
From Acceleration to Saturation: Scaling Behavior of
Bootstrapped Language Model Pretraining ∗

Seng Pei Liew†

SB Intuitions
Tokyo, Japan

Takuya Kato
SB Intuitions
Tokyo, Japan

Abstract

Bootstrapped pretraining, i.e., the reuse of a pretrained base model for further
pretraining, such as continual pretraining or model growth, is promising at reducing
the cost of training language models from scratch. However, its effectiveness
remains unclear, especially when applied to overtrained base models. In this work,
we empirically study the scaling behavior of bootstrapped pretraining and find that
its scaling efficiency diminishes in a predictable manner: The scaling exponent
with respect to second-stage pretraining tokens decreases logarithmically with
the number of tokens used to pretrain the base model. The joint dependence on
first- and second-stage tokens is accurately modeled by a simple scaling law. Such
saturation effect reveals a fundamental trade-off in multi-stage pretraining strategies:
the more extensively a model is pretrained, the less additional benefit bootstrapping
provides. Our findings provide practical insights for efficient language model
training and raise important considerations for the reuse of overtrained models.

1 Introduction

Large language models (LLMs) have recently shown astounding performance in various natural
language processing tasks, reaching human-level capabilities in some cases [1, 2, 23]. However,
training/pretraining these models from scratch is computationally expensive and time-consuming,
requiring weeks to months even with powerful GPU clusters. To address this challenge within
the pretraining stage itself, researchers have explored strategies for bootstrapping/reusing existing
pretrained (base) models for various purposes. These include strategies to learn with new pretraining
data, or to increase the model size, without starting from scratch. We refer such strategies that pretrain
a model in multiple stages collectively as bootstrapped pretraining.

More specifically, we are interested in bootstrapped pretraining strategies that (1) improve domain-
specific performance through continual pretraining (CPT) of the base model (see, e.g., [34]); or
(2) scale model capacity via model growth techniques, which increase the model size reusing base
model parameters to speed up training [13]. These strategies have been shown to be promising at
accelerating performance improvement of LLMs while reducing the computational cost compared to
pretraining from scratch.

On the other hand, neural networks could lose plasticity after training for a long time, thereby
reducing their ability to learn from new data effectively [5, 3, 58]. Grown models may also similarly
suffer from bad initialization, resulting in ineffective utilization of their enlarged capacity. Hence, it
is unclear if the second stage of pretraining can be effectively applied to models that are overtrained,
or whether the scaling behavior remains consistent across different training stages and model sizes.

∗Accepted to NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent
Abilities, and Scaling.

†sengpei.liew@sbintuitions.co.jp



Figure 1: Bootstrapped pretraining with overtrained base models leads to saturation in scaling
behavior. Left: D2 has power-law scaling. We show scaling behavior of second-stage training
tokens (D2) for different values of first-stage tokens (D1). Middle: Interaction term explains
decreasing exponents. The fitted exponents in the left plots are used to fit Equation 5 as a function
of D1, and are shown to agree well with the functional form. Right: Scaling factor has power-law
scaling w.r.t. D1. Top: Continual pretraining (CPT) on code data. Bottom: Model growth by
stacking.

In this paper, we seek to understand the scaling behavior of bootstrapped pretraining methods by
running a multitude of controlled language modeling experiments. We find that, from the performance
(cross-entropy loss) perspective, bootstrapping overtrained base models leads to saturation in scaling
during the second-stage pretraining. Specifically, we show that this effect is quantifiable via scaling
laws: The scaling exponent (with respect to the number of training tokens in the second stage)
decreases as the base model is trained for longer periods of time. The decrease is proportional
to the logarithm of the number of training tokens invested to the first stage. See Figure 1.

This saturation effect underscores a fundamental trade-off in multi-stage pretraining strategies:
bootstrapping a more heavily pretrained base model does not necessarily lead to better performance.
Our scaling laws enable a quantitative assessment of when bootstrapping is beneficial versus when
training from scratch is preferable, offering practical guidance for efficient language model training.

Contributions. More technically, our main contributions are summarized as follows:

• We conduct extensive experiments on language models of various sizes and pretraining to-
kens/datasets, to study the scaling behaviors of bootstrapped pretraining methods, including
continual pretraining and model growth.

• We formulate and empirically validate possible functional forms to quantify the the scaling behavior
of these methods. We find that for a wide range of configuration of these methods, the following
scaling relation holds:

L(D1, D2) = AD−α1
1 D−α2+α3 logD1

2 + E

where L is the validation loss after the second stage, D1 and D2 are the number of training tokens
in the first and second stages, respectively, and A,α1, α2, α3, E are positive constants. We denote
the term α3 logD1 as the interaction term. The scaling exponent with respect to D2 then quantifies
the saturation effect of bootstrapped pretraining.

• We also formulate a joint scaling law incorporating model size in addition to dataset sizes, see
Equation 7. Using these results, we discuss the practical implications of the scaling laws for
efficient bootstrapping of language models. Particularly, we show how the scaling laws provide
guidance on when to train from scratch instead of bootstrapping, and how compute optimality is
affected by bootstrapped pretraining.

Notations used throughout the paper are summarized in Appendix A.

2



1.1 Related Work

Continual pretraining. CPT has been widely used to adapt existing LLMs to specific domains
[61, 35, 36], including code [69, 71, 26] and mathematics [25, 53] domains, to be studied in this
work. Systematic studies at scale are relatively fewer, and our methodology mainly follows [34].

Model growth. While [13] was the first model growth work in the deep learning era, the idea of
growing neural networks from smaller ones can be traced to the 90s [20, 21]. More recent language
model-related model growth methods include [24, 12, 65, 67, 55, 19, 70], which were subsequently
systematically analyzed in [17], motivating our choice of model growth methods.

Scaling laws. We focus on modeling only the final loss, which has a power-law like behavior, a generic
phenomenon not only occuring in neural networks [31, 37], but is also observed in other natural
as well as man-made phenomena [15]. We shall additionally note that recent scaling law studies
attempted to fit the whole loss curve albeit with more sophisticated functional forms [62, 66, 50].

Similar to CPT, the reduced capability of transfer learning of code data from models pretrained on
natural language data was observed in [29], where the authors denoted as ossification. A similar
phenomenon was also observed in the pretraining-instruction-tuning pipeline [59]. These studies
however did not quantify the saturated scaling behavior. Previous fine-tuning scaling studies [45, 72,
7] did not observe the subtler saturation effects as well, which is perhaps due to the smaller scale (in
terms of training tokens) of their experiments.

2 Experimental Setup

Model configuration. We consider decoder-only transformers [64] pretrained with an autoregressive
language modeling objective. Our architecture is LLaMA-like [63], incorporating refinements such
as SwiGLU activation functions [54] and rotary position embeddings [60]. We use the LLaMA
tokenizer with a vocabulary size of 32,000. We consider a suite of model sizes up to 1.1B in our
experiments. Table 3 of Appendix B contains the model configuration used in this paper.

Training configuration. All experiments are conducted using the Megatron-LM library [57]. We
train models in mixed precision (bfloat16) using the AdamW optimizer [43], with maximum learning
rates tuned separately for each model size. The learning rate follows the warmup-stable-decay (WSD)
schedule [8, 33], with the final learning rate decayed to one tenth of the peak value. This schedule
enables long training runs and facilitates checkpoint reuse for emulating shorter effective training
budgets, reducing computational cost. In Appendix C, we also provide an ablation study with the
cosine learning rate schedule to show that they achieve similar performance. We train each model for
a number of tokens for up to roughly 200 times the model size in tokens in total (up to a few hundred
B tokens overall). Tables 4 and 5 in Appendix summarize the main training configurations. See also
Appendix B for further experimental details and Appendix C for training details and evaluation on
downstream tasks.

Two stages of pretraining. In the context of bootstrapped pretraining, we are primarily interested
in how the loss behaves with respect to the number of training tokens used in the two stages of
pretraining:

• D1: the number of tokens used in the first-stage pretraining (base model).
• D2: the number of tokens used in the second-stage pretraining (CPT or model growth).

Base model. For the first-stage pretraining, we use the CommonCrawl portion of the Slimpajama-
DC dataset [56], containing 368B tokens in total. The models trained in this stage serve as base
checkpoints for the second-stage bootstrapped pretraining experiments.

Continual Pretraining. CPT refers to further training a pretrained model on a large dataset,
typically billions of tokens, with the goal of improving performance on a new domain. We distinguish
CPT from instruction tuning, which typically trains with smaller datasets (millions of tokens or fewer),
and is thus harder to analyze the scaling behavior. For our experiments, we perform CPT on the
base model on two domain-specific datasets: Code corpus: Stack/StarCoder [40]; and mathematics
corpus: OpenWebMath [48]. Unless otherwise noted, we adopt the same optimizer and learning rate
configurations as the first-stage pretraining.

3



Model growth. Model growth refers to increasing model capacity by adding new layers and/or
expanding hidden dimensions, thereby increasing the number of trainable parameters. This strategy
aims to leverage the representations learned during first-stage training, allowing the larger model
to accelerate learning in the second stage. We investigate two model growth techniques shown to
be the most effective (in terms of adding new parameters in the width and depth directions) in prior
work [17] (see also Appendix C.5 for more details):

• Width expansion: Add new neurons to each layer while using function-preserving initialization
(FPI), ensuring that the expanded model initially reproduces the behavior of the smaller model
[12, 17].

• Depth-wise stacking: Add new layers to the top of the transformer by copying existing layer
weights, thereby extending model depth [12, 17] .

After performing this procedure, the larger models are trained on the same dataset as the base model.
For both bootstrapped pretraining scenarios in consideration, the validation loss is evaluated on a
held-out set from the second-stage dataset. We illustrate the whole framework in Figure 2.

3 Formulating the Data Scaling Laws

Figure 2: Illustration of bootstrapped pretraining in considera-
tion. Bootstrapped pretraining consists of two stages: (1) first-stage
pretraining of a base model for D1 tokens on internet/generic data;
(2) bootstrapping/second-stage pretraining via continual pretraining or
model growth for D2 tokens. Section 3 and 4 study and develop scaling
laws as a function of these two variables (and additionally model size,
N in Section 5) to predict the final loss after the second stage.

In this Section, we derive
possible functional forms
for the scaling laws of boot-
strapped pretraining meth-
ods, focusing on the num-
ber of training tokens as
the main variable of inter-
est. These are then fitted
and compared empirically
in later sections.

Power-law ansatz. We
begin by assuming that the
validation loss L follows
the widely observed power-
law scaling with respect
to a single variable of
interest, such as the number
of training tokens or the
model size [31, 30, 28]:

L = AX−α + E,

where X is the variable of
interest, α is the scaling ex-
ponent, A is the scaling factor, and E is the irreducible loss due to the inherent entropy of the data
distribution. 3

Our goal is to find a functional form L(D1, D2) that captures how the second-stage loss depends
jointly on both stages. To derive a principled formulation, we impose two natural constraints:

Condition 1: For a fixed base model trained on D1 tokens, the second-stage loss should follow a
power law with respect to the number of tokens D2:

L(D1, D2) = LD1
(D2) = AD−α

2 + E. (1)

This is consistent with classical neural scaling laws and reflects the expectation that, when starting
from a fixed initialization, additional tokens improve performance predictably.

3 Strictly speaking, we assume the form L = A
(X+1)α

+E, which ensures finiteness at X → 0. However,
since in practice X ≫ 1 (typically 106 or more), we approximate it as L ≈ AX−α+E for notational simplicity.
Moreover, we use the same symbols A, α, and E to denote the scaling factor, exponent, and additive constant,
respectively, for notational conveniences, although they may differ across different variables of interest.

4



Condition 2: For any fixed value of D2, the loss should exhibit power-law behavior with respect
to the number of first-stage tokens D1: L(D1, D2) = LD2(D1) = AD−α

1 + E. This is consistent
with the power-law ansatz and captures the intuition that a better-trained base model (i.e., larger
D1) should result in lower loss. Moreover, this condition implies that as D2 → 0, the loss should
continuously approach that of the base model: limD2→0 L(D1, D2) = AD−α

1 +E, which is a natural
requirement for: 4

• CPT: The second stage’s initial loss should begin from the base model’s (evaluated on second-stage
dataset).

• Function-preserving model growth: When model capacity is expanded but initialized carefully,
the initial loss should remain close to the base model’s loss.

Together, these conditions lead to the following candidate formulations that jointly satisfy both
requirements:

Multiplicative: L(D1, D2) = AD−α1
1 D−α2+α3 logD1

2 + E. (2)

Additive: L(D1, D2) = AD−α1
1 + FD−α2

2 + E. (3)

Hybrid: L(D1, D2) =
(
AD−α1

1 + F
)
D−α2

2 + E. (4)

Note that since D−α1
1 D−α2+α3 logD1

2 = D−α2+α3 logD2

1 D−α2
2 , the multiplicative form with an

interaction term satisfies our conditions, while other forms do not. We further note that multiplicative
scaling laws have been observed in [45, 72] but without the interaction term. [41] empirically showed
that sparse upcycling (training sparse mixture-of-experts (MoE) models reusing existing dense
models) follows a scaling law similar to Equation 2 but under different motivation and conditions.
Our work directly extends their findings to other pretraining paradigms. Equation 4 has also been
studied in [4].

4 Data Scaling Laws

Fitting the scaling laws. To determine the functional form described in the previous Section that
best describes the scaling behavior of bootstrapped pretraining methods, we use a model of size 0.1B,
trained on a 5× 5 grid of D1, D2. For CPT, we consider both code and mathematics datasets, while
for model growth, we consider both width expansion and depth-wise stacking that double the size of
the base model. 5

Running the experiments as described above and obtaining the results, we fit the losses with the
functional forms of Equations 2, 3, and 4. Following [32, 6], we perform optimization using the
Huber loss (δ = 10−3) and the BFGS algorithm, to fit the logarithm of the loss via the LogSumExp
trick applied to the RHS of functional forms. The leave-one-out root mean square error (RMS) serves
as the goodness-of-fit metric.

As can be seen in Table 1, the multiplicative form with interaction, Equation 2, consistently achieves
the lowest error across all methods and datasets, indicating that it best captures the underlying scaling
behavior.

Bottom-up empirical evidence. To strengthen our proposal for Equation 2, we demonstrate through
a bottom-up observational approach (instead of the top-down approach of deriving the scaling laws
by imposing suitable conditions) that the multiplicative nature of the scaling law, including the
interaction term, arises naturally from empirical data.

In Figure 1, we first perform power-law fits to show that the loss follows Equation 1 for fixed D1,
validating Condition 1 we impose for deriving the scaling laws. More importantly, we observe that the
fitted scaling exponent of Equation 1 decreases as D1 increases, with the model growth method more

4As in Footnote 3, we omit the +1 term in D + 1 expressions for notational simplicity, such that terms
proportional to D2 are finite as D2 → 0.

5We increase the size of the hidden dimension by
√
2 for width expansion; and we double the number of

non-embedding layers for stacking.

5



pronouncedly so. To quantify this trend, we express (the minus of) the scaling exponent as a function
of D1, denoted by −α(D1). A scatter plot of −α(D1) reveals a clear logarithmic dependence:

−α(D1) = γ logD1 + E′. (5)

This relationship fits the empirical data well, as shown in the same Figure. Substituting Equation 5 into
Equation 1, we arrive at a term of the form D−E′+γ logD1

2 , providing direct empirical justification for
the interaction term. This demonstrates that the interaction term is not a theoretical artifact, but rather
a necessary component for capturing observed trends in the data. Additionally in the same Figure, we
show that the multiplicative dependence, A ∝ D−α1

1 also arises from empirical observations.

We further show that the loss follows a power law with respect to D1 for fixed D2 in Figure 3 (with
more plots in Appendix D). This validates Condition 2 we impose for deriving the scaling laws.

Figure 3: D1 has power-law scaling. We show scaling behavior of first-stage training tokens (D1)
for different values of second-stage tokens (D2), indicating that D1 also has power-law scaling. Left:
Continual pretraining on code data; Right: model growth by stacking. More plots in Appendix D.

4.1 Interpretations

Table 1: Multiplicative scaling law with interaction consistently
achieves lowest error. Leave-one-out RMS error (×10−3) for fitting
the loss for reusing a 0.1B model. Functional forms are from Equations
2, 3, and specific cases with α3 = 0.

RMS (×10−3) Mul. Mul. (α3 = 0) Add. Hyb.
CPT (code) 1.573 2.095 3.913 2.245
CPT (math) 1.737 3.147 7.443 3.340
Expand 2.790 4.837 9.855 4.841
Stack 2.845 7.818 10.323 7.748

Several quantitative and
qualitative insights can be
made from the scaling
law. Fixing D1, the ef-
fective scaling factor for
D2 becomes AD−α1

1 . As
D1 increases, this factor
decreases, resulting in a
lower initial loss at the
start of second-stage pre-
training, agreeing with the
conventional wisdom that
better-pretrained base mod-
els (larger D1) provide stronger initialization for second-stage pretraining.

However, also at fixed D1, the effective scaling exponent with respect to D2 is given by α2−α3 logD1.
This implies that as the base model becomes more overtrained (i.e., larger D1), the improvement in
loss from additional second-stage tokens becomes increasingly marginal. In other words, the returns
from increasing D2 diminish, manifesting as saturation effects at higher D1.

As shown in Table 7 in Appendix D, the fitted values of α3 are consistently positive across all settings
and datasets, reinforcing the generality of this saturation phenomenon (see also Section 5.1 for
additional evidence). Also note that α3 is typically at least an order of magnitude smaller than other
exponents (with its effects accumulating logarithmically with D1), which may explain why it has not
been observed widely in previous scaling studies.

5 A Closer Look At The Scaling Behavior

We first perform a more detailed analysis of the scaling behavior of bootstrapped pretraining methods,
by examining more variants of scaling law and training methods. The aim is to validate the robustness

6



of the multiplicative scaling law with interaction. We then propose and validate a joint scaling law of
dataset and model sizes. The rest of the Section is subsequently dedicated to studying the practical
implications of the scaling laws.

5.1 Variants of Bootstrapped Pretraining

Variant of CPT scaling law. When the dataset used for CPT is the same as the base model, we
expect the scaling formula shown below holds:

L(D1, D2) = A(D1 +D2)
−α + E (6)

Hence, one may expect this holds for CPT on a different dataset as well, as assumed in [51, 66].
Fitting the above formula for the code (math) CPT scenario, we find that the RMS error is 0.0213
(0.0235), higher than the best ones in Table 1. Hence, our scaling law models CPT better, in contrast
to previous assumptions, which may have overlooked the overtraining effects on the model.

Variants of CPT. We also consider CPT variants that are commonly used in practice [34]:

• CPT with replay: A portion of the first-stage data is mixed into the second-stage data, which is
common for mitigating catastrophic forgetting. We consider a replay ratio of 0.25, i.e., 25% of the
second-stage data is from the first stage.

• CPT from stable phase: We consider CPT starting from a base model checkpoint in the stable
phase of the WSD learning rate schedule. This is to avoid adverse effects from re-warming the
learning rate from a decayed value.

Variants of model growth. We further consider model growth variants.

• Larger growth factor: We consider a larger growth factor of 4 times (instead of 2).

• Model growth from stable phase: Similar to CPT, we train the stacked model starting from a
base model checkpoint in the stable phase of the WSD learning rate schedule. This also avoids
re-warming the learning rate from a decayed value.

We again conduct experiments using a 0.1B model, and fit the scaling laws with all possible functional
forms as in Section 4 for the above variants. Results are summarized in Table 2, with fitted scaling
exponents also shown in Table 7 of Appendix D. These results show that the propsed scaling law still
has the lowest RMS, and variants like replay and larger growth factor do not change the functional
form. Furthermore, the saturation effects are unlikely to be artifacts of re-warmings of the learning rate.
Overall, the proposed scaling law is robust across datasets, configurations, and methods investigated.

5.2 Joint Scaling Incorporating Model Size

Table 2: Multiplicative scaling law with interaction is robust over
various configurations (RMS Error). Leave-one-out RMS error
(×10−3) for fitting the loss for variants of bootstrapped pretraining.
See Table 1 for definitions and Section 5 for variant details.

RMS (×10−3) Mul. Mul. (α3 = 0) Add. Hyb.

CPT (replay) 0.987 2.222 4.646 2.223
CPT (stable) 1.371 2.366 4.315 2.367
Stack (x4) 2.152 6.557 8.866 6.667
Stack (stable) 2.957 8.757 10.559 8.822

Let us first focus on CPT
where the model size re-
mains unchanged after boot-
strapping. We proceed
to extend the data scaling
law to include model size
N . To determine the func-
tional form, we impose that
the loss follows the well-
grounded “Chinchilla" scal-
ing law [32] (which jointly
models the base model’s
loss with respect to dataset
and model sizes) with respect to D2 and N :

LD1(D2, N) = AD−α
2 +N−β + E.

The straightforward functional form that satisfies the Chinchilla-style scaling law is:

L(D1, D2, N) = AD−α1
1 D−α2+α3 logD1

2 +BN−β + E, (7)

7



Figure 4: Left: Joint scaling law fit for continual pretraining on code data. Orange points indicate
the 10% of data with lowest losses used for validation. Right: Model growth efficiency decreases
with sunk cost and model size. For token budgets above the curve(s), training from scratch is more
efficient than stacking-based model growth; for budgets below, model growth remains advantageous.
Shown are the numerical (blue) and analytical (red) solutions of Equation 8.

which is also consistent with the conditions (power-law ansatz) imposed in Section 3.

Fitting the joint scaling law. We conduct experiments with base models of sizes 15 million (M),
44M, 0.1B, 0.2B, 0.5B and 1B, training them with different numbers of first and second-stage tokens
as in Section 4. To fit the joint scaling law, we use the same fitting procedure as in Section 4,
additionally taking N as an additional variable. In the left panel of Figure 4, we show that the formula
fits the data well for CPT on code, and the goodness-of-fit to the validation data points also shows
that it can be extrapolated to larger model and dataset sizes. See Table 8 in Appendix D.2 for the
fitted coefficients. In the same Appendix, we further extend our results to model growth where model
sizes increase.

5.3 Practical Implications

We consider two practical implications based on the extrapolation of the scaling laws.

Training from scratch versus bootstrapped pretraining. We show that by comparing the scaling
laws with the base model scaling laws, one can determine whether bootstrapped pretraining is more
efficient than training from scratch under different circumstances.

A key practical consideration is how much of the initial investment in pretraining, the so-called
sunk cost (D1), can be effectively leveraged in the second stage of training. This question has been
explored in the context of MoE upcycling strategies [38, 41]. For example, it was found that upcycling
yields benefits up to 120% of the sunk cost. That is, to match the performance of an upcycled MoE
model that underwent an additional 0.4 trillion tokens of training after an initial 2T tokens, training a
comparable MoE from scratch would require 2.4T tokens—representing an effective saving of 2T
tokens.

To investigate this in model growth, we define D∗ as the number of tokens required for training from
scratch to match the performance of a grown model with the same sunk cost, following [41]:

Lscratch
2N (D∗) = Lgrown

N (D1 = D∗, D2 = D∗) (8)

where Lscratch
2N (D) is the loss of a model of size 2N trained from scratch for D tokens, and

Lgrown
N (D1, D2) is the loss of a model of size 2N grown from a base model of size N trained

for D1 tokens, and then trained for D2 tokens. To obtain Lscratch
2N (D), we fit the losses of models

trained from scratch with the Chinchilla-style scaling law (see Table 8 in Appendix D.2 for the fitted
coefficients).

The right panel of Figure 4 shows that D∗ decreases with increasing model size, with D∗ equal to
13T tokens for a 100B model. When D2 ≲ D∗, the required from-scratch tokens to catch up is more
than 100% of D1: model growth remains more efficient than training from scratch. However, beyond
this threshold, from-scratch training becomes more efficient. Solving Equation 8, we can approximate

the threshold D∗ analytically as D∗ ≃ 13
(

N
1011

)−0.6−0.04 log(N/1011)
T tokens.

8



For CPT on code data, we can perform similar extrapolation as well, finding that a 7B model trained
from scratch begins to outperform bootstrapped models (pretrained on 10T tokens) once more than
300B tokens of domain-specific data are used. See Appendix E for details. These findings offer
quantitative guidance for deciding between bootstrapped pretraining and training from scratch (or
from intermediate checkpoints), depending on the extent to which the base model is overtrained, as
well as the available budget.

Compute optimality of bootstrapped pretraining. For scaling studies of LLMs, the cost of training
is often estimated using floating point operations (FLOPs), which we simply refer to as compute.
The compute cost can be approximated as C = 6ND [37]. One is often interested in training LLMs
with the least amount of compute. For CPT, optimizing the compute based on Equation 2 leads to the
scaling relations:

Dopt
2 ∝ C

β
β+αeff
2 , Nopt ∝ C

αeff
β+αeff
2 (9)

where αeff := α2 − α3 logD1. Notably, as D1 increases, αeff decreases, meaning larger models
require more tokens for compute-optimal bootstrapped pretraining. We give a similar derivation for
model growth in Appendix E. We leave empirical verification of these relationships to future work,
primarily due to cost considerations (see Appendix B.4 for an estimate of GPU hours spent in the
work).

6 Discussion and Conclusion

In this paper, we have shown that while bootstrapped pretraining methods can accelerate learning, they
exhibit scaling saturation as the base model is overtrained. Our work bears practical implications as
even relatively tiny models are overtrained to trillions of tokens nowadays [73, 18], and bootstrapped
pretraining is widely used in practice. We encourage the community to report the amount of
pretraining data used for the base model, and even make intermediate checkpoints available, which
can be more useful than the final model for bootstrapped pretraining.

We have provided a fairly broad scaling study of two-stage pretraining and there are many potential
future directions worth diving deeper into. Let us highlight a few of them.

Incorporating other factors into the scaling laws. We have not considered the scaling behavior with
respect to other method-specific factors, such as the CPT replay ratio [51, 66] and the growth factor
in model growth [17], as (1) our focus is on the more broadly applicable scaling behavior (i.e., scaling
with respect to training tokens), and (2) adding more factors would increase the complexity of the
scaling laws and the number of parameters to fit (and hence the amount of additional experiments/GPU
hours/costs needed). We nevertheless expect that these factors can be incorporated quite naturally
into our scaling laws which are power-law based.

Theory. Providing a theoretical explanation of the scaling laws is an important open question in
the field, but existing work has been focusing on relatively simple theoretical setups like power-law
random feature models to reproduce power-law scaling in deep neural networks [44, 11, 47]. To our
best knowledge, there is no existing theory that can explain the change of scaling exponents with
respect to the amount of pretraining data. In the current work, we have focused on the practical aspects
of the scaling laws, following previous influential scaling law work [37, 32], and have not attempted
to provide a theoretical explanation of the scaling laws as the current theoretical understanding of
scaling laws is still limited. Nevertheless, it would be interesting to study if such a change of scaling
exponents can be explained by existing theories or if new theoretical frameworks are needed.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Anthropic. Introducing the next generation of claude, 2024.

[3] Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in neural
information processing systems, 33:3884–3894, 2020.

9



[4] Matthew Barnett. An empirical study of scaling laws for transfer. arXiv preprint
arXiv:2408.16947, 2024.

[5] Tudor Berariu, Wojciech Czarnecki, Soham De, Jorg Bornschein, Samuel Smith, Razvan
Pascanu, and Claudia Clopath. A study on the plasticity of neural networks. arXiv preprint
arXiv:2106.00042, 2021.

[6] Tamay Besiroglu, Ege Erdil, Matthew Barnett, and Josh You. Chinchilla scaling: A replication
attempt. arXiv preprint arXiv:2404.10102, 2024.

[7] Louis Bethune, David Grangier, Dan Busbridge, Eleonora Gualdoni, Marco Cuturi, and Pierre
Ablin. Scaling laws for forgetting during finetuning with pretraining data injection. arXiv
preprint arXiv:2502.06042, 2025.

[8] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models
with longtermism. arXiv preprint arXiv:2401.02954, 2024.

[9] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling.
pages 2397–2430. PMLR, 2023.

[10] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7432–7439, 2020.

[11] Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural
scaling laws. In Proceedings of the 41st International Conference on Machine Learning, pages
4345–4382, 2024.

[12] Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao
Chen, Zhiyuan Liu, and Qun Liu. bert2bert: Towards reusable pretrained language models.
arXiv preprint arXiv:2110.07143, 2021.

[13] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowl-
edge transfer. arXiv preprint arXiv:1511.05641, 2015.

[14] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[15] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in
empirical data. SIAM review, 51(4):661–703, 2009.

[16] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

[17] Wenyu Du, Tongxu Luo, Zihan Qiu, Zeyu Huang, Yikang Shen, Reynold Cheng, Yike Guo, and
Jie Fu. Stacking your transformers: A closer look at model growth for efficient llm pre-training.
arXiv preprint arXiv:2405.15319, 2024.

[18] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[19] Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Max Vladymyrov, and Fabian Pe-
dregosa. Gradmax: Growing neural networks using gradient information. arXiv preprint
arXiv:2201.05125, 2022.

[20] Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. In D. Touret-
zky, editor, Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann,
1989.

10



[21] Scott E. Fahlman. The recurrent cascade-correlation architecture. In Neural Information
Processing Systems, 1990.

[22] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024.

[23] Gemini Team Google. Gemini: A family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

[24] Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training
of bert by progressively stacking. In International conference on machine learning, pages
2337–2346. PMLR, 2019.

[25] Zheng Gong, Kun Zhou, Xin Zhao, Jing Sha, Shijin Wang, and Ji-Rong Wen. Continual
pre-training of language models for math problem understanding with syntax-aware memory
network, 2022.

[26] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

[27] Alex Hägele, Elie Bakouch, Atli Kosson, Leandro Von Werra, Martin Jaggi, et al. Scaling laws
and compute-optimal training beyond fixed training durations. Advances in Neural Information
Processing Systems, 37:76232–76264, 2024.

[28] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson,
Heewoo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive
generative modeling. arXiv preprint arXiv:2010.14701, 2020.

[29] Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for
transfer. arXiv preprint arXiv:2102.01293, 2021.

[30] Joel Hestness, Newsha Ardalani, and Gregory Diamos. Beyond human-level accuracy: Compu-
tational challenges in deep learning. pages 1–14, 2019.

[31] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is
predictable, empirically. arXiv preprint arXiv:1712.00409, 2017.

[32] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. Proceedings of the 36th International
Conference on Neural Information Processing Systems, pages 30016–30030, 2022.

[33] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language
models with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

[34] Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats Leon Richter, Quentin Gregory An-
thony, Eugene Belilovsky, Timothée Lesort, and Irina Rish. Simple and scalable strategies to
continually pre-train large language models. Transactions on Machine Learning Research.

[35] Joel Jang, Seonghyeon Ye, Changho Lee, Sohee Yang, Joongbo Shin, Janghoon Han,
Gyeonghun Kim, and Minjoon Seo. Temporalwiki: A lifelong benchmark for training and
evaluating ever-evolving language models. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang, editors, Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages
6237–6250. Association for Computational Linguistics, 2022.

11



[36] Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin, Janghoon Han, Gyeonghun Kim,
Stanley Jungkyu Choi, and Minjoon Seo. Towards continual knowledge learning of language
models. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[37] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[38] Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa,
Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training
mixture-of-experts from dense checkpoints.

[39] Teven Le Scao, Thomas Wang, Daniel Hesslow, Stas Bekman, M Saiful Bari, Stella Biderman,
Hady Elsahar, Niklas Muennighoff, Jason Phang, Ofir Press, Colin Raffel, Victor Sanh, Sheng
Shen, Lintang Sutawika, Jaesung Tae, Zheng Xin Yong, Julien Launay, and Iz Beltagy. What
language model to train if you have one million GPU hours? pages 765–782, Abu Dhabi,
United Arab Emirates, December 2022. Association for Computational Linguistics.

[40] Raymond Li, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
Christopher Akiki, LI Jia, Jenny Chim, Qian Liu, et al. Starcoder: may the source be with you!
Transactions on Machine Learning Research.

[41] Seng Pei Liew, Takuya Kato, and Sho Takase. Scaling laws for upcycling mixture-of-experts
language models. In Forty-second International Conference on Machine Learning.

[42] Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: a
challenge dataset for machine reading comprehension with logical reasoning. pages 3622–3628,
2021.

[43] Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

[44] Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling
laws. arXiv preprint arXiv:2210.16859, 2022.

[45] Hiroaki Mikami, Kenji Fukumizu, Shogo Murai, Shuji Suzuki, Yuta Kikuchi, Taiji Suzuki,
Shin-ichi Maeda, and Kohei Hayashi. A scaling law for syn2real transfer: How much is your
pre-training effective? pages 477–492. Springer, 2022.

[46] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1525–1534,
2016.

[47] Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+ 3 phases of
compute-optimal neural scaling laws. The Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

[48] Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text. arXiv preprint arXiv:2310.06786, 2023.

[49] Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving
discrepancies in compute-optimal scaling of language models. Advances in Neural Information
Processing Systems, 37:100535–100570, 2024.

[50] Shikai Qiu, Lechao Xiao, Andrew Gordon Wilson, Jeffrey Pennington, and Atish Agarwala.
Scaling collapse reveals universal dynamics in compute-optimally trained neural networks.
arXiv preprint arXiv:2507.02119, 2025.

[51] Haoran Que, Jiaheng Liu, Ge Zhang, Chenchen Zhang, Xingwei Qu, Yinghao Ma, Feiyu
Duan, Zhiqi Bai, Jiakai Wang, Yuanxing Zhang, et al. D-cpt law: Domain-specific continual
pre-training scaling law for large language models. Advances in Neural Information Processing
Systems, 37:90318–90354, 2024.

12



[52] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[53] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[54] Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

[55] Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and Iz Beltagy. Staged
training for transformer language models. In International Conference on Machine Learning,
pages 19893–19908. PMLR, 2022.

[56] Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang,
Bowen Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, et al. Slimpajama-dc: Under-
standing data combinations for llm training. arXiv preprint arXiv:2309.10818, 2023.

[57] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[58] Shagun Sodhani, Sarath Chandar, and Yoshua Bengio. Toward training recurrent neural networks
for lifelong learning. Neural computation, 32(1):1–35, 2020.

[59] Jacob Mitchell Springer, Sachin Goyal, Kaiyue Wen, Tanishq Kumar, Xiang Yue, Sadhika
Malladi, Graham Neubig, and Aditi Raghunathan. Overtrained language models are harder to
fine-tune. arXiv preprint arXiv:2503.19206, 2025.

[60] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[61] Yu Sun, Shuohuan Wang, Yu-Kun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng Wang.
ERNIE 2.0: A continual pre-training framework for language understanding. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020, pages 8968–8975. AAAI Press, 2020.

[62] Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. arXiv
preprint arXiv:2408.11029, 2024.

[63] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[65] Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. arXiv preprint arXiv:2303.00980, 2023.

[66] Xingjin Wang, Howe Tissue, Lu Wang, Linjing Li, and Daniel Dajun Zeng. Learning dynamics
in continual pre-training for large language models. arXiv preprint arXiv:2505.07796, 2025.

[67] Yite Wang, Jiahao Su, Hanlin Lu, Cong Xie, Tianyi Liu, Jianbo Yuan, Haibin Lin, Ruoyu Sun,
and Hongxia Yang. Lemon: Lossless model expansion, 2023.

[68] Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science
questions. W-NUT 2017, page 94, 2017.

13



[69] Prateek Yadav, Qing Sun, Hantian Ding, Xiaopeng Li, Dejiao Zhang, Ming Tan, Parminder
Bhatia, Xiaofei Ma, Ramesh Nallapati, Murali Krishna Ramanathan, Mohit Bansal, and Bing
Xiang. Exploring continual learning for code generation models. In Anna Rogers, Jordan L.
Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 782–792. Association for Computational Linguistics, 2023.

[70] Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. Masked structural growth for 2x faster
language model pre-training, 2024.

[71] Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu
Chen, and Jian-Guang Lou. CERT: continual pre-training on sketches for library-oriented
code generation. In Luc De Raedt, editor, Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages
2369–2375. ijcai.org, 2022.

[72] Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning:
The effect of data, model and finetuning method.

[73] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

14



A Notations

We summarize main notations used in the paper.

• L: Cross-entropy loss or the (natural) logarithmic loss
• D: Dataset size in token
• N : Non-embedding model size or number of non-embedding parameters
• A,B, F : Scaling factors of the power law, independent of the variable under consideration
• E: Irreducible loss of the power law, independent of the variable under consideration
• α, β, γ: Scaling exponents of the power law, independent of the variable under consideration
• nlayer: number of layers of a model
• dmodel: hidden dimension size of a model
• dMLP: intermediate hidden dimension size of a model

B More on Architecture and Experimental Design

B.1 Megatron-LM Configuration

Infrastructure. Our experiments are performed on multiple nodes, each consisting of 8 NVIDIA
H100 80 GB GPUs, interconnected via InfiniBand HDR. The software we use for training is the
Megatron-LM library [57].

We use and modify the Megatron-LM (core v0.8.0) library for our experiments6. Models are
trained with data type bfloat16. Other optimization libraries used include FlashAttention [16] and
TransformerEngine7. See the example scripts provided in supplementary material.

B.2 Model Configuration

Let us elaborate more on our model configuration. The intermediate hidden dimension size, dMLP, is
set to be four times the hidden dimension size, i.e., 4dmodel. Bias is not used in the linear layers. We
do not consider efficiency-motivated implementations like grouped query attention as well. Attention
head number is chosen to increase with model size following standard practices. Other designs of the
architecture follow Llama2’s closely [63].

We vary model sizes keeping the ratio nlayer/dmodel to lie in the range 32 to 64, as in [37]. Smaller
models for used for ablation studies. See Table 3 for the exact numbers for the model configuration.

Table 3: Models used in our study and their parametric details. Note that dMLP, is set to be 4dmodel.
Model nlayer dmodel nhead N

15M 9 320 4 14,751,680
44M 12 480 8 44,248,800
0.1B 15 640 8 98,323,840
0.2B 21 832 8 232,623,040
0.5B 26 1,120 16 521,889,760
1B 30 1,504 16 1,085,859,424

B.3 Training Configuration

As discussed in the main text, we adopt the WSD learning rate schedule for all experiments. The
number of warmup steps is set approximately equal to the model size, as suggested by [49]. In the
final phase of training, the learning rate decays linearly to 10% of its peak value, with the decay phase
spanning roughly 10% of the total training steps, following the setup in [27]. To emulate varying
token budgets, we save intermediate checkpoints at logarithmically spaced intervals.

6https://github.com/NVIDIA/Megatron-LM
7https://github.com/NVIDIA/TransformerEngine

15

https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/TransformerEngine


Table 4: Training configuration used throughout the paper.

Configuration Details
Context length 1,024
Embedding tying False
Optimizer AdamW [43]
Adam β1 0.9
Adam β2 0.95
Adam ϵ 1e-8
Weight decay 0.1
Gradient clipping 1.0

The general training configuration is summarized in Table 4, while model-specific hyperparameters,
such as warmup iterations, initialization standard deviation (

√
2/5dmodel [39]), maximum training

steps, batch size, and tuned learning rate, are provided in Table 5. Batch size is scaled with model size
according to standard practice, without tuning for optimality. The number of tokens is increased with
model size as well, such that the parameter-to-token ratio remains roughly constant across different
model sizes. 6 We note that no specialized techniques for mitigating training instabilities, such as
Z-loss or QK normalization, are employed, as such instabilities do not arise in our experiments.

Table 5: Model-dependent training configuration. "init. size" refers to the standard deviation of
the normal distribution used for initializing the weights. "Max iter." refers to the maximum iteration
run on the model.

Model warmup iter. init. size Max iter. batch size LR

15M 200 0.035 17,600 128 8e-3
44M 200 0.029 17,600 256 4e-3
0.1B 200 0.025 17,600 512 4e-3
0.2B 400 0.022 35,200 512 2e-3
0.5B 800 0.019 70,400 512 4e-4
1B 800 0.016 70,400 1024 4e-4

B.4 GPU Hours and Costs

Instead of reporting the actual runtimes on our cluster, which varied in our experiments due to many
factors affecting the cluster (number of available nodes, congestion, etc.), we give a theoretical
estimate of total GPU hours used for obtaining the joint scaling law, which involves running the
largest tested model with most training tokens in this paper.

The estimate is as follows. We calculate the FLOPs for training the largest first and second-stage
models with maximum iterations using the 6ND approximation, ignoring the additional FLOPs
required to continued pretrain models with shorter iterations (as we can reuse the intermediate
checkpoints). We further assume that the per-second TFLOPs of the GPU is 400. We obtain around
109 TFLOPs. Taking into account of additional experimentation and ablation runs, we estimate that
around 3000 GPU hours were used for the entire project. Assuming a cost of 2 USD per GPU hour,
the total cost is around 6000 USD.

C Training Details

C.1 Ablation of Learning Rate Schedules

Here, we compare the performances of using WSD and the commonly used learning rate (LR) cosine
schedules (decaying to 10% of the peak LR value) [63]. The model size we use is 0.1B, with the
following training configuration: batch size 512, 4,000 training iterations, and 200 warmup iterations.
We can see from Figure 5 that both schedules yield similar (with WSD achieving slightly better final
loss) performances. This justifies our choice of using the WSD schedule throughout the paper.

16



Figure 5: WSD vs cosine LR schedule. We show that the WSD LR schedule achieves similar (even
slightly better) final loss compared to the more commonly used cosine LR schedule.

C.2 Ablation of Data Repetition

During model growth, we have used the same data as the base model for the second stage of training.
This is because the base model is often trained with a large amount of data, and it is not always
possible to obtain a large amount of additional data. However, this means that the second stage of
training involves repeating the same data. To study the effect of data repetition, we have made an
ablation study, where we compare the performance of using the same data as the base model and
using different portion of the Slimpajama data. As shown in Figure 6, we find that the difference is
small.

Figure 6: Ablation of data repetition during model growth. We compare the performance of
using the same data as the base model and using different data for the second stage of training. The
difference is small, indicating that data repetition does not affect the scaling behavior significantly.

C.3 Evaluation with Standard Benchmarks

We compare the performance of our trained 1B base model against existing models with similar sizes,
Pythia [9] and TinyLlama [73], based on standard natural language processing benchmarks, ARC
[14], lambada [46], logiqa [42], piqa [10], sciq [68], and winogrande [52].

Table 6 shows the results. We see that the model perform similarly to the open models, indicating
that our models have been trained correctly.

C.4 Continual Pretraining Details

Using a lower LR for CPT is also a common practice [34]. As an ablation, we have experimented
with using a constant LR schedule setting the value to be the final LR for the first-stage base model
training, on a 0.1B model. We find that it yields worse performance (see Figure 7). Hence, we use
the same LR (and LR schedule) as the base model for CPT.

C.5 Model Growth Details

For completeness, we provide more details on the model growth methods used in this work.

17



Table 6: Benchmarks’ performance comparison across models. Reported scores are accuracies
(normalized by byte length whenever applicable). The first two columns are scores of existing models.
The last column is evaluation results of the largest base model trained with the most number of tokens
in this work. Our models are evaluated with the LM Evaluation Harness v0.4.0 library [22].

Models Pythia-1B TinyLlama-1.1B Our 1B model
Datasets Pile Slimpajama & Starcoder Slimpajama
Tokens 100B 103B 74B

ARC-c 25.59 24.32 27.65
ARC-e 47.26 44.91 52.10
lambada 53.52 - 45.08
logiqa 29.49 - 26.11
piqa 69.31 67.30 65.89
sciq 77.3 - 78.10
winogrande 51.22 53.28 54.93

Avg. 50.53 - 49.98

Width expansion details. Let us elaborate more on the width expansion method used in this work.
We first give a more precise defintion of function preservation. Let F be a function and G as the
growth operator. The function preservation condition is defined as:

F (x) = G(F )(x),∀x ∈ X
where X is the input space.

When performing width expansion, the neuron values of each layer are expanded by duplicating the
weights of existing neurons, and dividing the output weights by the growth factor.

Stacking details. We first note that stacking does not preserve function but is empirically found to
work well in practice [17]. We use the recommended stacking procedure in [17], which is, letting M
be the non-embedding part of the base model, the stacked model with growth factor k is given by:

M ′ = M ◦M ◦ ... ◦M (k times)
where ◦ denotes function composition. The embedding and final layer are then simply copied from
the base model.

Low LR. We also experiment with using a lower constant LR for stacking as above, and find that it
also yields worse performance (see Figure 7). Hence, we use the same LR (and LR schedule) as the
base model for stacking as well.

Figure 7: Bootstrapped pretraining with lower LR. We show that using the same LR as the base
model achieves better final performance than using a lower LR for a 0.1B model continual pretrained
on code data (left) and stacking (right).

D Scaling Laws Details

D.1 Fitted Exponents and Other Results

We show the fitted exponents of the multiplicative scaling laws studied in Table 1 and 2 in Table 7.

18



We further show that D1 has power-law scaling in Figure 8, for CPT on mathematics data and model
growth by expansion, which justifies the multiplicative form of the scaling laws.

Figure 8: Left: D1 has power-law scaling. We show scaling behavior of fist-stage training tokens
(D1) for different values of second-stage tokens (D2), indicating that D1 also has power-law scaling.
From left to right: Continual pretraining on mathematics data, and model growth by expansion.

Table 7: Fitted exponents for the multiplicative scaling law. Corresponding α1, α2, α3 values for
the multiplicative interaction fits shown in Table 7.

Variant α1 α2 α3

CPT (code) 0.106 0.146 0.004
CPT (math) 0.981 0.388 0.017
Expand 0.549 0.852 0.024
Stack 0.515 0.350 0.017
CPT (replay) 0.424 0.626 0.018
CPT (stable) 0.920 0.156 0.004
Stack (x4) 0.644 0.829 0.028
Stack (stable) 0.891 0.507 0.009

D.2 Joint Scaling Law

For model growth, we also fit the joint scaling law in Equation 7. Note that there is ambiguity in
defining the model size N in the context of model growth. We consider N to be the size of the model
before growth, and as we keep the growth factor fixed to be 2 in our experiments, the new model
size after growth is N ′ = 2N . Therefore, N and N ′ differ by a constant factor of 2, which can be
absorbed into the coefficient B in Equation 7. Unless stated otherwise, we use N in the fitting of the
joint scaling law for model growth. In Figure 9, we show the fit of the joint scaling law for stacking.

We provide the fitted coefficients of the joint scaling law in Table 8. In addition to bootstrapped
pretraining, we also show the fitted coefficients for base models trained from scratch on the same
dataset as the second stage (code data for CPT, and the same data as the base model for model growth).
For model growth, we consider a growth factor of 2, and fit the parameters with model size N before
stacking for comparison conveniences. We further note that the fitted coefficients are produced by
fitting the joint scaling law to all data points collected, including those used for validation in Figure 9.

D.3 Why Fitting Scaling Laws Separately?

We justify our decision to fit two separate scaling laws—one for models trained from scratch and
another for bootstrapped pretraining—instead of employing a unified formulation that spans all
stages.

First, the scaling behavior of models trained from scratch is expected to differ from that of models
undergoing bootstrapping. Specifically, at the limit D1 → 0, grown models are initialized from a
pretrained base model, whereas scratch-trained models start from random weights. This difference in
initialization leads to distinct learning dynamics and, consequently, different scaling law parameters.

19



Figure 9: Fits of the joint upcycling scaling law of stacking. 10% of the collected data points with
lowest losses are used for validation (orange points).

Table 8: Fitted coefficients for joint scaling laws. Note that for stacked models, we fit the coefficients
with model size N before stacking for comparison conveniences.

α/α1 α2 α3 β A B E

Base (Slimpajama) 0.092 - - 0.105 10.383 10.085 0.041

From-scratch (code) 0.113 - - 0.234 8.143 27.286 0.105

CPT (code) 0.048 0.126 0.001 0.238 15.062 27.234 0.105

Stack 0.087 0.119 0.003 0.173 33.394 22.471 0.041

Similarly, the scaling behavior of the base model differs from that of the second-stage training in the
limit D2 → 0. As shown in Figure 7, second-stage training often begins with a rewarming phase,
during which the loss initially increases before decreasing. This early instability deviates from the
expected scaling of dense models, although the overall trend remains correlated—supporting the
validity of Condition 1, due to function preservation and empirical observations that rewarming does
not entirely disrupt loss behavior (as quoted from [15]: “In practice, few empirical phenomena obey
power laws for all values of x”).

Finally, our preliminary experiments indicate that a unified scaling law does not provide a satisfactory
fit across both stages. We therefore opt to model them separately. We also note that there may exist
alternative functional forms that could better capture the full range of behavior, but they may violate
some of the well-established conditions for scaling laws (power law), and may overcomplicate the
analysis or overfit the data; hence, we leave their exploration to future work.

E More Practical Implications

To further examine the trade-off between training from scratch and bootstrapped pretraining, we
fit Chinchilla-style scaling laws to models trained from scratch on the same datasets used in our
second-stage experiments, namely, code or math data for CPT, and the original dataset for model
growth. In Figure 10 and 11, we plot the validation loss as a function of training tokens for both
approaches, across a range of sunk costs, using a fixed model size of 7B. For CPT on code data, we
find that models trained from scratch begin to outperform bootstrapped models (pretrained on 10T
tokens) once more than 300B tokens of domain-specific data are used.

E.1 Compute Optimality of Model Growth

For model growth with growth factor 2, we want to scale N2, D2 optimally, Nopt
2 , Dopt

2 , given a
FLOPs budget and fixing D1, while minimizing the loss L, which we write as LD1

(D2, N1). Here,

20



Figure 10: Tokens required for from-scratch training to catch up with bootstrapped pretraining.
We compare loss-versus-token plots of from-scratch and bootstrapped pretraining at various base
model training budgets (sunk costs). Stacking is only considered efficient when Dscratch < sunk cost.
We observe that the efficiency of stacking diminishes with sunk cost.

Figure 11: Tokens required for from-scratch training to catch up with bootstrapped pretraining.
Conclusion similar to those made in Figure 10 can be made for CPT on code data, where the scaling
efficiency decreases with first-stage training tokens.

N1 is the model size before growth, and N2 = 2N1. This is equivalent to solving the following:

∂

∂D2
LD1

(D2, C2/12D2)

∣∣∣∣
D2=Dopt

2

= 0,

∂

∂N1
LD1

(C2/12N1, N1)

∣∣∣∣
N1=Nopt

1

= 0

where we have used N2 = 2N1 and C2 = 6N2D2. Solving the above equations leads to

Dopt
2 = G

(
C2

12

)a

,

Nopt
1 = G−1

(
C2

12

)b

21



where

G :=

(
Aeffαeff

Bβ

)1/(αeff+β)

a :=
β

αeff + β

b :=
αeff

αeff + β

Aeff := AD−α1
1

αeff := α2 − α3 logD1

We can henceforth relate Dopt
2 and Nopt

1 via

Dopt
2 = G

(
GNopt

1

)a/b ∝ (
Nopt

1

)β/α2−α3 logD1

and
Nopt

1 = G−1
(
G−1Dopt

2

)b/a ∝
(
Dopt

2

)(α2−α3 logD1)/β

22


	Introduction
	Related Work

	Experimental Setup
	Formulating the Data Scaling Laws
	Data Scaling Laws
	Interpretations

	A Closer Look At The Scaling Behavior
	Variants of Bootstrapped Pretraining
	Joint Scaling Incorporating Model Size
	Practical Implications

	Discussion and Conclusion
	Notations
	short
	Megatron-LM Configuration
	Model Configuration
	Training Configuration
	GPU Hours and Costs

	Training Details
	Ablation of Learning Rate Schedules
	Ablation of Data Repetition
	Evaluation with Standard Benchmarks
	Continual Pretraining Details
	Model Growth Details

	Scaling Laws Details
	Fitted Exponents and Other Results
	Joint Scaling Law
	Why Fitting Scaling Laws Separately?

	More Practical Implications
	Compute Optimality of Model Growth


