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Abstract

Recently, token-based generation approaches have demonstrated their effectiveness
in synthesizing visual content. As a representative example, non-autoregressive
Transformers (NATs) can generate decent-quality images in just a few steps. NATs
perform generation in a progressive manner, where the latent tokens of a result-
ing image are incrementally revealed step-by-step. At each step, the unrevealed
image regions are padded with [MASK] tokens and inferred by NAT, with the
most reliable predictions preserved as newly revealed, visible tokens. In this
paper, we delve into understanding the mechanisms behind the effectiveness of
NATs and uncover two important interaction patterns that naturally emerge from
NAT’s paradigm: Spatially (within a step), although [MASK] and visible tokens
are processed uniformly by NATs, the interactions between them are highly asym-
metric. In specific, [MASK] tokens mainly gather information for decoding. On
the contrary, visible tokens tend to primarily provide information, and their deep
representations can be built only upon themselves. Temporally (across steps), the
interactions between adjacent generation steps mostly concentrate on updating the
representations of a few critical tokens, while the computation for the majority of
tokens is generally repetitive. Driven by these findings, we propose EfficientNAT
(ENAT), a NAT model that explicitly encourages these critical interactions inherent
in NATs. At the spatial level, we disentangle the computations of visible and
[MASK] tokens by encoding visible tokens independently, while decoding [MASK]
tokens conditioned on the fully encoded visible tokens. At the temporal level,
we prioritize the computation of the critical tokens at each step, while maximally
reusing previously computed token representations to supplement necessary in-
formation. ENAT improves the performance of NATs notably with significantly
reduced computational cost. Experiments on ImageNet-2562 & 5122 and MS-
COCO validate the effectiveness of ENAT. Code and pre-trained models will be
released at https://github.com/LeapLabTHU/ENAT.

1 Introduction

Recent years have witnessed an unprecedented growth in the field of AI-generated content (AIGC). In
computer vision, diffusion models [10, 59, 61] have emerged as an effective approach. On the contrary,
within the context of natural language processing, content is typically synthesized via the generation
of discrete tokens using Transformers [72, 19, 5, 55]. Such discrepancy has excited a growing interest
in exploring token-based generation paradigms for visual synthesis [7, 85, 33, 87, 6, 35]. Different
from diffusion models, these approaches utilize a discrete data format akin to language models. This
makes them straightforward to harness well-established language model optimizations such as the
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refined scaling strategies [5, 54, 31, 73] and the progress in model infrastructure [65, 12, 8, 34, 96].
Moreover, explorations in this field may facilitate the development of more advanced, scalable
multimodal models with a unified token space [17, 68, 18, 44, 90] as well as general-purpose vision
foundation models that integrate visual understanding and generation capabilities [35, 69].
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Figure 1: The generation pro-
cess of NATs starts from a
masked canvas, decode multi-
ple tokens per step, and are then
mapped to the pixel space using
a pre-trained VQ-decoder [13].

The recent advances in token-based visual generation have seen
the rise of non-autoregressive Transformers (NATs) [7, 33, 6, 53],
which are distinguished by their abilities to fulfill efficient and high-
quality visual synthesis. As shown3 in Figure 1, NATs follow a
progressive generation paradigm: at each generation step, a certain
number of latent tokens of the resulting image are decoded in
parallel, and the model carries out this process iteratively to produce
the final complete token maps. More specifically, at each step, the
unknown latent tokens of the image are represented with [MASK]
tokens and concatenated with the tokens that have been decoded
(i.e., visible tokens). Then, the full set of [MASK] and visible tokens
is fed into a Transformer-based model, predicting the proper values
of the unknown tokens, with the most reliable predictions preserved
as the increments of visible tokens for the next generation step.

In this paper, we seek to advance the understanding of the mechanisms behind the effectiveness
of NATs’ progressive generation procedures. Our investigation uncovers two important findings
regarding the spatial and temporal interactions within NATs: Spatially, at each generation step, even
though both [MASK] and visible tokens are treated equivalently within the computational graphs of
NATs, the visible tokens naturally learn to mainly provide information for [MASK] tokens to infer the
unknown image content, and their corresponding deep representations can be built in the absence of
[MASK] tokens. Temporally, the interactions between adjacent generation steps mainly concentrate
on updating the representations of a small number of “critical tokens” on top of the previous steps. In
fact, the computation for the remaining majority of tokens is generally repetitive.

Inspired by these findings, we propose to develop novel NAT models to explicitly encourage these
critical interaction mechanisms emerged naturally when trained for visual generation, yielding
EfficientNAT (ENAT). Specifically, at the spatial level, we disentangle the computations of visible
and [MASK] tokens by encoding visible tokens independently of [MASK] tokens. [MASK] tokens
are then processed by attending to the fully contextualized features of visible tokens, as shown in
Figure 3b. As an interesting observation derived from disentanglement, we find that prioritizing the
computation for visible tokens, particularly when the computation is maximized for visible tokens
and minimized for [MASK] tokens (even with only a single network layer), further improves the
performance of NATs by a large margin. At the temporal level, we concentrate computation on
the “critical tokens” while maximally reusing the representation of previously computed tokens to
supplement the necessary information, as illustrated in Figure 4b.

Empirically, the effectiveness of ENAT is validated on ImageNet 256×256 [60], ImageNet
512×512 [60] and MS-COCO [36]. ENAT is able to achieve significantly reduced computational cost
compared to conventional NATs while outperforming them notably (e.g., 24% relative improvement
with 1.8× lower cost, see Table 6a).

2 Related Work

Image tokenizer and token-based image generation models. Language models use algorithms
like Byte Pair Encoding or WordPiece to convert text into tokens. Similarly, an image tokenizer
transforms images into visual tokens for token-based image generation. Key works in this field include
Discrete VAE [58], VQVAE [71], and VQGAN [13], with VQGAN-based tokenizers being most
popular for their superior image reconstruction abilities. These tokenizers have enabled the advent of
high-performance, scalable token-based generative models [85, 56, 87, 6]. Early token-based models
were mainly autoregressive, generating images one token at a time [48, 13, 11, 85]. In contrast, non-
autoregressive transformers (NATs)[7, 33, 6, 53] generate multiple tokens simultaneously, speeding
up the process while maintaining high image quality. Recently, visual autoregressive models[70]
introduced a next-scale prediction strategy, also demonstrating their promise in image synthesis.

3We illustrate with 4×4 tokens for simplicity; the actual token map size may be 16×16 or larger.
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Efficient image synthesis has witnessed significant progress recently. Though the efficiency is-
sue is relatively less explored in token-based image synthesis, it has been extensively studied in
diffusion-based models. This includes advanced samplers [40, 41, 37], distillation methods [62, 83],
quantization and compression techniques [92, 88, 91], and efforts to reduce redundant computa-
tion [42, 79, 1]. The last approach bears some resemblance to our computation reuse mechanism in
Sec. 4.2, but with notable differences. Firstly, the subjects of research differ: we focus on NAT models.
This focus introduces unique properties, e.g., NATs incrementally decode new tokens at specific
spatial locations, resulting in feature maps that are only significantly updated in those areas during
generation. This contrasts with diffusion models, where feature map similarity between adjacent steps
does not follow such predictable spatial patterns; instead, some layers show high overall similarity
within a certain range of timesteps, while others may not. Secondly, these characteristic differences
lead to distinct methodologies. Diffusion models typically require manually fine-tuned, and some-
times layer-specific caching schedules [42] to reuse previously computed features. This process can
be labor-intensive and may struggle with generalization. In contrast, our method prioritizes model
computation on newly decoded tokens in NATs and reuses the final representations of previously
computed tokens without manually fine-tuned caching schedules.

Masked image modeling (MIM) methods like MAE [29] are widely used for learning image
representations by predicting missing patches, with the encoder processing visible tokens and the
decoder attending to both visible and masked tokens for reconstruction. CrossMAE [15] extends this
by adopting a more disentangled architecture for handling both token types separately. In contrast,
our work focuses on image generation, applying masked image modeling in discrete image token
space, where token prediction and reconstruction are required at every step. This introduces key
differences, such as SC-Attention and computation reuse mechanisms (see Sec. 4) which are not
explored in these MIM approaches.

Non-autoregressive Transformers (NATs) originated in machine translation for their fast inference
capabilities [19, 20]. Recently, they have been adapted for image synthesis, enabling efficient high-
quality image generation as evidenced by various studies [7, 33, 35, 6, 53, 86]. MaskGIT [7] was
the first to show NAT’s effectiveness on ImageNet. This approach has been expanded for text-to-
image generation, scaling up to 3B parameters in Muse [6] and achieving outstanding performance.
Token-critic [33] and MAGE [35] enhance NATs further: Token-critic uses an auxiliary model for
guided sampling, while MAGE integrates representation learning with image synthesis using NATs.
Recent studies [46, 47] have also explored techniques for further improving the training and inference
process of NATs. In contrast to these works, we aim to better understand the mechanisms behind
NATs’ effectiveness, uncovering findings that naturally lead to a more efficient and effective design
for NAT models.

3 Preliminaries of Non-autoregressive Transformers (NATs)

In this section, we provide an overview of Non-Autoregressive Transformers (NATs) [7, 6, 35] for
image generation. NATs operate with a pre-trained VQ-Autoencoder [71, 57, 13], which maps images
to discrete visual tokens and reconstructs images from these tokens. The VQ-Autoencoder consists of
three components: an encoder EVQ, a quantizer Q with a learnable codebook e, and a decoder DVQ.
The encoder and quantizer transform an image into a sequence of visual tokens:

v = Q(EVQ(x)), (1)

where v = [vi]i=1:N is the sequence of visual tokens, and N is the sequence length. Each token vi
corresponds to a specific entry in the VQ-Autoencoder codebook. The above process is known as
tokenization. After tokenization, NATs learn to generate visual tokens in the latent VQ space.

During training, NATs optimize the masked language modeling (MLM) objective [9]. Specifically, a
random subset of tokens is replaced with a special [MASK] token, and the model is trained to predict
the original tokens based on the unmasked ones. Formally, let M be the mask vector, where mi = 1
indicates the i-th token is masked. The training objective minimizes the negative log-likelihood of
the masked tokens:

LMLM = −
∑

i∈[1,N ],mi=1

log p(vi|vM̄ ), (2)

where p(vi|vM̄ ) is the predicted probability of token vi given the unmasked tokens vM̄ .
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To generate images, NATs follow an iterative decoding strategy [7]. Starting with a fully masked
token map, the model predicts all masked positions and samples a portion of the most confident
predictions to replace the mask tokens in each iteration. The number of masked tokens to be replaced
follows a cosine function, with fewer tokens replaced in the early iterations and more tokens replaced
in later iterations. The finally decoded token sequence v̂ is then decoded into an image by the
VQ-Autoencoder decoder:

x̂ = DVQ(v̂). (3)
Due to space limitations, we refer readers to [7] for more details.

4 EfficientNAT (ENAT)

In this section, we design several analytical experiments (details in Appendix A.1) to advance the
understanding of the mechanisms behind the effectiveness of NATs, aiming to accordingly improve the
design of NAT models. Specifically, we uncover the critical spatial and temporal interaction patterns
that naturally emerge within NATs under the goal of image generation. Inspired by our findings, we
further propose to gradually re-design NATs towards maximally exploiting these characteristics.

4.1 Spatial Level Interaction

Motivation: an ablation study. A notable characteristic of NATs is the concurrent processing and
interaction (through attention layers) of visible ([V]) and [MASK] ([M]) tokens when inferring the
unknown image content. To better understand this mechanism, we consider an ablation study on four
types of spatial interactions: a) [M] to [V] attention, b) [V] to [M] attention, c) [V] to [V] attention,
and d) [M] to [M] attention. We find these four types of spatial interactions have significantly different
impacts on the generation performance. As shown in Figure 2, the most important spatial interaction
is the [M] to [V] attention (i.e., [V]→[M] information propagation), without which the model is
unable to converge at all. Moreover, both [M] to [M] and [V] to [V] attentions (i.e., self-attention
within the representation-extraction processes of visible and [MASK] tokens, respectively) moderately
improve the model. The most intriguing fact is that removing the [V] to [M] attention (i.e., [M]→[V]
information propagation) only marginally hurts the model’s performance.

𝑸 𝑲,𝑽

Baseline (full attn.)
FID=6.54

𝑸 𝑲,𝑽

(a) w/o [M] to [V]
FID=201.88

𝑸 𝑲,𝑽

(b) w/o [V] to [M]
FID=6.76

𝑸 𝑲,𝑽

(c) w/o [V] to [V]
FID=7.40

𝑸 𝑲,𝑽

(d) w/o [M] to [M]
FID=7.05

visible token mask token attention enabled attention disabled

Figure 2: An ablation study on four types of spatial interactions. The essential spatial interaction
is the [M] to [V] attention. In contrast, the [V] to [M] attention only marginally affects the model.

This imbalanced importance of four spatial interactions highlights the distinct roles of visible and
[MASK] tokens. Specifically, the processing of the visible tokens primarily establishes certain internal
representations based on the currently available and reliable information, and propagates them to
the [MASK] tokens. In fact, their corresponding deep representations can be built mainly on top
of themselves. In contrast, [MASK] tokens progressively gather information from visible tokens to
predict the proper token values corresponding to the unknown parts of the images. In other words,
NATs naturally separate the role of visible and mask tokens when learning to generate images
effectively, even though the two types of tokens are designed to be processed equally in NAT models.

Table 1: Effectiveness of
disentangled architecture.

Arch. GFLOPs FID↓
Baseline 39.6 6.54

Disentangled 40.2 5.50

This phenomenon raises an intriguing question: can we improve NATs
by explicitly encouraging the naturally emergent spatial-level token-
interaction patterns? Actually, this idea is feasible. For example, we
can consider a disentangled architecture that explicitly differentiates
the roles of visible and [MASK] tokens. As shown in Figure 3b, we
may process visible tokens independently of [MASK] tokens, with the
sole purpose of encoding the current visible and reliable information. In contrast, the computation
allocated to [MASK] tokens may only focus on predicting unknown image contents correctly with

4



𝑁×
Self Attention

Feed Forward

Loss

(a) Existing Works (b) Ours: Disentangled Architecture

visible token mask token visible token feature mask token feature C concatenate

C

𝑲 𝑽 𝑸

Self Attention

Feed Forward

SC-Attention

Feed Forward

Loss Attention

𝑁!× ×𝑁"

𝒗 𝒗𝑴" 𝒗𝑴

Figure 3: (a) Existing works of NATs process visible and [MASK] tokens equivalently. (b) Our
disentangled architecture independently encodes visible tokens and integrates their fully contextual-
ized features into the [MASK] token decoding process. M is the indicator of [MASK] tokens while
M̄ is the indicator of visible tokens. The SC-Attention concatenates the visible and mask token
features to produce keys and values, providing a complete context for the mask token decoding.

the help of fully contextualized visible token representations. Such a disentangled architecture
significantly improves the performance of NATs at a similar computational cost (see Table 1 for
evidence). Inspired by [2], we efficiently integrate the encoded visible tokens into the decoding
process of [MASK] tokens with a tailored SC (SelfCross)-attention mechanism (see Figure 3b). The
SC-attention simultaneously handles the interactions within [MASK] tokens and the interactions
between [MASK] tokens and visible tokens, and it outperforms other possible designs like stacking
self-attention and cross-attention layers alternately (see Table 6b).

Table 2: Effects of prioritizing vis-
ible tokens. NE , ND: encoder/de-
coder layers (for visible/[MASK]
tokens). Network width is slightly
adjusted to make GFLOPs approx-
imately unchanged.

NE ND GFLOPs FID↓
8 8 40.2 5.50

12 4 38.2 4.98
15 1 39.8 4.78

Moreover, further explorations of our disentangled architecture
yield an interesting finding: prioritizing visible tokens results
in an enhanced efficiency. As shown in Table 2, the paradigm
of equal computation allocation across all tokens derived from
existing NATs may be far from optimal. Instead, allocating more
computation to visible tokens yields notably better performance
without sacrificing efficiency, while the computation on masked
tokens can be reduced to only a single layer. This observation
further underscores the importance of our proposed disentangled
paradigm of processing visible tokens from masked ones in
enabling advanced network architecture design.

4.2 Temporal Level Interaction

Feature similarity across generation steps. Another critical characteristic of NATs is their incre-
mental revelation of unknown parts of the image upon previous steps. Beyond this straightforward
procedure of progressive generation, here we are interested in whether there exist some interpretable
temporal interaction patterns in NATs’ behaviors. For instance, how do a NAT’s computation results
at the current step relate to those at the previous step? To investigate this, we conduct a similarity
analysis of NATs’ output features between two adjacent generation steps.

In Figure 5a, we randomly select two generated samples in NATs and visualize their token feature
similarity at two adjacent steps (steps 2 & 3 and steps 6 & 7). We compare token-wise similarity and

adopt cosine similarity as the metric: Sim(z(t−1), z(t))ij =
z
(t−1)
ij ·z(t)

ij

∥z(t−1)
ij ∥∥z(t)

ij ∥
, where z

(t)
ij denotes the

feature of the token at position (i, j) and timestep t. The similarity map exhibits a highly polarized
pattern: token representations undergo drastic changes at some “critical positions”, while other
positions remain highly similar between adjacent steps. When comparing with the positions of
newly decoded tokens, we find that these “critical positions” correspond precisely to where the newly
decoded tokens are located. In other words, the major significance of each time step lies in updating
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Figure 4: Overview of ENAT. Based on the disentangled architecture in Fig. 3b, we further propose
to only encode the critical (i.e., newly decoded) tokens and maximally reuse previously extracted
features to supplement necessary information. ∆ is the indicator of newly decoded tokens. Only one
transformer block is illustrated for simplicity.

the representations of newly decoded tokens, while the computation for the remaining majority of
tokens is generally repetitive. In Figure 5b, we plot the average token similarity over 50,000 generated
samples in each pair of adjacent steps (t = 1→2, t = 2→3, . . ., t = 7→8). The results show that
this temporal interaction pattern remains consistent for different timesteps/samples.

token-to-token
feature similarity

Sa
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e 
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e 
2

(a) Token feature undergoes drastic change only at newly decoded positions (b) Avg. similarity (step 𝑡 − 1 vs. step 𝑡)

step 2 vs. step 3 step 6 vs. step 7
newly decoded tokens

(marked in    )
token-to-token

feature similarity
newly decoded tokens

(marked in    )

Figure 5: Feature similarity analysis. (a) We randomly choose two samples and visualize the
token-to-token feature similarity between adjacent steps (2 & 3 and 6 & 7), with the positions of
newly decoded tokens visualized on the right. (b) The token feature similarity averaged over 50,000
generated samples in each pair of adjacent steps (t = 1→2, t = 2→3, . . ., t = 7→8).

Computation reuse. Driven by these observations, our key insight is: during the generation of NATs,
not all tokens need to be re-computed from scratch at each step. Instead, only the newly decoded
tokens need to be re-encoded to inject new knowledge about the image, while the previously encoded
information can be maximally reused to supplement necessary details.

To implement this idea, we slightly modify the inference process upon our disentangled architecture
(Sec. 4.1) by only encoding the newly decoded tokens at each step, while integrating the previously
computed features to assist the current step’s decoding:

without reuse (Fig. 3b) : z = Forward(vM̄ ,vM ) (4)
with reuse (Fig. 4b) : z = Forward(v∆,vM , f(zprev)) (5)
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where zprev is the feature computed on the previous step, which is projected by a light-weight
projection module f(·), and v∆ denotes the newly decoded tokens. We adopt the SC-Attention
mechanism (Sec. 4.1) to integrate the previous features into the current step’s decoding process. At
the end of the encoder, we simply concatenate the projected previous features with the computed
features on the newly decoded tokens, and feed them into the decoder. In this way, the previously
computed features are maximally reused to supplement both the encoding and decoding process of
the current step, significantly reducing the computation cost and accelerating the generation process.
The detailed inference process is illustrated in Figure 4b.

To equip the model with the ability to utilize previously computed features, we introduce minor
modifications to the training process by alternating between normal forward mode and a “reuse
forward mode” during training (each with 50% probability).

More specifically, the “reuse mode forward” during training is achieved through the following steps:

1. Masking Tokens: Given the current input token map v, we mask a random subset of visible
tokens in v to create vprev.

2. Feature Extraction: Feed vprev into the NAT model to obtain its features zprev.
3. Forward Pass and Loss Computation: Use Eq. (5) to forward the current input token map v

along with zprev obtained in Step 2, and compute the loss. In practice, a stop gradient operation
is applied before feeding zprev into Eq. (5).

At other times, we use the original forward mode without incorporating previous features: Eq. (4),
where the previous features are empty and the SC-Attention on the left of Figure 4b naturally reduces
to the original self-attention mechanism. The reuse mechanism significantly accelerates the generation
process, as shown in Table 6a. Additionally, we find in practice that only feeding the visible token
feature of the previous step is sufficient and achieves better efficiency, as shown in Table 6d.

5 Experiments

Setups. Following [7, 35, 6], we utilize a pretrained VQGAN [13] with a codebook of size 1024 for
image and visual token conversion. We employ three NAT models: ENAT-S (15 encoder layers, 1
decoder layer, 366 embedding dimensions, primarily for ablations), ENAT-B (15 encoder layers, 1
decoder layer, 768 embedding dimensions), and ENAT-L (22 encoder layers, 2 decoder layers, 1024
embedding dimensions). For class-conditional generation, we use adaptive layer normalization [80,
49] for conditioning. For text-to-image generation, we concatenate text embeddings with visual
tokens for conditioning. Our training configurations follow [3] with minor adjustments to batch
sizes and learning rates to accommodate different model sizes. For system-level comparisons in
Sec. 5.1, we measure the TFLOPs of the entire generation process (including the decoder part for
latent space generation models) to ensure fair comparisons.4 All our experiments are conducted with
8 × A100 80G GPUs. We generally follow the approach described in [3] with minor modifications.
More details on the training and inference setups, and the choice of our baselines can be found in
Appendix A.2.

5.1 Main Results

Class-conditional generation on ImageNet 256×256 and 512×512. In Table 3, we compare
our approach with other generative models on ImageNet 256×256. Our ENAT achieves superior
performance with significantly lower computational cost. For instance, our ENAT-B model, despite
having an extremely low inference cost, attains competitive FID scores of 3.53 in 8 steps. With
a slightly increased computational budget, our ENAT-L model achieves a FID of 2.79 with only
0.3 TFLOPs, surpassing leading models with substantially less computational effort. For example,
compared to the most performant baseline, i.e., U-ViT-H [3], our ENAT-L model achieves a lower
FID score (2.79 vs. 3.37) while requiring 8× lower computational cost (0.3 TFLOPs vs. 2.4 TFLOPs).
We further evaluate our ENAT on ImageNet 512×512 in Table 4. Our ENAT-L model also achieves
a superior FID of 4.00 with only 1.3 TFLOPs, outperforming leading models with much lower
inference cost. Qualitative results of our method are presented in Figure 7 and Appendix B.

4This differs from the GFLOPs reported in our ablation studies in Tabs. 1, 2, 6, where VQ-decoder costs are
excluded to better compare the efficiency of different NAT designs.
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Table 3: Results on ImageNet 256×256 . TFLOPs quantify the total computational cost for
generating a single image. For DPM-Solver [40] augmented diffusion models (†), we follow [40] to
tune configurations and report the lowest FID. Diff: diffusion, AR: autoregressive.

Method Type #Params Steps TFLOPs↓ FID↓ IS↑

BigGAN-deep [4] (ICLR’19) GAN - 1 - 6.95 171.4
StyleGAN-XL [63] (SIGGRAPH’22) GAN - 1 1.5 2.30 265.1
VQVAE-2 [57] (NeurIPS’19) AR 13.5B 5120 - 31.1 ∼ 45
VQGAN [13] (CVPR’21) AR 1.4B 256 - 15.78 78.3
ADM-G [10] (NeurIPS’21) Diff. 554M 250 334 4.59 186.7
LDM [59] (CVPR’22) Diff. 400M 250 52.3 3.60 247.7

LDM† [59] (CVPR’22) Diff. 400M 4 1.2 11.74 -
8 2.0 4.56 262.9

U-ViT-H† [3] (CVPR’23) Diff. 501M 4 1.4 8.45 -
8 2.4 3.37 235.9

DiT-XL† [49] (ICCV’23) Diff. 675M 4 1.3 9.71 -
8 2.2 5.18 213.0

MDT-XL† [16] (ICCV’23) Diff. 676M 4 1.3 11.36 -
8 2.2 4.00 -

USF [38] (ICLR’24) Diff. 554M 8 10.7 9.72 -
MaskGIT [7] (CVPR’22) NAT 227M 12 1.22 4.92 -
Token-Critic [33] (ECCV’22) NAT 422M 36 1.9 4.69 174.5
Draft-and-revise [32] (NeurIPS’22) NAT 1.4B 72 - 3.41 224.6
MAGE [35] (CVPR’23) NAT 230M 20 1.0 6.93 -
MaskGIT-FSQ [43] (ICLR’24) NAT 225M 12 0.8 4.53 -
AdaNAT [47] (ECCV’24) NAT 206M 8 0.9 2.86 265.4

ENAT-B NAT 219M 4 0.1 5.86 -
8 0.2 3.53 302.4

ENAT-L NAT 574M 4 0.2 4.13 -
8 0.3 2.79 326.7

Table 4: Results on ImageNet 512×512. †: DPM-Solver [40] augmented diffusion models.

Method Type #Params Steps TFLOPs↓ FID↓ IS↑

VQGAN [13] (CVPR’21) AR 227M 1024 - 26.52 66.8
ADM-G [10] (NeurIPS’21) Diff. 559M 250 579 7.72 172.7
U-ViT-H† [3] (CVPR’23) Diff. 501M 8 3.4 4.60 286.8
DiT-XL† [49] (ICCV’23) Diff. 675M 8 9.6 5.44 275.0
MaskGIT [7] (CVPR’22) NAT 227M 12 3.3 7.32 156.0
MaskGIT-RS [7] (CVPR’22) NAT 227M 12 13.1 4.46 -
Token-Critic [33] (ECCV’22) NAT 422M 36 7.6 6.80 182.1
Token-Critic-RS [33] (ECCV’22) NAT 422M 36 34.8 4.03 -
ENAT-L NAT 574M 8 1.3 4.00 285.7

Table 5: Results on MS-COCO; all models are
trained and evaluated on MS-COCO. †: DPM-
Solver [40] augmented diffusion models.

Method #Params Steps TFLOPs↓ FID↓

VQ-Diffusion [21] 370M 100 - 13.86
Frido [14] 512M 200 - 8.97
U-Net† [3] 53M 50 - 7.32

U-ViT† [3] 44M 4 0.4 16.20
8 0.5 6.92

ENAT-B 116M 8 0.3 6.82

Text-to-image generation on MS-COCO. We fur-
ther assess the efficacy of ENAT for text-to-image
generation on MS-COCO [36]. Table 5 shows that
ENAT-B surpasses competing baselines with just
0.3 TFLOPs, achieving a FID score of 6.82. Com-
pared to the competitive diffusion model U-ViT [3]
with a fast sampler [41], ENAT-B requires similar
computational resources to its 4-step variant while
significantly outperforming it (6.82 vs. 16.20), and
it also surpasses the 8-step sampling results of U-
ViT with lower computational costs.

Practical efficiency. We provide more comprehensive comparisons of the trade-off between genera-
tion quality and computational cost in Figure 6. Both theoretical TFLOPs and the practical GPU/CPU
latency for generating an image are reported. Our results show that ENAT consistently outperforms
other baselines in terms of both generation quality and computational cost.
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(b) FID vs. GPU Time (c) FID vs. CPU Time(a) FID vs. TFLOPs

ENAT-LENAT-BDiT†
(ICCV’23) MaskGIT (CVPR’22)LDM†

(CVPR’22) U-ViT†
( CVPR’23)

Figure 6: Practical efficiency of ENAT . As a reference, we also plot the TFLOPs for generating
a single image in (a). GPU time is measured on an A100 GPU with batch size 50. CPU time is
measured on Xeon 8358 CPU with batch size 1. †: DPM-Solver [40] augmented diffusion models.

Figure 7: Selected samples of ENAT-L with 8 generation steps on ImageNet 256×256.

5.2 Ablation Studies

In this section, we present additional ablation studies on Imagenet 256×256 to validate the effective-
ness of our proposed mechanisms. We use ENAT-S with 8 generation steps as our default setting,
and report the FID score as well as the computational cost in GFLOPs for each NAT model.

Main ablation. Disentangled architecture and computation reuse are the two fundamental mecha-
nisms in ENAT. The former separates the processing of visible and [MASK] tokens, and prioritizes
computation on visible ones, while the latter eliminates repetitive processing of non-critical tokens.
In Table 6a, we demonstrate the effectiveness of these two mechanisms. The results show that the
disentangled architecture significantly improves NAT’s performance, with a 1.76 improvement in FID
score at a similar computational cost. Computation reuse, on the other hand, significantly reduces
computational cost (1.8× fewer GFLOPs) while preserving most of the gains from disentanglement.

Effectiveness of SC-Attention. The SC-Attention mechanism adopted in our work serves dual
roles: handling interactions of input tokens while simultaneously incorporating necessary additional
information. Theoretically, the same functionality can be achieved with a stack of one self-attention
layer and one cross-attention layer. However, as shown in Table 6b, SC-Attention outperforms
the stack of self-attention and cross-attention layers with a lower FID (4.97 vs. 5.85) and a lower
computational cost (22.6 vs. 25.0), demonstrating its effectiveness in our ENAT model.

Effectiveness of reuse projection module. In our computation reuse mechanism, a lightweight reuse
projection module first processes the previous feature before integrating it into the current generation
step. As shown in Table 6c, this design is highly important to our reuse mechanism. Without this
module, the FID is 5.96, which is much worse than the 4.78 FID achieved without reuse. An intuitive
explanation is that the reuse projection module learns the minimal necessary updates for the features
of non-crucial tokens, preventing them from becoming too stale for more distant subsequent steps.

Which token features to reuse? Our basic reuse formulation integrates all previous token features
into the current step. However, as shown in Table 6d, reusing only visible token features is equally
effective while being much more efficient. As discussed in Section 4.1, encoding visible tokens
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Table 6: Ablation studies on ImageNet 256×256. We use ENAT-S with 8 generation steps as our
default setting, which is marked in gray . We report FID-50K following [3, 49] and total GFLOPs
for each NAT model throughout the generation process.

(a) Main ablation. Our disentangled ar-
chitecture and reuse mechanism signifi-
cantly improves NATs.

Disentangle Reuse FID↓ GFLOPs↓
6.54 39.6

✓ 4.78 39.8
✓ ✓ 4.97 22.6

(b) SC-Attention outperforms al-
ternately stacking self&cross atten-
tion layers with fewer GFLOPs.

Attn. Type FID↓ GFLOPs↓
SC 4.97 22.6

self + cross 5.85 25.0

(c) Reuse projection is
lightweight yet critical for
maintaining performance.

Proj. FID↓ GFLOPs↓
✓ 4.97 22.6
✗ 5.96 20.8

(d) Which token features to reuse? Reusing
only visible token features of previous step is
sufficient and much more efficienct.

Prev. Token Features FID↓ GFLOPs↓
all 4.95 37.5

visible only 4.97 22.6

(e) Which layer of feature to reuse? Reusing last
layer prev. features for all current layers is better than
reusing in a layer-to-layer correspondence manner.

Prev. Feature Pos. FID↓ GFLOPs
last layer 4.97 22.6

layer-to-layer 5.77 36.1

is most critical for NAT, and thus our ENAT model focuses most computation on these tokens.
Therefore, using only visible token features suffices to provide the necessary information for reuse.

Which layer of feature to reuse? We compared reusing the last layer’s features from the previous
step with reusing features in a layer-by-layer manner, where the i-th layer of the current step reuses
the features from the i-th layer of the previous step. As shown in Table 6e, reusing features from the
last layer of the previous step outperforms the layer-by-layer approach, achieving a lower FID of
4.97. Additionally, it requires fewer GFLOPs (22.6 vs. 36.1), as the layer-by-layer approach needs to
project features of each previous layer, while the last layer approach only projects once.

6 Conclusion

In this paper, we explored the underlying mechanisms of non-autoregressive Transformers (NATs)
and uncovered key spatial and temporal token interaction patterns exist within NATs. Our findings
highlight that spatially, visible tokens primarily provide information for [MASK] tokens, while
temporally, updating the representations of newly decoded tokens is the main focus across generation
steps. Driven by these findings, we propose ENAT, a NAT model that explicitly encourages these
critical interactions. We spatially disentangle the computations of visible and [MASK] tokens by
independently encoding visible tokens and conditioning [MASK] tokens on fully encoded visible
tokens. Temporally, we focus computation on newly decoded tokens at each step, while reusing
previously computed representations to facilitate decoding. Experiments on ImageNet and MS-COCO
demonstrate that ENAT enhances NATs’ performance with significantly reduced computational cost.
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A Implementation Details

A.1 Detailed model configurations.

Here we present the detailed configurations of all our NAT models appeared within this paper in
Table 7. We provide the number of encoder layers (NE), decoder layers (ND), the dimension of the
hidden states (embed dim.), the number of attention heads (# attn. heads):

Table 7: Summary of model configurations. NE : encoder layers (for visible token encoding), ND:
decoder layers (for [MASK] token decoding). ∗: In conventional NAT models, the layers for visible
token encoding are shared with the layers for [MASK] token decoding.

arch. reuse? NE ND embed dim. # attn. heads

baseline ✗ 8∗ 288 6
disentangled ✗ 8 8 288 6
disentangled ✗ 12 4 318 6
disentangled ✗ 15 1 366 6

ENAT-S ✓ 15 1 366 6
ENAT-B ✓ 15 1 768 8
ENAT-L ✓ 22 2 1024 16

A.2 Details of training and evaluation.

For ImageNet 256×256, we use a batch size of 2048 and a learning rate of 4e-4. For ImageNet
512×512, to manage the increased sequence length, we reduce the batch size to 512 and linearly
scale down the learning rate to 1e-4. For MS-COCO, we train for 150k steps instead of the 1000k
steps used in [3].

For our ablation studies in Sec. 5.2 and explorative experiments in Sec. 4, we train the models for
300k steps instead of the 500k steps used in [3], while keeping the other settings the same as above.

For data preprocessing, we perform center cropping and resizing to 256×256 for ImageNet 256×256
and MS-COCO, and to 512×512 for ImageNet 512×512. Additionally, we adopt random horizontal
flipping as data augmentation, following [3, 49].

Our evaluation on FID follows the same evaluation protocol as [10, 3, 49]. We adopt the pre-computed
dataset statistics from [3] and generate 50k samples for ImageNet (30k for MS-COCO) to compute
the statistics for the generated samples, using the following formula to calculate FID [30]:

FID = ||µreal − µfake||22 + Tr(Σreal +Σfake − 2(ΣrealΣfake)
1/2), (6)

where µ and Σ are the mean and covariance of the real and fake samples, respectively. The evaluation
on Inception Score (IS) follows the same protocol as [3, 49], using a pre-trained InceptionV3
model [66] to compute the IS.

For the choice of baselines in our work, since ENAT focuses on inference efficiency, we aim to
compare ENAT with other models in a lightweight, low-FLOPs scenario. However, while the
inference efficiency of generative models is important, it is generally under-explored in the original
papers of state-of-the-art diffusion models (e.g., DiT [49], MDT [16]), which mostly focus on
enhancing generation performance. The official results of them are primarily obtained with hundreds
of inference steps, making direct comparisons with ENAT challenging. For instance, as shown in
Fig. 8, the official results of DiT, MDT, etc. all concentrate at the high end of overall inference costs,
requiring hundreds of times more computation than ENAT.

Fortunately, there are well-established fast sampling techniques (e.g. DPM-Solver [40]) for accelerat-
ing diffusion models, which allows us to reduce their sampling steps and compare them with ENAT
in a fairer setting.
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†: reproduced with DPM-Solver 
for few-step sampling

ENAT-L
ENAT-B

DiT-XL

LDM-4

U-ViT-H

MDT-XL

SiT-XL

Official
Results

MDT-XL†

Reconstruction FID of ENAT’s VQ-autoencoder (“lower bound”)
Reconstruction FID of diffusions’ KL-autoencoder (“lower bound”)

StyleGAN-XL

Figure 8: System-level comparisons on ImageNet 256×256. All baseline results are sourced from
their original papers, except for the few-step MDT results (†).

Figure 9: Selected samples of ENAT-L with 8 generation steps on ImageNet 256×256 and 512×512.

B More Qualitative Results.

Here we present more qualitative results in Figure 9. For each class, the first two columns contain 3
ImageNet 512×512 samples and the last column contains 4 ImageNet 256×256 samples.

C Limitations and Future Work

Although our experiments have covered two fundamental types of generative models, namely class-
conditional and text-to-image generation, and utilized three datasets, investigating the efficacy of
ENAT on more diverse datasets, such as the widely used CelebA [39] and LSUN [84], and exploring
additional generation types like unconditional generation, constitute valuable directions for future
research. Moreover, scalability, both in terms of model size and dataset volume, is a crucial capability
for current generative models. Our largest model scales up to approximately 0.6 billion parameters,
and our experiments utilized datasets with a maximum size of 1.2 million images (ImageNet dataset).
Evaluating the performance of ENAT on even larger-scale datasets, such as LAION-5B [64], and
further scaling the model to surpass 1 billion parameters, could provide deeper insights into its
scalability and robustness.

To further enhance the applicability and efficiency of non-autoregressive Transformers, integrating
other adaptive inference methods [76, 75, 26, 95] and learning techniques [67, 82, 77] will be
essential. For instance, methods like dynamic neural network [74, 27, 89, 93, 94, 52] and resolution-
adaptive models [81] offer promising pathways to explore. Additionally, examining ENAT across
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Table 8: Licenses for existing assets.
dataset / code source license

MS-COCO [36] New BSD License
ImageNet [60] Custom (research, non-commercial)
MaskGIT [7] Apache-2.0 license

U-ViT [3] MIT license

diverse tasks and domains [51, 50, 28] and leveraging advances in model training and inference
techniques [45, 22, 25, 23, 78, 24] can strengthen its performance and expand its scope.

D Broader Impacts

On the positive side, the proposed EfficientNAT (ENAT) models significantly reduce computational
costs, making advanced visual generation technology more accessible. This democratization can
benefit diverse sectors, including education, healthcare, and creative industries. However, as with
any AI-generated content technology, there are potential ethical considerations such as creating
misleading content or spreading misinformation. Additionally, like other data-driven approaches, the
model may inadvertently reinforce biases present in the training data. Possible mitigation strategies
for these concerns include developing robust detection methods for generated content, promoting
transparency in AI-generated content, and ensuring diverse and representative training data.

E Licenses

The Table 8 outlines the assets used in our work, their sources and licenses. Our models, data and
code will be open-sourced under the MIT License upon paper acceptance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction have stated our contributions and scope, which
are supported by the results in Section 5.1. Additionally, the ablation studies in Section 5.2
provide insights into the mechanisms behind the effectiveness of ENAT.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Appendix C
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details are provided in Section 5 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Data and code will be available upon paper acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Detailed experimental setups are provided in Section 5 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Like most works [59, 49] in the field, training generative models on large-scale
datasets typically involves high computational costs, making it impractical to run multiple
trials for each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resource information is provided in Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Social impacts are discussed in Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited their original papers and included their license in Appendix E.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code will be released under the MIT License. Implementation details are
provided in Section 5 and Appendix A.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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