t
n=1 may be necessary, which

may not be available though in practical healthcare domains
including the CVD-related tasks, thus motivating well the AL
paradigm.

C. Active Learning

The AL process begins with a limited collection of labeled
samples L0, and a larger pool of unlabeled instances U0. Given
the corresponding sets, Lt and Ut at time slot t, probabilistic
model-based AL approaches involve a statistical function
model, represented by the probability density function (pdf)
p(f(x)|Lt), which is then utilized by the so-termed acquisition
function (AF) α(·) to select the next datum, xt+1 ∈ Ut to label
as:

xt+1 = argmax
x∈Ut

α (x;Lt) . (1)

Upon obtaining the label yt+1 through an oracle, which could
be for example a costly medical exam in a clinical task,
the labeled set is augmented with (xt+1, yt+1), xt+1 is
removed from the unlabeled set and this process is repeated
iteratively. Hence, the two critical components that affect the
AL performance are the selection of the learning model for f
and the design of the AF α.
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D. Active Learning with single GP

Targeting a well-quantified uncertainty to guide the AL
process, GP-based AL utilizes Gaussian Processes (GPs) to
estimate a non-parametric function model efficiently, while
also providing a measure of model uncertainty. Learning with
GPs begins with the assumption that f ∼ GP(0, κ(x,x′)) with
κ(·) denoting a positive-definite kernel function measuring
similarity between inputs. This is equivalent to write that
ft := [f(x1) . . . f(xt)]

⊤ ∼ N (ft;0t,Kt) ∀t, where the
(m,m′) element of the t× t covariance (kernel) matrix Kt is
[Kt]m,m′ = cov(f(xm), f(xm′)) := κ(xm,xm′) [31].

The next assumption is that the batch likelihood
p(yt|ft;Xt), with Xt := [x1 . . .xt]

⊤ and yt := [y1 · · · yt]⊤,
is factored as p(yt|ft;Xt) =

∏t
n=1 p(yn|f(xn)). With the GP

prior and the batch likelihood at hand, it can be shown that
the posterior of f(x) ∼ N (f(x);µt(x), σ

2
t (x)) with mean and

variance given in closed-form as:

µt(x) = k⊤
t (x)(Kt + σ2

nIt)
−1yt, (2a)

σ2
t (x) =κ(x,x)−k⊤

t (x)(Kt+σ2
nIt)

−1kt(x), (2b)

where kt(x) := [κ(x1,x), . . . , κ(xt,x)]
⊤. The mean in (2a)

provides a point estimate of f(x) and the variance in (2b)
quantifies the uncertainty of this estimate.

Following the intuition that labeling the most uncertain
instances and adding them to the labeled set can aid the
prediction performance, a well-known GP-based AF is [32]:

xt+1 = argmax
x∈Ut

σ2
t (x) . (3)

Although interesting, its performance relies on a pre-selected
κ(·) whose selection is a non-trivial task, especially when the
number of initially available labeled data is small. To cope
with this challenge, in the next section, we will outline an
ensemble (E) of GPs framework to adaptively learn the proper
kernel function, along with the corresponding AFs to guide the
AL process.

E. Active Learning with EGPs

Accounting for a more expressive function space than that
offered by a single GP, we advocate an ensemble (E) of
GPs with each GP model m ∈ M := 1, . . . ,M placing a
unique GP prior f ∼ GP(0, κm(x,x′)) where the distinct
kernel κm(x,x′) is selected from a given dictionary K :=
{κ1, . . . , κM}. Then the ensemble learner combines all GP
priors as:

f ∼
M∑

m=1

wm
0 GP (0, κm (x,x′)) , (4)

where wm
0 captures the significance of model m in the

ensemble and
∑M

m=1 w
m
0 = 1. Leveraging the sum-product

rule, it can be shown that the function posterior pdf of the
ensemble learner can be expressed as:

p (f(x) | yt;Xt) =

M∑
m=1

wm
t p (f(x) | m,yt;Xt) , (5)

where wm
t := Pr(m|yt;Xt). Next, we will introduce the

random feature (RF) approximation that offers online model
updates, which are particularly appealing in AL scenarios
where data arrive and are processed on-the-fly.
RF-based approximation. To efficiently update the EGP
function model as new labeled data become available, a
parametric function approximant based on random features
(RFs) is employed. When dealing with shift-invariant kernels,
the RF-based approximation uses the kernel approximant
ˇ̄κ(x,x′) = ϕ⊤

v (x)ϕv(x
′), where ϕv(x) is the RF vector

defined as [33]:

ϕv(x) (6)

:=
1√
D

[
sin(v⊤

1 x), cos(v
⊤
1 x), . . . , sin(v

⊤
Dx), cos(v⊤

Dx)
]⊤

,

and {v}Di=1 are drawn from the power spectral density πκ(v)
of the standardized kernel κ/σ2

θ . The RF vector allows for a
parametric linear function approximant:

f̌(x) = ϕ⊤
ζ (x)θ, θ ∼ N

(
θ;02D, σ2

θI2D
)
, (7)

that allows for online model updates in a recursive Bayes
fashion as shown next.

RF-based parametric EGP model. Adopting the RF approx-
imation for each GP model m ∈ M in the ensemble as in (7),
yields the following generative model:

p (θm) = N
(
θm;02D, σ2

θmI2D
)
,

p (f (xn) | m,θm) = δ
(
f (xn)− ϕm⊤

v (xn)θ
m
)
,

p (yn | θm,xn) = N
(
yn;ϕ

m⊤
v (xn)θ

m, σ2
n

)
.

(8)

Then, the ensemble learner combines the posterior pdf of all
GP models yielding the Gaussian mixture (GM):

p(f(x)|Lt) =
∑

wm
t N (f(x);µm

t (x), (σm
t (x))2), (9)

where N (f(x);µm
t (x), (σm

t (x))2) is the per model GP pos-
terior pdf with:

µm
t (x) = ϕm⊤

v (x)θ̂
m

t , (10a)

(σm
t (x))2 = ϕm⊤

v (x)Σm
t ϕm

v (x) . (10b)

Using the minimum-mean square error (MMSE) estimator of
the GM in (9) yields the ensemble predictor along with the
corresponding variance as follows:

µt(x) =

M∑
m=1

wm
t µm

t (x), (11a)

(σt(x))
2 =

M∑
m=1

wm
t [(σm

t (x))2+(µt(x)−µm
t (x))2]. (11b)

RF-based EGP model update. Upon optimizing a certain AF
that relies on the aforementioned EGP model, xt+1 is obtained
and the oracle reveals the corresponding label yt+1. Then the
weight of each GP model wm

t+1 := Pr(m|Lt+1) is updated via
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Bayes rule and can be expressed as [18]:

wm
t+1 =

wm
t N

(
yt+1; ŷ

m
t+1|t, (σ

m
t+1|t)

2
)

∑M
m′=1 w

m′
t N

(
yt+1;ŷm

′

t+1|t, (σ
m′

t+1|t)
2
) , (12)

where N (yt+1; ŷ
m
t+1|t, (σ

m
t+1|t))

2 denotes the per-GP model
predictive pdf of yt+1 with:

ŷmt+1|t = ϕm⊤
v (xt+1)θ̂

m

t , (13a)

(σm
t+1|t)

2 = ϕm⊤
v (xt+1)Σ

m
t ϕm

v (xt+1) + σ2
n (13b)

Meanwhile, the posterior of θm of each model m is updated
via Bayes rule as:

p(θm|Lt+1) = N (θm; θ̂
m

t+1,Σ
m
t+1) , (14)

where the mean θ̂
m

t+1 and covariance matrix Σm
t+1 are:

θ̂
m

t+1= θ̂
m

t +(σm
t+1|t)

−2Σm
t ϕm

v (xt+1)(yt+1−ŷmt+1|t) , (15a)

Σm
t+1=Σm

t −(σm
t+1|t)

−2Σm
t ϕm

v(xt+1)ϕ
m⊤
v (xt+1)Σ

m
t . (15b)

Next, we will outline a number of EGP uncertainty-based AFs
used to select new unlabeled instances to label at each iteration
of the AL process.
F. Acquisition rules for EGP-based AL

Using the EGP posterior in (9), we present the following
uncertainty-based criteria.
1) Weighted variance. The first Acquisition Function (AF)
utilizes the uncertainty expressed by the variance. With GP
expert m contributing to the function posterior with variance
(σm

t (x))2, the weighted combination of all M models yields
the AF:

αwVar(x;Lt) :=

M∑
m=1

wm
t (σm

t (x))2 . (16)

2) Weighted entropy. Alternatively relying on entropy as the
uncertainty measure, a weighted sum of the entropy values of
all M GP models yields:

αwEnt(x;Lt) :=
1

2

M∑
m=1

wm
t log(σm

t (x)2). (17)

3) Variance of GP mixtures. Instead of using a weighted
combination of all GP model variances, one can directly use
the variance of the GM in (11b) as an AF to guide the AL
process.

Remark. The EGP model updates in Sec. IIE and the corre-
sponding AFs in the present section are specifically tailored
for the regression task, since the gold standard FFR index to
be predicted does not belong to a finite alphabet that pertains
to the classification task.

III. RESULTS
We considered a small labeled set (L0 = 20) and a

larger set of unlabeled data (U0 = 130). We selected 37

data for testing. We employed the EGP regression model,
which incorporates the intuitive uncertainty-based acquisition
criteria in Sec. IIF yielding the "EGP_Var", "EGP_wVar" and
"EGP_wEnt" approaches. A performance evaluation of the
advocated EGP-AL methods on the SMARTool dataset has
been carried out. As a baseline, we conducted a comparison
using a single "GP_var" model that utilizes the maximum
variance criterion of a single GP with a pre-selected kernel, as
well as the "EGP_Random", which considers random sampling
from the unlabeled data. In all approaches, we utilized the
initially labeled data to estimate the kernel hyperparameters
for each GP expert by maximizing the marginal likelihood. For
the RF-based GPs, we set D = 50. The EGP-based approaches
employed a kernel dictionary K consisting of 11 radial basis
functions (RBFs) with characteristic lengthscales chosen from
{10c}6c=−4. All methods underwent 25 iterations, and their
average performance, along with the corresponding standard
deviation, is reported.

Figure 1 illustrates the Normalized Mean Squared Error
(NMSE) performance of all competing approaches, defined
similarly as in [18]. It is evident that all advocated EGP-
based AL methods exhibit superior performance compared
to the "EGP_Random" approach [21], [29], showcasing the
benefits of the well-motivated acquisition criteria. It is worth
mentioning that all EGP-based AL methods upon iteration 15
achieve comparable or even better NMSE performance than
that of "EGP_Random" at iteration 25, demonstrating their
ability to achieve satisfactory performance with less labeled
data compared to EGPs with passively selected data.

Fig. 1: NMSE perfomance on SMARToll dataset.

To further account for the associated uncertainty besides the
accuracy of predictions, Figure 2 depicts the Negative Log
Likelihood (NLL) of all competing approaches, defined simi-
larly as in [28]. It is evident that all EGP-AL approaches enjoy
the lowest NLL, clearly indicating their notable advantages
over the "EGP_Random" approach.
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Fig. 2: NLL perfomance on SMARToll dataset

Also note that we have additionally compared the EGP-
based AL methods with the single GP_Var baseline [32],
with the latter showing a substantially inferior performance
(average NMSE > 3.1 and NLL > 13.5 in all iterations,
and that is the reason it was omitted in Fig. 1 and Fig. 2
respectively). This highlights the advantages of using EGP
models with adaptive weights as new data become available.

IV. DISCUSSION AND CONCLUSIONS

The task of predicting and diagnosing cardiovascular dis-
eases (CVD) poses significant challenges. Driven by the need
to protect the confidentiality of patient’s medical records in
healthcare fields, the disclosure of labels is frequently unattain-
able. In light of that, AL-based approaches offer a principled
solution by prudently selecting the most informative instances
to label from an unlabeled set, to efficiently and effectively
infer the FFR index of different patients. This work is based on
an ensemble (E) of GPs, which enhances the expressiveness of
the model by utilizing unique GP models with distinct kernel
functions. The RF-based approximation facilitates efficient
online updates of the EGP function model in a recursive
Bayes manner. This framework allows for adaptive learning
and uncertainty quantification in AL settings.

The advocated EGP-based AL methods focus on efficiently
assessing the severity of coronary artery disease in patients
undergoing CTCA for treatment selection (revascularization
vs. medical therapy). Our work stands out by accurately
predicting the FFR index with limited labeled data, showing a
major impact in clinical cases considering the challenges posed
by data limitations, confidentiality, and sampling costs. For
future directions, a graph-adaptive setup can be considered,
where the input is a graph capturing the similarity among
patients, as demonstrated in [28].
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