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Abstract

When applicants get rejected by a high-stakes algorithmic decision system, recourse
explanations provide actionable suggestions for applicants on how to change their
input features to get a positive evaluation. A crucial yet overlooked phenomenon is
that recourse explanations are performative: When many applicants act according to
their recommendations, their collective behavior may shift the data distribution and,
once the model is refitted, also the decision boundary. Consequently, the recourse
algorithm may render its own recommendations invalid, such that applicants who
make the effort of implementing their recommendations may be rejected again
when they reapply. In this work, we formally characterize the conditions under
which recourse explanations remain valid under their own performative effects. In
particular, we prove that recourse actions may become invalid if they are influenced
by or if they intervene on non-causal variables. Based on this analysis, we caution
against the use of standard counterfactual explanation and causal recourse methods,
and instead advocate for recourse methods that recommend actions exclusively on
causal variables.

1 Introduction

Modern machine learning systems can significantly impact people’s lives. Automated systems may
determine whether someone receives a loan, is admitted to a graduate program, or gets invited to a
job interview. In such high-stakes scenarios, applicants who receive an unfavorable decision – such
as being rejected for a loan or a job interview – often seek guidance on how to improve their chances
in the future. To address this need, recourse explanations are employed: they inform applicants of
concrete changes they could implement to achieve the desired outcome from the system [Karimi
et al., 2022]. For example, rejected loan applicants might be recommended to reduce their credit card
utilization, and rejected job applicants might be advised to obtain a master’s degree and reapply.

Ideally, recourse explanations are valid – meaning that if applicants follow the recommended actions
(e.g., obtaining a master’s degree), they will indeed receive the desired outcome when reevaluated
by the machine learning model (e.g., be invited to the interview). In practice, however, deployed
prediction models are rarely static. Model owners routinely monitor for distribution shifts and
retrain their models to maintain performance. Recent work has shown that model updates can
undermine the validity of recourse [Rawal et al., 2020, Upadhyay et al., 2021, Nguyen et al., 2023].
These studies examine how different types of distribution shift – such as data corrections, temporal
drift, or geospatial variability – can affect recourse validity, and propose methods for generating
recommendations that remain robust under such shifts.
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What these works overlook, however, is that by recommending certain actions, recourse itself can
cause a distribution shift. We refer to this phenomenon as the performativity of recourse explanations.
As a running example, consider a company using a machine learning model to screen candidates
for interviews for a software engineering job (see Figure 1). Based on historical data, the model
learns that applicants invited to interviews often hold a master’s degree in software engineering or,
alternatively, show regular activity on GitHub. Two recourse actions might therefore be recommended
to rejected applicants: 1. Earn a master’s degree in software engineering. 2. Increase GitHub
activity by making regular commits. Both actions have performative effects: when implemented,
they induce a distributional shift. However, they differ critically in their causal impact on qualifica-
tion: While completing a master’s degree imparts substantial knowledge in software engineering,

SE master’s degree

Y : qualified SE L̂: gets interviewed

GitHub activity

Figure 1: Simplified causal graph of features
used to predict if applicants should be invited
for a software engineering (SE) job interview.

GitHub activity is merely a correlate of coding expe-
rience. Many tools exist that automatically generate
daily commits, inflating an applicant’s profile with-
out improving their actual skills. If many applicants
adopt such tools, the model will learn that GitHub ac-
tivity no longer correlates with programming ability.
As a result, future versions of the model may ignore
the feature entirely—invalidating the very recourse
that applicants were advised to pursue.

In this work, we investigate whether recourse explanations remain valid under their own performative
effects. Unrewarded recourse can impose significant burdens; thus, this question is particularly press-
ing in light of the social impact of recourse practices. When recourse fails, applicants may waste time
and resources pursuing actions that ultimately do not improve their outcomes [Venkatasubramanian
and Alfano, 2020].

Contributions. In Section 4, we introduce the two core concepts of our analysis. First, we
formalize the performative effect of recourse explanations as causal interventions in response to
recourse recommendations on acted-upon features in the data-generating process. Second, we
introduce the notion of performative validity: a recourse explanation is performatively valid if,
after applicants act upon it, they receive the desired outcome under the optimal post-recourse
prediction model. In Section 5, we prove that recourse becomes performatively invalid if the
implemented action carries predictive information about the post-recourse outcome. Building on this
insight, we identify two mechanisms that can induce such invalidity: actions that are influenced by
effect variables (Section 5.1), and actions that intervene on effect variables (Section 5.2). Then, in
Section 6, we empirically study the performative validity of three recourse methods: counterfactual
explanations [Wachter et al., 2017], causal recourse [Karimi et al., 2021], and improvement-focused
causal recourse [König et al., 2023]. Our findings show that counterfactual explanations and causal
recourse, by targeting non-causal variables, often result in performatively invalid recourse! In contrast,
improvement-focused causal recourse remains valid across a wide range of data-generating processes.

2 Related Work

Robust recourse: We refer to Karimi et al. [2022] for a comprehensive review on the literature
of algorithmic recourse, and Mishra et al. [2021] for an overview on robust recourse. Most relevant
for our work are studies that consider the validity of recourse when the underlying predictive model
changes over time. Rawal et al. [2020] demonstrated empirically that recourse recommendations
become invalid in the face of model shifts resulting from natural dataset shifts, including tempo-
ral changes, or geospatial variation. This has motivated the design of recourse that is robust to
distributional shifts [Upadhyay et al., 2021, Nguyen et al., 2023, Jiang et al., 2024] and temporal
factors [De Toni et al., 2024]. Similarly, Pawelczyk et al. [2020], Black et al. [2021], König et al.
[2023] find that natural variations in model retraining–even when performed on the same data–can
render previously recommended recourse invalid. In response, approaches have been designed that
optimize for robustness to model multiplicity, hyperparameter choices, and stochasticity, among
others [Dutta et al., 2022, Hamman et al., 2023, 2024]. We also focus on the validation of recourse
under distributional shift. However, our approach is novel in examining performative distribution
shifts—that is, endogenous shifts that are induced by the very provision of recourse itself.

2



Performativity: Predictive models may influence the very data they are later evaluated on—a
phenomenon known as performativity [MacKenzie and Millo, 2003]. Implications for risk minimiza-
tion have been studied under the umbrella of performative prediction [Perdomo et al., 2020a]. The
framework formalizes two foundational concepts: performative optimality and performative stability.
A model is performatively optimal if it is the best response to the data distribution induced by its
predecessor. It is performatively stable if it remains optimal even after the distribution shift it itself
induces. Building on these ideas, subsequent work has proposed algorithms that yield performatively
optimal or stable models; We refer to Hardt and Mendler-Dünner [2025] for a comprehensive review
of related work on performative prediction. Our work extends this line of research by developing a
conceptual framework for performative recourse, analogous to performative prediction. Recourse
that induces no change in P (Y | X) corresponds to a natural analogue of a performatively stable
point. We generalize this notion to recourse explanations that are rewarded even if the optimal model
changes in response to the recourse-induced distribution shift.

Strategic classification: Strategic classification is a specific form of performativity in which
agents deliberately manipulate their inputs to receive a favorable prediction from a model [Hardt
et al., 2016]. A growing body of work investigates how to build models to guard against such strategic
manipulations [Levanon and Rosenfeld, 2021, Chen et al., 2020, Zrnic et al., 2021, Chen et al., 2023,
Haghtalab et al., 2021]. Thereby, a causal perspective has proven especially fruitful: In particular, the
literature distinguishes between two types of user actions: gaming and improvement [Kleinberg and
Raghavan, 2020, Miller et al., 2020, Ghalme et al., 2021, Tsirtsis et al., 2024, Efthymiou et al., 2025].
Gaming refers to actions on non-causal variables that change the model prediction Ŷ without altering
the true target Y , while improvement refers to actions on causal variables that affect Y itself. While
improvement affects only the marginal distribution P (X), gaming may also alter the conditional
distribution P (Y | X) [Pfister et al., 2021, König et al., 2021, Horowitz and Rosenfeld, 2023].
We find that standard recourse methods—since they can inadvertently encourage users to game the
system [König et al., 2023]—commonly induce shifts similar to those described in [Pfister et al.,
2021, Horowitz and Rosenfeld, 2023]. By modelling the applicant’s action as dependent on their own
characteristics, we identify an additional source of performative invalidity: Recourse actions may
leak otherwise unknown information about the applicant into the post-recourse distribution—even if
recourse avoids gaming. As a consequence, further assumptions about the data-generating process
are required to guarantee performative validity.

3 Preliminaries

We consider a supervised learning setting where the goal is to predict some target variable Y , such as
an applicant’s qualification as a software engineer. The prediction is based on a vector of observed
features X = (X1, . . . , Xp) in some space X—for instance, university degrees or GitHub activity.
Companies may only want to invite applicants above a certain qualification threshold. To formalize
this, we binarize the target variable Y using a threshold, formally L := 1[Y ≥ 0] ∈ {0, 1}. We
denote the conditional probability of a positive label given features as h(x) = P (L = 1 | X = x),
and the corresponding binary classifier as L̂(x) = 1[h(x) ≥ tc], with decision threshold tc ∈ [0, 1].

Causal model. Algorithmic recourse concerns causal interventions that applicants perform in the
world [Karimi et al., 2021, König et al., 2023]. To estimate these effects, a causal model is required.
Throughout this work, we assume that the data-generating process can be modeled using an acyclic
Structural Causal Model (SCM) M = ⟨X,U, f⟩ [Pearl, 2009]: X includes all variables in the system,
including the features Xi and the target Y , U consists of independent noise variables Ui capturing
unobserved causal influences (for example, coding enthusiasm underlying GitHub activity), and
f is a set of structural equations that specify how each variable in X is generated from its causal
parents and its corresponding noise. SCMs enable us to analyze the effects of interventions and
counterfactual scenarios [Pearl, 2009]. For example, completing a master’s degree can be modeled
as an intervention. Formally, an intervention a on a set of features Ia is represented using Pearl’s
do-operator: do(a) = do({Xi = θi}i∈Ia) = do(XI = θIa).

Each acyclic SCM induces a Directed Acyclic Graph (DAG) G that visualizes the causal relationships
between the features. An example of such a graph can be found in Figure 1. For a variable Z ∈ X,
we denote its direct causes as pa(Z) (parents), its direct effects as ch(Z) (children), its full set of
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direct and indirect causes as an(Z) (ancestors), its full set of direct and indirect effects as de(Z)
(descendants). For example, in Figure 1, master’s degree is a direct cause of qualification and thus a
parent in the graph, and GitHub activity is a direct effect of qualification and hence a child in the
graph. We abbreviate the direct effects of the target Y as E := ch(Y ), its causes as C := an(Y ), and
the direct parents of the direct effects as S := pa(XE), also referred to as the spouses.

Recourse methods. Over the course of this paper, we will refer to three conceptually different
recourse methods: Counterfactual Explanations (CE) [Wachter et al., 2017], Causal Recourse (CR)
[Karimi et al., 2020b, 2021], and Improvement-focused Causal Recourse (ICR) [König et al., 2021].
Let x be an applicant’s current feature vector and tr ∈ [0, 1] the targeted success probability for
the recourse recommendation. Further, let c be a cost function that captures the effort required to
implement the recommendation. The cost function takes two arguments: the applicant’s observation
x and the suggested change, which, depending on the method, is either a causal intervention or a new
datapoint x′. The methods are defined as follows:

(CE) A Counterfactual Explanations is defined as

aCE(x) = argmin
x′

c(x, x′) s.t. L̂(x′) = 1.

CEs identify the closest input x′ to the current instance x that flips the predicted outcome.
They are widely used and many extensions have been proposed [Ustun et al., 2019, Karimi
et al., 2020a, Dandl et al., 2020].

(CR) Causal Recourse is defined as

aCR(x) = argmin
a

c(x, a) s.t. P (L̂(Xp) = 1 | x,do(a)) ≥ tr,

where Xp denotes the individual’s observation after implementing the action do(a). In-
tuitively, CR identifies the least costly action that leads to a positive prediction with high
probability. Unlike CEs, CR takes the causal relationships between features into account.

(ICR) Improvement-focused Causal Recourse is defined as

aICR(x) = argmin
a

c(x, a) s.t. P (Lp = 1 | x, do(a)) ≥ tr,

where Lp is the applicant’s label after implementing the action. Intuitively, ICR recom-
mends the least costly action that leads to a positive outcome with high probability. That is,
while CE and CR directly focus on changing the prediction, ICR guides the applicant to
become qualified. When the decision model is accurate, ICR reverts the decision with high
probability, as shown in Proposition 1 of König et al. [2023].

The approaches differ fundamentally in the types of interventions they suggest: Where CE and
CR may suggest interventions on effects that change the prediction without altering the applicant’s
qualification, ICR exclusively intervenes on causes and changes the qualification.

We note that for CR and ICR, two versions exist: The individualized version (ind. CR or ind. ICR)
which is based on individualized causal effect estimates but requires knowledge of the SCM. And the
subpopulation-based version (sub. CR or ind. ICR) that only requires the causal graph but resorts to
less accurate average causal effect estimates (details in Appendix B). All theoretical results hold for
both versions.

4 Performativity of Recourse Explanations

When rejected individuals implement recourse, they modify their characteristics and reapply. As such,
recourse itself can shift the applicant distribution and, once the model is updated, also the decision
boundary. We refer to this phenomenon as the performativity of recourse.

Distribution Shift and Model Retraining. To formalize the shift caused by recourse, we distin-
guish between the pre-recourse and post-recourse states of an applicant, denoting the post-recourse
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state with the superscript p. Assuming that an i.i.d. sample of rejected individuals implements
recourse and reapplies, the new applicant distribution can be written as the mixture

P (Lm = l,Xm = x) := αP (L = l,X = x) + (1− α)P (Lp = l,Xp = x | L̂ = 0), (1)
where superscript m denotes mixture variables, P (L,X) is the pre-recourse applicant distribution,
P (Lp, Xp | L̂ = 0) the distribution of previously rejected applicants after implementing recourse,
and α ∈ (0, 1) the mixing weight that determines the proportion of pre- versus post-recourse
applicants. The optimal predictor for this updated applicant distribution becomes:

L̂m(x) = 1[P (Lm = 1|Xm = x) ≥ tc].

4.1 Performative validity

For individuals implementing recourse, it is fundamental that the validity of recourse is not affected
by its performative effects. We refer to this requirement as performative validity.

Definition 4.1 (Performative Validity). Given a predictive model L̂, a recourse method is called
performatively valid with respect to a set of individuals X ′ ⊆ X , if for all x ∈ X ′ and all α ∈ [0, 1]

the optimal updated model L̂m satisfies L̂m(x) ≥ L̂(x).

Intuitively, the definition requires that whenever recourse is effective for an individual x ∈ X ′ with
respect to the original model, the updated model must also accept the applicant. Thereby, it should
not matter how much data is collected, and thus the guarantee must hold irrespective of the mixing
weight α. Note that performative validity is related to the notion of performative stability [Perdomo
et al., 2020b], which requires a model to remain optimal for the distribution it entails. As such, if the
model is performatively stable w.r.t. the distribution map implied by recourse, it is also performatively
valid. However, in general the converse does not hold.

4.2 A model of the post-recourse distribution

To obtain the post-recourse state of applicants, we assume that rejected individuals follow the actions
recommended by the recourse algorithm while all other factors remain constant. To determine the
causal effects of these actions on downstream variables, we assume access to the underlying structural
causal model (SCM). In the SCM, each variable is a function of its observed and unobserved causes,
formally xj := fj(xpa(j), uj). Causal interventions do(a) = do(XIa = θIa) are implemented by
replacing this function with a fixed assignment xj := θj .

Since recourse actions differ across applicants, we introduce a dedicated action variable A and obtain
the post-recourse state by replacing each intervened-upon structural equation fj with a function fp

j

that switches between the normal assignment and the intervention based on A, that is

A :=

{
a(x) if L̂(x) = 0

do(∅) otherwise
, and xp

j := fp
j (x

p
pa(j), u

p
j , a) =

{
θa,j if j ∈ Ia
fj(x

p
pa(j), u

p
j ) otherwise

.

The action A causally depends on the pre-recourse observation x: first, via the decision model L̂(x),
which decides whether a recommendation is made, and second, via the recommendation a(x). In
short, we say that the action is influenced by x. To capture this influence, we include both the
pre-recourse variables X and post-recourse variables Xp in the model. The causal relationships
among pre-recourse variables are governed by the original structural equations f , while those among
post-recourse variables follow the modified structural equations fp.

Our model induces the causal graph in Figure 2(a). Notably, the pre- and post-recourse states are
connected not only via A, but also via the unobserved causes U and Up. We typically assume that
unobserved causes remain unchanged between the pre- and post-recourse states, though in some
settings it is more realistic to allow them to change (we discuss this in Section 5.1).

5 Recourse May Invalidate Itself if It Relies on Effect Variables

After introducing the setup, we now formally characterize conditions under which performative
validity holds. The following theorem shows that performative validity is guaranteed if the proposed
action A is conditionally independent of Lp given Xp.
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Figure 2: Causal graphs. In each graph, we color open paths between action A and post-recourse
target Y p given post-recourse observations Xp via the incoming and outgoing edges, and highlight
the decisive edges XE → A and A→ Xp

E using thicker arrows. (a): We illustrate the relationships
between the target Y and its causes XC , its direct effects XE , and its spouses XS , as well as their
relationships with their post-recourse counterparts Y p, Xp. In general, the pre- and post-recourse
variables are connected both via the action A and the unobserved causal influences U,Up (Section
4.2), and there are open paths via XE → A and A→ Xp

E (Theorem 5.2). (b): The causal graph for
Example 5.3, where XC = D indicates having a master’s degree and XE = G indicates the GitHub
activity. Since only interventions on causes are suggested, only the path via G→ A is open. (c): The
causal graph for Example 5.8, where XC = R is the general risk score and XE = M indicates the
mood. Since the unobserved causal influences are resampled, only the path via A→Mp is open.

Proposition 5.1 (Uninformative actions imply performative validity). Consider any recourse
method and all points x that would have been accepted by the original pre-recourse model, that is,
L̂(x)=1. Then the optimal original and post-recourse models h and hp are the same on all such
points x if and only if observing whether an intervention was performed 1[A ̸= do(∅)] does not help
to predict post-recourse:

1[A ̸= do(∅)] ⊥⊥ Lp | Xp ⇔ h(x) = hp(x) ∀x : L̂(x) = 1.

As a result, we can guarantee performative validity if observing the intervention does not help to
predict the post-recourse outcome, that is

A ⊥⊥ Lp | Xp ⇒ ∀x : L̂m(x) ≥ L̂(x).

To evaluate whether A is conditionally independent of Lp given Xp, we consider the causal graph in
Figure 2(a). According to standard results in causal inference (see Appendix A), two variables are
conditionally independent in the data if they are d-separated in the graph. From the graph, we can
identify two potential reasons why A may not be d-separated from Lp given Xp:

Theorem 5.2 (Two Sources of Invalidity). Consider the retrained post-recourse model L̂m of Eq. (1)
and assume there are no unobserved confounders. Then there exist only two potential sources of
performative invalidity:

1. Xde(Y ) → A, that is, recourse actions A are influenced by effect variables, meaning that
the decision model L̂(X) or recourse method a(X) causally depends on effects Xde(Y ).

2. A → Xp
E , that is, recourse actions A intervene on effect variables, meaning that the

recourse method suggests interventions on direct effects of the prediction target.

Proof. (Sketch) If A is d-separated from Y p given Xp in the graph, then A ⊥⊥ Y p|Xp in the
distribution induced by the corresponding SCM, and performative validity can be guaranteed (Propo-
sition 5.1). We observe that in the general graph A is d-connected with Y p given Xp, but becomes
d-separated if we remove two edges: (1) the incoming edge Xde(Y ) → A, which represents that
the recommended action may be influenced by the pre-recourse effects, and (2) the outgoing edge
→ Xp

E , which represents that the actions may intervene on the post-recourse direct effects.
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Theorem 5.2 shows that performative validity can be guaranteed if we avoid using effect variables.
Applied to our running example we can guarantee validity if we avoid using the effect variable
GitHub activity, that is, (1) neither the decision model nor the recourse algorithm are influenced by
information about GitHub activity to arrive at their outputs, and (2), recourse does not suggest to
change the GitHub activity. Conversely, if we rely on the effect variable GitHub activity, it is unclear
whether recourse is performatively valid. To better understand whether and under which assumptions
relying on effects leads to performative invalidity, we now study each of the two sources in detail.

5.1 Performative invalidity due to actions that are influenced by effect variables

In this section, we find that actions that are influenced by effect variables may indeed cause performa-
tive invalidity. Intuitively, the reason is that when actions are influenced by effect variables, they may
contain relevant information about the unobserved causal influences U that otherwise could not be
obtained from the post-recourse observation. When the actions are implemented, this information
leaks into the post-recourse variables and their relationship with the target may change.
Example 5.3 (Interventions that are influenced by effects may cause performative invalidity).
Let XC ∼ Bin(0.5) be whether someone has a degree, L the applicant’s qualification, XE whether
someone has significant GitHub activity, and let tc = 0.5 be the decision threshold. Let furthermore
UL ∼ Unif(0, 1) capture the applicant’s autonomy, an unobserved cause of qualification. Further-
more, suppose that GitHub activity is only predictive of autonomy in the subpopulation of applicants
without a degree.

L :=

{
1[UL > 0.55] XC = 0

1[UL > 0.45] XC = 1
XE :=

{
L XC = 0

1 XC = 1

The causal graph is visualized in Figure 2 (b). In this setting, the action A is influenced by the
effect variable (GitHub activity XE) and captures information about the unobserved cause (autonomy
UY ): Applicants are rejected if and only if they have no GitHub activity, which only happens if they
have low autonomy uL ∈ [0, 0.55]. When those low-autonomy applicants reapply after getting a
degree, resulting in Xp = (1, 1), the relationship between having a degree and qualification changes:
Pre-recourse, it is unclear whether individuals with a degree X = (1, 1) have high or low autonomy;
Post-recourse it is more likely that applicants with a degree have low autonomy and are thus less
qualified. This can indeed lead to invalidity: If the model is updated on a mixture with only 20
percent post-recourse applicants, the updated model would already reject everyone with observation
(1, 1). All details are reported in Appendix D.1.

The result is concerning, since it proves that there are settings where performative validity
cannot be guaranteed, even if only interventions on causes are suggested. To avoid performative
invalidity in such settings, the only remedy is to change the decision model such that it does not
rely on effect variables (this follows from Theorem 5.2). However, the model may not be in the
explanation provider’s control, and abstaining from using effect variables may result in a significant
drop in predictive accuracy.

As follows, we present two assumptions that allow us to partially recover from this sobering result.
We first observe that in Example 5.3 the action could only leak information because the unobserved
causal influence, the applicant’s autonomy, remains the same pre- and post-recourse. This may not
always be the case: Think of a scenario where a patient in a closed psychiatric facility applies to
spend a day outside, and the decision is made based on the person’s risk to harm themselves Y , which
is predicted based on their average risk score XC and their score in a quick examination XE that
captures the daily mood. Here, the unobserved causes could be the weather UY and the selection of
questions for the examination UE – factors that are resampled every day. More formally, the pre- and
post-recourse unobserved causal influences (UY , UE) and (Up

Y , U
p
E) are independent (Assumption

5.4). When this assumption is met, no relevant information about the post-recourse target Y p can leak
via the suggested action, and thus recourse methods that only intervene on causes can be guaranteed
to be performatively valid (Proposition 5.5).
Assumption 5.4 (Unobserved Noise Changes Post-Recourse). The unobserved causal influences
of Y and XE are resampled post-recourse, that is UY and Up

Y , as well as UE and Up
E are i.i.d..

Proposition 5.5 (Assumption 5.4 restores performative validity). If Assumption 5.4 holds, recourse
methods that avoid interventions on effects are performatively valid.
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Second, we observe that the action in Example 5.3 can only change the post-recourse conditional
distribution because it has access to information that otherwise cannot be obtained from the post-
recourse observation. Specifically, we recall that in the example GitHub activity is only predictive of
autonomy when the person has no degree, which is only the case pre-recourse. However, depending
on the functional form of the causal relationships, the pre- and post-recourse observation may provide
similar information about the unobserved causal influences. Specifically, we introduce Assumption
5.6 and show that it implies performative validity when the recourse actions do not intervene on effects
(Theorem 5.7). Intuitively, the assumption ensures that any two observations that were generated
with the same structural equations and unobserved influences provide the same information about
U . Furthermore, it covers many naturally occurring types of structural equations, including linear
additive and multiplicative noise models.
Assumption 5.6 (Marginalization with Invertible Aggregated Noise). For an SCM with structural
equations fE and fY , we assume that

(i) there exists an aggregation function bagg and a structural equation fagg such that we can
rewrite the composition fE(fY (xC , uY ), xS , uE) as fagg(xC , xS , bagg(uY , uE)), and

(ii) fagg is invertible, that is, there exists f−1
agg such that f−1

agg (xC , xE , xS) = bagg(uE , uY ).

Theorem 5.7 (Assumption 5.6 restores performative validity.). Let Assumption 5.6 be satisfied.
Further assume that the unobserved causal influences stay the same post-recourse, that is (UY , UE) =
(Up

Y , U
p
E). Then, recourse methods that abstain from interventions on effects are performatively valid.

5.2 Performative invalidity due to actions that intervene on effect variables

To show that interventions on effects may indeed cause performative invalidity, we show that invalidity
may occur in a setting where we can rule out that actions that are influenced by effects are responsible.
This is tricky, since we cannot enforce that recourse actions are not influenced by effects but intervene
on effects at the same time: To ensure that interventions are not influenced by effects the decision
model must be invariant to changes in the effect variables—and as a result, no actions that intervene
on effects would be suggested anyway. Instead, to show that interventions on effects are responsible
for performative invalidity, we focus on a setting where actions that are influenced by effects are not
problematic. In Section 5.1 we introduced two such settings, captured in Assumptions 5.4 and 5.6.
As follows, consider a formal version of the psychiatric facility setting where the unobserved causal
influences are resampled post-recourse and thus Assumption 5.4 is met.
Example 5.8 (Interventions on effects cause performative invalidity). Let Y capture a patient’s
daily risk of harming themselves, XC the patient’s general risk score, and XE a quick examination that
aims to capture the daily mood. More formally, let XC ∼ N (0, 1), UY ∼ N (0, 1), UE ∼ N (0, 1)
and their causal relationships be governed by the following structural equations:

Y := XC + UY , XE := Y + UE , L = 1[Y ≥ 0]. (2)
The causal graph is visualized in Figure 2 (c). We suppose that recourse suggests intervening on
XE , that is, to give more favorable answers in the quick examination. Since giving more favorable
answers per se does not improve the patient’s daily mood, the action only makes the patient’s mood
appear favorable. When many applicants start to game the examination, the variable becomes less
predictive of patient risk, and updated models will reduce their reliance on the feature. Formally,
recourse changes xE to move rejected individuals onto the decision boundary xC = −xE . The
updated decision boundary moves towards xC = 0, such that recourse-implementing applicants with
xC < 0 get rejected when they reapply (confer Appendix E.1 for details). Since Assumption 5.6
holds too, the phenomenon occurs irrespective of whether the noise is resampled (Assumption 5.4).

The example demonstrates that interventions on effects may indeed cause performative invalidity.
More generally, we can prove that recourse via interventions on effects always leads to a shift in the
conditional distribution (Appendix E). Whether the shift is severe enough to lead to performative
invalidity depends on the concrete setting. These results are concerning, since the two most widely
used recourse methods, namely CE and CR, may suggest intervening on effects.
Corollary 5.9. In a setting where the first source of invalidity (influence on A) can be excluded,
that is if either Assumption 5.4 or 5.6 holds, recourse algorithms that abstain from interventions on
direct effects are performatively valid but other recourse algorithms may not. Without additional
assumptions, performative validity can only be guaranteed for ICR, but not for CR and CE.

8



LAdd LMult NLAdd NLMult LCubic
SCM

1.0

0.5

0.0

0.5

1.0

P(
Lp

=
1|

X
p

=
x)

P(
L

=
1|

X
=

x)

ind. ICR
sub. ICR
ind. CR
sub. CR
CE

LAdd LMult NLAdd NLMult LCubic GPA Credit
SCM

1.0

0.5

0.0

0.5

1.0

Ac
c.

 ra
te

 (r
ef

it 
- o

rig
in

al
)

Figure 3: Experimental results. (Q1, left): The pointwise differences between pre- and post-
recourse conditional distribution aggregated using the mean, the lines indicate the range. All values
are averages over 10 runs. (Q2, right): The difference in acceptance rate (refit minus original),
average (•) and standard deviation (lines) over 10 runs. While CE and CR lead to unfavorable shifts
and performative invalidity, ICR is performatively valid in all settings.

6 Experiments Confirm That Interventions on Effects Must Be Avoided

Our theory suggests that the performative validity of recourse critically depends on the recourse
method and the functional form of the underlying causal relationships. To investigate this empirically,
we study the performative effects of CE, and the different versions of CR and ICR in synthetic and
real-world settings. Specifically, we study the following classes of structural equations:

(i) Additive noise (LAdd): fj(x, u) = l(x) + u where l is linear
(ii) Multiplicative noise (LMult): fj(x, u) = m(x)u where m is linear in each dimension

(iii) Nonlinear relations and additive noise (NLAdd): fj(x, u) = g(x) + u where g nonlinear
(iv) Nonlinear relations and multiplicative noise (NLMult): fj(x, u) = g(x)u where g nonlinear
(v) Polynomial noise (LCubic): fj(x, u) = (l(x) + u)3

We note that the first two settings (LAdd and LMult) satisfy Assumption 5.6, but the remaining
settings do not. To enable pointwise comparisons of the conditional distributions, we rely on discrete
noise distributions with finite support.
In addition, we include two real-world settings: College admission (GPA) and credit scoring (Credit).
For GPA we assume the causal graph in [Harris et al., 2022] and fit a linear SCM with additive
Gaussian noise on the dataset [OpenIntro, 2020]; For Credit we rely on the graph by Chen et al.
[2023] and fit a random-forest based, nonlinear SCM with additive Gaussian noise [Yeh, 2009].
The Cred setting has eleven features; all others include one cause and one effect variable. To highlight
the differences between methods, we choose the costs such that interventions on effects are more
lucrative. Consequently, CE and CR intervene on the effect, while ICR only intervenes on the cause.
To allow both sources of invalidity to come into effect, we always model the noise to stay the same
post-recourse. We provide a detailed description of setup and results in Appendix F.

Conditional distributions (Q1): Does the conditional distribution that is modeled by the predictor
change? More formally, are P (Lp = 1|Xp = x) and P (L = 1|X = x) the same?

For the synthetic settings with discrete support we compare the pre- and post-recourse conditional
distributions by computing the pointwise differences P (Y p = 1|Xp = x′)− P (Y = 1|X = x′) and
aggregating them using the minimum, the maximum, and the mean. When computing the mean, we
weight the different points x′ according to their post-recourse probability in the population of rejected
applicants, formally P (Xp = x′ | L̂ = 0). The results are reported in Figure 3 (left). We find that
methods that intervene on effects (CE and CR) significantly decrease the conditional probability of a
favorable outcome across all settings. For example, in the nonlinear additive setting, the conditional
probability of a favorable outcome decreases by between 70% and 100%. In contrast, for ICR, the
conditional probability remains the same in nearly every setting, including but not limited to the two
settings covered by Assumption 5.6. The exception is the setting LinCubic, where for ind. ICR the
conditional probability of a favorable outcome increases by between 0% and 60%. This is consistent
with our theory.
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Acceptance rates for the updated model (Q2): Does performative validity hold? Which percent-
age of the recourse-implementing applicants gets accepted by the original vs the updated models?

To compare the pre- and post-refit acceptance rates, we compute the percentage of the resource-
implementing applicants who get accepted by the original model vs an updated model that is trained
on a mixture with α = 1/3 post-recourse data. The results are reported in Figure 3 (right). We
observe that the interventions on effects recommended by CE and CR not only change the conditional
distribution, but also lead to a dramatic drop in the post-recourse acceptance rates. For example, in
the GPA setting, the acceptance rate drops by nearly 80% for CE and CR. In contrast, the acceptance
rates for ICR remain unchanged across all settings, extending beyond our theoretical results.

In conclusion, the empirical results confirm our theory: Even recourse methods that only intervene on
causes (ICR) may lead to a shift when they are influenced by effects but only methods that suggest to
intervene on effects (CE and CR) can cause a shift in settings covered by Assumption 5.6. Extending
beyond our theoretical analysis, we observe that ICR seldom leads to a shift, and when it does, the
shift is not problematic. In contrast, CE and CR shift the distribution across all settings and cause
severe performative invalidity. Our findings consistently confirm that interventions on effects must
be avoided.

7 Discussion and Future Work

In this paper, we show that improvement-focused causal recourse (ICR), unlike counterfactual
explanations (CEs) and causal recourse (CR), can maintain performative validity across a broad range
of data-generating processes, including those involving resampling or additive noise. Empirically,
ICR appears to remain valid even under more general conditions. A key direction for future research
is to formally characterize the full class of data-generating processes under which ICR guarantees
performative validity. Additionally, because full causal knowledge is rarely available in practice, it
would be interesting to extend our framework to settings with incomplete causal knowledge, including
cases that violate causal sufficiency.

This paper has examined the performative effects of recourse explanations from the perspective of
the applicant. A promising direction for future work is to complement this view with the perspective
of the model authority [Fokkema et al., 2024]. Model authorities may use recourse explanations to
strategically steer applicants toward regions of the input space where model performance improves or
institutional goals are better met. In this setting, our notion of recourse validity could be extended
to actions that are valid post-recourse but not pre-recourse, offering a conceptual analogue to
performative optimality [Perdomo et al., 2020a]. However, such steering raises important ethical
concerns—particularly when it overlooks or conflicts with the applicant’s own goals and values [Kim
and Perdomo, 2022, Hardt et al., 2022, Zezulka and Genin, 2024].

We focused on single-step recourse – where applicants act on a one-time recommendation and then
face the updated model. However, many real-world scenarios involve repeated decision-making,
such as applicants reapplying for loans multiple times [Verma et al., 2022, Fonseca et al., 2023].
Building on insights from the performative prediction literature future research could investigate
whether different recourse strategies converge to stable equilibria, and if so, analyze their properties
and desirability.

Practical Insight. Counterfactual explanations are widely used in practice to guide applicants toward
their desired outcomes. However, our findings show that, due to the performative effects of their
actions, applicants may still fail to achieve these outcomes – even after following the recommended
recourse. To prevent applicants from taking costly yet ineffective actions, model authorities should
only give recourse recommendations that improve the qualification of the applicant. In particular,
we advise against relying on standard counterfactual or causal recourse explanations. Thereby, we
strengthen the position taken in previous work [König et al., 2023], which demonstrates the benefits
of improvement-focused recourse from the perspective of the model authority.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim, that standard counterfactual explanations and recourse meth-
ods may invalidate themselves via their performative effects, is substantiated with both
theoretical and empirical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: All our results come with clear assumptions. Over the course of the paper, and
particularily in Section 7, we discuss how realistic they are, and how they could be relaxed
in future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (that is, independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, that is, if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Each theoretical result is stated with its full set of assumptions. The full proofs
are provided in the Appendix.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The appendix contains a detailed description of how the experiments are
performed, which settings are used and which dataset are used. Furthermore, all code
required to run the experiments is publicly available on GitHub. A link can be found in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All data and code is publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, the experiment section comes with a discussion as to how the results are
obtained and what conclusions can be drawn, and all relevant details on hyperparameters
etc. are reported in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The reported results are averages over 10 runs with different seeds. The
differences between methods are well outside the standard deviations, the standard deviations
are reported as a table in the appendix. To maintain readability, the standard deviations are
not visualized in the main figure.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The required computational resources are reported in the supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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A Causality Preliminaries

Causal graphs cannot only be used to visualize causal relationships but, under certain assumptions,
also to reason about conditional independencies in the data. To do so, we first introduce the so-called
d-separation criterion.
Definition A.1 (d-separation). Two variable sets X,Y are d-separated given a variable set Z, denoted
as X ⊥G Y | Z, if and only if, for every path p from X to Y one of the following holds

(i) p contains a chain i→ m→ j or a fork i← m→ j where m ∈ Z.
(ii) p contains a collider i→ m← j such that m and all of its descendants are not in Z.

Under certain assumptions, d-separation in the graph can be linked to conditional (in)dependencies
in the data: First, if the so-called Markov property holds, d-separation in the graph to implies
independence in the data. Second, if faithfulness holds, independence in the data implies d-separation
in the graph.
Definition A.2 (Markov Property). Given a DAG G and a joint distribution P over the nodes, this
distribution is said to satisfy the Markov property with respect to the DAG G if

X ⊥G Y | Z =⇒ X ⊥⊥ Y | Z.
for all disjoint vertex sets X,Y, Z

Definition A.3 (Faithfulness). Given a DAG G and a joint distribution P over the nodes, this
distribution is said to be faitful to the DAG G if

X ⊥⊥ Y | Z =⇒ X ⊥G Y | Z.

Throughout the paper, we only use the graph to read off conditional independence relationships. For
instance, in Theorem 5.2 we only say that there may be a dependence via the open paths but make no
claim that it must be present in the data. As such, we only need the Markov property for our results.
The Markov property is met if the data is induced by SCMs with independent noise terms, or more
generally, if there are no unobserved confounders.
Proposition A.4. Assume that P is induced by an SCM with graph G. Then, P is Markovian with
respect to G.

Proof. See for example Proposition 6.31 in [Peters et al., 2017].

B Individualized and Subpopulation-based Causal Recourse Methods

Karimi et al. [2020b] propose two versions of Causal Recourse (CR): an individualized and
subpopulation-based version. The individualized version leverages counterfactuals to make causal
effect estimates, which take the information about the individual obtained from the observed features
X into account. Therefore, so-called rung 3 causal knowledge is required, which is, for example,
given by an SCM [Pearl, 2009].

However, the SCM is rarely readily available in practice, and thus the subpopulation-based version
was introduced as a fallback that only requires access to the causal graph. The causal graph is easier
to obtain, since it only captures whether nodes are causally related, but does not detail the functional
form of their relationship. However, causal graphs do not enable the estimation of individualized
treatment effects (rung 3 on Pearl’s ladder of causation [Pearl, 2009]). Instead, causal graphs can
be used to compute conditional average treatment effects, that is, interventional distributions for
a subpopulation or similar individuals (rung 2). Specifically, causal graph-based treatment effect
estimates can account for characteristics that are assumed to be unaffected by the intervention. In the
graph, these are the non-descendants of the intervened-upon variables Xnd(Ia).

In the background sections, we introduced the individualized versions of the causal recourse methods.
The definitions of the subpopulation-based versions of CR and ICR only differ in the conditioning set
(highlighted red):

aCR(x) = argmin
a

c(x, a) s.t. P (L̂(Xp) = 1 | xnd(Ia),do(a)) ≥ tr,

21



and

aICR(x) = argmin
a

c(x, a) s.t. P (Lp = 1 | xnd(Ia),do(a)) ≥ tr.

C Proofs of Section 5

Let us make two general remarks, before we start with the proofs. First, when the context allows,
we shorten the notation of conditional distributions. Specifically, we sometimes drop the random
variable and only write the corresponding observation. For example,

P (Lp = 1 | Xp = xp, UC = uC) = P (Lp = 1 | xp, uC).

Second, some of our results prove that the conditional distribution of the underlying potentially
continuous target Y remains the same. These results imply performative validity.
Lemma C.1. If P (Y p ≤ y | Xp = x) = P (Y ≤ y | X = x) for all (x, y) ∈ X × Y , then
P (Lp = 1 | Xp = x) = P (L = 1 | X = x) for all x ∈ X .

Proof. The following string of equalities proves the result,

P (Lp = 1 | Xp = x) = P (Y p ≤ 0 | Xp = x) = P (Y ≤ 0 | X = x) = P (L = 1 | X = x).

As follows, we repeat and prove the results from Section 5.
Proposition 5.1 (Uninformative actions imply performative validity). Consider any recourse
method and all points x that would have been accepted by the original pre-recourse model, that is,
L̂(x)=1. Then the optimal original and post-recourse models h and hp are the same on all such
points x if and only if observing whether an intervention was performed 1[A ̸= do(∅)] does not help
to predict post-recourse:

1[A ̸= do(∅)] ⊥⊥ Lp | Xp ⇔ h(x) = hp(x) ∀x : L̂(x) = 1.

As a result, we can guarantee performative validity if observing the intervention does not help to
predict the post-recourse outcome, that is

A ⊥⊥ Lp | Xp ⇒ ∀x : L̂m(x) ≥ L̂(x).

Proof. In the first two steps, we prove the equivalence between the conditional independence and
the stability of the predictor. In the last step, we use the equivalence to show that conditional
independence of the action implies performative validity.

Step 1 (Lp ⊥⊥ 1[A = do(∅)] | Xp ⇔ P (Lp | Xp) = P (Lp | Xp, A = do(∅))). The first step
holds by the definition of conditional independence.

P (Lp | Xp, A = do(∅)) =
P (Lp, A = do(∅) | Xp)

P (A = do(∅) | Xp)
(Bayes’ rule)

=
P (Lp | Xp)P (A = do(∅) | Xp)

P (A = do(∅) | Xp)
(Lp ⊥⊥ 1[A = do(∅)] | Xp)

= P (Lp | Xp).

Step 2 (P (Lp | Xp = x,A = do(∅)) = P (L | X = x)).

In the subpopulation of individuals where no intervention is performed the structural equations are
the same pre- and post-recourse. Since we assume that all other factors remain the same as well, the
pre- and post-recourse distribution are the same. More formally,

P (Lp | Xp, A = do(∅)) = P (L | X,A = do(∅)).

Furthermore, the action A is a function of X and as a result

P (L | X,A = do(∅)) = P (L | X).
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Note: Only accepted individuals L̂(x) = 1 are recommended to change nothing A = do(∅), and
thus P (Y |X,A = do(∅)) is only defined for accepted x. As a result, step 1 and 2 only apply to x

where L̂(x) = 1, and our result is restricted to x where L̂(x) = 1.

We recall that h(x) := P (L = 1|X = x) and hp(x) := P (Lp = 1|Xp = x). So taken together, the
conditional independence is equalivalent to equal pre- and post-recourse model in the acceptance
region.

Step 3 (A ⊥⊥ Lp | Xp ⇒ L̂m(x) ≥ L̂(x)).

To obtain the final implication, we observe that when h(x) = hp(x) for all x where L̂(x) = 1, it
also holds that L̂m(x) ≥ L̂(x): Any x that the original classifier L̂ is also accepted by the updated
classifier L̂m, and for any x that is rejected by L̂ the classification can only improve. Overall we get

A ⊥⊥ Lp | Xp

⇒ 1[A = do(∅)] ⊥⊥ Lp | Xp

⇒ h(x) = hp(x) for all x ∈ X where L̂(x) = 1

⇒ h(x) = hm(x) for all x ∈ X where L̂(x) = 1

⇒ L̂m(x) ≥ L̂(x).

Theorem 5.2 (Two Sources of Invalidity). Consider the retrained post-recourse model L̂m of Eq. (1)
and assume there are no unobserved confounders. Then there exist only two potential sources of
performative invalidity:

1. Xde(Y ) → A, that is, recourse actions A are influenced by effect variables, meaning that
the decision model L̂(X) or recourse method a(X) causally depends on effects Xde(Y ).

2. A → Xp
E , that is, recourse actions A intervene on effect variables, meaning that the

recourse method suggests interventions on direct effects of the prediction target.

Proof. If there are no unobserved confounders, which is for example the case if the data generating
mechanism can be written as a SCM with independent noise terms, then the Markov property holds,
and d-separation in the causal graph implies independence in the data. If A were to be d-separated
from Y p | Xp, it would thus hold that A ⊥⊥ Y p | Xp, and as a consequence of Proposition 5.1
recourse would be performatively valid. However, if there are open paths between A and Y p given
Xp, then A may be dependent on Y p given Xp and recourse may be performatively invalid.

Given Xp, there are only a few possible open paths between A and Xp. To follow the proof, we
recommend inspecting Figure 2 first.

An arrow with asterisks, ∗−−∗ , indicates that the arrow could go both ways. We observe that the
following paths are guaranteed to be closed:

• All paths via causes of Xp
C are blocked: All causes Xp

C are observed, and as a result any
path of the form Y p ← Xp

i ← . . . ∗−−∗ A or Y p ← Xp
i → . . . ∗−−∗ A is closed for any

i ∈ C.

• All paths via effects of effects are blocked: All effects Xp
E are observed, and as a result any

path of the form Y p → Xp
i → . . . ∗−−∗ A is closed for any i ∈ E.

• All paths via spouses are blocked: Spouses are observed and thus any path Y p → Xp
i ←

Xp
j → . . . ∗−−∗ A or Y p → Xp

i ← Xp
j ← . . . ∗−−∗ A is closed for any i ∈ E and j ∈ S.

All remaining paths either include the segment A ∗−−∗ . . . ∗−−∗ Up
Y → Y p or A → Xp

j ← Y p

with j ∈ E. Whenever the action A causally influences an effect variable the action is d-connected
with Y p, since the edge A → Xp

j ← Y p is open whenever Xp
j is observed. Paths including

A ∗−−∗ . . . ∗−−∗ Up
Y → Y p are only open if the effect variables XE causally influence A:
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• Any path that involves a collider structure A ∗−−∗ · · · → Y ← UY or A ∗−−∗ · · · → Xj ←
· · · ← Y ← UY is closed if Xde(Y ) ̸→ A.

• All other paths include an edge A← Xi where i ∈ de(Y ).

To summarize: Unless there is an edge A→ Xp
E or Xde(Y ) → A, A is d-separated from Y p given

Xp, and thus A ⊥⊥ Y p | Xp, and as a consequence recourse is performatively valid.

D Proofs of Section 5.1

D.1 Details of Example 5.3

Interventions that are influenced by effects may cause performative invalidity We start by
deriving the conditional probabilities P (L | X). The variable X = (XC , XE) can take three different
values: (0, 0), (0, 1) or (1, 1). In the first two cases, XE perfectly predicts the label L, that is

P (L = 1 | X = (0, 0)) = 0

P (L = 1 | X = (0, 1)) = 1.

In the third case, XC = 1. When XC = 1, the value of XE is determined by XC (by definition of
the SCM). Thus, the conditional probability reduces to

P (L = 1 | XC = 1, XE = 1) = P (L = 1 | XC = 1)

= 0.55. (by definition)

Assuming that the predictor is Bayes optimal, that is L̂(x) = 1[P (L = 1 | X = x) ≥ 0.5], only
applicants with observation X = (0, 0) are rejected. To move these rejected individuals across the
decision boundary, the only possible action is to intervene on XC by setting do(XC = 1), yielding a
post-recourse observation xp = (1, 1).

To derive the updated model, we need to determine the post-recourse probability of a favorable label
for people with xp = (1, 1). Therefore, we first derive the unobserved noise distribution for the
individuals who implement recourse. By definition of the SCM, the unobserved noise for the rejected
individuals is distributed according to

P (UL | L̂ = 0) = P (UL | X = (0, 0)) ∼ Unif(0, 0.55).

Thus we get that P (Lp = 1 | Xp, L̂ = 0) = P (Lp = 1 | L̂ = 0) = P (UL > 0.45) = 0.1/0.55.

To obtain the prediction by the updated model L̂m, we derive the mixture Pm with α = 0.2 and
observe that the observation X = (1, 1) now gets a conditional probability of

P (Lm = 1 | Xm = (1, 1)) = 0.2 ∗ 0.1

0.55
+ 0.8 ∗ 0.55 = 0.4844 . . . < tc.

As such, the recourse outcome (1, 1) is not valid for (rejected by) the updated model.

D.2 Independent noise assumption and proofs

Proposition 5.5 (Assumption 5.4 restores performative validity). If Assumption 5.4 holds, recourse
methods that avoid interventions on effects are performatively valid.

Proof. Note that there are no connections between U and Up in the graph depicted in Figure 2(a),
whenever Up is independently resampled. As the probability of intervening on effects is 0, the arrow
from A to Xp

E is not present and we observe the d-seperation of A ⊥G Lp | Xp and thus also the
statistical conditional independence A ⊥⊥ Lp | Xp. This also gives us that 1[A = ∅] ⊥⊥ Lp | Xp,
as the indicator is function of A. Proposition 5.1 then tells us immediately that the conditional
distribution stays the same for L̂(x) = 1, i.e.

hp(x) = P (Lp = 1 | Xp = x) = P (L = 1 | X = x) = h(x).
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D.3 Invertible aggregated noise assumption and proofs

We restate the assumption and stability results again for completeness sake.
Assumption 5.6 (Marginalization with Invertible Aggregated Noise). For an SCM with structural
equations fE and fY , we assume that

(i) there exists an aggregation function bagg and a structural equation fagg such that we can
rewrite the composition fE(fY (xC , uY ), xS , uE) as fagg(xC , xS , bagg(uY , uE)), and

(ii) fagg is invertible, that is, there exists f−1
agg such that f−1

agg (xC , xE , xS) = bagg(uE , uY ).

Linear Additive and Multiplicative SCMs satisfy Assumption 5.6 In the Section D we mention
that Linear Additive models and Multiplicative SCMs satisfy Assumption 5.6. Here we will quickly
show that this is the case. In general, the structural equations for the effect variables XE and Y are
given by the following structural equations:

Y = lY (XC) + UY

XE = lE(Y,XC , XS) + UE , .

where lY and lE are linear functions (for example, lE(Y,XC , XS) = βY Y+βC+XC+βS+XS+β0).
By substituting the expression of Y into the equation for XE we get

XE = lE(lY (XC) + UY , XC , XS) + UE

= lE(lY (XC), XC , XS) + βUY + UE .

We can rewrite the structural equations as

bagg(x) = βUY + UE

fagg(xC , xS , uagg) = lE(lY (xC), xC , xS) + uagg

f−1
agg (xC , xS , xE) = xE − lE(lY (xC), xC , xS).

and thus Assumption 5.6 is satisfied.

In multiplicative settings with multilinear aggregation functions m (linear in each argument, for
example mE(XC , Y,XS) = XCY XSβ), we get

Y = mY (XC)UY

XE = mE(XC , Y,XS)UE

Substituting the expression for Y we get

XE = mE(XC , Y,XS)UE

= mE(XC ,mY (XC)UY , XS)UE

= mE(XC ,mY (XC), XS)UY UE .

We can rewrite the structural equations as

uagg = bagg(u) := (UY UE)

fagg(xC , xS , uagg) := mE(xC ,mY (xC), xS)uagg

f−1
agg (xC , xS , xE) =

xE

mE(xC ,mY (xC), xS)
,

and thus Assumption 5.6 is satisfied.
Theorem 5.7 (Assumption 5.6 restores performative validity.). Let Assumption 5.6 be satisfied.
Further assume that the unobserved causal influences stay the same post-recourse, that is (UY , UE) =
(Up

Y , U
p
E). Then, recourse methods that abstain from interventions on effects are performatively valid.

Proof. We will again use the characterization given in Proposition 5.1. Using Assumption 5.6, we
can show that the required conditional independence is present. Let IA be the index set on which an
intervention A is performed. We write,

P (Lp, IA = ∅ | Xp = xp) = P (Lp | IA = ∅, Xp = xp)P (I = ∅ | Xp = xp).
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We can rewrite the first probability as

P (Lp | IA = ∅, Xp = xp) =

∫
UY

P (Lp = 1 | xp, uY , IA = ∅)p(uY | xp, IA = ∅) duY

=

∫
UY

P (Lp = 1 | xp
C , uY )p(uY | xp, IA = ∅) duY .

Where the second equality follows from the fact that Lp is completely determined by Xp
C and UY .

For the conditional probability on the noise we have the following sequence of equalities, because we
can condition on no intervention being performed

p(uY | Xp = xp, IA = ∅) = p(uY | X = xp, IA = ∅) = p(uY | X = xp).

The first equality here follows from the fact that Xp and X have the same functional equations, when
no intervention is performed. The last equality follows as IA is deterministic function of X .

What rests to show is that p(uY | Xp = xp) = p(uY | X = xp). The basis for this proof
is that XC , XE and Xp

C , X
p
E constrain U = (UY , UE) in the same way, whenever no interven-

tions on the effects are performed. That is, for p(x, xp) > 0 it holds that either the conditionals
p(xE | xC , xS , uY , uE) and p(xp

E | x
p
C , x

p
S , UY , UE) are exactly zero or exactly one. The reason is

Assumption 5.6 on the structural equations. We know that

p(xE | xC , xS , uY , uE) = 1[xE = fs(xC , xS , bs(uY , uE))]

p(xp
E | x

p
C , x

p
S , uY , uE) = 1[xp

E = fs(x
p
C , x

p
S , bs(uY , uE))].

We can reformulate the constraints as

bs(uY , uE) = f−1
s (xC , xE , xS)

bs(uY , uE) = f−1
s (xp

C , x
p
E , x

p
S).

We recall that

p(uY , uE | X = x) =
p(uY , uE , x)

p(x)

and that

p(uY , uE | Xp = xp) =
p(uY , uE , x

p)

p(xp)
.

The joint distribution p(uY , uE , x), can be written out as

p(uY , uE , x) = p(uY )p(uE)p(xC)p(xS)p(xE | xC , xS , uY , uE),

giving a conditional distribution of

p(uY , uE | X = x) =
p(uY )p(uE)p(xC)p(xS)p(xE | xC , xS , uY , uE)∫

U p(u′
Y )p(u

′
E)p(xC)p(xS)p(xE | xC , xS , u′

Y , u
′
E) du

′

=
p(uY )p(uE)p(xE | xC , xS , uY , uE)∫

U p(u′
Y )p(u

′
E)p(xE | xC , xS , u′

Y , u
′
E) du

′ . (3)

Now, for the second conditional we can write it as

p(uY , uE , x
p) =

∫
XC

p(uY , uE , x
p, xC) dxC

=

∫
XC

p(uY , uE , xC)p(x
p
C | xC , uY , uE)p(x

p
E , x

p
S | x

p
C , uY , uE) dxC

= p(uY )p(uE)p(x
p
E , x

p
S | x

p
C , uY , uE)

∫
XC

p(xC)p(x
p
C | xC , uY , uE) dxC

= p(uY )p(uE)p(x
p
E , x

p
S | x

p
C , uY , uE)

∫
XC

p(xC)p(x
p
C | xC , us = bs(uY , uE)) dxC
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Because of the assumption, we know that p(xp
E , x

p
S | x

p
C , uY , uE) is zero unless bs(uY , uE) =

f−1
s (xp

C , x
p
E , x

p
S). Thus we can replace p(xp

C | xC , us = bs(uY , uE)) with p(xp
C | xC , us =

f−1
s (xp

C , x
p
E , x

p
S)) and get

p(uY , uE , x
p) = p(uY )p(uE)p(x

p
E , x

p
S | x

p
C , uY , uE)

∫
XC

p(xC)p(x
p
C | xC , us = f−1

s (xp)) dxC .

Remark that the final integral only depends on xp, we will shorten this integral by setting

Z(xp) =

∫
XC

p(xC)p(x
p
C | xC , us = f−1

s (xp)) dxC .

Plugging everything together we get

p(uY , uE | Xp = xp) =
p(uY )p(uE)p(x

p
E , x

p
S | x

p
C , uY , uE)Z(xp)∫

U p(u′
Y )P (u′

E)p(x
p
E , x

p
S | x

p
C , u

′
Y , u

′
E)Z(xp) du′

=
p(uY )p(uE)p(x

p
S)p(x

p
E | x

p
C , x

p
S , uY , uE)Z(xp)∫

U p(u′
Y )P (u′

E)p(x
p
S)p(x

p
E , | x

p
C , x

p
S , u

′
Y , u

′
E)Z(xp) du′

=
p(uY )p(uE)p(x

p
E | x

p
C , x

p
S , uY , uE)∫

U p(u′
Y )p(u

′
E)p(x

p
E | x

p
C , x

p
S , u

′
Y , u

′
E) du

′ . (4)

If we now substitute x = xp into Equation (3), we observe that the expressions in Equations (3) and
(4) are equal.

Theorem D.1. Consider the causal graph in Figure 2(a). Assume that U = Up and that Assumption
5.6 is satisfied. If the recourse method suggests interventions on direct effects with non-zero probability,
then there exist x with L̂(x) = 1 for which hp(x) ̸= h(x) and the post-recourse conditional
probability is described by

hp(x) = α(x)h(x) + β(x)g(x) + γ(x)r(x),

where g(x) ≤ tc, r(x) ∈ [0, 1] and α, β, γ are all functions bounded in [0, 1].

Compared to Lemma E.1, one of the components will always be smaller than the decision threshold,
but there will also be a component, for which it is impossible to tell if it is higher or lower than the
decision threshold in general.

Proof. We will prove this result by a direct calculation. First, we split the post-recourse condi-
tional probability by conditioning on where the intervention are performed. Let I be all possible
combinations of the sets C,E, S and the empty set. We can rewrite the probability as,

P (Lp = 1 | Xp = xp) =
∑
i∈I

P (IA = i | Xp = x)P (Lp = 1 | Xp = x, IA = i).

We immediately have that P (Lp = 1 | Xp = x, IA = ∅) = P (L = 1 | X = x) = h(x) and for any
i without E we have P (Lp = 1 | Xp = x, IA = i) = P (L = 1 | X = x) = h(x) by the proof of
Theorem 5.7. This gives us that α =

∑
i∈I : E ̸∈i P (IA = i | Xp = x)

As the next step, we will focus on the terms with E ∈ i, but C ̸∈ i. This will be the g function and
we set

g(x) :=
∑

i∈I : E∈i,C ̸∈i

P (Y p = 1 | Xp = x, IA = i)

β(x) :=
∑

i∈I : E∈i,C ̸∈i

P (IA = i | Xp = x).

We show by a direct calculation that each term can be bounded by the pre-recourse probability. We
make use of several conditional independencies in the graph depicted in Figure 2(b) and the fact that
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the structural equation of Y is the same as the structural equation of Y p.

P (Lp = 1 | xp, i) =

∫
X

P (Lp = 1 | xp, x, i)p(x | xp, i) dx

=

∫
X

∫
UY

P (Lp = 1 | xp, x, uY , i)p(uY | xp, x, i)p(x | xp, i) duY dx

=

∫
X

∫
UY

P (L = 1 | X = xp
C , uY )p(uY | xp, x, i)p(x | xp, i) duY dx

=

∫
X

∫
{uY : fY (xp

C ,uY )≥0}

p(uY | xp, x, i)p(x | xp, i) duY dx.

Now, we use that UY ⊥G Xp, A | X =⇒ UY ⊥⊥ Xp, A | X and that xp
C = xC , as only the effects

are intervened upon, to write

P (Lp = 1 | Xp = xp, i) =

∫
X

p(x | xp, i)

 ∫
{uY : fY (xC ,uY )≥0}

p(uY | x) duY

 dx

=

∫
X

p(x | xp, i)P (L = 1 | X = x) dx

≤ tc ·
∫
X

p(x | xp, i) dx

= tc.

Where the last inequality is a consequence of only suggesting an intervention whenever h(x) < tc
and thus p(x | xp, i) will only be non-zero for points x with h(x) < tc. The inequality will be strict
if P (IA ∩ i ̸= ∅ | Xp = xp) > 0.

The final term will be the r-function, which is defined as

r(x) :=
∑

i∈I : E∈i,C∈i

P (Lp = 1 | Xp = xp, IA = i).

We can repeat the previous derivation, but we do not use the step xp
C = xC . This gives

r(xp) =

∫
X

p(x | xp, (C,E))

 ∫
{uY : fY (xp

C ,uY )≥0}

p(uY | x) duY

 dx.

Now that we cannot change xp
C = xC , this expression cannot be simplified further. The relation

between uY and x could have a positive influence or a negative influence on the overall probability.

Putting everything together gives the required expression.

E Proofs of Section 5.2

Now, we will perform the calculation to get the excact form of the conditional distribution when the
noise is resampled.

Proposition E.1. Consider the causal graph in Figure 2(a). Let Assumption 5.4 be satisfied. Further
assume that the probability of interventions on direct effects is non-zero. Then, there exist x with
L̂(x) = 1 for which hp(x) ̸= h(x) and the post-recourse distribution takes the following form,

hp(x) = (1− β(x))h(x) + β(x)P (L = 1 | XC = xC) β(x) ∈ (0, 1]
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Proof. To calculate the exact form of the conditional, we write IA for the index set of the recourse
recommendation and we condition on which interventions are performed and splitting up the proba-
bilities. As before, I will denote the set of all combinations of C,E, S and the empty set. We write
the conditional probability as

P (Lp = 1 | Xp = x) =
∑
i∈I

P (IA = i | Xp = x)P (Lp = 1 | Xp = x, IA = i) (5)

Whenever there was no intervention was performed, the conditional distribution does not change as
all the noise distributions are the same and the structural equations remain unchanged. This means
that

P (Lp = 1 | Xp = x, IA = ∅) = P (L = 1 | X = x, IA = ∅) = P (L = 1 | X = x).

Whenever an intervention on the cause or one of the spouses is performed is performed, no change
will be observed. So without loss of generality we can focus only on the case where IA = E.

Now that we assume that an intervention is performed on the effects of Y p only, we see that the arrow
from Y p to Xp

E and the arrow from Xp
S to Xp

E area broken. Coincidentally, the variables Y p and Lp

only depend on Xp
C .

P (Lp = 1 | IA = E,Xp = x) = P (Lp = 1 | IA = E,Xp
C = xC)

= P (Lp = 1 | Xp
C = xC)

= P (L = 1 | XC = xC).

Combining everything together we find that Equation (5) reduces to

P (Lp = 1 | Xp = x) =
∑

i∈I : E ̸∈i

P (IA = i | Xp = x)P (L = 1 | X = x)

+
∑

i∈I : E∈i

P (IA = i | Xp = x)P (L = 1 | XC = xC)

= (1− β(x))P (L = 1 | X = x) + β(x)P (L = 1 | XC = xC).

Where we set

β(x) =
∑

i∈I : E∈i

P (IA = i | Xp = x)

and hence β ∈ (0, 1].

All the results in this section and the previous section now give Corollary 5.9.
Corollary 5.9. In a setting where the first source of invalidity (influence on A) can be excluded,
that is if either Assumption 5.4 or 5.6 holds, recourse algorithms that abstain from interventions on
direct effects are performatively valid but other recourse algorithms may not. Without additional
assumptions, performative validity can only be guaranteed for ICR, but not for CR and CE.

Proof. Theorem 5.7 gives us that ICR is performatively stable when the noise stays the same pre-
and post-recourse and Proposition 5.5 tells us the same when the noise is independently resampled.
Propositions D.1 and E.1 tell us that CR and CE may not be performatively valid.

E.1 Details of Example 5.8

Interventions on effects cause performative invalidity First, we will calculate the explicit form
of the conditional distribution. That is, h(x) = P (L = 1 | X = x) = Φ

(
(xC + xE)/

√
2
)
, where Φ

is the cumulative distribution function of the standard normal distribution. We start by rewriting the
conditional distribution as

P (L = 1 | X = x) = P (Y ≥ 0 | X = x)

=

∞∫
0

p(y | x) dy.
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An explicit expression for the conditional density p(y | x) can be obtained through a Markov
decomposition using the structure of the graph and an application of the Bayes’ rule

p(y | x) = p(xC , xE , y)

p(xC , xE)

(Markov decomposition) =
p(xC)p(y | xC)p(xE | y)

p(xC)p(xE | xC)

(Bayes’ rule) =
p(y | xC)p(xE | y)

p(xE | xC)
. (6)

Because we know the exact relations between the variables through the structural equations, we can
infer the conditional densities needed in Equation (6). Remark that the noise variables UY and UY

are distributed according to independent standard normals. The structural equation for Y is defined
as fY (XC , UY ) = XC + UY , und since UY and XC are independent we get that Y = xc + UY

when we condition on XC = xc, meaning that P (Y |XC) ∼ N(xc, 1) which is the distribution of
UY shifted by xC . We can repeat this derivation for the other variables to conclude that

Y | XC = xC ∼ N (xC , 1),

XE | Y = y ∼ N (y, 1)

XE | XC = xC ∼ N (xC , 2).

Substituting the densities of these random variables into Equation (6) gives

p(y | x) =

√
1
2π e

− 1
2 (y−xc)

2
√

1
2π e

− 1
2 (xE−y)2√

1
4π e

− 1
4 (xE−xC)2

=

√
1

π

e−
1
2y

2+xcy− 1
2x

2
c− 1

2x
2
E+xEy− 1

2y
2

e−
1
4x

2
E+ 1

2xExC− 1
4x

2
C

=

√
1

π
e−y2+(xC+xE)y− 1

4x
2
c− 1

4x
2
E− 1

2xExC

=

√
1

π
e−(y−

xC+xE
2 )

2

.

The last expression we recognize as the density of a N
(
xC+xE

2 , 1
2

)
distribution. Finally, we use that

we can translate and rescale the cdf of a normal distribution to the cdf of the standard normal. Let
Φµ,σ2 be the cdf of a normal distribution, then it holds that

Φµ,σ2(x) = Φ

(
x− µ

σ

)
.

Using µ = xC+xE

2 and σ2 = 1
2 , we get

P (L = 1 | X = x) = P (Y ≥ 0 | X = x)

= 1− P (Y ≤ 0 | X = x)

= 1− Φ

(
0− xC+xE

2√
1/2

)
= Φ

(
(xC + xE)/

√
2
)
.

The final equality follows from the symmetry of the standard normal distribution around 0.

The Bayes optimal classifier is given by L̂(x) = 1
[
P (L = 1 | X = x) ≥ 1

2

]
. In this case, we have

the threshold tc =
1
2 and the decision boundary is at those points where

Φ
(
(xC + xE)/

√
2
)
=

1

2
⇐⇒ (xC + xE)/

√
2 = 0 ⇐⇒ xC = −xE .

So, in the pre-recourse setting, the decision boundary is at xC = −xE .
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Now we apply Proposition E.1, to get the expression for the post-recourse conditional distribution,
which is

hp(x) = (1− β(x))(x)h(x) + β(x)P (L = 1 | XC = xC).

Similarly as before, we can calculate that P (L = 1 | XC = xC) = Φ(xC). The property to note is
that Φ(xC) <

1
2 whenever xC < 0. Now, for any point with xC < 0, but xC = −xE we observe

hp(x) = (1− β(x))h(x) + β(x)P (L = 1 | XC = xc) <
α

2
+

β

2
=

1

2
.

Here, the β(x) indicates the proportion of the post-recourse individuals that intervened on the effect
variables, which will be a non-zero amount in this example. The fact that hp(x) < 1

2 , but h(x) = 1
2

shows that all points on the decision boundary with xC < 0, are invalidated post-recourse. Indeed,
the final mixed distribution will be given by

hm(x) = αh(x) + (1− α)hp(x) <
α

2
+

1− α

2
=

1

2
,

where α indicates the mixing parameter.

Finally, the probability mass of the people that get rejected that were originally accepted is non-zero,
because the recourse recommendation moves a non-zero mass towards the decision boundary.

F Experiments

All code is publicly available via GitHub1.

F.1 Settings

In our experiments, we report the results for five synthetic and one real-world dataset. In the synthetic
settings we focus on varying the type of functional relationship while ensuring that the data generating
process has finite support. Furthermore, we chose the parameters such that the prediction of the
corresponding model can always be changed by modifying only one of the features.

To obtain data with finite support, we rely on the discrete binomial distribution. The binomial
distribution normally takes two parameters, n and p, where n is the number of trials and p the
probability of a positive outcome in each trial. The support of the binomial are integers in {0, . . . , n}
and the mean is np.

For our settings, we sometimes shift the distribution by an offset, e.g., to ensure positive values.
We refer to this shifted binomial as ShBin(n, p, µ) where µ is the new mean. To sample from
ShBin(n, p, µ), we sample values from Bin(n, p) and shift them by the offset µ− np.

Now we are ready to introduce all synthetic DGPs in detail.

Setting F.1 (Additive Noise, LinAdd).

XC := UC UC ∼ ShBin(8, 0.5, 0)

Y := XC + UY UY ∼ ShBin(2, 0.5, 0)

XE := Y +XC + UE UE ∼ ShBin(2, 0.5, 0)

Setting F.2 (Multiplicative Noise, LinMult).

XC := UC UC ∼ ShBin(5, 0.5, 5/2 + 1)

Y := XCUY UY ∼ ShBin(1, 0.5, 0.5 + 1)

XE := Y XCUE UE ∼ ShBin(1, 0.5, 0.5 + 1)

1https://github.com/gcskoenig/performative-recourse-experiments
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Setting F.3 (Nonlinear Additive, NlinAdd).

XC := UC UC ∼ ShBin(8, 0.5, 0)

Y := (XC)
2 + UY UY ∼ ShBin(2, 0.5, 0)

XE := (Y +XC)
2 + UE UE ∼ ShBin(2, 0.5, 0)

Setting F.4 (Nonlinear Multiplicative, NlinMult).

XC := UC UC ∼ 0.5ShBin(2, 0.5, 2) + 0.5ShBin(4, 0.5, 4)

Y := X2
CUY UY ∼ ShBin(2, 0.5, 2)

XE := (Y +XC)
2UE UE ∼ ShBin(2, 0.5, 2)

Setting F.5 (Polynomial Noise, LinCubic).

XC := UC UC ∼ ShBin(4, 0.5,−1)
Y := (XC + UY )

3 UY ∼ ShBin(2, 0.5, 1)

XE := (XC + UE − Y )3 UE ∼ ShBin(1, 0.5, 0.5)

For the GPA example we obtain data from [OpenIntro, 2020] and assume the causal graph suggested
in [Harris et al., 2022]. Then, we fit a linear Gaussian SCM, that is, for each node we fit a linear
model to predict the node from its parents, and fit a normal distribution to the residual to obtain the
corresponding noise distribution. For the Credit example we obtain data from Chen et al. [2023],
and assume the causal graph suggested by [Yeh, 2009]. Then, we fit a random forest based additive
Gaussian SCM, meaning that we fit a random forest to predict each node from its parents, and fit a
normal distribution on the residuals to obtain the noise distributions.
Setting F.6 (College Admission, SAT).

XC := UC UC ∼ N (0, 1)

Y := αY XC + UY UY ∼ N (µY , σY )

XE := αEY + UE UE ∼ N (µY , σY )

In all settings, the target variable Y is binarized using the median as treshold. That is,

L := 1[Y ≥ median(Y )].

Costs In our experiments we want to compare the different recourse methods, and to reveal their
differences we chose the cost such that interventions on effects are more lucrative. Then CE and CR
intervene on the effects, and ICR intervenes on the causes. To do so, we define the cost functions for
CR and ICR as

cost(x, do(a)) =
∑
j∈Ia

(xj − θj)
2γj

and for CE as
cost(x, x′) =

∑
j

(xj − x′
j)

2γj .

The weight γj ensures that interventions on effects are more lucrative. It is defined as

γj :=
1

πjσ2
j

,

where πj is the index of the node when they are (partially) ordered according to the causal graph, that
is, causes recieve lower indices than their descendants and therfore more weight in the cost. Further,
we normalize the cost using each feature’s variance σ2

j .

32



F.2 Experiment setup

Random seeds We conducted each experiment 10 times with seeds 40, . . . , 49. In Figure 3 (left),
we report averages over all runs, that is, the average minimum difference in conditional distribution,
the average maximum difference in conditional distribution, and the average expected difference in
conditional distribution. In Figure 3 (right) the dots represent averages over 10 runs and the errorbars
the standard deviation σ (the expected value ±σ). In Table 1 we report the mean and standard
deviation for each metric.

Decision model We use a decision tree with default hyperparamters for the discrete settings and a
logistic regression with default hyperparamters in the real-world setting. We use sklearn to fit the
model. To ensure that the original model is as accurate as possible we sample 105 fresh datapoints as
an independent training set.

Sampling from the post-recourse distribution Given the SCM and the decision model, we are
ready to compute recourse recommendations. Therefore we sample fresh data and randomly pick
5000 rejected observations in the simulation settings, and 1000 rejected observations for the real-
world setting, for which we then generate recourse recommendations. The detailed procedures for
generating recourse are explained below. Given the recourse recommendation, we compute the true
post-recourse outcomes for the individuals. Therefore, we exploit that we sampled the data ourselves,
meaning that we have access to the unobserved causal influences that determine the observations. In
other words, we are able to compute the ground-truth outcomes for the respective recommendation.
Specifically, for each individual, we fix the unobserved causal influences to the respective values,
and then replace the structural equations according to the interventions. Then, we determine the new
characteristics of the applicant based on the unobserved causal influences and the structural equations.
Based on these ground-truth samples from the post-recourse distribution of rejected applicants we
assess Q1 and Q2. We note that sampling from the post-recourse distribution is expensive, since each
post-recourse sample requires solving the recourse optimization problem.

Q1: How did the conditional distribution change? To quantify the change in distribution, we
compute the conditional probability of a favorable label L = 1 both in the original distribution
and in the part of the distribution that may have changed as a result of recourse. More formally,
we compute P (Lp = 1 | Xp = x, L̂ = 1) and P (L = 1 | X = x). Notably, we do not take
P (Lp = 1 | Xp = x, L̂ = 0) into account, since for the subpopulation the conditional distribution
must be the same pre and post-recourse, that is P (Lp = 1 | Xp = x, L̂ = 0) = P (L = 1 | X = x).
To make the estimates as accurate as possible, we sample many observations (5000) and designed the
DGPs such that the number of possible values is small, and in each bucket enough samples can be
found. We aggregate the point-wise differences using the min, max, and expected value. To ensure that
buckets with larger sample size get more weight in the expected value, and to reflect the perspective
of recourse implementing individuals, we weigh the points according to P (Xp = x | L̂ = 0).

Q2: Does the shift impact acceptance rates? To obtain the updated model and evaluate the impact
of the update on acceptance rates, we split the sample of recourse implementing individuals in half.
The first half is used to fit the updated model, the second half to evaluate the respective acceptance
rate. To fit the updated model, the sample of recourse implementing individuals is matched with their
respective pre-recourse observations as well as a sample of accepted applicants of the same size. As a
result, the updated model is fitted on one third post-recourse samples and two thirds pre-recourse
samples. To compute the new acceptance rate, we take the other half of the post-recourse samples
and compute the respective decisions with respect to the original and the updated model.

F.3 Detailed results

The detailed results are reported in Table 1.

Furthermore, we report model accuracies in Table 2. We note that the model accuracy may drop even
if the model remains optimal post-recourse. The reason is that recourse commonly moves data closer
to the decision boundary, where model uncertainty is higher, as pointed out in [Fokkema et al., 2024].
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Table 1: Detailed Experiment Results. We report all detailed results. For each outcome, we report
the mean and standard deviation over the 10 runs. The outcomes are the expected, maximum, and
minimum difference in conditional distribution, as well as the difference in acceptance rate.

Exp. Dist. Diff. Max. Dist. Diff. Min. Dist. Diff. Acc. Rate Diff.
mean std mean std mean std mean std

Method Setting

ind. ICR LAdd 0.00 ±0.01 0.02 ±0.05 0.00 ±0.00 0.00 ±0.00
LMult 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
NLAdd 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
NLMult 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
LCubic 0.21 ±0.00 0.67 ±0.00 0.00 ±0.00 0.00 ±0.00
GPA − − − − − − 0.00 ±0.00
Credit − − − − − − 0.01 ±0.01

sub. ICR LAdd 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
LMult 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
NLAdd 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
NLMult 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
LCubic 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
GPA − − − − − − 0.00 ±0.00
Credit − − − − − − 0.01 ±0.01

ind. CR LAdd −0.68 ±0.13 −0.46 ±0.04 −0.95 ±0.08 −0.93 ±0.10
LMult −0.65 ±0.12 −0.55 ±0.08 −0.85 ±0.18 −0.85 ±0.18
NLAdd −0.97 ±0.03 −0.72 ±0.36 −1.00 ±0.00 −0.87 ±0.02
NLMult −0.12 ±0.00 0.00 ±0.00 −0.49 ±0.02 −0.16 ±0.01
LCubic −0.57 ±0.01 0.00 ±0.00 −1.00 ±0.00 −0.98 ±0.00
GPA − − − − − − −0.81 ±0.05
Credit − − − − − − −0.49 ±0.03

sub. CR LAdd −0.47 ±0.06 −0.13 ±0.20 −0.84 ±0.06 −0.90 ±0.08
LMult −0.61 ±0.08 −0.54 ±0.07 −0.76 ±0.16 −0.85 ±0.18
NLAdd −0.97 ±0.04 −0.72 ±0.36 −1.00 ±0.00 −0.87 ±0.02
NLMult −0.16 ±0.01 0.00 ±0.00 −0.47 ±0.01 −0.01 ±0.01
LCubic −0.38 ±0.03 0.00 ±0.00 −0.84 ±0.01 −0.98 ±0.00
GPA − − − − − − −0.79 ±0.03
Credit − − − − − − −0.39 ±0.04

CE LAdd −0.71 ±0.13 −0.46 ±0.04 −0.97 ±0.07 −0.95 ±0.09
LMult −0.65 ±0.13 −0.55 ±0.08 −0.82 ±0.21 −0.85 ±0.18
NLAdd −0.97 ±0.04 −0.71 ±0.38 −1.00 ±0.00 −0.88 ±0.01
NLMult −0.16 ±0.01 0.00 ±0.00 −0.49 ±0.02 −0.01 ±0.01
LCubic −0.41 ±0.01 0.00 ±0.00 −0.83 ±0.01 −0.98 ±0.00
GPA − − − − − − −0.81 ±0.04
Credit − − − − − − −0.47 ±0.05
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Table 2: Model Accuracies. We report the absolute model accuracies of the original model and the
refit on both the original data (O and R) and post-recourse data (OP and RP). All accuracies are
computed on test data and averaged over ten runs.

SCM Type O R OP RP

LAdd CE 0.91 0.90 0.51 0.89
LAdd sub. ICR 0.91 0.91 0.96 0.96
LAdd ind. CR 0.91 0.90 0.51 0.89
LAdd ind. ICR 0.91 0.91 0.96 0.96
LAdd sub. CR 0.91 0.90 0.53 0.89
LMult CE 0.87 0.87 0.50 0.85
LMult sub. ICR 0.87 0.87 0.94 0.94
LMult ind. ICR 0.87 0.87 0.94 0.94
LMult ind. CR 0.87 0.87 0.50 0.85
LMult sub. CR 0.87 0.87 0.50 0.85
NLAdd sub. ICR 0.91 0.91 1.00 0.99
NLAdd ind. ICR 0.91 0.91 0.99 0.99
NLAdd sub. CR 0.91 0.90 0.58 0.83
NLAdd ind. CR 0.91 0.90 0.58 0.83
NLAdd CE 0.91 0.89 0.58 0.83
NLMult ind. CR 1.00 1.00 0.84 0.92
NLMult sub. ICR 1.00 1.00 1.00 1.00
NLMult sub. CR 1.00 1.00 0.84 0.83
NLMult CE 1.00 1.00 0.84 0.84
NLMult ind. ICR 1.00 1.00 1.00 1.00
LCubic sub. CR 0.92 0.86 0.54 0.83
LCubic CE 0.92 0.86 0.54 0.83
LCubic ind. CR 0.92 0.86 0.55 0.83
LCubic ind. ICR 0.92 0.92 0.95 0.95
LCubic sub. ICR 0.92 0.92 0.96 0.96
GPA ind. CR 0.73 0.70 0.51 0.68
GPA ind. ICR 0.73 0.73 0.81 0.81
GPA CE 0.73 0.72 0.51 0.70
GPA sub. CR 0.73 0.72 0.51 0.69
GPA sub. ICR 0.73 0.73 0.80 0.80
Credit CE 0.60 0.58 0.57 0.60
Credit ind. CR 0.61 0.59 0.57 0.59
Credit sub. CR 0.62 0.59 0.61 0.62
Credit sub. ICR 0.61 0.60 0.76 0.76
Credit ind. ICR 0.61 0.59 0.76 0.76
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F.4 Estimation of improvement and acceptance rates

When searching for the optimal recourse recommendation, we have to evaluate the probability of a
positive outcome for an action given the observation of the individual and given the available causal
knowledge. As follows, we explain how this estimation is implemented in our code. The probability
estimates are based on samples of size 1000.

Estimating individualized outcomes The individualized versions of CR and ICR are based on
individualized effect estimation and assume knowledge of the SCM. To estimate individualized
outcomes using a SCM, be it the acceptance or improvement probability, we conduct three steps:
Abduction, Intervention, and Simulation [Pearl, 2009]: Specifically, to compute a counterfactual
using a SCM, we first use the observation x to abduct the unobserved causal influences, that is, we
infer the posterior P (U | X = x). Then, we implement the action in the SCM by replacing the
affected structural equations. Last, we sample from the abducted noise P (U | X = x) and generate
the new outcomes using the updated structural equations. Based on the obtained sample from the
counterfactual distribution we estimate the probability of a favorable outcome. For ICR, that is the
probability of the favorable label L = 1, and for CR that is the probability of the favorable prediction
L̂ = 1.

In our experiments we focus on settings with invertible structural equations. That is, given a full
observation x, y, we could compute the unique corresponding noise value u. To perform the abduction
in a setting where Y is not observed, a direct computation of the noise variables is not possible.
Specifically, UY and UE cannot be determined. However, for each possible uY , there is exactly one
possible uE ; more formally there exists a function uE = g(uY ). And one can show that as a result
the abducted distribution must be proportional to P (UY = uy)P (UE = g(uY )). To sample from
this distribution, we employ rejection sampling.
Lemma F.7 (Abduction with invertible structural equations). It holds that

p(uY | x) =
P (UE = f−1

E (xS , xC , fY (xC , uY ), xE))p(uY )

p(xE | xC , xS)
.

Proof.

p(uY | x) = p(uY |xC , xS , xE)

=
p(xC , xS , xE , uY )

p(xC , xS , xE)

=

∫
UE

p(xC , xS , xE , uY , uE) duE

p(xC , xS , xE)

=

∫
UE

p(xE |xS , xC , uY , uE)p(xS , xC)p(uY , uE) duE

p(xE | xC , xS)p(xC , xS)

=

∫
UE

p(xE | xS , xC , uY , uE)p(uY )p(uE) duE

p(xE | xC , xS)

=

∫
UE

1[xE = fE(xS , xC , fY (xC , uY ), uE)]p(uY )p(uE) duE

p(xE | xC , xS)

=

∫
UE

1[uE = f−1
E (xS , xC , fY (xC , uY ), xE)]p(uY )p(uE) duE

p(xE | xC , xS)

=
P (UE = f−1

E (xS , xC , fY (xC , uY ), xE))p(uY )

p(xE | xC , xS)
.

Estimating subpopulation-based outcomes When no SCM is available, the causal recourse
methods resort to a causal graph. The causal graph does not allow to abduct unobserved causal
influences and therefore does not allow the computation of individualized effects. However, causal
graphs allow to describe interventional distributions: Therefore, the joint distribution is factorized
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into the conditional distributions of each node given its direct causal parents P (X) =
∏

j P (Xj |
Xpa(j)), and the conditional distributions for the intervened upon nodes j ∈ Ia are replaced with
P (Xj) = 1[Xj = θj ]. To obtain the interventional distribution for the subpopulation instead of the
whole population, we additionally intervene on the nondescendants Xnd(Ia) to hold those values
fixed [König et al., 2023]. In our experiments, instead of learning the conditional distributions, we
obtain the ground-truth conditional distributions from the SCM: To sample from the interventional
distribution, we sample from the intervened-upon SCM. In this sample, we again compute the
probabilities of the favorable outcomes.

Translating CEs into actions While CR and ICR recommend actions in the form of an intervention
do(XIa = θIa) on a subset of the variables Ia, CE only suggests a new observation x′. To translate
this to a causal action, we intervene on all variables, and set them to the values specified by x. That
is, do(X = x′). In this setting, there is no uncertainty about the post-recourse observation and as a
result the acceptance probability can directly be evaluated to zero or one.

F.5 Optimization

To solve the optimization problems imposed by each of the recourse methods, we employ evolutionary
algorithms (as proposed by Dandl et al. [2020]) and rely on the python package deap [Fortin et al.,
2012]. Evolutionary algorithms can naturally deal with both continuous and categorical data. To
optimize a goal, they randomly draw suggestions (individuals). This sample (population) is then
modified and filtered over many rounds (generations).

In our setting, each individual consists of two values per variable: A binary indicator αj that represents
whether the variable Xj shall be changed, and a float βj that represents the respective new value.

When initializing the population, we randomly draw αj ∼ Bin(1, 0.5). If the variable is continuous,
βj is sampled uniformly from the range Unif(bl, bu), where the lower and upper bound bl and bu are
determined empirically from a very large sample from the distribution. If the variable is categorical,
βj is drawn from the uniform distribution over the empirical support. To cross two individuals, we
switch the α and β values for each variable with 0.5 probability. To mutate an individual, we modify
each entry with 0.2 probability, where the αj values are simply flipped, and the βj values are either
resampled if they are categorical or modified using a Gaussian kernel if they are continuous. We
chose the population size 25, the number of generations 25, the crossing probability 0.5, and the
mutation probability 0.5.

To select the individuals that make it to the next generation, we rely on the following fitness function:

cost(x, a) + λ(tr − psuccess(x, a))

where psuccess is the probability of a favorable outcome for the given recourse methods (as defined in
Section 3 and Appendix B), and λ = 104.

F.6 Computational resources

We ran the experiments on a MacBook Pro with M3 Pro Chip and a cluster with Intel Xeon Gold
processors with 16 cores and 2.9GHz. The main compute is required for sampling from the post-
recourse distributions, which takes roughly one hour on one core for one setting and one method,
which amounts to a total of 30 hours per run and 300 hours for all experiments. We note that the runs
were parallelized over the 16 cores. The post-processing of the results was done on the M3 Pro Chip
and requires negligible computational effort.
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